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Abstract

Numerous learning problems that contain exploration, such as experiment design, multi-
arm bandits, online routing, search result aggregation and many more, have been studied
extensively in isolation. In this paper we consider a generic and efficiently computable
method for action space exploration based on convex geometry.

We define a novel geometric notion of an exploration mechanism with low variance
called volumetric spanners, and give efficient algorithms to construct such spanners. We
describe applications of this mechanism to the problem of optimal experiment design and
the general framework for decision making under uncertainty of bandit linear optimization.
For the latter we give efficient and near-optimal regret algorithm over general convex sets.
Previously such results were known only for specific convex sets, or under special conditions
such as the existence of an efficient self-concordant barrier for the underlying set. 1

Keywords: barycentric spanner, volumetric spanner, linear bandits, hard margin linear
regression

1. Introduction

A fundamental challenge in machine learning is environment exploration. A prominent
example is the famed multi-armed bandit (MAB) problem, in which a decision maker it-
eratively chooses an action from a set of available actions and receives a payoff, without
observing the payoff of all other actions she could have taken. The MAB problem displays
an exploration-exploitation tradeoff, in which the decision maker trades exploring the action
space vs. exploiting the knowledge already obtained to pick the best arm. The exploration
challenge arises in structured bandit problems such as online routing and rank aggregation:
how to choose the most informative path in a graph, or the most informative ranking?

Another example in which environment exploration is crucial is experiment design, and
more generally the setting of active learning. In this setting it is important to correctly
identify the most informative experiments/queries so as to efficiently construct a solution.

1. This paper is the full version of a merger of two extended abstracts (Hazan et al., 2014) and (Karnin
and Hazan, 2014).
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Exploration is hardly summarized by picking an action uniformly at random. Indeed,
sophisticated techniques from various areas of optimization, statistics and convex geometry
have been applied to designing ever better exploration algorithms. To mention a few:
(Awerbuch and Kleinberg, 2008) devise the notion of barycentric spanners, and use this
construction to give the first low-regret algorithms for complex decision problems such as
online routing. (Abernethy et al., 2012) use self-concordant barriers to build an efficient
exploration strategy for convex sets in Euclidean space. (Bubeck et al., 2012) apply tools
from convex geometry, namely the John ellipsoid to construct optimal-regret algorithms for
bandit linear optimization, albeit not always efficiently.

In this paper we consider a generic approach to exploration, and quantify what efficient
exploration with low variance requires in general. Given a set in Euclidean space, a low-
variance exploration basis is a subset with the following property: given noisy estimates of
a linear function over the basis, one can construct an estimate for the linear function over
the entire set without increasing the variance of the estimates.

By definition, such low variance exploration bases are immediately applicable to noisy
linear regression: given a low-variance exploration basis, it suffices to learn the function
values only over the basis in order to interpolate the value of the underlying linear regressor
over the entire decision set. This fact can be used for active learning as well as for the
exploration component of a bandit linear optimization algorithm.

Henceforth we define a novel construction for a low variance exploration basis called vol-
umetric spanners and give efficient algorithms to construct them. We further investigate
the convex geometry implications of our construction, and define the notion of a minimal
volumetric ellipsoid of a convex body. We give structural theorems on the existence and
properties of these ellipsoids, as well as constructive algorithms to compute them in several
cases.

We complement our findings with two applications to machine learning. The first ap-
plication is to the problem of experiment design, in which we give an efficient algorithm for
hard-margin active linear regression with optimal bounds. Next, we advance a well-studied
open problem that has exploration as its core difficulty: an efficient and near-optimal regret
algorithm for bandit linear optimization (BLO). We expect that volumetric spanners and
volumetric ellipsoids can be useful elsewhere in experiment design and active learning.

1.1 Informal statement of results

Experiment design: In the statistical field called optimal design of experiments, or just
optimal design (Atkinson and Donev, 1992; Wu, 1978) , a statistician is faced with the
task of choosing experiments to perform from a given pool, with the goal of producing the
optimal result within the budget constraint.

Formally, consider a pool of possible experiments denoted x1, ..., xn ∈ Rd. The goal of
the designer is to choose a distribution over the pool of experiments, such that experiments
chosen according to this distribution produce a hypothesis ŵ that is as close as possible
to the true linear function behind the data. The distance between the hypothesis and
true linear function can be measured in different ways, each corresponding to a different
optimality criteria. The common property of the criteria is that they all minimize the
variance of the hypothesis. Since the variance is not a scalar but a d×d matrix, the different
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criteria differ by the fact that each one minimizes a different function Φ : Rd×d → R over
the covariance matrix. Common criteria are the A-, D-, and E-optimality criteria. D-
optimality, minimizes the determinant of the covariance matrix, and thus minimizes the
volume of the confidence region. In A-optimality the trace of the covariance matrix, i.e.,
the total variance of the parameter estimates, is minimized. E-optimality minimizes the
maximum eigenvalue of the covariance matrix, and thus minimizes the size of the major
axis of the confidence region.

The above criteria do not directly characterize the quality of predictions on test data.
A common criterion that directly takes the test data into account is that of G-optimality.
Here the goal is to minimize the maximum variance of the predicted values. In other words,
by denoting VarS(xi) the variance of the prediction of xi after querying the points of S,
the goal in G-optimality is to minimize maxi VarS(xi). G-optimality and D-optimality are
closely related in the sense that an exact solution to one is the solution to the other, see for
example (Spruill and Studden, 1979).

In this paper we solve a problem closely related to the G-optimality criteria. Given a
pool of data points K ∈ Rd, say representing a pool of patients, we aim to solve an active
regression problem finding w.h.p a regressor minimizing the worst-case error, while mini-
mizing the number of (noisy) queries to the regressor. The formal definition of the problem
is given in Section 6. This problem differs from classic linear regression results as there, the
mean square error is bounded. The difference between the described problem and solving
the optimal design problem with the G-optimality criteria is two-fold. First, we do not aim
to minimize the variance but to obtain a high probability bound. Second, in optimal design
the quality of the distribution is measured when the budget tends to infinity. Specifically,
notice that for a distribution over the possible experiments, rather than a deterministic
subset of them, the corresponding covariance matrix is random. The discussed minimiza-
tions are done over the expected covariance matrix, where the expectation is taken over
the subset of chosen experiments. When the budget tends to infinity the actual covariance
matrix is close w.h.p to its expected counterpart. We call this the infinite budget setting.
Ours is a finite budget setting where one does not aim to provide a distribution over the
possible experiments but a deterministic subset of them of a fixed size.

For the finite budget setting various relaxations have been considered in the statistical
literature, usually without an approximation guarantee. Our method differs from previous
works of this spirit by: First, we do not impose a hard-budget constraint of experiments,
but rather bound the number of experiments as a function of the desired approximation
guarantee. Second, we obtain a computationally efficient algorithm with provable optimality
results. Finally, as an added bonus our solution has the property of choosing very few data
points to explore, potentially much less than the budget. A motivating example for this
property is the medical experiment design. Here a data point is a human subject and it is
more realistic to have few volunteers being thoroughly tested on as opposed to performing
few tests over many volunteers. Our setting is arguably more natural for the medical-
patient-experiment motivating example; in general there are numerous examples where the
budget of experiments is not fixed but rather the tolerable error. Of equal importance
is the fact that our setting allows to derive efficient algorithms with rigorous theoretical
guarantees.
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A related and recently popular model is called random design (Hsu et al., 2012; Audibert
and Catoni, 2010; Györfi et al., 2006; Audibert and Catoni, 2011). In this setting the
designer is given a set of measurements {xi, yi|i ∈ [n]} for xi ∈ Rd drawn from an unknown
distribution D. The goal is to predict as well as the best linear predictor measured according
to the mean square error, i.e., minimize

E
(x,y)∈D

[
(x>w − y)2 − (x>w∗ − y)2

]
where w∗ is the optimal linear regressor. Various other performance metrics have been
considered in the referenced papers, i.e., measuring the norm of the regressor vs. the opti-
mal regressor in a norm proportional to the covariance matrix. However, in this setting an
expected error is the criterion vs. our criterion of worst-case, or a high confidence bound on
the error2, which is more suitable for some experiment design settings.

Active learning: The most well-studied setting in active learning is pool-based ac-
tive learning (McCallum and Nigam, 1998), in which the learner has access to a pool of
examples, and can iteratively query labels of particular examples of her choice. Compared
to passive learning, in which labelled examples are drawn from a fixed unknown distribu-
tion, known active learning algorithms can attain a certain generalization error guarantee
albeit observing exponentially fewer labelled examples, e.g., (Cohn et al., 1994; Dasgupta
et al., 2009; Hanneke, 2007; Balcan et al., 2009), under certain assumptions such as special
hypothesis classes, realizability or large-margin. Active learning with noise is a much less
studied topic: (Balcan et al., 2009) give an exponential improvement over passive learning
of linear threshold functions, but under the condition that the noise is smaller than the
desired accuracy. Real valued active learning with a soft-margin criteria was addressed in
(Ganti and Gray, 2012). The reader is referred to (Dasgupta and Langford, 2009) for a
more detailed survey of active learning literature.

Bandit Linear Optimization Bandit linear optimization (BLO) is a fundamental
problem in decision making under uncertainty that efficiently captures structured action
sets. The canonical example is that of online routing in graphs: a decision maker iteratively
chooses a path in a given graph from source to destination, the adversary chooses lengths of
the edges of the graph, and the decision maker receives as feedback the length of the path
she chose but no other information (Awerbuch and Kleinberg, 2008). Her goal over many
iterations is to attain an average travel time as short as that of the best fixed shortest path
in the graph.

