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Abstract

Ever increasing data quantity makes ever more urgent the need for highly scalable learners
that have good classification performance. Therefore, an out-of-core learner with excellent
time and space complexity, along with high expressivity (that is, capacity to learn very
complex multivariate probability distributions) is extremely desirable. This paper presents
such a learner. We propose an extension to the k-dependence Bayesian classifier (KDB) that
discriminatively selects a sub-model of a full KDB classifier. It requires only one additional
pass through the training data, making it a three-pass learner. Our extensive experimental
evaluation on 16 large data sets reveals that this out-of-core algorithm achieves competitive
classification performance, and substantially better training and classification time than
state-of-the-art in-core learners such as random forest and linear and non-linear logistic
regression.

Keywords: scalable Bayesian classification, feature selection, out-of-core learning, big
data

1. Introduction

Until very recently most machine learning research has been conducted in the context
of relatively small datasets, that is, no more than 50,000 instances and a few hundred
attributes. It is only in the last five years that larger datasets have started to appear in the
literature (Erhan et al., 2010; Sonnenburg and Franc, 2010; Agarwal et al., 2014; Sariyar
et al., 2011) on a regular basis. We argue that larger data quantities do not simply call
for scaling-up of existing learning algorithms. Rather, we believe, as first argued by Brain
and Webb (1999), that the most accurate learners for large data will have much lower
bias than the most accurate learners for small data. Thus we need a new generation of
computationally efficient low bias learners. To achieve the necessary efficiency, a learning

(©2016 Ana M. Martinez, Geoffrey I. Webb, Shenglei Chen and Nayyar A. Zaidi.



MARTINEzZ, WEBB, CHEN AND ZAIDI

algorithm for very large data should ideally require only a few passes through the training
data. Further, to remove memory size as a bottleneck, the algorithm should be able to
process data out-of-core.

In this paper, we extend the KDB classifier. KDB is a form of restricted Bayesian
network classifier (BNC). It has numerous desirable properties in the context of learning
from large quantities of data. These include:

e the capacity to control its bias/variance trade-off with a single parameter, k,
e it does not require data to be held in-core,
e the capacity to learn in just two passes through the training data.

The contributions of this paper are as follows:

e We extend KDB to perform discriminative model selection in a single additional pass
through the training data. In this single pass, our algorithm selects between both
attribute subsets and network structures. The resulting highly scalable algorithm
combines the computational efficiency of classical generative learning with the low
bias of discriminative learning.

e We compare the performance of our algorithm with other state-of-the-art classifiers on
several large datasets, ranging in size from 165 thousand to 54 million instances and
5 to 784 attributes. We show that our highly scalable algorithms achieve comparable
or lower error on large data than a range of out-of-core and in-core state-of-the-art
classification learning algorithms.

To illustrate our motivations, in Figure 1 we present learning curves for the poker-hand
dataset (which is described in Table 7 in Appendix A). As can be seen, for lower quantities
of data the lower variance delivered by low values of k results in lower error for KBD, while
for larger quantities of data the lower bias of higher values of k results in lower error. While
selective KDB sometimes selects a k that overfits this data with smaller training set sizes,
when the training set size exceeds 550, 000 it successfully selects the best k and by selecting
a subset of the attributes it can substantially reduce error across the entire range of training
set sizes relative to the KDB classifier using the same k.

Section 2 reviews the state-of-the-art in out-of-core BNCs and introduces our proposal:
selective KDB (SKDB, Section 2.1). In Section 3 we present a set of comparisons for our
proposed algorithm on 16 big datasets with out-of-core BNCs (Section 3.1), out-of-core
linear classifiers using Stochastic Gradient Descent (Section 3.2), and with in-core (batch)
learners BayesNet and Random Forest (Section 3.3). To finalize, Section 4 shows the main
conclusions and outlines future work.

2. Scalable Bayesian Networks for Classification

We define the classification learning task as the assignment of a label y € Qy, from a
set of ¢ labels of the class variable Y, to a given example x = (z1,...,xq), with values
for the d attributes A = {Xi,...,X4}. Bayesian networks (BN) (Pearl, 1988) provide
a framework for computing the joint probability of these d random variables. A BN is
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Figure 1: Learning curves for KDB and Selective KDB on the poker-hand dataset. The
values plotted are averages over 10 runs. For each run 1,000 examples are se-
lected as a test set and samples of successive sizes are selected from the remaining
data for training. As can be seen, for lower quantities of data the lower variance
delivered by low values of k results in lower error for KBD, while for larger quan-
tities of data the lower bias of higher values of k results in lower error, although
there is not sufficient data for k = 5 to asymptote on this dataset. While only
selecting a k (SKDB k=5 only k) causes selective KDB to overfit this data with
smaller training set sizes (between 20,000 and 550,000), when the training set size
is large enough it successfully selects the best k. Only selecting attributes (SKDB
k=5 only atts) always reduces error (relative to KDB k=5). By selecting both k
and attributes (SKDB k=5) selective KDB substantially reduces error relative to
KDB with any value of k once there are more than approximately 450,000 training
examples.

a directed acyclic graph where the the joint probability of all attributes can be written
as the product of the individual probabilities of all attributes given their parents, that
is p(y,x) = p(y|my) Hlep(xilwmi), where 7, denotes the parents of attribute X;. If the
structure is known, the likelihood of the BN given the data can be maximized by estimating
p(x|my;) using the empirical estimates from the training data 7, composed of ¢ training
instances.
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While unrestricted BNs are the least biased, training such a model on even moderate size
data sets can be extremely challenging, as the search-space that needs to be explored grows
exponentially with the number of attributes. This has led to restricted BNCs, including
naive Bayes (NB) (Duda and Hart, 1973; Minsky, 1961; Lewis, 1998), tree-augmented naive
Bayes (TAN) (Friedman et al., 1997), averaged n-dependence estimators (ANDE) (Webb
et al., 2012) and k-dependence estimators (KDB) (Sahami, 1996). These classifiers have in
common either no structural learning or minimal structural learning that requires only one
or two passes through the data. They have been referred to as semi-naive BNCs (Zheng
and Webb, 2005). Even though highly biased due to their inherent conditional attribute
independence assumption, they have been shown to be very effective classification methods.

NB is the simplest of the BNCs, assuming that all attributes are independent given
the class. It estimates the joint probability using p(y) H?Zl p(zily), where p(-) denotes an
estimate of p(-). TAN is a structural augmentation of NB where every attribute has as
parents the class and at most one other attribute. The structure is determined by using
an extension of the Chow-Liu tree (Chow and Liu, 1968), that utilizes conditional mutual
information to find a maximum spanning tree. This alleviates some of NB’s independence
assumption and therefore reduces its bias at the expense of increasing its variance. This
results in better performance on larger data sets. TAN, provides an intermediate bias-
variance trade-off, standing between NB on one hand and unrestricted BNCs on the other.

There has been a lot of prior work that has explored approaches to alleviate NB’s
independence assumption. One approach is to add a bounded number of additional in-
terdependencies (Friedman et al., 1997; Zheng and Webb, 2000; Webb et al., 2005; Zhang
et al., 2005; Yang et al., 2007; Flores et al., 2009a,b; Zheng et al., 2012; Zaidi et al., 2013).
At the other extreme, Su and Zhang (2006) propose the use of a full Bayesian network.
Of these algorithms, only two approaches allow the number of interdependencies to be ad-
justed to best accommodate the best trade-offs between bias and variance for differing data
quantities. ANDE (Webb et al., 2012) averages many BNCs, where a parameter n controls
the number of interdependencies to be modeled. KDB uses a parameter k to control the
number of interdependencies modeled.

KDB relaxes NB’s independence assumption by allowing every attribute to be condi-
tioned on the class and, at most, k& other attributes. Like TAN, KDB requires two passes
over the training data for learning: the first pass collects the statistics to perform calcula-
tions of mutual information for structure learning, and the second performs the parameter
learning based on the structure created in the former step (Algorithm 1). An advantage over
the ANDE model is that KDB does not need to collect all statistics for all combinations of
n or k attributes, allowing it to scale to higher order dependencies. It also has the capacity
to select a model and hence more closely fit the data. This is a disadvantage for small data,
which it may overfit, but KDB will often lead to higher accuracy than ANDE on large data
which are more difficult to overfit.

Recently, some techniques have been proposed that address the classification problem
with Bayesian networks from a relatively efficient discriminative perspective. Carvalho
et al. (2011) propose a decomposable approximation to the conditional log-likelihood scor-
ing criteria. Pernkopf and Bilmes (2010) propose a BNC learning algorithm with some
resemblance to KDB but using discriminative evaluation for parent assignment. Neither
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Algorithm 1: The KDB algorithm
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Input: Training set 7 with attributes {Xy,..., X,, Y} and k.

Output: KDB model.

Let G be a directed graph G = (V, ), in which V is a set of vertices and £ is a set of
links.

Let © be a Bayesian network with structure G.

First pass begin

| G =learnStructure(7T) ; /* Algorithm 2 */
end

Second pass begin

‘ © = learnParameters(7, G) ; /* Algorithm 3 */
end

Let KDB be a BN with structure G and conditional probability
distributions in O.
return KDB

Algorithm 2: learnStructure(7)
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Input: Training set T
Output: G, network structure.
Calculate MI(X;;Y) from T for all attributes.
Calculate MI(X;; X;|Y) from T for each pair of attributes (i # j).
Let £ be a list of all X; in decreasing order of MI(X;;Y).
V=A{Y} €=
for i =1— L.size do
V=VUL;
E=EU(Y, L)
vk = min(i — 1, k);
while (vk > 0) do
m = argmax; {MI(Ly; L;|Y) [ 1<j<i A (Ly, Li) ¢EY;
E=EU (Ejﬂﬁi)§
vk = vk —1;
end

end
return ¢

Algorithm 3: learnParameters(7T, G)

1
2
3

Input: Training set 7 and G.
Output: 6.

Initialize © to structure G.
Compute the CPTs for © from 7.

return ©
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algorithm is suited to learning a BNC in a limited number of passes through the training
data.

