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Abstract

In machine learning, ensemble methods combine the predictions of multiple base learners
to construct more accurate aggregate predictions. Established supervised learning algo-
rithms inject randomness into the construction of the individual base learners in an effort
to promote diversity within the resulting ensembles. An undesirable side effect of this ap-
proach is that it generally also reduces the accuracy of the base learners. In this paper,
we introduce a method that is simple to implement yet general and effective in improv-
ing ensemble diversity with only modest impact on the accuracy of the individual base
learners. By randomly rotating the feature space prior to inducing the base learners, we
achieve favorable aggregate predictions on standard data sets compared to state of the art
ensemble methods, most notably for tree-based ensembles, which are particularly sensitive
to rotation.

Keywords: feature rotation, ensemble diversity, smooth decision boundary

1. Introduction

Modern statistical learning algorithms combine the predictions of multiple base learners
to form ensembles, which typically achieve better aggregate predictive performance than
the individual base learners (Rokach, 2010). This approach has proven to be effective
in practice and some ensemble methods rank among the most accurate general-purpose
supervised learning algorithms currently available. For example, a large-scale empirical
study (Caruana and Niculescu-Mizil, 2006) of supervised learning algorithms found that
decision tree ensembles consistently outperformed traditional single-predictor models on a
representative set of binary classification tasks. Data mining competitions also frequently
feature ensemble learning algorithms among the top ranked competitors (Abbott, 2012).

Achieving a good balance between the accuracy of the individual predictors and the
diversity of the full ensemble is of critical importance: if the individual predictors are accu-
rate but highly correlated, the benefits of combining them are modest; injecting randomness
into the predictors reduces the correlation and promotes diversity but often does so at the
expense of reduced accuracy for the individual predictors (Elghazel et al., 2011). A number
of techniques have been devised to manage this trade-off and to promote diversity in learn-
ing ensembles in a constructive fashion; some methods merely perturb the training data,
while others modify the internal structure of the predictors themselves. We now mention
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some key examples. In bootstrap aggregation (Breiman, 1996), bootstrap replicates are
used to construct multiple versions of a base predictor, which are subsequently aggregated
via averaging or majority vote. This approach was found to be particularly effective for
predictor classes that are unstable, in the sense that small variations of the input data lead
to the construction of vastly different predictors (Hastie et al., 2009). Output smearing or
flipping (Breiman, 2000) adds a different noise component to the dependent variable of each
base predictor, which has a smoothing effect on the resulting decision boundary, leading to
improved generalization performance. Boosting (Freund and Schapire, 1996) is an iterative
procedure, where base learners are added sequentially in a forward stagewise fashion. By
reweighting the data set at each iteration, later base learners are specialized to focus on the
learning instances that proved the most challenging to the existing ensemble. In contrast to
bootstrap aggregation, where each bootstrap sample is generated independently, boosting
therefore does not lend itself naturally to parallel processing. Random decision forests (Ho,
1995, 1998) randomly select a feature subspace a priori and train a base learner in the chosen
subspace using all available data. Instead of randomizing the training data, the structure
of each predictor is altered by only including the chosen subset of predictors. Random
forests (Breiman, 1999, 2001) combine bootstrap aggregation with the random projection
method. At each tree node, a subset of the available predictors is randomly selected and
the most favorable split point is found among these candidate predictors. This approach
differs from random decision forests, where the selection of predictors is only performed
once per tree. More generally, the framework also offers the possibility of using random
linear combinations of two or more predictors. A summary of recent enhancements and
applications of random forests can be found in Fawagreh et al. (2014). Perfect random tree
ensembles (Cutler and Zhao, 2001), extremely random trees / extra trees (Geurts et al.,
2006), and completely random decision trees (Liu et al., 2005; Fan et al., 2006) take ran-
domization even further by not only selecting random predictor(s), as in random forests,
but by also selecting a random split point, sometimes deterministically chosen from a small
set of random candidate split points.