This decision problem is readily modeled in the “experts” framework, albeit with ef-
ficiency issues: the number of possible paths is potentially exponential in the graph rep-
resentation. The BLO framework gives an efficient model for capturing such structured
decision problems: iteratively a decision maker chooses a point in a convex set and receives
as a payoff an adversarially chosen linear cost function. In the particular case of online
routing, the decision set is taken to be the s-t-flow polytope, which captures the convex hull
of all source-destination shortest paths in a given graph, and has a succinct representation

2. Our results though stated as a worst case error can be generalized to a high probability solution in the
random design scenario.
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with polynomially many constraints and low dimensionality. The linear cost function cor-
responds to a weight function on the graphs edges, where the length of a path is defined as
the sum of weights of its edges.

The BLO framework captures many other structured problems efficiently, e.g., learning
permutations, rankings and other examples (Abernethy et al., 2012). As such, it has been
the focus of much research in the past few years. The reader is referred to the recent survey
of (Bubeck and Cesa-Bianchi, 2012a) for more details on algorithmic results for BLO. Let
us remark that certain online bandit problems do not immediately fall into the convex BLO
model that we address, such as combinatorial bandits studied in (Cesa-Bianchi and Lugosi,
2012).

In this paper we contribute to the large literature on the BLO model by giving the
first polynomial-time and near optimal-regret algorithm for BLO over general convex de-
cision sets; see Section 7 for a formal statement. Previously efficient algorithms, with
non-optimal-regret, were known over convex sets that admit an efficient self-concordant
barrier (Abernethy et al., 2012), and optimal-regret algorithms were known over general
sets (Bubeck et al., 2012) but these algorithms were not computationally efficient. Our
result, based on volumetric spanners, is able to attain the best of both worlds.

1.2 Volumetric Ellipsoids and Spanners

We now describe the main convex geometric concepts we introduce and use for low variance
exploration. To do so we first review some basic notions from convex geometry.

Let Rd be the d-dimensional vector space over the reals. Given a set of vectors S =
{v1, . . . , vt} ⊂ Rd, we denote by E(S) the ellipsoid defined by S:

E(S) =

{∑
i∈S

αivi :
∑
i

α2
i ≤ 1

}
.

By abuse of notation, we also say that E(S) is supported on the set S.
Ellipsoids play an important role in convex geometry and specific ellipsoids associated

with a convex body have been used in previous works in machine learning for designing good
exploration bases for convex sets K ⊆ Rd. For example, the notion of barycentric spanners
which were introduced in the seminal work of Awerbuch and Kleinberg (Awerbuch and
Kleinberg, 2008) corresponds to looking at the ellipsoid of maximum volume supported by
exactly d points from 3 K. Barycentric Spanners have since been used as an exploration basis
in several works: Online bandit linear optimization (Dani et al., 2007), A high probability
counterpart of online bandit linear optimization (Bartlett et al., 2008), repeated decision
making of approximable functions (Kakade et al., 2009) and a stochastic version of bandit
linear optimization (Dani et al., 2008). Another example is the work of Bubeck et al.
(Bubeck et al., 2012) which looks at the minimum volume enclosing ellipsoid (MVEE) also
known as the John ellipsoid (see Section 2 for more background on this fundamental object
from convex geometry).

As will be clear soon, our definition of a minimal volumetric ellipsoid enjoys the best
properties of the examples above enabling us to get more efficient algorithms. Similar to

3. While the definition of (Awerbuch and Kleinberg, 2008) is not phrased as such, their analysis shows the
existence of barycentric spanners by looking at the maximum volume ellipsoid.
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barycentric spanners, it is supported by a small (linear) set of points of K. Simultaneously
and unlike the barycentric counterpart, the volumetric ellipsoid contains the body K, a
property shared with the John ellipsoid.

Definition 1 (Volumetric Ellipsoids) Let K ⊆ Rd be a set in Euclidean space. For
S ⊆ K, we say that E(S) is a volumetric ellipsoid for K if it contains K. We say that E(S)
is a minimal volumetric ellipsoid if it is a containing ellipsoid defined by a set of minimal
cardinality

S ∈ arg min
S′∈S(K)

|S′|, S(K) =
{
S′ | S′ ⊆ K ⊆ E(S′)

}
We say that |S| is the order of the minimal volumetric ellipsoid or of 4 K denoted

order(K).

We discuss various geometric properties of volumetric ellipsoids later. For now, we
focus on their utility in designing efficient exploration bases. To make this concrete and to
simplify some terminology later on (and also to draw an analogy to barycentric spanners),
we introduce the notion of volumetric spanners. Informally, these correspond to sets S that
span all points in a given set with coefficients having Euclidean norm at most one. Formally:

Definition 2 Let K ⊆ Rd and let S ⊆ K. We say that S is a volumetric spanner for K if
K ⊆ E(S).

Clearly, a set K has a volumetric spanner of cardinality t if and only if order(K) ≤ t.

Our goal in this work is to bound the order of arbitrary sets. A priori, it is not even
clear if there is a universal bound (depending only on the dimension and not on the set)
on the order S for compact sets K. However, barycentric spanners and the John ellipsoid
show that the order of any compact set in Rd is at most O(d2). Our main structural result
in convex geometry gives a nearly optimal linear bound on the order of all sets.

Theorem 3 (Main) Any compact set K ⊆ Rd admits a volumetric ellipsoid of order at
most 12d. Further, if K = {v1, . . . , vn} is a discrete set, then a volumetric ellipsoid for K
of order at most 12d can be constructed in poly(n, d) time.

This structural result is achieved by sparsifying (via the methods given in Batson et al. 2012)
the John contact points of K. We emphasize the last part of the above theorem giving an
algorithm for finding volumetric spanners of small size; this could be useful in using our
structural results for algorithmic purposes. We also give a different algorithmic construction
for the discrete case (a set of n vectors) in Section 5. While being sub-optimal by logarithmic
factors (gives an ellipsoid of order O(d(log d)(log n)) this alternate construction has the
advantage of being simpler and more efficient to compute.

4. We note that our definition allows for multi-sets, meaning that S may contain the same vector more
than once.
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1.3 Approximate Volumetric Spanners

Theorem 3 shows the existence of good volumetric spanners and also gives an efficient
algorithm for finding such a spanner in the discrete case, i.e., when K is finite and given
explicitly. However, the existence proof uses the John ellipsoid in a fundamental way and it
is not known how to compute (even approximately) the John ellipsoid efficiently for the case
of general convex bodies. For such computationally difficult cases, we introduce a natural
relaxation of volumetric ellipsoids which can be computed efficiently for a bigger class of
bodies and is similarly useful. The relaxation comes from requiring that the ellipsoid of
small support contain all but an ε fraction of the points in K (under some distribution). In
addition, we also require that the measure of points decays exponentially fast w.r.t their
E(S)-norm (see precise definition in next section); this property gives us tighter control on
the set of points not contained in the ellipsoid. When discussing a measure over the points
of a body the most natural one is the uniform distribution over the body. However, it makes
sense to consider other measures as well and our approximation results in fact hold for a
wide class of distributions.

Definition 4 Let S ⊆ Rd be a set of vectors and let V be the matrix whose columns are
the vectors of S. We define the semi-norm

‖x‖E(S) =
√
x>(V V >)−1x ,

where (V V >)−1 is the Moore-Penrose pseudo-inverse of V V >. Let K be a convex set in
Rd, p a distribution over it, and let ε > 0. A (p, ε)-exp-volumetric spanner of K is a set
S ⊆ K such that for any θ > 1

Pr
x∼p

[‖x‖E(S) ≥ θ] ≤ ε−θ.

To understand the intuition behind the above definition, notice that for any point x
in E(S) we have ‖x‖E(S) ≤ 1. Hence, if S is such that K ⊆ E(S) we have that S is a
(p, ε)-exp-volumetric spanner of K for ε = 0 and any p. It follows that the above provides
an approximate volumetric spanner; in what follows we show that this particular type of
approximation can be computed efficeintly for log-concave p and is sufficient in certain cases.

Theorem 5 Let K be a convex set in Rd and p a log-concave distribution over it. By sam-

pling O(d+log2(1/ε)) i.i.d. points from p one obtains, w.p. at least 1−exp
(
−
√

max {log(1/ε), d}
)

, a (p, ε)-exp-volumetric spanner for K.

1.4 Structure of the paper

In the next section we list the preliminaries and known results from measure concentration,
convex geometry and online learning that we need. In Section 3 we show the existence
of small size volumetric spanners. In Sections 4 and 5 we give efficient constructions of
volumetric spanners for continuous and discrete sets, respectively. We describe the appli-
cation to experiment design in Section 6. We then proceed to describe the application of
our geometric results to bandit linear optimization in Section 7.
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2. Preliminaries

We now describe several preliminary results we need from convex geometry and linear
algebra. We start with some notation:

• A matrix A ∈ Rd×d is positive semi-definite (PSD) when for all x ∈ Rd it holds that
x>Ax ≥ 0. Alternatively, when all of its eigenvalues are non-negative. We say that
A � B if A−B is PSD.

• Given an ellipsoid E(S) = {
∑

i αivi :
∑

i α
2
i ≤ 1}, we shall use the notation ‖x‖E(S)

∆
=√

x>(V V >)−1x to denote the (Minkowski) semi-norm defined by the ellipsoid, where
V is the matrix with the vectors vi’s as columns. Notice that E(S) is symmetric and
convex hence it defines a norm.

• Throughout, we denote by Id the d× d identity matrix.

We next describe properties of the John ellipsoid which plays an important role in our
proofs.

2.1 The Fritz John Ellipsoid

Let K ⊆ Rn be an arbitrary convex body. Then, the John ellipsoid of K is the minimum
volume ellipsoid containing K. This ellipsoid is unique and its properties have been the
subject of important study in convex geometry since the seminal work of John (John, 1948)
(see Ball 1997 and Henk 2012 for historic information).