There have also been some important refinements that improve KDB’s performance.
Bouckaert (2006) proposes averaging all possible network structures for a fixed value of k
(including lower orders). Time complexity is significantly reduced by multiplying the sum
of every attribute given all possible parents in the order. For k = 2 the authors propose a
simplification that identifies one attribute as super parent and consider for every attribute of
the class, possibly the super parent and possibly one other lower ordered attribute. The sum
of class probabilities is taken as selecting criteria for the superparent. However they agree
that this approach is not easy to implement incrementally for large datasets. Rubio and
Géamez (2011) present a variant of KDB that employs a hill-climbing search to incrementally
build a KDB classifier. This approach requires at least one pass through the data for each
attribute.

2.1 Selective KDB

The parameter k controls KDB’s bias-variance trade-off. Higher k results in higher variance
and lower bias. Unfortunately there is no apriori means to preselect a value of k for which
this trade-off will result in the lowest error for a given training set as this is a complex
interplay between the data quantity and the complexity and strength of the interactions
between the attributes. A further factor that can increase KDB’s error is that attributes that
carry no useful information about the class must be treated as if they do, which invariably
introduces some noise into the estimates. Discarding these attributes can both reduce error
and classification time. Our proposed algorithm, Selective KDB (SKDB), extends KDB
to select between attribute subsets and values of k in a single additional pass through the
training data.

In the general case, attribute selection is a complex combinatorial task. For d attributes
there are 2% alternative attribute subsets that could be explored. Many attribute selection
algorithms utilize either forward selection or backwards elimination hill-climbing strategies
(Langley and Sage, 1994; Koller and Sahami, 1996). These start with either no attributes
or all attributes and then iteratively add or remove one attribute at a time. This requires
that all attribute subsets resulting from adding/removing any one attribute are considered
at each step. There are at most d such steps resulting in O(d?) attribute subset evaluations.
If all candidate modifications to a current subset are considered simultaneously in a single
pass through the data, this implies up to d passes for the attribute selection stage.

We seek to perform both attribute and best-k selection in a single pass. For attribute
selection, we take advantage of the attribute ordering selected by KDB based on mutual
information with the class. Given that the attributes are sorted on this order, we consider
only the attribute sets {z1,...2;},1 < i < d, that is attribute sets that each contain the
i attributes that have the greatest mutual information with the class. These d attribute
subsets are evaluated simultaneously in a single pass through the data using leave-one-out
cross validation (LOOCYV). For big data, LOOCV can be expected to provide an unbiased
low-variance estimate of the out-of-sample error. It is possible to efficiently evaluate all d
subsets simultaneously, because a KDB classifier using subset {z1, ... z;} is a minor addition
to a KDB classifier using subset {z1,...z;_;1}. Calculating a KDB classifier for all attributes
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already incorporates all the calculations for all the KDB classifiers using subsets that we
consider.

We use incremental cross validation (Kohavi, 1995), which performs LOOCV on BNCs
very efficiently. A naive approach to LOOCYV will for each holdout example recalculate from
scratch all of the joint frequency counts required by a BNC. Incremental cross-validation
first gathers the counts for all training examples in a single pass through the data. Then,
when classifying a holdout example, its counts are removed from the table. SKDB collects
the complete counts in its second pass through the training data and performs LOOCYV in
a third pass.

Using the given order, the number of attributes with the best leave-one-out error is
selected. In case of a draw, preference is given to the smallest number of attributes. Any
loss function can be used that is a function, {(y*,p(Y,x)) | x € T} — R over all objects
x € T of a predicted class distribution p(Y,x) and the true class for that object, y*.
Such loss functions include 0-1 loss, root mean square error, log-loss, Matthews correlation
coefficient (Matthews, 1975) or Brier score (Brier, 1950) to name a few. Because we believe
it to be an effective measure of the calibration of a classifier’s class probability estimates,
we use root mean squared error (RMSE) as follows:

RMSE = Z plyX|x))? (1)
XGT

where p(y*|x) is the estimated posterior probability of the true class given x, y* the class
label for the example x.

In order to make full use of available computational resources while reducing the risk of
overfitting, we propose to select algorithmically the best value of k for a particular dataset.
Just as the KDB classifiers built on successive attribute subsets are embedded one inside
the other, a KDB classifier with k = 7, can be evaluated with little additional computational
effort during the process of evaluating a KDB classifier with & = ¢ + 1. We leverage this
capacity to simultaneously evaluate KDB classifiers with all attribute subsets {z1,...z;_1}
and values of k£ up to the maximum capacity available, taking advantage of the above
mentioned LOOCV. The combination of attribute subset and k& with the best LOOCV
error is selected. In case of a draw, the smaller attribute subset and smaller value of k are
selected. The resulting SKDB algorithm is presented in Algorithm 4.

In the first pass our implementation of SKDB generates a three-dimensional table of co-
occurrence counts for each pair of attribute values and each class value. This is required to
calculate the mutual information of each attribute with the class and the conditional mutual
information of every pair of attributes given the class. The resulting space complexity
is O(c(dv)?). The time complexity of forming the three dimensional probability table is
O(td?), as an entry must be updated for every training case and every combination of two
attribute-values for that case. To calculate the conditional mutual informations, SKDB
must consider every pairwise combination of their respective values in conjunction with
each class value O(c(dv)?). Attribute ordering and parent assignment are O(dlogd) and
O(d?log d) respectively.

The second pass requires d tables of k+ 2 dimensions (one for each of k parents, one for
the child and one for the class), with O(cdv**1). Updating the probability tables is O(tdk).
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Algorithm 4: The SKDB algorithm
Input: Training set 7 with attributes {Xy,..., X,, Y} and k™.
Output: SKDB model.

Let £ be a list of all X; in decreasing order of MI(X;;Y).

Let P be a kxa matrix of posterior probabilities;

Let LF be a matrix of LOOCYV results (of length k£ xa); Initialize it with
Zeros;

10 Let © be the BN © with example x discounted from its CPTs;

11 Third pass (Vx € T) begin

1 First pass begin

2 | G =learnStructure(T) ; /* Algorithm 2 */
3 end

4 Second pass begin

5 | © = learnParameters(7T, G) ; /* Algorithm 3 */
6 end

7

8

9

12 for k' =1 to k™ do

13 Py = peux(y*|x), Vy* € Y5

14 for |=1—1= L.size do

15 Xmax = L.nextElement;

16 PR ly*] = PIK[y*] - Dowx (maxlpak, . . y*), Vy* € Qy; where pal  are
the k' first parent-values of X, in x.

17 LF[K'l] = LFK'|[l] + LossFunction(P[k'],y*); where P[k] is the
vector of posterior probabilities considering the top [ attributes
by MI.

18 end

19 end

20 end

21 Select b and k indexes with best LF;
22 Truncate O to attribute subset {1...b} and maximum number of parents k;
23 return O;

The algorithm to this stage is simply KDB, with time complexity O(td? + c(dv)? +tdk),
where v is the maximum number of values per attribute, and space complexity O(cdvk+1).

SKDB then extends KDB with an extra pass through the training data to perform
leave-one-out cross validation for the different (ordered) attributes O(tedk).

At classification time, SKDB need only store the conditional probability distribution for
the dj selected attributes and the kj; selected, O(Cdbvl]f). The time complexity of classifying
a single example is O(cdpky).

In summary, SKDB requires an extra pass over the data compared with KDB, and
the complexity of this extra pass is linearly dependent on the number of training examples,
classes, attributes and k so the order of the time complexity increases from O(td? + c(dv)? +
tdk) to O(td? + c(dv)? + tedk). This is not a great increase in practice, since the number of
classes is generally small, and indeed for high dimensional data the complexity of the first
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pass can dominate that of the subsequent passes. Classification time and space complexity
are reduced compared to KDB if the number of selected attributes d < d and/or kp < kmax-

For the cost of this modest increase in computation, KDB is extended so as to discrim-
inatively choose between a large class of alternative BNC models. Note that while it is
possible to use cross validation to select between any collection of alternative models, it
is only possible to do so in the extremely efficient manner we have developed for a very
restricted class of learners, those that can be evaluated using incremental cross-validation
and can be decomposed into nested models. The only types of learners of which we are
aware that belong to this class are KDB and ANDE. We leave applying the approach to
ANDE and variants of KDB as a topic for future research.

It may be possible to gain further efficiencies through sampling. As discussed in Hulten
and Domingos (2002), it is sometimes possible to obtain sufficiently accurate estimates of
the parameters for a learning program from a subsample of the full data. For very large
datasets we could potentially utilize a random sample for the first pass of our algorithm,
which only needs to estimate the parameters for three-way interactions between each pair
of attributes and the class. We believe that the best value of k will usually be the one for
which there is only just enough data in the dataset to obtain sufficiently accurate estimates
of the required parameters. Thus we do not believe that sampling will usually be useful for
the second pass. A technique such as Racing (Maron and Moore, 1994) could be used to
select the model in the final pass. However, we suspect that it will usually require extremely
large samples to confidently distinguish between the large number of very similar models
that are assessed in the third pass. Given that the computational overheads of scanning a
large dataset in random order are considerable, we do not believe that sampling will often
be useful. However, this also remains a potential direction for future research.

3. Experimental Methodology

We undertook an extensive online search to gather a group of large datasets, all of which
have more than 100K instances. These datasets are described in Table 7 in Appendix A,
in ascending order of number of samples. Those below the double line have more than 1
million instances. All datasets except for poker-hand, uscensus1990 and splice contain
one or more numeric attributes. 7 datasets contain only numeric attributes: MITFaceSetA,
MITFaceSetB, MITFaceSetC, Mnist, USPSExtended, MSDYearPrediction and satellite.
For the Bayesian network classifiers we discretize numeric attributes using 5-bin equal fre-
quency discretization. To avoid loading the whole data into memory, only a random sample
of 100K points is used to define the bins for discretization.