Some of the ensemble methods described specifically require the base learners to be
decision trees. This is because decision trees are efficient to create (by recursive binary
splitting), the models are straightforward to aggregate, and the individual trees can easily
be turned into weak learners (which perform only slightly better than random) by restricting
their depth (Kuhn and Johnson, 2013). Furthermore, decision trees exhibit a high variance
and this inherent instability is beneficial to the diversity of the ensemble. In addition, deci-
sion trees contain a number of desirable features for general purpose data mining, including
robustness to outliers and an ability to handle input variables of mixed type and scale, such
as continuous and categorical variables, and even missing values (Hastie et al., 2009). How-
ever, a decision tree is merely an efficient representation for a set of hyper-rectangles that
partition the decision space. For ordinary decision trees, each hyper-rectangle is aligned
with at least one of the axes of the chosen coordinate system, resulting in axis parallel de-
cision boundaries. This results in very characteristic piecewise constant stair shapes, even
when the number of trees in the ensemble is large, as can be observed visually in low di-
mensional graphical examples. As a consequence, a much greater number of trees is needed
to accurately approximate an oblique decision boundary than a decision boundary that is
axis aligned with standard tree ensembles. In order to overcome this limitation, nonlinear
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boosting projections (Garca-Pedrajas et al., 2007) provide a different, nonlinear view of
the data to each base learner and oblique random forests (Menze et al., 2011) use linear
discriminative models or ridge regression to select optimal oblique split directions at each
tree node. Another approach that is related to but different from the method proposed in
the present paper is embodied by rotation forests (Rodriguez et al., 2006; Kuncheva and
Rodriguez, 2007), which take a subset of features and a bootstrap sample of the data and
perform a principal component analysis (PCA), rotating the entire feature space before
building the next base predictor. In addition to PCA, Kuncheva and Rodriguez (2007)
experimented with nonparametric discriminate analysis (NDA) and sparse random projec-
tions and in De Bock and Poel (2011), independent component analysis (ICA) is found to
yield the best performance.

The premise of the present paper is that it makes sense to rotate the feature space in
ensemble learning, particularly for decision tree ensembles, but that it is neither necessary
nor desirable to do so in a structured way. This is because structured rotations reduce
diversity. Instead, we propose to rotate the feature space randomly before constructing the
individual base learners. The random rotation effectively generates a unique coordinate
system for each base learner, which we show increases diversity in the ensemble without
a significant loss in accuracy. In addition to rotation, affine transformations also include
translation, scaling, and shearing (non-uniform scaling combined with rotation). However,
only transformations involving rotation have an impact on base learners that are insensitive
to monotone transformations of the input variables, such as decision trees. Furthermore,
a key difference between random rotation and random projection is that rotations are re-
versible, implying that there is no loss of information.

The remainder of this paper is structured as follows. Section 2 provides a motivational
example for the use of random rotations using a well-known data set. In Section 3 we
formally introduce random rotations and provide guidance as to their construction. Section
4 evaluates different application contexts for the technique and performs experiments to
assesses its effectiveness. Conclusions and future research are discussed in Section 5. It is
our premise that random rotations provide an intuitive, optional enhancement to a number
of existing machine learning techniques. For this reason, we provide random rotation code
in C/C++ and R in Appendix A, which can be used as a basis for enhancing existing
software packages.

2. Motivation

Figure 1 motivates the use of random rotations on the binary classification problem from
chapter 2 of Hastie et al. (2009). The goal is to learn the decision boundary, which separates
the two classes, from a set of training points. In this example, the training data for each
class came from a mixture of ten low-variance Gaussian distributions, with individual means
themselves distributed as Gaussian. Since the data is artificially generated, the optimal
decision boundary is known by construction.

In this motivational example, we compare two approaches: (1) a standard random forest
classifier and (2) a random forest classifier in which each tree is generated on a randomly
rotated feature space. It is evident that the random feature rotation has a significant
impact on the resulting data partition: despite using the same sequence of random numbers
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in the tree induction phase of the random forest algorithm – resulting in the same bootstrap
samples and related feature subset selections at each decision branch for the two trees – the
resulting tree is not merely a rotated version of the unrotated tree but is, in fact, a very
different tree altogether, with a different orientation and a vastly different data partition.
This demonstrates the power of the method; diversity is achieved with only a modest loss of
information. However, the real benefit is illustrated on the bottom row of Figure 1 and arises
from the aggregation of multiple randomly rotated trees. The rotated ensemble exhibits a
visibly smoother decision boundary and one that is very close to optimal for this problem.
The decision boundary is uncharacteristically smooth for a tree ensemble and is reminiscent
of a kernel method, such as a k-nearest neighbor method or a support vector machine. In
contrast, even with 10000 trees, the decision boundary for the standard random forest is
still notably rectangular shaped. Another striking feature of the random rotation ensemble
is the existence of a nearly straight diagonal piece of the decision boundary on the far left.
This would be difficult to achieve with an axis-parallel base learner without rotation and it
agrees well with the true decision boundary in this example.