Suppose that we have linearly transformed K such that its minimum volume enclosing
ellipsoid (MVEE) is the unit sphere; in convex geometric terms, K is in John’s position.
The celebrated decomposition theorem by (John, 1948) gives a characterization of when a
body is in John’s position and will play an important role in our constructions (the version
here is from Ball 1997).

Below we consider only symmetric convex sets, i.e., sets that admit the following prop-
erty: if x ∈ K then also −x ∈ K. The sets encountered in machine learning applications
are most always symmetric, since estimating a linear function on a point x is equivalent to
estimating it on its polar −x, and negating the outcome.

Theorem 6 (Ball 1997) Let K ∈ Rd be a symmetric set such that its MVEE is the unit
sphere. Then there exist m ≤ d(d+ 1)/2− 1 contact points of K and the sphere u1, . . . , um
and non-negative weights c1, . . . , cm such that

∑
i ciui = 0 and

∑
ciuiu

T
i = Id.

The contact points of a convex body have been extensively studied in convex geometry
and they also make for an appealing exploration basis in our context. Indeed, (Bubeck et al.,
2012) use these contact points to attain an optimal-regret algorithm for BLO. Unfortunately
we know of no efficient algorithm to compute, or even approximate, the John ellipsoid for a
general convex set, thus the results by (Bubeck et al., 2012) do not yield efficient algorithms
for BLO.

For our construction of volumetric spanners we need to compute the MVEE of a discrete
symmetric set, which can be done efficiently. We make use of the following (folklore) result:

8



Volumetric Spanners

Theorem 7 (folklore, see e.g., Khachiyan 1996; Damla Ahipasaoglu et al. 2008)
Let K ⊆ Rd be a set of n points. It is possible to compute an ε-approximate MVEE for K
(an enclosing ellipsoid of volume at most (1 + ε) that of the MVEE) that is also supported
on a subset of K in time O(n3.5 log 1

ε ).

The run-time above is attainable via the ellipsoid method or path-following interior
point methods (see references in theorem statement). An approximation algorithm rather
than an exact one is necessary in a real-valued computation model, and the logarithmic
dependence on the approximation guarantee is as good as one can hope for in general.

The above theorem allows us to efficiently compute a linear transformation such that
the MVEE of K is essentially the unit sphere. We can then use linear programming to
compute an approximate decomposition like in John’s theorem as follows.

Theorem 8 Let {x1, . . . , xn} = K ⊆ Rd be a set of n points and assume that:

1. K is symmetric.

2. The John Ellipsoid of K is the unit sphere.

Then it is possible, in O((
√
n+d)n3) time, to compute non-negative weights c1, . . . , cn such

that (1)
∑

i cixi = 0 and (2)
∑n

i=1 cixix
>
i = Id.

Proof
Denote the MVEE of K by E and let V be its corresponding d × d matrix, meaning V

is such that ‖y‖2E = y>V −1y ≤ 1 for all y ∈ K. By our assumptions Id = V .
As K is symmetric and its MVEE is the unit ball, according to Theorem 6, there exist

m ≤ d(d+ 1)/2− 1 contact points u1, . . . , um of K with the unit ball and a vector c′ ∈ Rm
such that c′ ≥ 0,

∑
c′i = d and

∑
c′iuiu

T
i = Id. It follows that the following LP has a

feasible solution: Find c ∈ Rn such that c ≥ 0,
∑
ci ≤ d and

∑
ciuiu

T
i = Id. The described

LP has O(n+ d2) constraints and n variables. It can thus be solved in time O(d+
√
n)n3)

via interior point methods.

We next state the results from probability theory that we need.

2.2 Distributions and Measure Concentration

For a set K, let x ∼ K denote a uniformly random vector from K.

Definition 9 A distribution over Rd is log-concave if its probability distribution function
(pdf) p is such that for all x, y ∈ Rd and λ ∈ [0, 1],

p(λx+ (1− λ)y) ≥ p(x)λp(y)1−λ

Two log-concave distributions of interest to us are (1) the uniform distribution over a
convex body and (2) a distribution over a convex body where p(x) ∝ exp(L>x), where L
is some vector in Rd. The following result shows that given oracle access to the pdf of a
log-concave distribution we can sample from it efficiently. An oracle to a pdf accepts as
input a point x ∈ Rd and returns the value p(x).
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Lemma 10 (Lovász and Vempala 2007, Theorems 2.1 and 2.2) Let p be a log-concave
distribution over Rd and let δ > 0. Then, given oracle access to p, i.e., and oracle comput-
ing its pdf for any point in Rd, there is an algorithm which approximately samples from p
such that:

1. The total variation distance between the produced distribution and the distribution
defined by p is no more than δ. That is, the difference between the probabilities of any
event in the produced and actual distribution is bounded by δ.

2. The algorithm requires a pre-processing time of Õ(d5).

3. After pre-processing, each sample can be produced in time Õ(d4/δ4), or amortized time
of Õ(d3/δ4) if more than d samples are needed.

Definition 11 (Isotropic position) A random variable x is said to be in isotropic posi-
tion
(or isotropic) if

E[x] = 0, E[xx>] = Id.

A set K ⊆ Rd is said to be in isotropic position if x ∼ K is isotropic. Similarly, a distribution
p is isotropic if x ∼ p is isotropic.

Henceforth we use several results regarding the concentration of log-concave isotropic
random vectors. In these results we use the matrix operator norm (i.e., spectral norm)

defined as ‖A‖ = supx 6=0
‖Ax‖
‖x‖ . We use slight modification where the center of the distribu-

tion is not necessarily in the origin. For completeness we present the proof of the modified
theorems in Appendix A

Theorem 12 (Theorem 4.1 in Adamczak et al. 2010) Let p be a log-concave distri-
bution over Rd in isotropic position. There is a constant C such that for all t, δ > 0, the

following holds for n = Ct4d log2(t/δ)
δ2

. For independent random vectors x1, . . . , xn ∼ p, with

probability at least 1− exp(−t
√
d),∥∥∥∥∥ 1

n

n∑
i=1

xix
>
i − Id

∥∥∥∥∥ ≤ δ.
Corollary 13 Let p be a log-concave distribution over Rd and x ∼ p. Assume that x is
such that E[xxT ] = Id. Then, there is a constant C such that for all t ≥ 1, δ > 0, the

following holds for n = Ct4d log2(t/δ)
δ2

. For independent random vectors x1, . . . , xn ∼ p, with

probability at least 1− exp(−t
√
d),∥∥∥∥∥ 1

n

n∑
i=1

xix
>
i − Id

∥∥∥∥∥ ≤ δ.
Theorem 14 (Theorem 1.1 in Guédon and Milman 2011) There exist constants c, C
such that the following holds. Let p be a log-concave distribution over Rd in isotropic posi-
tion and let x ∼ p. Then, for all θ ≥ 0,

Pr
[∣∣∣‖x‖ − √d∣∣∣ > θ

√
d
]
≤ C exp(−c

√
d ·min(θ3, θ)).
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Corollary 15 Let p be a log-concave distribution over Rn and let x ∼ p. Assume that
E[xxT ] = Id. Then for some universal C, c it holds for any θ ≥ 3 that

Pr
[
‖x‖ > θ

√
d
]
≤ C exp

(
−cθ
√
d
)

The following theorem provides a concentration bound for random vectors originating
from an arbitrary distribution.

Theorem 16 (Rudelson 1999) Let X be a vector-valued random variable over Rd with
E[XX>] = Σ and ‖Σ−1/2X‖2 ≤ R. Then, for independent samples X1, . . . , XM from X,
and
M ≥ CR log(R/ε)/ε2 the following holds with probability at least 1/2:∥∥∥∥∥ 1

M

M∑
i=1

XiX
>
i − Σ

∥∥∥∥∥ ≤ ε‖Σ‖.
Finally, we also make use of barycentric spanners in our application to BLO and we

briefly describe them next.

2.3 Barycentric Spanners

Definition 17 (Awerbuch and Kleinberg 2008) A barycentric spanner of K ⊆ Rd is
a set of d points S = {u1, . . . , ud} ⊆ K such that any point in K may be expressed as a
linear combination of the elements of S using coefficients in [−1, 1]. For C > 1, S is a
C-approximate barycentric spanner of K if any point in K may be expressed as a linear
combination of the elements of S using coefficients in [−C,C]

In (Awerbuch and Kleinberg, 2008) it is shown that any compact set has a barycentric
spanner. Moreover, they show that given an oracle with the ability to solve linear optimiza-
tion problems over K, an approximate barycentric spanner can be efficiently obtained. In
the following sections we will use this constructive result.

Theorem 18 (Proposition 2.5 in Awerbuch and Kleinberg 2008) Let K be a com-
pact set in Rd that is not contained in any proper linear subspace. Given an oracle for op-
timizing linear functions over K, for any C > 1, it is possible to compute a C-approximate
barycentric spanner for K, using O(d2 logC(d)) calls to the optimization oracle.

3. Existence of Volumetric Ellipsoids and Spanners

In this section we show the existence of low order volumetric ellipsoids proving our main
structural result, Theorem 3. Before we do so, we first state a few simple properties of
volumetric ellipsoids (recall the Definition of order from Definition 1):

• The definition of order is linear invariant: for any invertible linear transformation
T : Rd → Rd and K ⊆ Rd, order(K) = order(TK).