As described in Section 2.1, we use SKBD with RMSE as the objective function for the
third pass that selects between structures because we believe it to be a good measure of
the calibration of a classifier’s class probability predictions. However, this raises the issue
that we might be reporting the measure that best favors our approach. To guard against
this, we also present in the Appendices 0-1 loss results of the relative performance of all
algorithms, and discuss these results in the appropriate sections below. Table 9 shows that
when evaluated on RMSE, SKDB trained to optimize RMSE and SKDB trained to optimize
0-1 loss (SKDB"!) attain identical 0-1 loss on 12 out of 16 datasets, suggesting that SKDB'’s
performance is similar when selection uses different but closely related loss functions.
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Train Test
time space time space
NB | O(td) O(cdv) O(cd) O(cdv)
TAN | O(td? + c(dv)? + d*loga) | O(c(dv)?) O(ed) | O(cdv?)
AODE | O(td?) O(c(dv)?) O(cd?) | O(c(dv)?)
KDB |O(td? + c(dv)? + tdk) O(c(dv)? + cdv™ 1) [O(cdk) | O(cdvFTT)
SKDB, | O(td? + c(dv)? + tedk) | O(c(dv)? + cdv™ 1) [ O(cdyk) | O(cdyv™T)
SKDB | O(td? 4 c(dv)? + tedk) | O(c(dv)? + cdvF 1) | O(cdyky) | O(cdyv®TT)

Table 1: Orders of complexity for the different semi-naive BNCs where: t is the number
of training examples, d is the number of attributes, v is the maximum number
of values per attribute, ¢ the number of classes, d; (the best d) is the remaining
attributes after applying SKDB, and k; (the best k) is the k value selected in
SKDB.

The structure of the experimental Section is as follows: Section 3.1 compares our pro-
posed SKDB algorithm’s results with different out-of-core semi-naive BNCs. Section 3.2
compares our SKDB algorithm with several online (out-of-core) linear classifiers. Section
3.3 includes comparisons with two state-of-the-art in-core machine learning algorithms,
BayesNet (Augmented Bayesian network) and Random Forest. Section 3.4 presents a global
comparison of all learners considered, along with empirical time comparisons for the differ-
ent out-of-core classifiers. Each of these sections provides a summary of the relevant results.
Detailed RMSE error outcomes are presented in Table 8 in Appendix A and a more detailed
analysis of results is provided in in Appendix C.

All the experiments for the Bayesian out-of-core algorithms use C++ software specially
designed to deal with out-of-core classification methods!. Appendix B specifies the imple-
mentation details.

Note that both RMSE and 0-1 Loss are assessed using 10-fold cross-validation. This
should not be confused with the leave-one-out cross-validation used to select the number
of attributes and parents in SKDB. For each fold of the 10-fold cross-validation, SKDB
performs leave-one-out cross-validation on the training set to select the parameters of the
model that is then tested on the holdout test fold.

3.1 SKDB vs Bayesian Out-of-core Algorithms

The first set of experiments compare SKDB with the out-of-core semi-naive BNCs described
in Section 2: NB, TAN, AODE and KDB. We also consider a version of SKDB which fixes
the value of k and just selects among the attributes, referred to as SKDBj. Table 1 shows
a summary of the orders of complexity for all these BNCs.

Tables 2 and 3 show win-draw-loss records summarizing the relative RMSE and 0-1 loss
of the different approaches. Cell [4, j] of each table contains the number of wins/draw /losses

1. A minimum functional part of the software containing SKDB can be found in the (two first) authors’
academic web pages, for example http://www.csse.monash.edu.au/~webb/.
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KDB
k=1 k=2 | k=3 ]| k=4 | k=5
TAN 6-3-7 | 0-0-16 | - - -
AODE 3-0-13 | 0-0-16 | - - -
SKDB;, 8-8-0 | 6-10-0 | 6-10-0 | 7-9-0 | 6-9-1
SKDB 16-0-0 | 16-0-0 | 14-2-0 | 14-2-0 | 8-8-0
SKDB kpax = b 6-10-0 (vs best k)*

* The result is 6-9-1 (shift in uscensus) if SKDB is optimized with 0-1 loss.

Table 2: Win-draw-loss records when comparing the RMSE of different out-of-core BNCs.

KDB
k= k=2 | k=3 |k=4|k=5
TAN 7-2-7 | 0-0-16 - - -
AODE 4-1-11 | 0-0-16 - - -
SKDB,, 5-10-1 | 5-11-0 | 6-10-0 | 6-9-1 | 6-9-1
SKDB 16-0-0 | 14-2-0 | 13-3-0 | 10-5-1 | 6-9-1
SKDB kpax =5 5-11-0 (vs best k)*

* The result is 6-10-0 if SKDB is optimized with 0-1 loss.

Table 3: Win-draw-loss records when comparing the 0-1 loss of different out-of-core BNCs.

for the classifier on row i against the classifier on column j. A win indicates that the algo-
rithm has significantly lower error than the comparator. A draw indicates that the differ-
ences in error are not significant. Statistical significance has been assessed using Wilcoxon
signed-rank tests to compare the 10-fold outputs. SKDBj; and SKDB are compared against
standard KDB with the same value of k. Additionally, SKDB with & = 5 is compared
against the lowest error of any standard KDB with k between 1 and 5 (which is a theoreti-
cal result, since the value of k that will minimize out of sample error can only be determined
a posteriori).

The results indicate that TAN is competitive with KDB k& = 1, whereas AODE only
achieves lower error on three or four of the datasets, depending on the loss function. We
believe the reason AODE performs so poorly is that the advantage it gets in reduced vari-
ance from ensembling the d models is less useful for larger data. Both TAN and AODE
consistently show higher error than higher orders of KDB on these large datasets. SKDBy
only increases the RMSE of KDB relative to one value of k£ and only on one dataset, MIT-
FaceSetB, and then only from 0.0841 to 0.0844. For many datasets it does not affect error
(but nonetheless speeds up classification time). For many datasets it substantially reduces
error, such as the reduction from 0.2048 to 0.1868 for poker-hand.

The average best k for SKDB across the 16 datasets is 4.08. On average, 78.46 + 29% of
the attributes are selected, which explains some of the ties, although in other cases SKDB

11
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Figure 2: Scatter plot of RMSE comparisons for KDB and SKDB.

obtains the same results as KDB with the best value of k, but reducing the number of
attributes. Indeed, reducing the number of attributes without affecting error is the worst
case encountered by SKDB, because it never loses in terms of RMSE compared to the best
KDB).

One could think that KDB with £ = 5 would be the fairest comparison with SKDB
(Kmax = 5). This comparison is shown in Figure 2a, where the X-axis represents the RMSE
results with KDB with k£ = 5 for the 16 datasets and the Y-axis the RMSE with SKDB.
We have used a logarithmic scale because almost half of the points fall below the 0.1 range.
Note that there is not a single point above the diagonal line, which indicates that SKDB is
never worse than KDB k£ = 5 or even KDB with the best k value considered, as shown in
Figure 2b.

If only the best number of parents is selected by SKDB (best k) and no feature selection
is performed, then the RMSE is always equivalent to the best RMSE obtained by KDB
with any value of k € {1,5}. That is, for all datasets SKDB without attribute selection
is successful at selecting the best value of k with respect to the specified loss function.
However, for five datasets the value of k that attains the best RMSE is different to that
which attains the best 0-1 loss, demonstrating the value of optimizing with respect to the
relevant loss function. These results are summarized on row SKDB,,,,, in Tables 8 and 9.
The non-shaded cells on these rows correspond to those datasets for which feature selection
contributes to further reduce the error of SKDB. There are 9 datasets in total for which
the feature selection part of the algorithm does not reduce RMSE and 10 for which it does
not reduce 0-1 loss. Note, however, that the extra computational complexity added by the
feature selection evaluation is only related to the complexity of the loss function utilized.
In the case of considering RMSE-like functions, this extra time is negligible, but if more
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Figure 3: Training and classification time comparisons for KDB and SKDBy.

complex evaluation functions were to be used in a highly time-constrained scenario, then
only a random sample of instances could be considered at this step.

Figures 3a and 3b show the training and classification time comparisons for KDB and
SKDBj. Only the 11 smallest out of the 16 datasets have been considered for time mea-
surement, since these experiments have been conducted on a desktop computer with an
Intel(R) Core(TM) i5-2400 CPU @ 3.10 GHz, 3101 MHz, 64 bits and 7866 MiB of memory,
whereas the remaining experiments have been conducted in a heterogeneous grid environ-
ment for which CPU times are not commensurable. Each bar represents the sum of all 11
datasets? in a 10-fold cross validation experiment. These graphs reinforce what the orders
of complexity for the two algorithms indicated, that is, SKDBj, requires a bit more time for
training (extra pass on the data), while the classification time is less in practice, since the
number of attributes selected is generally smaller than d.

Figures 4a and 4b show the training and classification empirical time comparisons of the
different out-of-core BNCs relative to SKDB (with kmax—5). The datasets are ordered at
increasing time for SKDB. Note that SKDB always takes a bit more time for training, taking
the largest time for kddcup, due to its large number of classes. Nevertheless, for the datasets
with many attributes: MITFaceSetA, MITFaceSetB, USPSExtended and MITFaceSetC; the
time differences with other BNCs become smaller. At classification time some gain can be
appreciated for SKDB compared to KDB k = 5 if the selected k is less than 5. AODE’s
classification time is quadratic in the number of attributes, and hence much higher for all
datasets.

3.2 SKDB vs Non-Bayesian Out-of-core Algorithms

In this section we compare SKDB with the state-of-the-art in online learning: Logistic Re-
gression with Stochastic Gradient Descent (LRSGD). We use LRSGD’s implementation in
Vowpal Wabbit (VW) (Agarwal et al., 2014), an open source out-of-core linear learning sys-
tem. VW provides a scalable implementation of LRSGD, which can be used in combination
with several loss functions, different parameters for the learning rate and regularization,
and quadratic or cubic combination of features.

2. census-income, covtype, donation, kddcup, localization, MITFaceSetA, MITFaceSetB, MITFaceSetC,
USPSExtended, poker-hand, uscensus1990.
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Figure 4: Time comparisons per dataset for NB, TAN, AODE, KDB against SKDB.