3. Random Rotations

In this section, we formally introduce random rotations and describe two practical methods
for their construction.

A (proper) rotation matrix R is a real-valued n× n orthogonal square matrix with unit
determinant, that is

RT = R−1 and |R| = 1. (1)

Using the notation from Diaconis and Shahshahani (1987), the set of all such matrices
forms the special orthogonal group SO(n), a subgroup of the orthogonal group O(n) that
also includes so-called improper rotations involving reflections (with determinant −1). More
explicitly, matrices in SO(n) have determinant |R| = 1, whereas matrices in O(n) may have
determinant |R| = d, with d ∈ {−1, 1}. Unless otherwise stated, the notation O(n) always
refers to the orthogonal group in this paper and is not related to the Bachman-Landau
asymptotic notation found in complexity theory.

In order to perform a random rotation, we uniformly sample over all feasible rotations.
Randomly rotating each angle in spherical coordinates does not lead to a uniform distri-
bution across all rotations for n > 2, meaning that some rotations are more likely to be
generated than others. It is easiest to see this is in 3 dimensions: suppose we take a unit
sphere, denoting the longitude and latitude by the two angles λ ∈ [-π, π] and φ ∈ [-π/2,
π/2]. If we divide the surface of this sphere into regions by dividing the two angles into
equal sized intervals, then the regions closer to the equator (φ = 0) are larger than the
regions close to the poles (φ = ±π/2). By selecting random angles, we are equally likely to
arrive in each region but due to the different sizes of these regions, points tend to cluster
together at the poles. This is illustrated for n = 3 in Figure 2, where the undesirable
concentration of rotation points near the two poles is clearly visible for the naive method.
In this illustration, the spheres are tilted to better visualize the areas near the poles.

The group O(n) does have a natural uniform distribution called the Haar measure,
which offers the distribution we need. Using the probabilistic notation from Diaconis and
Shahshahani (1987), the random matrix R is said to be uniformly distributed if P (R ∈ U) =
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(a) RF (ntree=1, mtry=1) (b) RR-RF (ntree=1, mtry=1)

(c) RF (ntree=10000, mtry=1) (d) RR-RF (ntree=10000, mtry=1)

Figure 1: Comparison of the decision boundary for the standard random forest algorithm
(RF, left column) and the modified version with randomly rotated feature space
for each tree (RR-RF, right column) on the binary classification task of chapter
2 of Hastie et al. (2009). The top row illustrates a typical decision boundary for
a single tree, while the bottom row depicts a fully grown ensemble comprised of
10000 trees in each case. Ntree is the total number of trees in the forest, mtry
the number of randomly selected features considered at each decision node.
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(a) Uniformly random rotations (b) Naive random rotations

Figure 2: Comparison of correctly executed uniformly random rotation (left) in three di-
mensions versus naive method of selecting two random angles in spherical coordi-
nates (right). 10000 random rotations of the same starting vector were generated
for each method and distances were computed between each pair of rotations to
produce a rank-based gradient, with green dots representing those vectors with
the lowest sums of distances.

P (R ∈ ΓU) for every U ⊂ O(n) and Γ ∈ O(n). Several algorithms exist to generate random
orthogonal matrices distributed according to the Haar measure over O(n), some of which are
documented in Anderson et al. (1987); Diaconis and Shahshahani (1987); Mezzadri (2007);
Ledermann and Alexander (2011). We will focus on two basic approaches to illustrate the
concept.