Proof Let S ⊆ K be such that K ⊆ E(S). Then, clearly TK ⊆ E(TS). Thus,
order(TK) ≤ order(K). The same argument applied to T−1 and TK shows that

11
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Figure 1: In R2 the order of the volumetric ellipsoid of the equilateral triangle centered

at the origin is at least 3. If the vertices are [0, 1], [−
√

3
2 ,−

1
2 ], [

√
3

2 ,−
1
2 ], then the

eigenpoles of the ellipsoid of the bottom two vertices are [0.23 ], [2, 0]. The second
figure shows one possibility for a volumetric ellipsoid by adding 3

4 of the first
vertex to the previous ellipsoid. This shows the ellipsoid to be non-unique, as it
can be rotated three ways.

order(K) ≤ order(TK).

• The minimal volumetric ellipsoid is not unique in general; see example in Figure 1.
Further, it is in general different from the John ellipsoid.

• For non-degenerate bodies K, their order is naturally lower bounded by d, and there
are examples in which it is strictly larger than d (e.g., Figure 1).

In the proof Theorem 3 we require a modification of a result by (Batson et al., 2012)
providing a method to sparsity a distribution over vectors while approximately maintaining
its covariance matrix. We show that this technique can be applied over the distribution
derived from John’s decomposition of K in order to obtain a small set from which we
construct a volumetric spanner. We begin by presenting the result given in (Batson et al.,
2012), then its modification, and then proceed to the proof of Theorem 3.

Theorem 19 (Theorem 3.1 of Batson et al. 2012) Let v1, . . . , vm be vectors in Rd and
let c > 1. Assume that

∑
i viv

>
i = Id. There exist scalars si ≥ 0 for i ∈ [m] with

|{i|si > 0}| ≤ cd such that

Id �
∑
i

siviv
>
i �

c+ 1 + 2
√
c

c+ 1− 2
√
c
Id

Furthermore, these scalars can be found in time O(cd3m).

Lemma 20 Let u1, . . . , um be unit vectors and let p ∈ ∆(m) be a distribution over [m] such
that d

∑m
i=1 piuiu

>
i = Id. Then, there exists a (possibly multi) set S ⊆ {u1, . . . , um} such

that
∑

v∈S vv
> � Id and |S| ≤ 12d. Moreover, such a set can be computed in time O(md3).

12
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Proof Let vi =
√
piui. We fix c as some constant whose value will be determined later.

Clearly for these vectors vi it holds that d
∑

i viv
>
i = Id. It follows from the above theorem

that there exist some scalars si ≥ 0 for which at most cd are non-zeros and

Id � d
∑
i

siviv
>
i �

c+ 1 + 2
√
c

c+ 1− 2
√
c
Id (1)

Our set S will be composed by taking each ui ddsipie many times. Plugging in equation (1)
shows that indeed ∑

w∈S
ww> � Id

and it remains to bound the size of S i.e.,
∑
ddsipie. By taking the trace of the expression

and dividing by d we get that∑
i

siTrace(viv
>
i ) � c+ 1 + 2

√
c

c+ 1− 2
√
c

Plugging in the expressions for vi along with ui being unit vectors (hence Trace(uiu
>
i ) = 1)

lead to ∑
i

sipi �
c+ 1 + 2

√
c

c+ 1− 2
√
c

It follows that∑
ddsipie ≤ d

c+ 1 + 2
√
c

c+ 1− 2
√
c

+ |{i|si ≥ 0}| ≤ d
(
c+

c+ 1 + 2
√
c

c+ 1− 2
√
c

)
By optimizing c we get

∑
ddsipie ≤ 12d, and the lemma is proved.

Proof of Theorem 3 Let K ⊆ Rd be a compact set. Without loss of generality assume
that K is symmetric and contains the origin; we can do so as in the following we only look
at outer products of the form vv> for vectors v ∈ K. Further, as order(K) is invariant
under linear transformations, we can compute, as detailed in Theorem 7 the MVEE5 of K
and transform the space into one where this ellipsoid is the Euclidean unit sphere. That is,
move K into John’s position, at poly(n, d) time.

According to Theorem 8 it is then possible to compute a distribution p over K with

d
∑
x∈K

pxxx
> = Id

Lemma 20 provides a way to compute a (multi-)set S of size at most 12d with∑
v∈S

vv> � Id

5. Notice that the Theorem provides an approximation of 1 + ε of the MVEE where the running time
scales as log(1/ε). In what follows it is easy to see that the precision of all equalities is affected up to a
multiplicative factor of 1 ± ε by this issue. This eventually translates into a set of size 12(1 + ε)d rather
than 12d. We omit these technical details for a more readable proof.

13
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Since K is contained in the unit ball we get that S is a volumetric spanner for K as re-
quired. The total running time required to find s includes the computation of the trans-
formation into John’s position, John’s decomposition, and its sparsification. The running
time amounts to O(n3.5 + dn3 + nd3).

4. Approximate Volumetric Spanners

In this section we provide a construction for (p, ε)-exp-volumetric spanner (as in Defini-
tion 4), proving Theorem 5. We start by providing a more technical definition of a spanner.
Note that unlike previous definitions, the following is not impervious to linear operators
and will only be used to aid our construction.

Definition 21 A β-relative-spanner is a discrete subset S ⊆ K such that for all x ∈ K,
‖x‖2E(S) ≤ β‖x‖

2.

A first step is a spectral characterization of relative spanners:

Lemma 22 Let S = {v1, ..., vT } ⊆ K span K and be such that

W =
T∑
i=1

viv
>
i �

1

β
Id

Then S is a β-relative-spanner.

Proof Let V ∈ Rd×T be a matrix whose columns are the vectors of S. As V V > = W � 1
β Id

we have that

βId � (V V >)−1

It follows that

‖x‖E(S) = x>(V V >)−1x ≤ β‖x‖2

as required.

Proof [Proof of Theorem 5] We analyze the algorithm of sampling i.i.d points according to
p, previously defined within Theorem 5, assuming the vectors are sampled exactly according
to the log-concave distribution. The result involving an approximate sample, which is
necessary for implementing the algorithm in the general case, is an immediate application
of Lemma 10 and Corollary 13.

Our analysis of the algorithm is for T = C(d + log2(1/ε)) samples, where C is some
sufficiently large constant. Assume first that Ex∼p[xx

>] = Id. Let W =
∑T

i=1 uiu
>
i . Then,

for C > 0 large enough, by Corollary 13, ‖ 1
TW − Id‖ ≤ 1/2 w.p. at least 1 − exp(−

√
d).

Therefore, S spans Rd and
1

T
W � Id −

1

2
Id =

1

2
Id

14
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Thus according to Lemma 22, S is a (2/T )-relative spanner. Consider the case where
Σ = Ex∼p[xx

>] is not necessarily the identity. By the above analysis we get that

Σ−1/2S = {Σ−1/2u1, . . . ,Σ
−1/2uT }

form a (2/T )-relative spanner for Σ−1/2K. This is since the r.v defined as Σ−1/2x where
x ∼ p is log-concave. The latter along with Corollary 15 implies that for any θ ≥ 1,

Pr
x∼p

[
‖Σ−1/2x‖ ≥ 3θ

√
d
]
≤ c1 exp

(
−c2θ

√
d
)

(2)

for some universal constants c1, c2 > 0. It follows that for our set S and any θ ≥ 1,

Pr
x∼p

[
‖x‖E(S) > θ

]
= Prx∼p

[
‖Σ−1/2x‖E(Σ−1/2S) > θ

]
‖x‖E(S) =

‖Σ−1/2x‖E(Σ−1/2S)

≤ Prx∼p

[
‖Σ−1/2x‖ > θ

√
T/2

]
Σ−1/2S is a

2/T -relative-spanner

= Prx∼p

[
‖Σ−1/2x‖ > 3θ

√
dC
18 ·

√
1 + log2(1/ε)

d

]
T = C(d+ log2(1/ε))

≤ c1 exp

(
−c2θ

√
d
√

C
18 ·

√
1 + log2(1/ε)

d

)
Equation (2), C ≥ 18

≤ exp

(
−θ
√
d+ log2(1/ε)

)
C sufficiently large

≤ ε−θ

In our application of volumetric spanners to BLO, we also need the following relaxation
of volumetric spanners where we allow ourselves the flexibility to scale the ellipsoid:

Definition 23 A ρ-ratio-volumetric spanner S of K is a subset S ⊆ K such that for all
x ∈ K, ‖x‖E(S) ≤ ρ.

One example for such an approximate spanner with ρ =
√
d is a barycentric spanner

(Definition 17). In fact, it is easy to see that a C-approximate barycentric spanner is a
C
√
d-ratio-volumetric spanner . The following is immediate from Theorem 18.

Corollary 24 Let K be a compact set in Rd that is not contained in any proper linear
subspace. Given an oracle for optimizing linear functions over K, for any C > 1, it is
possible to compute a C

√
d-ratio-volumetric spanner S of K of cardinality |S| = d, using

O(d2 logC(d)) calls to the optimization oracle.
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5. Fast Volumetric Spanners for Discrete Sets

In this section we describe a different algorithm that constructs volumetric spanners for
discrete sets. The order of the spanners we construct here is suboptimal (in particular,
there is a dependence on the size of the set K which we didn’t have before). However, the
algorithm is particularly simple and efficient to implement (takes time linear in the size of
the set).

Algorithm 1 Fast Volumetric Spanner construction

1: Input K = {x1, ..., xn} ⊆ Rd, C ∈ R.
2: Set T = ∅
3: while |K| > Cd log d do
4: Compute Σ =

∑
i xix

>
i and let ui = Σ−1/2xi , pi = 1/2n+ ‖ui‖2/2d.