We have performed experiments with varying numbers of passes for LRSGD, varying
loss functions and combinations of features. We use the default advanced (step size) updates
provided by VW, which are:

1.

Importance weight invariance (Karampatziakis and Langford, 2011): this update is
meant to be useful specially for cost-sensitive learning, that is, when the misclassi-
fication penalty varies for the different class labels. However, it is also claimed to
reduce classification error even when no matrix of weights is provided. The following
equation is used to compute the weights:

OL(ju(x). ) o)

w; < w; — s(nI) S ,
7

where y is the true class; §,(z) is the predicted value for example = € R? with
parameters w € R?; L(§,(z),y) is the loss function; 11 is the learning rate; I € N the
number of times an example is more important than a typical example, in our case

= 1; and s(n[) is a scaling factor, for which a closed form solution can be found for
each loss function (Karampatziakis and Langford, 2011) .

. Adaptive updates (Duchi et al., 2011; McMahan and Streeter, 2010): the learning

rate must decay to converge. Instead of using n; = ﬁ or My = % at iteration t for all

features, we use a per-feature learning rate decay:

it OL(Juw (1), yt) (3)

f~ 2 Tt Ow; ’
dov—1 95 '

Wi < wW; — N

. Normalized updates (Ross et al., 2013): instead of using Gaussian sphering standard

solution, which would imply in-core processing and an increase in the size of the
dataset, a scale-free update is used that renormalizes w; at each timestep and keeps
track of a global scale.

A fair comparison of LRSGD with SKDB should perform the same number of passes
on the data. Since LRSGD requires data to be pre-shuffled, an n-pass LRSGD learner

14



SCALABLE LEARNING OF BAYESIAN NETWORK CLASSIFIERS

VWLF VWSF
RMSE 7+2)_0-7 14-0-2
0-1 Loss gD 1.5+ | 8-1-7

SKDB

Table 4: Win-draw-loss records for VW and SKDB in terms of RMSE and 0-1 Loss

actually results in n + 1 passes through the data. This is also true for SKDB on numeric
data, as an extra pass is required for discretization. We have run experiments with 3, 10
and 20 passes for LRSGD. Each 10-fold cross validation experiment is repeated 10 times.
Both the quadratic and logistic loss functions are considered. The one-against-all reduction
from multiclass classification to binary classification has been used for the datasets with
multiple class labels, which creates one binary problem for each of the classes. Table 10
in Appendix A shows the results for all of the different combinations for which we have
conducted comprehensive experiments. The overall best results for LRSGD are obtained
with 3 passes and using quadratic features. When the squared loss function is optimized
we refer to it as VWSF, and VWLF if the logistic function is used. In all cases, SKDB is
highly competitive compared to VW.

Note that while LRSGD has a number of parameters that could potentially be tuned
using cross validation, doing so does not make a reasonable comparator to SKBD as such
tuning would require multiple passes through the data for each cross-validation fold.

A win-draw-loss record summary is displayed on Table 4. The (t1) and (+2) for SKDB
vs VWLEF aim at distinguishing the results for satellite and splice, for which more
than 400 hours are required to get the 10cv results using VWLF, and hence VWSF is
considered instead. Irrespective of the fact that the SKDB model is optimized with respect
to RMSE, the win-draw-loss records only vary for three datasets between evaluation with
respect to RMSE or 0-1 loss. The win-draw-loss records remain exactly the same whichever
loss function is optimized in VW (see Table 10 for more details).

Since the output of the VW algorithms is not probabilistic, we are using the class
prediction, and hence computing 0-1 loss for comparisons with SKDB as well. By using, for
example, the following sigmoid function ﬁ, probability estimates can be estimated
from VW. Using this approach, the RMSE results for VWSF are only better than SKDB
for two of the datasets (MSDYearPrediction and USPSExtended), both of them originally
sparse and containing exclusively numeric attributes. These records improve when using
a logistic function for optimization, that is VWLF (see Table 10 in Appendix A for more
details). Nevertheless, computation time for VWLF is much larger than for VWSF as shown

below.

Figures 5a and 5b show the comparisons per dataset with SKDB in terms of RMSE,
whereas Figures 5c¢ and 5d show comparisons per dataset for 0-1 Loss. Figures on the left
(5a and 5¢) show VW optimizing a logistic function, while the two figures on the right (5b
and 5d) show VW optimizing RMSE. A diamond symbol is used for those points above
the diagonal line, indicating better results for SKDB, as opposed to the bullets. A squared
symbol is used to show the ties. We can see that VW achieves lower error using a logistic
function (VWLF), with the same number of datasets above and below the diagonal line, as
opposed to only 2 wins for VW with the squared function (VWSF). Figures 5¢ and 5d shows
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Figure 5: Scatter plot of RMSE and 0-1 loss comparisons for VW and SKDB (kpyax = 5).

the comparisons of VW with SKDB in terms of 0-1 Loss. In this case, VWSF performs
slightly better than VWLF compared to SKDB.

Figure 5 shows the relative training and test times for VW and SKDB across all datasets.
SKDB has substantially lower training and test time on most datasets. One exception is
the sparse numeric USPSExtended dataset. Another is covtype, which has a large number
of sparse boolean attributes.

While neither SKDB nor VW dominates the other in terms of error, SKDB is substan-
tially more efficient, as shown in Figure 6a, where again training and classification times per
dataset for VWLF, VWSF and SKDB are displayed. There is only one dataset for which
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Figure 6: Time comparisons per dataset for VW with squared and logistic functions against
SKDB.

SKDB takes more than the alternatives, which is USPSExtended. We believe that for this
dataset VW is able to exploit the sparseness of the data while SKDB cannot. Some of the
reasons why VW is taking in general more time than SKDB both for training and classifying
is the consideration of quadratic features, the need to binarize discrete attributes (creating
many binary attributes) and the need also to use one-against-all for multiclass classification.

3.3 SKDB vs In-core Algorithms

In order to understand how much predictive capacity, if any, is sacrificed by using our out-
of-core classifiers, it is useful to compare them to the state-of-the-art in in-core classification.
To this end, we have replicated our set of experiments with two in-core algorithms: a more
general BNC and Random Forest, a powerful exemplar of the state-of-the-art. For some
datasets it was infeasible to get results, even with high-performance computers, due either
to time or memory limitations (indicated in Table 8 in Appendix A with > 600h, when
more than 600 CPU hours are required; or by >138G, when more than 138GB of RAM
memory are required).

Note that while each of these algorithms has a number of parameters that could po-
tentially be tuned using cross validation, doing so would not make reasonable comparators
to SKBD. First, SKDB uses cross-validation to choose between multiple models rather
than to choose between parameterizations. Cross validation could also be used to tune
SKBD parameters such as the smoothing technique. Second, SKDB uses cross-validation
in a constrained manner that requires only a single additional pass through the data while
parameter tuning of these algorithms would increase compute time proportionally to the
number of folds employed.

3.3.1 AUGMENTED BAYESIAN NETWORK

We compare performance against a state-of-the-art generic in-core Bayesian network clas-
sifier, that uses a hill-climbing algorithm for adding, deleting and reversing arcs (starting
with a NB structure, this hill climber also considers arrows as part of the NB structure for
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BayesNet
SKDB | 6(+4-3-3

Table 5: Win-draw-loss records for BayesNet and SKDB in terms of RMSE.

deletion, that is, arcs from the class to the attributes can be removed). It optimizes the
K2 metric (Cooper and Herskovits, 1992). The maximum number of parents allowed for a
node in the Bayes net is set to 5. The win-draw-loss comparison is presented in Table 5.

The detailed results can be found in Table 8 (Appendix A), row BayesNet. The
darker grey background corresponds to those cases where BayesNet significantly outper-
forms SKDB. Note that there are only records for 12 out of the 16 datasets, because there
are four cases for which results could not be computed for BayesNet due to memory con-
straints, since the network cannot be learned incrementally.

Even though BayesNet performs a more exhaustive search than SKDB of the model space
of Bayesian networks with up to 5 parents, SKDB obtains lower error than BayesNet more
often than the reverse. We hypothesize that this is due to SKDB’s use of both generative
and discriminative measures for model selection in contrast to BayesNet’s use exclusively
of generative measures.

3.3.2 RANDOM FOREST

Random Forest (RF) is a state-of-the-art learning algorithm introduced in Breiman (2001).
It uses bagging (Breiman, 1996) to aggregate an ensemble of trees that are each grown using
a process that involves a stochastic element to increase diversity.

We have conducted experiments with RF selecting 100 trees. We present results both
with pre-discretized data, to show relative performance on categorical data, and with undis-
cretized data. The detailed results can be found on the fifth and sixth from last rows in
Table 8 in Appendix A. Table 6 shows the win-draw-loss records when compared with
SKDB. The superscripts compute those datasets for which results cannot be obtained for
RF due to main memory constrains (> 138G are required). The results show that SKDB
is competitive with RF in terms of RMSE, even when RF is performing its own discretiza-
tion (5 wins for SKDB and 6 wins for RF), for which the computational cost in terms of
memory and time is much higher than SKDB’s. When 0-1 Loss is considered, out-of-core
RF wins more frequently than SKDB, even when 0-1 Loss is used as the objective function
during structure selection. When MDL discretization is used instead of 5EF for SKDB, then
the results improve slightly for SKDB compared to RF performing its own discretization.
When interpreting these results it is important to keep in mind that SKDB is a 3-pass out-
of-core algorithm (4-pass with discretization) in contrast to the inherently computationally
intensive in-core processing of RF.