1. (Indirect Method) Starting with an n× n square matrix A, consisting of n2 indepen-
dent univariate standard normal random variates, a Householder QR decomposition
(Householder, 1958) is applied to obtain a factorization of the form A = QR, with
orthogonal matrix Q and upper triangular matrix R with positive diagonal elements.
The resulting matrix Q is orthogonal by construction and can be shown to be uni-
formly distributed. In other words, it necessarily belongs to O(n). Unfortunately,
if Q does not feature a positive determinant then it is not a proper rotation matrix
according to definition (1) above and hence does not belong to SO(n). However, if
this is the case then we can flip the sign on one of the (random) column vectors of A to
obtain A+ and then repeat the Householder decomposition. The resulting matrix Q+

is identical to the one obtained earlier but with a change in sign in the corresponding
column and |Q+| = 1, as required for a proper rotation matrix.

2. (Direct Method) A second method of obtaining random rotations involves selecting
random points on the unit n-sphere directly (Knuth, 1997). This can be accom-
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plished by drawing n independent random normal N(0, 1) variates {v1, v2, ..., vn} and
normalizing each by the square root of the sum of squares of all n variates, that is,
xi = vi/

√
v2

1 + v2
2 + . . .+ v2

n for i ∈ {1, 2, . . . , n}. In other words, x is a unit vector
pointing to a random point on the n-sphere. This construction takes advantage of
spherical symmetry in the multivariate Normal distribution. The method is asymp-
totically faster than the QR approach and an implementation is available in the GNU
Scientific Library (Galassi, 2009) as function gsl ran dir nd. It should also be noted
that it is straightforward to obtain the individual rotation angles from the random
vector x, which makes it possible to move from the (more compact) random vector
notation to the random rotation matrix used in the indirect method.

Generating random rotations in software for problems involving fewer than 1000 dimen-
sions is straightforward and fast, even using the simple algorithm described above. Listings
2 and 3 in Appendix A provide examples of the indirect method in C++ and R respec-
tively, both presented without error checking or optimizations. The C++ code takes less
than 0.5 seconds on a single core of an Intel Xeon E5-2690 CPU to generate a 1000x1000
random rotation matrix. It uses the Eigen template library (Guennebaud et al., 2010) and
a Mersenne Twister (Matsumoto and Nishimura, 1998) pseudorandom number generator.
Larger rotation matrices can be computed with GPU assistance (Kerr et al., 2009) and may
be pre-computed for use in multiple applications. In addition, for problems exceeding 1000
dimensions it is practical to only rotate a random subset of axes in order to reduce the
computational overhead. We recommend that a different random subset is selected for each
rotation in this case.

For categorical variables, rotation is unnecessary and ill defined. Intuitively, if a category
is simply mapped to a new rotated category, there is no benefit in performing such a rotation.

4. Experiments

Random rotations complement standard learning techniques and are easily incorporated
into existing algorithms. In order to examine the benefit of random rotations to ensemble
performance, we modified three standard tree ensemble algorithms to incorporate random
rotations before the tree induction phase. The necessary modifications are illustrated in
pseudo code in Listing 1 below.

All methods tested use classification or regression trees that divide the predictor space
into disjoint regions Gj , where 1 ≤ j ≤ J , with J denoting the total number of terminal
nodes of the tree. Extending the notation in Hastie et al. (2009), we represent a tree as

T (x; θ,Ω) =
J∑
j=1

cjI(R(x) ∈ Gj), (2)

with optimization parameters Ω = {Gj , cj}J1 , random parameters θ = {R,ω}, where R is
the random rotation associated with the tree and ω represents the random sample of (x, y)
pairs used for tree induction; I(·) is an indicator function. Each randomly rotated input
R(x) is thus mapped to a constant cj , depending on which region Gj the input belongs to.
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For regression, cj is typically just the average or median of all yj in region Gj . If we let
|Gj | denote the cardinality of Gj , this can be written as

cj =
1

|Gj |
∑

R(xk)∈Gj

yk. (3)

For classification trees, one of the modes is typically used instead.