5: Set S ← ∅.
6: for i = 1, ..., Cd log d do
7: sample with replacement from [n] according to p1, . . . , pn: S ← S ∪ {i} w.p. pi
8: end for
9: if |{i , ‖xi‖E(S) ≤ 1}| < n

2 then
10: Set S ← ∅ and GOTO step (6).
11: end if
12: Set T ← T ∪ S
13: Set the remainder as K ← {xi s.t. ‖xi‖E(S) > 1}
14: end while
15: return T ← T ∪ K

Theorem 25 Given a set of vectors K = {x1, . . . , xn} ∈ Rd, Algorithm 1 outputs a volu-
metric spanner of size O((d log d)(log n)) and has an expected running time of O(nd2).

Proof Consider a single iteration of the algorithm with input v1, . . . , vn ∈ Rd. We claim
that the random set S obtained in Step 7 satisfies the following condition with constant
probability:

Pr
x∈K

[
‖x‖E(S) ≤ 1

]
≥ 1/2 (3)

Suppose the above statement is true. Then, the lemma follows easily as it implies that
for the next iteration there are fewer than n/2 vectors. Hence, after (log n) recursive calls
we will have a volumetric spanner. The total size of the set will be O((d log d)(log n)). To
see the time complexity, consider a single run of the algorithm. The most computationally
intensive steps are computing Σ and Σ−1/2 which take time O(nd2) and O(d3) respectively.
We also need to compute (

∑
v∈S vv

>)−1 (to compute the E(S) norm) which takes time
O(d3 log d), and compute the E(S) norm of all the vectors which requires O(nd2). As
n = Ω(d log(d)), it follows that a single iteration runs of a total expected time of O(nd2).
Since the size of n is split in half between iterations, the claim follows.

We now prove that Equation 3 holds with constant probability

x>j

(∑
v∈S

vv>

)−1

xj = u>j

(∑
v∈S′

vv>

)−1

uj . (4)
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where S′ = {Σ−1/2v|v ∈ S} is the (linearly) shifted version of S. Therefore, it suffices to
show that with sufficiently high probability, the right hand side of the above equation is
bounded by 1 for at least n/2 indices j ∈ [n].

Note that pi = 1/2n + ‖ui‖2/2d form a probability distribution:
∑

i pi = 1/2 +
(
∑

i ‖ui‖2)/2d = 1. Let X ∈ Rd be a random variable with X = ui/
√
pi with probability pi

for i ∈ [n]. Then, E[XX>] = Id. Further, for any i ∈ [n]

‖ui‖2/pi ≤ 2d.

Therefore, by Theorem 16, if we take M = Cd(log d) samples X1, . . . , XM for C sufficiently
large, then with probability of at least 1/2, it holds that

M∑
i=1

XiX
>
i � (M/2)Id.

Let T ⊆ [n] be the multiset corresponding to the indices of the sampled vectors X1, . . . , XM .
The above inequality implies that∑

i∈T

1

pi
uiu
>
i � (M/2)Id.

Now, ∑
v∈S′

vv> � (min
i
pi)
∑
v∈S′

1

pi
vv> � (min

i
pi)(M/2)Id � (M/4n)Id.

Therefore,

n∑
i=1

u>i

(∑
v∈S′

vv>

)−1

ui =

n∑
i=1

Tr

(∑
v∈S′

vv>

)−1 (
uiu
>
i

)
= Tr

(∑
v∈S′

vv>

)−1( n∑
i=1

uiu
>
i

)
= Tr

(∑
v∈S′

vv>

)−1


≤ 4nd

M
≤ 4n

C log d
≤ n

2 log d
,

for C sufficiently large. Therefore, by Markov’s inequality and Equation 4, it follows that
Equation 3 holds with high probability. The theorem now follows.

6. Experiment design using volumetric spanners

The active linear regression (ALR) problem is formally defined as follows. The input is a
pool of n data points K = {x1, . . . , xn} ⊆ Rd, a tolerable error ε > 0 and a confidence
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parameter δ. A query to a point x returns an unbiased noisy estimate of 〈w∗, x〉 for some
unknown vector w∗ ∈ Rd, with variance bounded by 1. Our objective is to actively choose
points to query, and based on these queries, obtain a vector w ∈ Rd that with probability
at least 1− δ has a max-error of

max
x∈K
|〈w∗, x〉 − 〈w, x〉| < ε

We aim to minimize the query complexity of the solution, which is the mean number of
queries required by the process. To avoid tedious definitions and details we assume that

1. all of the data points {xi} and w∗ are bounded in the Euclidean unit sphere

2. the noise is bounded in absolute value by one with probability one.

Our results can be extended to remove the first assumption, simply by allowing an additional
parameter which is the radius of the minimal enclosing Euclidian ball.

It is also possible to remove the second assumption, although this requires more robust
estimators, e.g., the median-of-means estimator6.

6.1 A lower bound for passive linear regression

In this section we provide an example for a set K where the passive learning algorithm must
use Ω( n

ε2
) observations to obtain a regressor w with additive error of at most ε on all of

the data points. We start by formally defining the passive setup. Here, a query returns a
random point x chosen uniformly from the set K and an unbiased noisy measurement of
〈w∗, x〉, with variance of at most 1. As before we assume that all points, including w∗ are
contained in the `2 unit sphere.

The set K in our example is defined in the following manner. Let Y ⊆ Rd be an arbitrary
set of size n− 1 such that for all x ∈ Y , 〈x, e1〉 = 0. Let K = Y ∪ {e1}. Here, e1 is the first
vector in the standard basis for Rd.

Theorem 26 Any algorithm in the passive setting achieving an additive error of at most
ε in all of the data points of K whose success probability is 1 − δ requires Ω(log(1/δ)n/ε2)
queries.

The theorem is an immediate corollary of the following lemma.

Lemma 27 For K defined above, any policy distinguishing between the case where 〈w∗, e1〉 =
−ε and 〈w∗, e1〉 = ε with probability larger than 1− δ must use Ω(n log(1/δ)/ε2) queries.

Proof We begin by mentioning that a query of a point x where 〈x, e1〉 = 0 provides
no information to the sign of 〈w∗, e1〉, hence does not help distinguish between the two
hypotheses. The following lemma provides a lower bound to the number of queries at
point e1 required to estimate the 〈w∗, e1〉 up to a sufficiently small additive error and with
sufficient confidence. It is a folklore lemma in statistics and appears e.g., in (Mannor and
Tsitsiklis, 2004) in a much more general form.

6. The median-of-means estimator is defined as follows: Given m queries to a single dimensional distribu-
tion, the estimator of its mean is not taken to be the average of the queries; the m queries are instead
split into log(1/δ) equal sized buckets, each bucket has its average computed and the estimator is the
median of these averages.
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Lemma 28 (Theorem 1 of Mannor and Tsitsiklis 2004) Let D be a distribution over
[−1, 1]. Let ε > 0 be such that for X ∼ D, |E[X]| ≥ ε. Let T be the expected number of
queries required by any algorithm that queries i.i.d copies of X ∼ D until being able to
distinguish, with probability at least 1 − δ between the cases E[X] ≤ −ε and E[X] ≥ ε.
Then for universal constants ε0 > 0, δ0 > 0, c1, c2 it holds that if ε < ε0 and δ < δ0 then
T ≥ c1 log(c2/δ)

ε2
.

It follows that the expected number of queries needed in order to distinguish between
the two hypotheses with probability ≥ 1 − δ is at least c1n log(c2/δ)

ε2
, as the probability of

observing a query to the inner product with e1 is 1/n.

6.2 Our ALR solution

In this section prove the following.

Theorem 29 There exists an algorithm to the ALR problem with success probability of at
least
1− δ and with the following properties:

1. The algorithm requires a preprocessing stage for building a volumetric spanner over K

2. It’s running time (after preprocessing) is Õ
(
nd log(1/δ)

ε2

)
3. It’s query complexity is at most O

(
d log(n) log(1/δ)

ε2

)
.

The intuition behind the algorithm is the following. We begin with a preprocessing stage
of computing a volumetric spanner S for the set of points K. Given this spanner we can
implement a procedure that outputs, for all of the points of K simultaneously, an unbiased
estimator of 〈w∗, x〉 with variance of at most |S|. To demonstrate the usefulness of this
estimator, consider averaging |S| log(n/δ)/ε2 i.i.d outputs of S. Standard concentration
bound show that w.p at least 1 − δ the estimates of all points in K are correct up to
an additive error of ε. Rather than computing a noisy output for w∗ on the points and
recovering a hypothesis w from that we use a technique by (Clarkson et al., 2012) that given
an oracle for a function over a set of data points constructs a hypothesis w using a small
number of queries to the oracle.

6.2.1 Constructing a low variance estimator

The main component of our method is a black box providing a noisy estimate of 〈x,w∗〉 to
all of the data point of K simultaneously. The intuition behind the algorithm we describe
next, is that given sufficiently many queries to the noisy estimator, a union bound argument
can ensure an accurate estimate in all of the data points simultaneously.

We begin with the description of this black box providing the estimates. The main
tool used for this ‘all-point-estimator’ is a volumetric spanner for the set K. Algorithm 2
provides the formal description of how a volumetric spanner can be used to obtain these
estimates.

The following lemma provides the analysis of Algorithm 2.
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Algorithm 2 Sample(K)

1: Input: set K = {x1, ..., xn}, Volumetric spanner for K denoted S, and measurement

oracle that given x returns an unbiased estimator 〈̂x,w∗〉 with variance at most one for
some fixed w∗.