Note that the sum of some cells is not exactly 16 but smaller, due to computational
constraints for RF. RF is an in-core algorithm, and hence we have not been able to learn
classification models for the largest datasets. Interestingly, RF is more negatively affected
(in terms of computation) by a large number of classes than the BNCs, for example no 100
tree model can be learnt for MSDYearPrediction, which has 90 class labels. Precisely, there
are three cases where RF with 10 trees cannot be run, and four in the case of RF with 100

18



SCALABLE LEARNING OF BAYESIAN NETWORK CLASSIFIERS

RF (5EF) | RF (Num)
RMSE SKDB 5+0.1-6 | 5(9-0-6
SKDB 2+ 3.7 | 2597
0-1 Loss | SKDBO-1 | 30+9.2.7 | 3(+9).1-7
SKDBMPL | g(+4)_2_2 | 3(+5).2-6

Table 6: Win-draw-loss records for RF and SKDB in terms of RMSE and 0-1 Loss.
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Figure 7: Scatter plot of RMSE comparisons for BayesNet, RF and SKDB.

trees. These four datasets are MSDYearPrediction, satellite, mnist8ms and splice, so
the largest possible samples able to be computed have been considered.

RMSE comparisons for all datasets for BayesNet and RF when compared with SKDB are
shown in Figures 7a and 7b, where the points with an X symbol indicate those datasets for
which sampling is required. While BayesNet is not competitive with SKDB, RF provides
competitive results for some datasets. PAMAP2 provides a notable case for which only a
sample of 2 millions out of 3.5 suffices for RF to provide better classification performance
than SKDB using all the training data. This is however the only dataset for which RF
learning from a sample can achieve lower RMSE than SKDB learning from all the data, the
reverse being true for splice, mnist and satellite.

Figures 8a and 8b display the training and classification times per dataset for these
classifiers compared to SKDB. For most datasets the in-core learners require substantially
more time for learning and classifying?.

3. RF requires more than 8 GB of main memory to complete for poker-hand and uscensus1990 since these
experiments to measure time has been conducted in a desktop computer no time measurements can be
provided to compare with the rest of experiments. Weka’s implementation has been considered.
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Figure 8: Time comparisons per dataset for BayesNet and RF against SKDB.

3.4 Global Comparison of All Classifiers

In this section we analyze how all the classifiers explored in this paper perform when they
are compared as a set. Figure 9 plots the average rankings across all datasets, along with
the standard deviation for each learner. This ranking corresponds to the ranking obtained
when a Friedman test is conducted. In this analysis we present the 0-1 Loss performance
of SKDB when it is optimized for RMSE, its average rank on 0-1 Loss improves marginally
from 2.94 to 2.84 when it is instead optimized for 0-1 Loss.

When assessing the calibration of the probability estimates using RMSE, SKDB obtains
the lowest average rank of 2.53, followed by RF with 2.91 and KDB with 3.34 (very close
to those for VW and BayesNet). When assessing performance using 0-1 Loss, RF using its
own internal discretization of numeric attributes enjoys an average advantage of 1 in rank
over SKDB, and SKDB enjoys an average advantage of almost one third over VWLEF.

We find NB at the other extreme on both measures, with average ranks 7.63 and 7.72
out of a total of 8 classifiers.

SKDB obtains in the worst case the 4.5th position (this half is due to a tie with KDB-
best-k) for the linkage dataset and the 4th position for census-income when ranked on
RMSE and the 4th position for MITFaceSetB and kddcup when ranked on 0-1 Loss.

On both measures the largest standard deviation is observed for VW, which usually
ranks either very well or rather poorly among the datasets. Still, VW obtains the largest
number of top 1 datasets for RMSE, with a total number of 7, against 5 for RF and 4 for
SKDB. On 0-1 Loss, RF ranks first 8 times, VW 4 times and SKDB twice (one of those
times being a tie with KDB-best-k).

A Friedman test (Demsar, 2006) was performed for the set of 8 classifiers, yielding
statistical difference for both measures. To identify where exactly these differences are
found, we ran a set of posterior Nemenyi tests. These tests confirm the existence of two sets
of algorithms in terms of performance on both RMSE and 0-1 Loss for these large datasets:
on one hand NB, AODE and TAN; and on the other hand BayesNet, VW, KDB, RF and
SKDB. The Nemenyi tests* showed significant differences for the second set of algorithms
over NB and AODE, and only RF and SKDB over TAN.

4. Similarly for Holms and Shaffer post-hoc tests.
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Figure 9: Ranking in terms of RMSE and 0-1 Loss for NB, TAN, AODE, KDB (with best k),
SKDB, RF using numeric attributes, BayesNet and VW with a logistic function.

Even though the small number of datasets only allow tentative conclusions to be drawn,
the following dataset characteristics appear to indicate a preference for one or another

learning scheme.
e RF performs better on datasets with a small number of attributes.

e RF derives an advantage with respect to 0-1 Loss due to its internal discretization of
numeric values. It does not achieve the lowest RMSE or 0-1 Loss on any of the three
categorical only datasets poker-hand, PAMAP2 or splice.

e SKDB seems to cope well with high-dimensional datasets and datasets with more than
1 million points. However its complexity is quadratic with respect to the number of
attributes so, like most existing BNCs, it is not feasible for very high-dimensionality.
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Figure 10: Training and classification time comparisons for the out-of-core classifiers.

e VW appears to have an advantage for sparse numeric datasets.

A more detailed study of the domain of competence of these classifiers remains an important
area for future work.

We can also analyze the performance of these classifiers with respect to the complexity
of the decision function they provide. NB and linear regression, represented in this work
by VW with linear features, are classifiers that learn linear decision boundaries. They have
low variance and are particularly useful for small data quantity and sparse data. An extra
level of expressiveness is offered by AODE, KDB (k = 1), TAN and VWSF/VWLF (with
quadratic features); which produce quadratic decision functions. A2DE, KDB (k = 2)
and VWSF/VWLF (with cubic features) produce cubic decision functions. More generally,
AnDE and KDB can separate order-k(n) polynomially separable concepts (Jaeger, 2003).
These two families of classifiers provide a set of a spectrum of models of increasing com-
plexity, allowing a fine-tuned trade-off between expressivity on the one hand, and efficiency
of learning and guarding against overfitting on the other hand, that is, the well-known
bias-variance trade off (Brain and Webb, 1999).

Figures 10a and 10b show the time comparison for the out-of-core classifiers considered:
namely NB, TAN, AODE, KDB with k£ = 5, SKDB and LRSGD with quadratic features in
VW (using either a squared and a logistic function). The time required to pre-randomize
the data for VW has not been included. No parallelization techniques have been used in
any case, although most algorithms could be parallelized. The average of the 10-fold CV
is shown. It is important to note that logarithmic scale has been used for classification
times in order to appreciate the smaller differences in the faster learners. Again, only the
11 smallest out of the 16 datasets have been considered for time measurement, since these
experiments have been conducted in a personal computer for a controlled environment.
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Note that training SKDB with & = 5 (maximum) takes only a bit more time than
training KDB with k& = 5. The classification time for KDB is slightly higher than SKDB’s
(since all attributes are considered). Training time for LRSGD with quadratic features
and 3 passes (VWSF and VWLF), which are those that obtain comparable results with
SKDB, are also higher, presumably because they have to compute all pairs of quadratic
features as indicated above. Similar reasoning holds for classification time. We believe that
the extra time for VW is also due to the need to binarize discrete features, that is, since
VW cannot deal with discrete attributes directly, v binary attributes are created for each
originally discrete attribute with v values; and also because of the one-against-all approach
required to handle classes with multiple labels. This overhead may be noticeable since we
are using quadratic features. The time required for VWLF is much larger than VWSF, and
in any case much larger both for training and testing than that for SKDB (specially note
the logarithmic scale in Figure 10b).

4. Summary

We have developed an extension to KDB which performs discriminative attribute and best-k
selection using leave-one-out cross validation.

SKDB only requires a single extra pass over the training data compared to KDB. In
return for this extra pass during training, it often increases prediction accuracy relative to
KDB with the best possible k, and always improves classification time (and space) by re-
ducing the number of attributes considered, which can be quite significant for some datasets
(for example for MITFaceSetC 60%, 215.8 out of 361, of the attributes are selected improv-
ing the classification performance at the same time). It is embarrassingly parallelizable.
Furthermore, it can optimize any loss function that is a function over each training example
x of p(Y,x) and y*, making it extremely flexible.

Due to its low bias, when datasets are large enough to avoid overfitting, SKDB attains
lower error than the other in and out-of-core Bayesian network algorithms considered. It
even provides competitive error compared to Random Forest, one of the most powerful
in-core classification methods; and online linear and non-linear classifiers with stochastic
gradient descent (that is, linear regression with quadratic and cubic features). Compared to
the latter, it is in most cases substantially more efficient both at training and classification
time. Further, it provides well-calibrated posterior class probability estimates.

Future directions for research include:

1. using only a sample of the data in the leave-one-out cross validation, in order to use
more complex loss functions efficiently;

2. tackling SKDB’s tendency to overfit small training sets;

3. studying a customized selection of the different links and attributes in a discriminative
manner, that is, different numbers of parents for different attributes and also discarded
in an order that does not follow the conditional mutual information rank;

4. consideration of other means of generating alternative classifiers to be selected in the
final LOOCYV pass; and
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5. study of more appropriate loss functions for imbalanced datasets.