Given a loss function L(yi, f(xi)), for example exponential loss for classification or
squared loss for regression, a tree-induction algorithm attempts to approximate the op-
timization parameters for which the overall loss is minimized, that is

Ω̂ = arg min
Ω

J∑
j=1

∑
R(xi)∈Gj

L(yi, f(R(xi))) = arg min
Ω

J∑
j=1

∑
R(xi)∈Gj

L(yi, ci). (4)

This optimization is performed across all parameters Ω but the rotation is explicitly excluded
from the search space (R ∈ θ, but R 6∈ Ω) because we are advocating a random rotation
in this paper. However, conceptually it would be possible to include the rotation in the
optimization in an attempt to focus on the most helpful rotations.

Listing 1: Testing Random Rotations (Pseudo Code)
Inputs : − t r a i n i n g f e a t u r e matrix X

− t e s t i n g f e a t u r e matrix S
− t o t a l number o f c l a s s i f i e r s M
− standard base l e a r n e r B
− aggregat ion weights w

(A) Sca l e or rank numeric p r e d i c t o r s x ( Sect . 4 . 2 ) :
e . g . x′ := (x−Qk(x))/(Q1−k(x)−Qk(x))

(B) For m ∈ {1, 2, . . . ,M} do
(1) generate random parameters : θm := {Rm, ωm}
(2 ) t r a i n standard l e a r n e r B on Rm(x) :

Ω̂m = arg minΩ

∑J
j=1

∑
R(xi)∈Gj

L(yi, f(Rm(xi)))

(3 ) compute t e s t or out−of−bag p r e d i c t i o n s
T (x, θm,Ωm), x ∈ Rm(S)

(C) Aggregate p r e d i c t i o n s ( vote or average )

fM (x) =
∑M

m=1 wmT (x;θm,Ωm)

In all algorithms considered in this paper, the tree-induction is performed using standard
greedy, top-down recursive binary partitioning. This approach will generally not arrive at
the globally optimal solution to (4) but constructs a reasonable approximation quickly
(Hastie et al., 2009).
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The (regression) tree ensemble fM (x) can then be written as a weighted sum of the
individual trees, that is

fM (x) =
M∑
m=1

wmT (x;θm,Ωm), (5)

where M denotes the total number of trees in the ensemble. For classification ensembles,
a vote is typically taken instead. It should be noted that a separate rotation is associated
with each tree in this notation but the same rotation could theoretically be associated with
an entire group of trees. In particular, we can recover the standard setting without random
rotation by setting Rm to the identity rotation for all m.

The difference between non-additive ensemble methods like random forests (Breiman,
2001) or extra trees (Geurts et al., 2006) and additive ensembles like boosted trees (Freund
and Schapire, 1996) arises in the formulation of the joint model for multiple trees. As we will
see, this difference makes testing random rotation with existing additive ensemble libraries
much more difficult than with non-additive ensemble libraries. Specifically, random forests
and extra trees place an equal weight of wm = 1/M on each tree, and trees are constructed
independently of each other, effectively producing an average of M independent predictions:

Ω̂m = arg min
Ωm

J∑
j=1

∑
R(xi)∈Gj

L(yi, T (xi; θm,Ωm)). (6)

In contrast, boosted trees use wm = 1 and each new tree in the sequence is constructed to
reduce the residual error of the full existing ensemble fm−1(x), that is

Ω̂m = arg min
Ωm

J∑
j=1

∑
R(xi)∈Gj

L(yi, fm−1(xi) + T (xi; θm,Ωm)). (7)

There are other differences between the two approaches: for example, J , the number of leaf
nodes in each tree is often kept small for boosting methods in order to explicitly construct
weak learners, while non-additive methods tend to use large, unpruned trees in an effort to
reduce bias, since future trees are not able to assist in bias reduction in this case.

We mainly focus on random forest and extra tree ensembles in this paper because both
of these algorithms rely on trees that are constructed independently of each other. This
provides the advantage that the original tree induction algorithm can be utilized unmodified
as a black box in the rotated ensemble, ensuring that any performance differences are purely
due to the proposed random rotation and are not the result of any subtle differences (or
dependencies) in the construction of the underlying trees.

4.1 Data Sets & Preprocessing

For our comparative study of random rotation, we selected UCI data sets (Bache and
Lichman, 2013) that are commonly used in the machine learning literature in order to make
the results easier to interpret and compare. Table 5 in Appendix C summarizes the data
sets, including relevant dimensional information.
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Some algorithms tested were not able to handle categorical input variables or missing
values and we performed the following automatic preprocessing steps for each data column:

1. Any column (predictors or response) with at least 10 distinct numeric values was
treated as numeric and missing values were imputed using the column median.