2: Choose a point vj ∈ S uniformly at random, query its inner product ˆ̀= ̂〈vj , w∗〉
3: let V be the d× |S| matrix whose columns are the elements of S, and let V † ∈ R|S|×d

be its Moore-Penrose pseudo inverse.
4: For x ∈ K, let αx = V †x and let ˆ̀

x ← (αx)j ˆ̀· |S|
5: return estimates {ˆ̀x}x∈K

Lemma 30 Algorithm 2 queries a single point from K. Its estimates have the properties
of (1) being unbiased and (2) have a variance of at most 12d. More formally, we have

∀x ∈ K . E[ˆ̀x] = 〈x,w∗〉 , Var(ˆ̀
x) ≤ |S| ≤ 12d

Proof

E
[
ˆ̀
x

]
=
∑

j∈S Pr[vj ] · (αx)j E ̂〈vj , w∗〉 · |S|

=
∑

j∈S(αx)j E ̂〈vj , w∗〉
= (V †x)TV Tw∗ = 〈x,w∗〉

For the variance, recall that x ∈ K and S is a volumetric spanner of K indicates that
‖αx‖2 ≤ 1:

E[ˆ̀2
x] =

∑
j∈S Pr[vj ] · (αx)2

j E

[
̂〈vj , w∗〉

2
]
· |S|2

≤ |S|
∑

j∈S(αx)2
j ≤ |S|

By Theorem 3 we can efficiently construct volumetric spanners of size |S| = 12d.

6.2.2 Algorithm and its analysis

In this section we present an algorithm for the ALR problem, following the primal-dual
paradigm as in (Clarkson et al., 2012), and specifically their meta algorithm 3. This latter
meta-algorithm can be used to solve any convex constrained feasibility problem, of which
our ALR problem is a special case. The idea is to apply a low regret algorithm to a
distribution over the constraints. The distribution over the constraints is changed according
to a multiplicative update rule. The specific meta-algorithm we apply uses random estimates
of the constraints that enable faster running time. We proceed to spell out the details.

To avoid extraneous notions we will assume henceforth w.l.o.g that K is symmetric
meaning that x ∈ K iff −x ∈ K. This is without loss of generality since an unbiased
estimator for 〈−x,w∗〉 is obtained by negating the estimator for 〈x,w∗〉.
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We write the ALR problem as the following mathematical program:

min
‖w‖≤1

g(w) s.t. g(w) = maxx∈K cx(w) (5)

cx(w) = 〈x,w〉 − 〈x,w∗〉

Note that by definition g(w∗) = 0, which is the optimal solution to the problem as
K is symmetric. In addition, an ε approximate solution to the ALR instance, assuming
‖w∗‖ ≤ 1, corresponds to a vector ŵ with g(ŵ) ≤ ε.

Algorithm 3 Primal-Dual Algorithm for ALR

1: Input: T

2: Let w1 ← 0, q0 ← 1n, η ← 1
100

√
log(n)
T .

3: for t = 1 to T do
4: Query Sample(K) 12d times to obtain unit-variance zero-mean estimators ãt(i) for

all constraints ci’s:

ãt(i)
def
= 〈xi, wt〉 − ̂〈xi, w∗〉

where ̂〈xi, w∗〉 is the estimate of 〈xi, w∗〉 given by Sample(K).
5: for i ∈ [n] do
6: at(i)← clip(ãt(i), 1/η), where

clip(α, β) =


min{α, |β|} α ≥ 0

max{−α,−|β|} α < 0

7: qt(i)← qt−1(i)(1− ηat(i) + η2at(i)
2)

8: end for
9: Choose it ∈ [n] at random with Pr[it = i] ∝ qt(i)

10: wt ← wt−1 − 1√
t
∇wcit , where ∇wcit = xit

11: end for
12: return w̄ = 1

T

∑
twt

The following theorem bounds the performance of Algorithm 3. It immediately follows
from Lemma 4.1 in (Clarkson et al., 2012).

Theorem 31 Algorithm 3 runs in time Õ(dn
ε2

) and requires O(d logn
ε2

) queries to the proce-
dure Sample(K). It returns, with probability of at least 1

2 , a vector w such that maxx∈K 〈w − w∗, x〉 ≤
ε.

Proof

Notice that Algorithm 3 is an instantiation of Alg 3 from (Clarkson et al., 2012) applied
to mathematical Program 5 with the following arguments:

1. The primal decision set {‖w‖ ≤ 1} and (linear) cost functions cx(w), admits an
iterative low regret algorithm, namely online gradient descent, with expected regret
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E[R(T )] ≤ 2
√
T . This follows since the norms of x,w (for all x ∈ K) are bounded by

one. See e.g., Theorem 1 by (Zinkevich, 2003).

The expression Tε(LRA) (here LRA stands for Low Regret Algorithm, and not the
Active Linear Regression problem we are addressing) refers to the number T such that
the average regret of online gradient descent is at most ε, in our case, this is 4

ε2
.

2. Meta-algorithm 3 in (Clarkson et al., 2012) assumes an oracle to a procedure Sample(K)
that returns a vector of length |K| whose entries are unbiased estimators of 〈x,w∗〉,
for all x ∈ K whose variance is upper bounded by 1. Recall that such a procedure,
with variance 12d rather than 1, was given in Section 6.2.1. By averaging 12d such
samples we obtain unit-variance estimates.

Thus, Lemma 4.1 (Clarkson et al., 2012) implies that the algorithm returns w.p. 1
2 an

ε-approximate solution in number of iterations bounded by

max{Tε(LRA),
log n

ε2
} ≤ log n

ε2

Each iteration involves elementary operations that can be implemented in time Õ(nd) and
O(d) queries to Sample.

6.2.3 Validation and high probability algorithm

Algorithm 3 provides a method to obtain an approximated solution to the ALR problem
with probability 1/2. We now describe a method to amplify the success probability to 1−δ.
The idea is to use a validation procedure and repeat the algorithm multiple times. It is easy
to see that with a validation process, repeating Algorithm 3 for O(log(1/δ)) many times
will increase the probability of success to 1− δ.

We now describe a validation procedure that is in itself random, in the sense that it
may err but its error probability is manageable. Algorithm 4 is given as input a hypothesis
w and a ALR problem. It verifies, w.h.p., that w is an ε-approximate solution to the ALR
problem accurate.

Algorithm 4 Verification

1: Input: Volumetric spanner S, parameters ε, δ > 0, hypothesis w ∈ Rd.
2: run Sample(K) T = 2 ln(2n/δ)|S|/ε2 times and obtain for each data point in K, T

i.i.d samples of 〈w∗, x〉
3: for each x ∈ K let f̃(x) be the average of the above T samples.
4: declare w as accurate iff for all x, | 〈w, x〉 − f̃(x)| < 2ε

Lemma 32 Algorithm 4 has the following properties:

• It requires O(log(n/δ)|S|/ε2) queries to the oracle Sample(K)
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• If the worst-case error of w is bounded by ε then w.p. at least 1− δ it will be declared
as accurate

• If the worst-case error of w is larger than 3ε then w.p. at least 1− δ it will be declared
as inaccurate.

Proof We recall that the process Sample(K) returns unbiased estimates of 〈w∗, x〉 for
all of the data points where the estimates are bounded in absolute value by |S|. Fix some
point x ∈ K. Chernoff’s inequality dictates that

Pr
[
| 〈w∗, x〉 − f̃(x)| > ε

]
≤ 2 exp

(
− ε2

2|S|
· 2 ln(2n/δ)|S|

ε2

)
= δ/n

Hence, w.p at least 1−δ it holds for all x ∈ K simultaneously that | 〈w∗, x〉− f̃(x)| < ε. The
claim immediately follows by using the triangle inequality in order to bound | 〈w, x〉− f̃(x)|.

Corollary 33 There exists an algorithm that runs in time Õ
(
dn log 1

δ
ε2

)
and returns, with

probability of at least 1− δ, a vector w such that maxx∈K 〈w − w∗, x〉 ≤ ε.

Proof Given the parameter δ, we run log(1/2δ) independent copies of Algorithm 3 with
parameter ε′ = ε/3. Each such copy will produce a hypothesis w. We check for each such
hypothesis w whether it is ε′ = ε/3 accurate using Algorithm 4, with success probability
1−δ/2 log(1/2δ). With probability 1/2δ, all of the occurrences of the validation procedures
will not err. Also, with probability at least 1−2δ at least one hypothesis will be sufficiently
accurate. Hence, by union bound we have with probability at least 1− δ that at least one
hypothesis will be declared accurate and any of the hypotheses declared accurate will be
at least 3ε′ = ε accurate. This concludes the quality of the output of the algorithm. The
running time analysis is trivial.

7. Bandit Linear Optimization

Recall the problem of Bandit Linear Optimization (BLO): iteratively at each time sequence
t, the environment chooses a loss vector Lt that is not revealed to the player. The player
chooses a vector xt ∈ K where K ⊆ Rd is convex, and once she commits to her choice,
the loss `t = x>t Lt is revealed. The objective is to minimize the loss and specifically, the
regret, defined as the strategy’s loss minus the loss of the best fixed strategy of choosing
some x∗ ∈ K for all t. We henceforth assume that the loss vectors Lt’s are chosen from the
polar of K, meaning from {L : |L>x| ≤ 1 ∀x ∈ K}. In particular this means that the losses
are bounded in absolute value, although a different choice of assumption (i.e., `∞ bound on
the losses) can yield different regret bounds, see discussion in (Audibert et al., 2011).

The problem of BLO is a natural generalization of the classical Multi-Armed Bandit
problem and extremely useful for efficiently modeling decision making under partial feedback
for structured problems. As such the research literature is rich with algorithms and insights
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into this fundamental problem (see surveys Bubeck and Cesa-Bianchi 2012b and Hazan
2014). In this section we focus on the first efficient and optimal-regret algorithm, and thus
immediately jump to Algorithm 5. We make the following assumptions over the decision
set K:

1. The set K is equipped with a membership oracle. This implies via the results by
(Lovász and Vempala, 2007) (Lemma 10) that there exists an efficient algorithm for
sampling from a given log-concave distribution over K. Via the discussion in pre-
vious sections, this also implies that we can construct approximate (both types of
approximations, see Definitions 23 and 4) volumetric spanners efficiently over K.