SKDB provides an efficient and effective solution to the problem of scalable low-bias
learning. Its low bias allows it to capture and take advantage of the additional fine-detail
that is inherent in very large data while its efficiency makes it feasible to deploy. SKDB
thus sets new standards for classification learning from big data.
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Appendix A. Tables of the Experimental Section
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Appendix B. Implementation Details

All the experiments for the out-of-core algorithms have been carried out in a C++ software
specially designed to deal with out-of-core classification methods. The following details in
terms of implementation and configuration should be considered:

e 10-fold cross validation has been used.

e Equal frequency pre-discretization with 5 bins (EF5) has been utilized to discretize all
numeric attributes (except if otherwise specified®). We have observed that EF5 and
MDL (Minimum Description Length) (Fayyad and Irani, 1993) discretization provide
the best results in approximately half of the datasets each, EF5 has been chosen
because it is faster to perform than MDL, and also because it is not supervised and
hence does not potentially provide the classifier with class information from the hold-
out data when used for pre-discretization. Using a pre-fixed number of bins gives us
the added advantage of not having to deal with a huge number of values per attribute
created by MDL discretization in some cases.

e Missing values have been considered as a distinct value in all cases.

e The root mean square error is calculated exclusively on the true class label (different
from Weka’s implementation (Hall et al., 2009), where all class labels are considered).

e KDB’s implementation benefits from a tree structure that resembles an ADTtree
(Moore and Lee, 1998), sparseness is achieved by storing a NULL instead of a node
for any query that matches zero records. In our case, to save the probability distri-
bution of the different attributes once the structure has been determined, we build
a (distribution) tree for each attribute. Given, for example, attribute X, that has
Xo and X3 as parents (in this order, and apart from the class), the counts (X4,Y)
are stored in the root node. The following level expands according to the number
of values of Xy, which is the first parent, and store the counts for (X4,Y, Xp). The
following level expands as for the number of values of X3, which is the second parent,
and store the counts for (X4, Y, Xy, X2), and so forth if there were more parents. Note
that as opposed to the ADTtree, all the parameters are stored, that is, more than
strictly required, since a branch is created for each attribute value, when strictly one
less branch would be sufficient to represent the model parameters. The reason to do
that is not to overload classification time by having to explore and combine branches.

e Two combined techniques are considered for smoothing. In the first place, we use
m-estimates® (Mitchell, 1997) as follows:

m
counts(x;, 7y, ) + el

(4)

p(xi‘ﬂ-ﬂci) - countS(ﬂ':ci) +m

5. Only for the experiments on the antepenultimate row on Table 8 as specified.
6. Also known as Schurmann-Grassberger’s Law when m = 1, which is a particular case of Lidstone’s Law

(Lidstone, 1920; Hardy, 1920) with A = ﬁ, also based on a Dirichlet prior.

26



SCALABLE LEARNING OF BAYESIAN NETWORK CLASSIFIERS

's1oyIsse[d S Pue TgAMS ‘AYd “PNseAed ‘AN ‘AAOV ‘NVIL “dN 10] HSINY JO SWId) Ul s)NsaY 8 AR,

4 Ve 01 4 oy 61 v 01 4 L 06 4 z 6 4 1T >
0¢ zg0L's | T'8 16v.°¢ | g60z°S | cogs'e | e€8¢v'z | 9TO'T €6€8°0 | T18G°0 | €S1S°0 | ¥68V°0 | TPL¥'0 | CIPE0 | €662°0 6V91°0 cho::E:w
2100°0 _ 9200°0 _ 0200°0 | €200°0 9€00°0 "os1p qasis
F8981°0 F0LE0°0 |FLPI0°0 |FLESOO Fegee 0 | TAN
E 8T00°0 | €€00°0 €200°0 g aass
FE06£°0 |FLFF60 F€210°0 |F6£80°0 FGTTs0 | UMy ' oA v
. . . . . wn N
8000°0 | 8200°0 | ¥000°0 01000 | 91000 soo13
DSET< | DSEI< | DYET< H009< | xeie1'0 |Fo61E°0 |FL0¥0°0 DBET< | re6e00 | 292070 00T Ewwﬂwm
L000°0 82000 | 90000 21000 | L1000 se01) 35910,
DSELS | BSEL< | DBEL< | 1590070 F061£°0 |F8880°0 O8ET< 99600 |Feeeo0 001 wopuey
G000°0 | 200070 1100°0 €900°0 | 9€10°0 | €200°0 _
DSEI< | DSEI< | DEI< |14000:0 |FLLFO0 Freseo | 2% |Fieero |Feoee'0 |Freeoro |Fere00 | Tozeo 0 §=4 | oNsofeq
L1791 [ se1 [ v8s [ 1t [ 1w [ vs [ 29 [ ot [ 19¢ [ ¥s [ o6 [ 19¢ [ 19¢ [ 929 [ 17 g [ u
e1 SET 9°€LL it L€ v 2z S 861z vg 218 £°63¢ ST QL7 ST 2 =y
A 8€T TVLL T 6L ve 44 S V1T ¥S 8'8L 9'GLT €1e 6°07v9 81 S =3 (parooros
91 8e1 T VLL 1 9°L€ v Zz 4 9'60¢ vg 06 £ 1L 1°99¢ 1°879 ST 5 g =gy | Soamaume
671 8¢zl T°€LL 1 1°8¢ Ve Z1 01 17902 vg 06 18 6°L€€ S'979 z 61 5 z =24 &Momwm
€1 G zTLL 1T [ v 1T 01 6¢ 8°G¥ 508 L1 6 7S¢ 6 78S L 5 =5
91 se1 oeL. | 1T L8 e 4 < g'cte | P 06 o'erz | 6.8 | ¢Lvo | @6T g %EM
€ 4 4 8'e 4 g 2 2 g g € 2 z 5 z v 37599
I 70000 | S000°0 | 9000°0 | 80000 | %0000 ! 70000 8T00°0 | €800°0 €200°0 g fas
TSYPP'0 | F6£81°0 |F0900°0 |FLLP0°0 |FL69T°0 T£068°0 |FT19€6°0 T€210°0 |F6£80°0 FSeTe 0 | XUy
¥000°0 | S000°0 | 90000 | 8000°0 | ¥000°0 0Z00°0 | ¥000°0 | S200°0 £€00°0 €200°0 [ o _
FSVPP 0 | F6£8T°0 |F0900°0 |FLLVO'0 |FLEIT0 F£06€°0 |FL¥¥6°0 |Fr¥80°0 F6£80°0 F32zs 0
S000°0 | 9000°0 | 90000 | 8000°0 | ¥000°0 6100°0 | ©000°0 9200°0 €200°0 | _
FE8SP°0 | F6912°0 |F0900°0 |FSLY0'0 |FLEGTO F92T¥'0 |FT8E60 F1280°0 F322s 0
¥000°0 | S000°0 | 90000 | 8000°0 | ¥000°0 S100°0 | ¥000°0 12000 | 9200°0 02000 [ o _ TS
T69.7°0 |F002°0 |F0900°0 |FS8¥0°0 |F0682°0 F66£7°0 |FT9E6°0 FIPI0°0 |F8260°0 FS8ve 0
%000°0 | L0000 | 8000°0 | S000°0 2000°0 €100°0 | ©000°0 8100°0 | 6200°0 02000 [ . _
T2262°0 | T8900°0 |FL6V0'0 |F18LE°0 FS507°0 T9LSV°0 | TE6E6°0 T€210°0 | T0660°0 Tov8s 0
G000°0 | 6000°0 | €000°0 | 0000 S000°0 91000 S200°0 21000 [
F1628°0 |F8800°0 [F9090°0 |F9.2€°0 FL867°0 FroLV'0 FSEI1°0 F1059°0
4 4 S 8'c S 4 v v S g 3 v z S 4 v 42529
Z000°0 | ¥000°0 | ©000°0 | 9000°0 | 8000°0 | ¥000°0 | L0000 | Zr00°0 | ST00°0 | 0Z0OO'0 | ¥000'O | 1Z0O'O | 6100°0 | ¥EOO O 1200°0 | €200°0 g |"iregayg
Fre60°0 |FS¥PP'0 |F6E8T°0 [F0900°0 |FLLFO'0 |FL69T°0 |F1091°0 |FSV0z'0 |Fr6v0°0 |FE06€0 |FI9E6°0 | FL80°0 |F9I210°0 |F6E80°0 | Fr90z'0 |FGEee 0 = *°™y
2000'0 | ¥000°0 | ©000°0 | 90000 | 8000°0 | ¥000°0 | 90000 | 1T00°0 | ST00°0 | 0Z00°0 | €000°0 | €200'0 | S€00°0 | ¥EOO'O gg00'0 | £€8000 | o _
FP260°0 |FSYYP'0 |F6E8T°0 [F0900°0 |FLLVO'O |FL69T'0 |FREIT'0 |Fer8e 0 |FV6V0'0 |FE06€0 |FLVP6'0 |FIP80°0 |FOSET'0 |F6£80°0 | FEVIE0 |FSETS0
€000°0 | ©000°0 | 0000 | 9000°0 | 8000°0 | #0000 | L000°0 | ©I0OO'0 | 9T00°0 | 6T00°0 | 9000°0 | 12000 | I€£00°0 | 92000 g1000 | €200 [,
FP801°0 |FE8SP'0 |F6912°0 [F0900°0 |F8LFO'0 |FLE6T'O [FI09T'0 |FSP02'0 |F9190°0 [F9sI¥'0 |FE€8€6°0 |FL8E0°0 |FPIC0'0 |FLL80°0 | FLOIZ'0 |FSETS 0
20000 | ¥000°0 | €000°0 | 90000 | 8000°0 | ¥000°0 | 80000 | TT00°0 | 8T00°0 | STO0°0 | ¥OOO'O | ST0O0'0 | ST00°0 | 3000 1000 [ 02000 | o _ aas
T8001°0 |T6927°0 |F00Sg°0 |F0900°0 |FS8¥0°0 |F0628°0 |Fr991°0 |F6982°0 |T0L0°0 [T66£7°0 |F19£6°0 |T8I¥0°0 |FErI00 |F8E60°0 | F201g'0 |FS8¥S 0
Z000°0 | 90000 | ¥000°0 | 0000 | 80000 | S000°0 | 80000 | 0000 | ©I00'0 | €000 | 0000 | STO0'0 | 61000 | 620070 1200°0 | 0200°0 | .
F£960°0 |F2L0S'0 |Fee62°0 |F2900°0 |FL6¥0°0 |FI12Lz'0 [FLL9T°0 |FSSOV'0 |F9060°0 [F9.6v'0 |FE6£6°0 |FE£90°0 |F9210°0 |F0660°0 | Fr90z'0 |FOVSS 0
€000°0 | €000°0 | 0000 | 6000°0 | ©000°0 | L0000 | 800070 | S000°0 | T1Z000 | 9200°0 | €000°0 | 61000 | 12000 | SZ00O v200'0 | zro00 [
FO0v60°0 |F90¢6'0 |FISLE0 |F2800°0 |F9090°0 |F9.2€°0 |FVISI'0 |FL86V'0 |FOV6T'0 [F60LV'0 |FLVP6'0 |FI681°0 |F6020°0 |FSGI1'0 | F61260 |FI099°0
£000°0 G000°0 | 1000°0 | 8000°0 |FOT000 | 90000 2000°0 | S200°0 | 9£00°0 | 82000 0z00°0 | 0T100°0 AAOV
FE8L6°0 F0210°0 |F6L60°0 |F1888°0 |Fre1z 0 |FT688°0 F6576°0 |FT89T'0 |FI00T'0 |F8EST0 | Fee620 |F0859°0
£000°0 6000°0 | 9000°0 | LT00°0 | 80000 S200'0 | ©200°0 9000 | %1000 NV
F0201°0 TSPST'0 |FL867°0 |T890%°0 |Fe98¥ 0 F20%0°0 |TESTT°0 | FL¥22'0 |F12€9°0
20000 | ©000°0 | ©000°0 | 90000 | 8000°0 | 90000 | 90000 | 9000°0 | 1200°0 | €100°0 | 20000 | ¥IOO'O | 6Z00°0 | 920070 81000 | L0000 N
F1260°0 |FOve9'0 |FLS67'0 |FGe10°0 |F6¥81'0 |FLVOP'0 |FI16°0 |F108¢°0 |FL982°0 |FE01e0 [F0096°0 |FF6E1'0 |FE860°0 |F9922°0 | F099%°0 [FI0TL0
oor11ds 231[[9%es Qgsruux agexquIy dnoppy | JVINVA | snsueosn 1oxyod OLIN odA3a00 AdSIN JLIN VILIN SdSsn JUI-SUDD *ZI[ed0] s3ae JIourea]