2. Any column with fewer than 10 distinct values (numeric or otherwise) or with mostly
non-numeric values was treated as categorical, and a separate category was explicitly
created for missing values.

3. Categorical predictors with C categories were converted into (C − 1) 0/1 dummy
variables, with the final dummy variable implied from the others to avoid adding
multicollinearity.

Note that after evaluating these three rules, all predictors were either numeric without
missing values or categorical dummy variables, with a separate category for missing values.

4.2 Variable Scaling

Rotation can be sensitive to scale in general and outliers in particular. In order to avoid
biasing the results, we tested three different scaling methods, all of which only use in-sample
information to calibrate the necessary parameters for out-of-sample scaling:

1. (Basic Scaling) Numeric values were scaled to [0, 1] using the in-sample min and max
values, that is x′ = min(1,max(0, (x−min(xis))/(max(xis)−min(xis)))). This scaling
method deals with scale but only avoids out-of-sample outliers. Outliers are dealt with
in a relatively crude fashion by applying a fixed cutoff.

2. (Quantile Scaling) Numeric values were linearly scaled in such a way that the 5th
and 95th percentile of the in-sample data map to 0 and 1 respectively, that is x′ =
(x−Q5(xis))/(Q95(xis)−Q5(xis)). In addition, any values that exceed these thresholds
were nonlinearly winsorized by adding/subtracting 0.01× log(1 + log(1 + ∆)), where
∆ is the absolute difference to the in-sample bounds Q5(xis) or Q95(xis). This robust
scaling has a breakdown point of 5% and maintains the order of inputs that exceed
the thresholds.

3. (Relative Ranking) In-sample numeric values vi were augmented with {−∞,+∞} and
ranked as R(vi), such that R(−∞) maps to 0 and R(+∞) maps to 1. Out-of-sample
data was ranked relative to this in-sample map. To accomplish this, the largest vi
is found that is smaller or equal to the out-of-sample data vo (call it vmaxi ) and the
smallest vi is found that is greater or equal to the out-of-sample data vo (vmini ). The
out-of-sample rank is then 0.5×R(vmini )+0.5×R(vmaxi ). In this way, test elements that
match in-sample elements obtain the same rank, test elements that fall in between two
elements obtain a rank in between, and because the in-sample values are augmented
with infinity, it is never possible to encounter test elements that cannot be mapped.
This is the most robust approach to outliers that was tested.
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4.3 Method & Evaluation

In order to collect quantitative evidence of the effect of random rotations, we built upon the
tree induction algorithms implemented in the widely used R packages randomForest (Liaw
and Wiener, 2002) and extraTrees (Simm and de Abril, 2013). For comparison, we also used
the following implementation of rotation forests: https://github.com/ajverster/RotationForest.

Prior to the tests, all data sets were preprocessed and scaled using each of the three
techniques described in the previous section (basic scaling, quantile scaling, and ranking).

Random forest and extra trees were tested with and without random rotation (for each
scaling), while rotation forests included their own deterministic PCA rotation (Rodriguez
et al., 2006) but were also run for each scaling method. Random rotations were tested with
and without flip rotations. The combination of tree induction algorithms, scalings, and
rotation options resulted in a total of 21 distinct experiments per data set.

For each experiment we performed a random 70-30 split of the data; 70% training data
and the remaining 30% served as testing data. The split was performed uniformly at random
but enforcing the constraint that at least one observation of each category level had to be
present in the training data for categorical variables. This constraint was necessary to avoid
situations, where the testing data contained category levels that were absent in the training
set. Experiments were repeated 100 times (with different random splits) and the average
performance was recorded.

In all cases we used default parameters for the tree induction algorithms, except that
we built 5000 trees for each ensemble in the hope of achieving full convergence.