2. The losses are bounded in absolute values by 1. That is, the loss functions are always
chosen (by an oblivious adversary) from a convex set Z such that K is contained in
its polar, i.e., ∀L ∈ Z, x ∈ K, |L>x| ≤ 1. This implies that the set K admits for any
ε > 0 an ε-net, w.r.t the norm defined by Z, whose size we denote by |K|ε ≤ (ε/2)−d.

For Algorithm 5 we prove the optimal regret of Theorem 34.

Remark: notice that to obtain a (p, ε)-exp-volumetric spanner for a log-concave distri-
bution p over a body K we simply choose sufficiently many i.i.d samples from p. Since in
Algorithm 5 pt is always log-concave, it follows that S′t consists of i.i.d samples from pt,
meaning that if we would not have required S′′t , the exploration and exploration strategies
would be the same! Since we still require the set S′′t , there exists a need for a separate
exploration strategy. Interestingly, the 2

√
d-ratio-volumetric spanner is obtained by taking

a barycentric spanner, which is the exploration strategy given in (Dani et al., 2007).

Algorithm 5 GeometricHedge with Volumetric Spanners Exploration

1: K, parameters γ, η, horizon T .
2: p1(x) uniform distribution over K.
3: for t = 1 to T do
4: Let S′t be a (pt, exp(−(4

√
d+ log(2T ))))-exp-volumetric spanner of K.

5: Let S′′t be a 2
√
d-ratio-volumetric spanner of K

6: Set St as the union of S′t, S
′′
t .

7: p̂t(x) = (1− γ)pt(x) + γ
|St|1x∈St

8: sample xt according to p̂t (via the tools described in Lemma 10)

9: observe loss `t
∆
= L>t xt

10: Let Ct
∆
= Ex∼p̂t [xx

>]

11: L̂t
∆
= `tC

−1
t xt

12: pt+1(x) ∝ pt(x)e−ηL̂
>
t x

13: end for

Theorem 34 Under the assumptions stated above, and let s = maxt |St|, η =

√
log |K|1/T

dT

and let γ = s

√
log(|K|1/T )

dT . Algorithm 5 given parameters γ, η suffers a regret bounded by

O

(
(s+ d)

√
T log |K|1/T

d

)
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We note that while the size log(|K|1/T ) can be bounded by d log(T ), in certain scenarios
such as s-t paths in graphs it is possible to obtain sharper upper bounds that immediately
imply better regret via Theorem 34.

Corollary 35 There exist an efficient algorithm for BLO for any convex set K with regret
of

O
(√

dT log |K|1/T
)

= O
(
d
√
T log(T )

)
Proof The spanner in Step 4 of the algorithm does not have to be explicitly constructed.
According to Theorem 5, to obtain such as spanner it suffices to sample sufficiently many
points from the distribution pt, hence this portion of the exploration strategy is identical
to the exploitation strategy.

According to Corollary 24, a 2
√
d-ratio-volumetric spanner of size d can be efficiently

constructed, given a linear optimization oracle which in turn can be efficiently implemented
by the membership oracle for K. Hence, it follows that for the purpose of the analysis,
s = d and the bound follows.

To prove the theorem we follow the general methodology used in analyzing the perfor-
mance of the geometric hedge algorithm. The major deviation from standard technique is
the following sub-exponential tail bound, which we use to replace the the standard absolute
bound for |L̂tx|. After giving its proof and a few auxiliary lemmas, we give the proof of the
main theorem.

Lemma 36 Let x ∼ pt, xt ∼ p̂t and let L̂t be defined according to xt. It holds, for any
θ > 1 that

Pr

[
|L̂>t x| >

θs

γ

]
≤ exp(−2θ)/T

Proof

Pr

[
|L̂>t x| >

θs

γ

]
≤ Pr

[
‖x‖E(St) · ‖xt‖E(St) ≥ θ

]
Lemma 37

≤ Pr
[
‖x‖E(St) ≥

√
θ
∨
‖xt‖E(St) ≥

√
θ
]

≤ Pr
[
‖x‖E(St) ≥

√
θ
]

+ Pr
[
‖xt‖E(St) ≥

√
θ
]

≤ 2 Pr
[
‖x‖E(St) ≥

√
θ
]

To justify the last inequality notice that x ∼ pt and xt ∼ p̂t where p̂t is a convex sum of pt

and a distribution qt for which Pry∼qt

[
‖y‖E(St) ≥

√
θ > 1

]
= 0. Before we continue recall

that we can assume that
√
θ ≤ 2

√
d, since S′′t is a 2

√
d-ratio-volumetric spanner .

Pr

[
|L̂>t x| >

θs

γ

]
≤ 2 Pr

[
‖x‖E(St) ≥

√
θ
]

≤ 2 exp(−
√
θ(4
√
d+ log 2T )) property of exp-volumetric spanner

≤ 1
T exp(−2

√
θ · 4d)

≤ 1
T exp(−2θ) since θ ≤ 4d
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Lemma 37 For all x ∈ K it holds that |L̂>t x| ≤
|St|‖x‖E(St)‖xt‖E(St)

γ .

Proof Let x ∈ K. Denote by Vt the matrix whose columns are the elements of St and

recall that ‖y‖2E(St)
= y>(VtV

>
t )−1y. Since Ct

∆
= Ex∼p̂t [xx

>], it holds that

Ct �
γ

|St|
∑
v∈St

vv> =
γ

|St|
VtV

>
t

since both matrices are full rank, it holds that

C−1
t � |St|

γ
(VtV

>
t )−1

Notice that due to the Cauchy-Schwartz inequality,

|x>L̂t| = |`t| · |x>C−1
t xt| ≤ |`t| · ‖x>C−1/2

t ‖ · ‖C−1/2
t xt‖

The matrix C
−1/2
t is defined as Ct is positive definite. Now,

‖x>C−1/2
t ‖2 = x>C−1

t x ≤ x> |St|
γ

(VtV
>
t )−1x =

|St|
γ
‖x‖2E(St)

Since the analog can be said for ‖C−1/2
t xt‖ (as xt ∈ K), it follows that

|x>L̂t| ≤ |`t|
|St|‖x‖E(St)‖xt‖E(St)

γ
≤
|St|‖x‖E(St)‖xt‖E(St)

γ

The last inequality is since we assume the rewards are in [−1, 1].

Implementation for general convex bodies. In the case where the set K is a
general convex body, the analysis must include the fact that we can only approximately
sample a log-concave distribution over K. As the main focus of our work is to prove a
polynomial solution we present only a simple analysis yielding a running time polynomial
in the dimension d and horizon T . It is likely that a more thorough analysis can substantially
reduce the running time.

Corollary 38 In the general case where an approximate sampling is required, Algorithm 5
can be implemented with a running time of Õ(d5 + d3T 6) per iteration.

Proof
Fix an error parameter δ, and let us run Algorithm 5 with the approximate samplers p′t

guaranteed by Theorem 10. Then, in each use of the sampler we are replacing the true dis-
tribution we should be using pt, with a distribution p′t such that statistical distance between
pt, p

′
t is at most δ. Let us now analyze the error incurred by this approximation by bounding
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the loss from the first round onwards. Suppose the algorithm ran with the approximate
sampler in the first round but the exact sampler in each round afterwards. Then, as the sta-
tistical distance between the distributions is at most δ and the loss in each round is bounded
by 1 and there are T rounds, the net difference in expected regret between using p1 and p′1
will be at most δ · T . Similarly, if we ran the algorithm with p′1, . . . , p

′
i−1, p

′
i, pi+1, · · · , pT as

opposed to7 p′1, . . . , p
′
i−1, pi, pi+1, · · · , pT (we are changing the i’th distribution from exact

to approximate), the net difference in expected regret would be at most δ · T . There-
fore, the total additional loss we may incur for using the approximate oracles is at most
T · (δT ) = δT 2. Thus, if we take δ = ∆/T 2, where ∆ is the regret bound from Theorem
34, we get a regret bound of 2∆. The required value of δ is bounded by T−1.5. Applying
Theorem 10 leads to a running time of Õ(d5 + d3T 6) per iteration.

7.1 Proof of Theorem 34

We continue the analysis of the Geometric Hedge algorithm similarly to (Dani et al., 2007;
Bubeck et al., 2012), under certain assumptions over the exploration strategy. For con-
venience we will assume that the set of possible arms K is finite. This assumption holds
w.l.o.g since if K is infinite, a

√
1/T -net of it can be considered as described earlier (this

will have no effect on the computational complexity of our algorithm, but a mere technical
convenience in the proof below).

Before proving the theorem we will require three technical lemmas. In the first we show
that L̂t is an unbiased estimator of Lt. In the second, we bound a proxy of its variance. In
the third, we bound a proxy of the expected value of its exponent.