27



MARTINEzZ, WEBB, CHEN AND ZAIDI

"SIOYISSe[d (IS pue IgsIS ‘A4

“PNseded ‘A ‘HAOV ‘NVL ‘N I0J SS0T T-() JO SULd) UT $)NsoY :6 9B,

z %4 o1 z [ 61 v o1 z L 06 z z 6 z i1 >
0g zgoL's | T8 T6VL'e | 9602'S | cosg'e | €8¢v'c | €0l | £6€8°0 | TI8S'0 | €9TG°0 | P6SY'O | TPLPO | SIVED | £663°0 | 6V9T0 Amno::.ﬂw
7T 8e1 ¥8L 1 7 7S 19 01 19¢ 7S 06 19¢ 19¢ 9.9 [ g a
E 800070 "oSTp qass
F0000°0 FSI1€0°0 F6216°0 |FST00°0 |F2000°0 AW A V
. . . } wnN
0000°0 £000°0 | €100°0 Z000°0 5993
DSELS | DSET< | DSET< 2490070 DSELS 1299200 | FL250°0 E E 00T | wopuen
0000°0 €000°0 | 0000 59913 350104
00000 | T000°0 GT00°0 90000 _
DSET< | DSET< | DSET< |30000°0 |F9200°0 FL100°0 = | toNsedeg
00000 | ¥000°0 | 20000 | 0000°0 | T000°0 | 20000 2000°0 | 0000°0 | 900070 g aass
T6200°0 |F¥862°0 |F82£0°0 |F0000°0 |F9200°0 |FO¥E0°0 F9100°0 |F2000°0 |F0800°0 = xeuy o
I %000°0 | 0000 | 0000°0 | T000'0 | ©000'O €200°0 | 6000°0 | ©000°0 | 00000 | 9000°0 g P
F¥82z°0 |F8.80°0 [F0000°0 |F9200°0 | F0r€0 0 FLL0Z°0 |FL8T6°0 [FS100°0 |Fz000°0 | F0800°0 | xeuy
$000°0 | ©000°0 | 0000°0 | T000°0 | @000°0 €200°0 | 80000 | %0000 9000°0 c—y
F¥822°0 | F8LED'D |F0000°0 |F9200°0 | FOFED D FLL02°0 | FSE16°0 |FFL00°0 F0800°0
G000°0 | @000°0 | 00000 | T000°0 | @000'0 €200°0 | T100°0 | 20000 G000°0 b=y
F92¥2°0 | F6TS0°0 |F0000°0 |F9Z00°0 | F8EF0 0 FLE€T'0 | FYPI6°0 |FST00°0 F4800°0
€000°0 | ©000°0 | 00000 | T000°0 | @000'0 0200°0 | 600070 1000°0 | 0000 ey Ygays
FE192°0 |F2890°0 |F0000°0 |F9200°0 | F6090°0 F1995°0 |FLS16°0 F2000°0 |FL600°0
22000 | ©000°0 | 00000 | 10000 | €000°0 60000 G%00°0 | 800070 00000 | 900070 .
FL062°0 |F6T60°0 [F0000°0 |F8Z00°0 |F0S80°0 FI961°0 F66L2°0 | F6£86°0 F2000°0 |FOTT0°0
€000°0 | $000°0 | 00000 | T000°0 | 9000°0 21000 1200°0 | 01000 10000 | 20000 L=y
F16£8°0 |F0021°0 |FT000°0 |F8¥00°0 |F6081°0 F1628°0 F1962°0 |F9226°0 F2000°0 |Fe¥I0°0 Feroro
0000°0 | ¥000°0 | @000°0 | 0000°0 | T0O00°0 | 0000 | £000°0 | 40000 | 01000 | €200°0 | 6000°0 | ¥000°0 | £000°0 | 9000°0 | €100°0 | 9€00°0 § [Inpuogyg
F6200°0 |F¥82z'0 |F8LE0°0 |F0000°0 |F9200°0 |FO¥E00 |FL620°0 |FI8¥0°0 |F2850°0 |FLLOZ'O |FL816°0 |F6610°0 |F8200°0 [FO0800°0 |Fz9S0°0 |Fr90e0 = *°™y
1000°0 | ¥000°0 | @000°0 | 0000°0 | T000°0 | @000°0 | 0000 | 80000 | @000 | €Z00°0 7000°0 | 0T00°0 | 9000°0 | 0T00°0 | 9€00°0 —y
FP010°0 |F¥822°0 |F82£0°0 |F0000°0 |F9200°0 |FOV€0'0 |FEI£00 |FL280°0 [F9800°0 |FLLOG O F£200°0 |F8810°0 |F0800°0 |FL¥S0'0 |F¥90€°0
1000°0 | S000°0 | @000°0 | 0000°0 | T000°0 | @000°0 | €000°0 | L0000 | ©000°0 | €200°0 200070 | £000°0 [ 9000°0 | 8000°0 | 9€00°0 |
FGPT0°0 |F92¥z0 [F6180°0 |F0000°0 |F9z00°0 |FSEV0'0 |FL6T00 |FIS¥0'0 [FOV00°0 |FLEEE O F9100°0 |F8200°0 |FL800°0 |FL¥S0°0 |Fr90€0
1000°0 | €000°0 | @000°0 | 0000°0 | 1000°0 | @000°0 | ¥000°0 | L000°0 | €000°0 | 0Z00°0 2000°0 | 10000 | €000°0 | 010070 | £200°0 | ¢ _ aast
FL210°0 |FE€192°0 |F2890°0 |F0000°0 |F9200°0 |F6090°0 |F1e€0'0 |F8E80°0 [F£200°0 |F1¥9z°0 |FL816°0 |FE200°0 |FZ0000 |FL600°0 [FISC0'0 |FSEEE 0
1000°0 | 9000°0 | T000°0 | 000070 | T000°0 | €000°0 | $000°0 | 600070 | £000°0 | S200°0 | 8000°0 | 200070 | T000°0 | 90000 | £100°0 | 28000 | . _
FO110°0 |F£062°0 |F6160°0 |F00000 |F8200°0 |F0¢80°0 |Feee00 |FI961°0 [F8800°0 |F6628°0 |F6£86°0 |FEr00°0 |F20000 |FOT10°0 [FT9S0°0 |FOILED
0000 [ 0000°0 | T000°0 [ 9000°0 | $000°0 | 21000 | 6000°0 | ¥£00'0 | 8000°0 | 600070 | T000°0 | 9000°0 | ¥100°0 | 0v00°0 [ L _
F00S1°0 |F10000 |F8¥00°0 |F6021°0 |FE8£0°0 |F168£°0 F8965°0 |F6.86°0 |F€810°0 |F000°0 |FEr100 |F2990°0
00000 | @000°0 | 0000 |F¥000°0 | 82000 8000°0 | 20000 | 80000 | ST00°0 2AOV
F2000°0 |FrS10°0 |FPeoT'0 |Freso'0 |Fz18v°0 T¥620°0 | FP010°0 [FFPe0'0 |F9IOTT 0
100070 2000°0 | 000070 G000°0 | G100°0 | 80000 | 91000 NV
FEET0'0 FLz€1°0 |F1000°0 F06£0°0 |FG62€°0 |FGGH0'0 |FISIE0
10000 | 2000°0 | S000°0 | 0000°0 | S000°0 | L000°0 | €000°0 | 8100°0 | 0T00°0 | S200°0 | S000°0 | ¥000°0 | 9000°0 | &I00°0 | LI100°0 | 9200°0 N
F1210°0 |Feerv0 |F1eee 0 |Fz0000 |F1980°0 |FS9£2°0 |F9680°0 |F886¥°0 |Fe8e0'0 |Foese0 |Frig6'0 |F6610°0 |F0010°0 |Fzeg0'0 [FOI¥z 0 |F6¥Fe0
oords | a3r[[edes | gystuwr | ofexui] | dnoppy | JVINVJ |snsuedsn | 1oxod DLIN | 2d&3a00 | XASIN dLIN VLIN Sdsn Mﬁwuw.w "Z1[e00] sSre Joures]

28



SCALABLE LEARNING OF BAYESIAN NETWORK CLASSIFIERS

"M A UI TOTIOUNJ OT9SIS0T 13 SUIST UM SUOTYRIIUII] OWIT} 0F NP ATUO P[O]J T I0J WMOYS SINSOY 4y
‘ALA UI TOTI0UNJ 019SIS0] o1} SUISN USM SUOTIRIIWI] oW} 0} anp A[U0 JuomWLIodxa T I0] UMOYS SIMSIY