Lemma 39 In each t, L̂t is an unbiased estimator of Lt

Proof
L̂t = `tC

−1
t xt = (L>t xt)C

−1
t xt = C−1

t (xtx
>
t )Lt

Hence,
E

xt∼pt
[L̂t] = C−1

t E
xt∼pt

[xtx
>
t ]Lt = C−1

t CtLt = Lt

Lemma 40 Let t ∈ [T ], x ∼ pt and xt ∼ p̂t. It holds that E[(L̂>t x)2] ≤ d/(1− γ) ≤ 2d

Proof For convenience, denote by qt the uniform distribution over St - the exploration
strategy at round t. First notice that for any x ∈ K,

E
xt∼p̂t

[(L̂>t x)2] = x>Ext∼p̂t [L̂tL̂
>
t ]x = x>Ext∼p̂t [`

2
tC
−1
t xtx

>
t C
−1
t ]x

= `2tx
>C−1

t Ext∼p̂t [xtx
>
t ]C−1

t x = `2tx
>C−1

t x

≤ x>C−1
t x (6)

7. Here, pj ’s are interpreted as the distribution given by the algorithm based on the distribution from
previous round and p′j is the approximate oracle for this distribution pj .
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Next,

E
x∼p̂t

[x>C−1
t x] = E

x∼p̂t
[C−1
t • xx>] = C−1

t • E
x∼p̂t

[xx>] = C−1
t • Ct = Tr(Id) = d

Where we used linearity of expectation and denote A •B = Tr(AB). Since C−1
t is positive

semi definite,

(1− γ) E
x∼pt

[x>C−1
t x] ≤ (1− γ) E

x∼pt
[x>C−1

t x] + γ E
x∼qt

[x>C−1
t x] = E

x∼p̂t
[x>C−1

t x] = d (7)

The lemma follows from combining Equations 6 and 7.

Lemma 41 Denote by 1φ the random variable taking a value of 1 if event φ occurred and

0 otherwise. Let t ∈ [T ], xt ∼ p̂t and x ∼ pt. For L̂t defined by xt it holds that

E
[
exp(−ηL̂>t x)1−ηL̂>t x>1

]
≤ 2

T

Proof Let f, F be the pdf and cdf of the random variable Y = −ηL̂>t x correspondingly.
From Lemma 36 and the fact that 1/η = s/γ (s = maxt |St|) we have that for any θ ≥ 1,

1− F (θ) ≤ 1

T
e−2θ

and we’d like to prove that under this condition,

E[eY 1Y >1] =

∫ ∞
θ=1

eθf(θ)dθ ≤ 2

T

which follows from the definition of the cdf and pdf:

E[eY 1Y >1] =
∫∞
θ=1 e

θf(θ)dθ

=
∑∞

k=1

∫ k+1
θ=k e

θf(θ)dθ

≤
∑∞

k=1 e
k+1

∫ k+1
θ=k f(θ)dθ

≤
∑∞

k=1 e
k+1(F (k + 1)− F (k))

≤
∑∞

k=1 e
k+1(1− F (k))

≤
∑∞

k=1 e
k+1 · 1

T e
−2k Lemma 36

= e
T

∑∞
k=1 e

−k = e
T ·

e−1

1−e−1 ≤ 2
T

Proof [Proof of Theorem 34] For convenience we define within this proof for x ∈ K,
ˆ̀
1:t−1(x)

∆
=
∑t−1

i=1 L̂
>
i x and let ˆ̀

t(x)
∆
= L̂>t x. Let Wt =

∑
x∈K exp(−η ˆ̀

1:t−1(x)). For all
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t ∈ [T ]:

E

[
Wt+1

Wt

]
= E

[∑
x∈K

exp(−η ˆ̀
1:t−1(x)) exp(−η ˆ̀

t(x))
Wt

]
= Ext∼p̂t

[∑
x∈K pt(x) exp(−η ˆ̀

t(x))
]

= Ext∼p̂t,x∼pt [exp(−η ˆ̀
t(x))] ≤

≤ 1− ηE[L̂>t x] + η2 E[(L̂>t x)2] + E
[
exp(−ηL̂>t x)1−ηL̂>t x>1

]
using the inequality exp(y) ≤ 1 + y + y2 + exp(y) · 1y>1

≤ 1− ηE[L̂>t x] + η2 E[(L̂>t x)2] + 2
T Lemma 41

Since L̂t is an unbiased estimator of Lt (Lemma 39) and according to Lemma 40,
E[(L̂>t x)2] ≤ 2d, we get:

E

[
Wt+1

Wt

]
≤ 1− ηL>t E

x∼pt
[x] + 2η2d+

2

T
(8)

We now use Jensen’s inequality:

E[log(WT )]−E[log(W1)] = E[log(WT /W1)]

=
∑T−1

t=1 E[log(Wt+1/Wt)]

≤
∑T−1

t=1 log(E[Wt+1/Wt]) Jensen

≤
∑T−1

t=1 log
(
1− ηL>t Ex∼pt [x] + 2η2d+ 2

T

)
(8)

≤
∑T−1

t=1 −ηL>t Ex∼pt [x] + 2η2d+ 2
T ln(1 + y) ≤ y

for all y > −1

≤ 2 + 2η2Td− η
∑

t Ex∼pt [L
>
t x]

Now, since log(W1) = log(|K|) and WT ≥ exp(−η ˆ̀
1:T (x∗)) for any x∗ ∈ K, by shifting

sides of the above it holds for any x∗ ∈ K that∑
t

E
x∼pt

[L>t x]−
∑
t

L>t x
∗ ≤

∑
t

E
x∼pt

[L>t x] + E[logWT ] ≤ log(|K|) + 2

η
+ 2ηTd

Finally, by noticing that ∑
t

E
x∼p̂t

[L>t x]−
∑
t

E
x∼pt

[L>t x] ≤ γT

we obtain a bound of

E[Regret] = E[
∑
t

L>t xt]−
∑
t

L>t x
∗ =

∑
t

E
x∼p̂t

[L>t x]−Loss(x∗) ≤ log(|K|) + 2

η
+2ηTd+γT
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on the expected regret. By plugging in the values of η, γ we get the bound of

O

(
(s+ d)

√
T log(|K|)

d

)

as required.

8. Conclusion and Open Question

We have described a geometric mechanism for exploration in machine learning problems
and its application to experiment design as well as bandit linear optimization.

The following question in high-dimensional geometry remains open: what is the worst-
case order of a given set in Rd (cardinality of its minimal volumetric ellipsoid, as per
Definition 1)? A gap remains between our lower bound of d+ 1 and upper bound of 12d.
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Appendix A. Concentration bounds for non centered isotropic log
concave distributions

We begin by proving an auxiliary lemma used in the proof of Corollary 13.

Lemma 42 Let δ > 0, t ≥ 1, let d be a positive integer and let n = Ct4d log2(t/δ)
δ2

for some
sufficiently large universal constant C. Let y1, . . . , yn be i.i.d d-dimensional vectors from an
isotropic log-concave distribution. Then

Pr

[∥∥∥∥ 1

n

∑
yi

∥∥∥∥ > δ

]
≤ exp(−t

√
d)

Proof For convenience let Sn = 1√
n

∑n
i=1 yi. Since the y’s are independent, Sn is also

log-concave distributed. Notice that E[Sn] = 0 and E[SnS
T
n ] = 1

n

∑
E[yiy

T
i ] = Id hence Sn

is isotropic. Now,

Pr

[∥∥∥∥ 1

n

∑
yi

∥∥∥∥ > δ

]
= Pr [‖Sn‖ >

√
nδ]

= Pr

[
‖Sn‖ >

√
d ·
√
Ct4 log2(t/δ)

]
≤ Pr

[
‖Sn‖ >

√
d+
√
d · 1

2 t
√
C
]
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The last inequality holds for t ≥ 1 and C ≥ 4. It now follows from Theorem 14 that

Pr

[∥∥∥∥ 1

n

∑
yi

∥∥∥∥ > δ

]
≤ c1 exp(−c2t

√
Cd)

where c1, c2 are some universal constants. Since t
√
d ≥ 1, setting C ≥ (1+log(c1)

c2
)2 proves

the claim.

Proof [Proof of Corollary 13] Let a = E[x] and let ã = 1
n

∑
xi. Notice that

E[(x− a)(x− a)T ] = E[xxT ]−E[x]aT − aE[x] + aaT = Id − aaT

is a PSD matrix hence ‖a‖ ≤ 1. Consider the following equality.

1

n

n∑
i=1

(xi − a)(xi − a)> =
1

n

n∑
i=1

xix
>
i − aã> − ãa> + aa>

According to Lemma 42, w.p. at least 1− exp(−t
√
d),

‖ã− a‖ ≤ δ

in which case, since ‖a‖ ≤ 1 and according to the triangle inequality,∥∥∥∥∥ 1

n

n∑
i=1

xix
>
i − Id

∥∥∥∥∥ ≤
∥∥∥∥∥ 1

n

n∑
i=1

(xi − a)(xi − a)> − (Id − aa>)

∥∥∥∥∥+ 2δ

According to Theorem 12, w.p. at least 1− exp(−t
√
d)∥∥∥∥∥ 1

n

n∑
i=1

(xi − a)(xi − a)> − (Id − aa>)

∥∥∥∥∥ ≤ δ
and the corollary follows.

Proof [Proof of Corollary 15] Let E[x] = a. Consider the r.v y = x − a. It holds that
E[y] = 0 and E[yyT ] = Id − aaT . Notice that we can derive that

‖a‖ ≤ 1 (9)

As E[yyT ] is a PSD matrix. Also, it is easy to verify that y is log-concave distributed. We
now consider the r.v8 z = (Id − aat)−1/2y. It is easy to verify that the distribution of z is
also log-concave and isotropic. It follows, from Theorem 14 that for any θ ≥ 2

Pr
[
‖z‖ > θ

√
d
]
≤ Pr

[
‖z‖ −

√
d >

1

2
θ
√
d

]
≤ C ′ exp(−cθ

√
d)

By using Equation 9 we get that for θ > 3

Pr
[
‖x‖ > θ

√
d
]
≤ Pr

[
‖y‖ > θ

√
d− 1

]
≤ Pr

[
‖z‖ > (θ − 1/

√
d)
√
d
]
≤ C ′ exp(c′ − c′θ

√
d).

The last inequality holds since θ − 1/
√
d ≥ 2.

8. if Id − aaT is not of full rank then y is in fact supported in an affine subspace of rank d− 1 and we can
continue the analysis there.
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