"$s0] 1-( 10§ pazurydo gayS ST -, d S uoryeziurido I0j UOIDUNY DIYSISO © JO OSN ) [- pue
‘(suoryeurquiod a[qIssod [[®) seanjesj oI 0} SI8Jal o- ‘(suoreuIquIod s[qIssod [[®) sainjes] oryeipenb sayeorpur b- ‘(g 10
¢) sossed Jo Toquumu ot} soyeorpul d- :suordo JUSISPIP YIM M A PUeR S 0] SSO[ T-() pue HSINY JO SULID) Ul sHMsay (T 9[qR],

[z [ vz [ ot [z [ o [ 6t [ v [ ot [ e [ 2 [ o6 [ [z [ 6 [ e [ 1t | | o ]
[ og | zcors |18 | 16v2'g | g60z'c | cogs'e | e8sv'z | Sz0'T | €6€8°0 | 11890 | €S1S°0 | ¥68%°0 | T¥ib'0 | SIFE0 | €662°0 | 6¥9T°0 | | w |

w00r< | woop< | 0000 1000°0 [ ,.S000°0 I 8000°0 [, T000°0 [ 0£00°0 [, 0 +1000°0 [ $000°0 1900°0 I-
F2950°0 F0£00°0 |F82E1°0 FOrL0°0 |F6000°0 |FLIFE 0 |FG026°0 F£000°0 |F¥000°0 Fesrg o | b-gd-
00000 | 0T00°0 | 90000 T000°0 | TT00°0 | €000°0 | 9200°0 | 0000 | 6200°0 | €100°0 E 20000 | 6000°0 | TT00°0 | 6€00°0 | , .
F6200°0 | FLV62°0 |Farel o F200°0 |F9822°0 |F4820°0 |FG10S°0 |F1600°0 |F619€0 [FE916°0 [F8200°0 |FS0000 |F£610°0 |FE6¥0°0 |Fee65°0
l@ 90000 | ¥000°0 | L0000 l@ E 0200°0 | 09000 [ g
FI¥ET0 F0860°0 | FS520°0 |FO¥L0°0 Fereeo F£000°0 F2090°0 |Frees 0 o
0 [ otoo0 | 90000 60000 | €000°0 | ST00°0 | ¥000°0 | €200°0 2000°0 | 60000 [ TT00°0 | 9£00°0 | - °
F6200°0 |F0462°0 |FIve10 Foree°0 |F€820°0 |F8867°0 |FGIT10°0 |F0ece'0 |FELT6°0 [F8200°0 |FG000°0 |FL0£0°0 |F06%0°0 |FSz09°0 -
00000 | €100°0 | 90000 Z000°0 | €100°0 | €000°0 | ST0O0'0 | 90000 | 62000 | ©I000 €000°0 | T100°0 | &I00°0 | I1¥00°0 ed- ma | 2
F6200°0 |F£90£'0 |FFre1-o FOr00°0 |F88¥E0 |F0620°0 |F686%°0 |FLIT0°0 |F889€0 [FE616°0 |F1£00°0 |F9000°0 |FI1£0°0 |FG6¥0°0 |F9£09°0 2
00000 g £000°0 2000°0 EE 90000 | €100°0 S J—
F9200°0 F9920°0 F2200°0 FL816°0 |FET100°0 F0800°0 |F2rS0°0 xeuty
g 2000°0 2000°0 E 90000 | 11000 < | qass
F9200°0 F1920°0 F2200°0 FS100°0 F0800°0 |FEES0°0 xedty |10
q00p< | woop< |_ 68000 I 200070 | 4410070 I 8T00°0 E! E 1200°0 -
FeLLT0 F6150°0 |F086€°0 Fareeo FLIPG0 |FELE6°0 F8€20°0 FLgeL0 | b-gd-
g%00°0 | 20000 | 600070 | T100°0 | 92000 | 200070 | ST00°0 | 90000 | @000 | &I00O €900°0 | 86000 | PL00°0 | 2¥00°0 [ 900070 [ , .
Fr961°0 |F1£05°0 |FELTH0 |F6L00°0 |FETIT'0 |F689%°0 |F€e02'0 |Feres 0 |Feeel'0 |FLLIGO FC¥90°0 |F61£0°0 |F¥681°0 |F1892°0 |FLIEI0
28000 | ST00°0 | €900°0 | 6200°0 | 0800°0 | 0L00°0 | 0V00'0 | 60070 | 2¥00°0 | 810070 | 900070 | 50070 | (220070 | 900070 | 0800°0 | 60000 | b oq =
Fee80°0 |FG09v0 |Fr88z°0 |FLOT0°0 |Fozre 0 |Feeoe'0 |FE61°0 |F6.9¢°0 |FSIG0°0 [FS109°0 |F9.8L°0 |FE0v0'0 |FLLT00 |F20r00 |FIz¥z 0 |FG62°0 Z
86000 | 90000 | 8000°0 | &€00'0 | S200°0 | 9000°0 | TT00°0 | 200070 [ 8000°0 [ 6000°0 [ 1000°0 | 2¥00°0 [ 9€00°0 | 8000°0 | 8200°0 | 9000°0 | -q_ @
FCI12°0 |FPg0s'0 |FEL1P0 |FIST0°0 |FPPIT'0 |FL129°0 |F8102°0 |FGGES'0 |F99€1°0 |FITT190 [FE60L°0 |Fr1L0°0 [F9920°0 |F2G12°0 |FE992°0 |FEFE9'0
S%00°0 | 9000°0 | 6000°0 | 8€00°0 | 02000 | 90000 | ¥I00'0 | 90000 | €100°0 | OT00°0 | 10000 | 69000 | 9.00°0 | IT00°0 | 8%00°0 | 90000 ed- MA
FS802°0 |FLOTS'0 |F9L1¥°0 |FF8TI0°0 |FOPET'0 |F60£5°0 |F8E08'0 |FGGES'0 |FI9ET'0 |F2225 0 [FIOTL'0 [F9690°0 |F92£0°0 |F9S12°0 |F60L2°0 |F6¥29°0
F0900°0 Fr0S1°0 FOrv0°0 F19€6°0 |F9LE0°0 F6£80°0 |F1202°0 xeuty

swoourt
-snsua))

SNsu20sN adA3a00 *Z1[eD0]

AdSIN _ dLIN _ VILIN _ SdSsn sSae _ IouIes| _

RRCEEE

g)sTuwa

_ oorrds agesuiy _ dnoppy _n::z«.d 130d _ OLIN

29



MARTINEzZ, WEBB, CHEN AND ZAIDI

where 7, are the parent-values of X; and m = 1. Secondly, if zero counts are found,
we back off as many levels in the tree as necessary to find at least one count, that is, if
counts(x4, xg, x3) is equal to zero, then p(x4|xo) is considered instead of p(x4|zg, z3).

e In principle, any loss function that can be computed incrementally is suitable for
SKDB. We have chosen RMSE (as defined above) for our first set of experiments.

e We use Averaged One Dependence Estimators (AODE) as a representative of the
ANDE family of algorithms where n = 1.

In order to avoid an extensive number of passes on each of the datasets, no dataset-
tailored parameter tuning has been carried out for any of the algorithms considered.
However as detailed in Sections 3.2, for logistic regression we have pre-conducted
experiments with varying numbers of passes for stochastic gradient descent, varying
loss functions and combinations of features; and used the default advanced (step
size) updates provided by vowpal wabbit. In the case of random forest, we have
made experiments with and without pre-discretising continuous attributes, as well as
learning a variable number of trees (see Section 3.3.2 for more details).

Appendix C. Detailed Analysis of Results

The upper part of Table 8 (in the Appendix) shows the results in terms of RMSE =+ standard
deviation on the 16 datasets described above. We have decided to stop at k = 5, since some
of the datasets already start to show worse results for k = 5 (due to variance increase), so
increasing the complexity further is not productive. The results for NB, TAN and AODE
are displayed as baseline orientations. The dark gray background on certain outputs for
SKDBy, corresponds to experiments that outperform KDB for the same value of k; the
light grey background on others indicate a tie; whereas the absence of the two indicates
that plain KDB outperforms SKDBj. As for SKDB, the background coloring has the same
meaning, but each entry is compared with the best KDB value for all possible k. Note that
only the average of the 10 folds is shown for each experiment, and the background colors
indicate statistical difference (Wilcoxon signed-rank tests), dark grey or white (in favor or
against the algorithm in the row respectively); or lack of statistical difference, in light grey.
Table 8 also shows the number of selected attributes by SKDBg. There are a few cases for
which the number of selected attributes for all values of k is the total number of attributes
in the datasets, such as localization, PAMAP and linkage. For some other datasets,
for example MSDYearPrediction, USPSExtended or mnist8ms, the performance between
selected KDB and KDB is similar, but fewer attributes are considered, so classification
time (and space) will be reduced. In most of the cases the number of selected attributes is
smaller than the original, sometimes even less than half, reducing the RMSE compared to
KDB, for example MITFaceSetC with 215.8 attributes selected (out of 361) results in 0.0446
vs 0.0494 for KDB (k = 5), or uscensus with 22 attributes selected (out of 67) results in
0.1504 vs 0.1601 for KDB (k = 4), that in both cases results in statistical improvement.
The results for SKDB using MDL discretization are also shown in Table 8 (antepenulti-
mate row). Note that there are some datasets, such as linkage, for which the discretization
method used, in this case EF5, is not an adequate one; whereas a technique based on en-
tropy minimization provides better results. Just the opposite situation occurs for datasets
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such as MITFaceSetC. Apriori selection of the most appropriate discretization method is
an open question, even more for very large datasets where we should consider the same
bias/variance trade-off in terms of discretization bias and variance (Yang and Webb, 2009),
that is, on the one hand we want that the number of intervals is sufficiently large to provide
low discretization bias, but not too large to avoid an increase in discretization variance.
The latter should not be a problem in large datasets, but considering a large number of
intervals implies bigger datasets, which will have an impact on the classifier complexity.
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