To evaluate the performance of random rotations, we ranked each method for each
data set and computed the average rank across all data sets. This allowed us to compare
performance of each method across scaling methods and tree induction algorithms in a
consistent, nonparametric fashion. In addition, we determined the number of data sets
for which each method performed within one cross-sectional standard deviation of the best
predictor in order to obtain a measurement of significance. This approach is advocated in
(Kuhn and Johnson, 2013) and it can be more informative when there is a cluster of strong
predictors that is distinct from the weaker predictors and which would not get detected by
simple ranking.

4.4 Results

Table 6 in Appendix C displays the raw results of the detailed testing. As indicated in the
previous section, we opted to compare ranks – with low ranks indicating better performance
– in order to avoid the problem of comparing problems of different difficulty or comparing
regression with classification problems. This is illustrated in Table 1.
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Random Rotation Ensembles

In this table, we have omitted flip rotations because their performance was comparable
to the simple random rotation, with flip rotations outperforming in 36% of cases, simple
rotations outperforming in 45% of cases and ties in the remaining 19% of cases.

The best overall average rank of 6.10 (of 15) was achieved by the random rotation
random forest algorithm with simple scaling, followed by the same algorithm with complex
scaling (6.48) and ranking (6.55). This algorithm outperformed regardless of scaling. The
next lowest rank of 6.72 was achieved by random rotation extra trees using quantile scaling.

It is interesting to note that the average ranks for each scaling type were 7.50 for the
complex scaling, 7.65 for the simple scaling and 7.81 for ranking. This indicates that the
scaling method was less influential than the selection of the algorithm. In particular, the
new method often improved on the original method even when only the ranks of the data
were considered. We believe this to be an interesting result because it indicates that even
rotating ranks can improve performance. Obviously, ranked data is completely robust to
scaling effects and outliers.

The best average rank across scalings was achieved by random rotation random forests
with 6.38, followed by extra trees (7.06), random forests (7.20), random rotation extra trees
(7.26), and rotation forests (10.38).

In our tests, rotation forests underperformed overall but showed strong performance in
some particular cases. The problem here was that when rotation forests did not excel at a
problem, they often were the worst performer by a large margin, which had an impact on
the average rank. In contrast, random rotation random forests rarely displayed the very
best performance but often were among the top predictors. This insight led us to consider
predictors that were within one cross-sectional standard deviation of the best predictor for
each data set.

Random rotation random forests were within one standard deviation of the best result
(highlighted in bold in Table 1) in 67.8% of cases, random forests without rotation in 64.3%
of cases, extra trees (with and without rotation) in 49.4% of cases, and rotation forests in
27.6%. It appears to be clear that random rotation can improve performance for a variety of
problems and should be included as a user option for standard machine learning packages.

Random rotation appears to work best when numerical predictors outnumber categorical
predictors, which are not rotated, and when these numerical predictors exhibit a relatively
smooth distribution (rather than a few pronounced clusters). An example of a suitable
dataset is Cleveland, with more than half of the variables continuous and spread out evenly.
In contrast, Balance is an example of a dataset for which we cannot expect random rotation
to perform well. However, in general it is difficult to judge the utility of rotation in advance
and we recommend running a small test version of the problem with and without rotation
to decide which to use: when the approach is successful, this tends to be apparent early.

Constructing a random rotation matrix using the indirect method described above re-
quires of the order of p3 operations, where p is the number of predictors to be rotated (time
complexity of QR factorization). Multiplying the resulting random rotation matrix with an
input vector requires of the order of p2 operations. During training, this step needs to be
performed k times, where k is the number of instances in the training data, for a total of
k × p2 operations. All but one of the UCI datasets contained fewer than 100 predictors,
and it takes less than a millisecond to compute a 100x100 random rotation matrix. Hence,
with 5000 trees in each ensemble, the additional computational overhead was at most a few
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seconds. However, as indicated above, for larger problems it does make sense to restrict the
number of rotated predictors to maintain adequate performance.

Next, we consider the question of robustness.

4.5 Parameter Sensitivity and Extensions

In addition to the full tests described above, we also ran a few smaller examples to examine
the sensitivity of random rotation to the choice of parameters in the underlying base learners.
For this, we used the well known UCI iris data set (4 numeric predictors, 3 classes, 150
rows). Table 2 compares the performance of the standard random forest algorithm (RF)
and a modified version including random feature rotation (RR-RF) on this data set.

Random Forest Comparison (iris)

parameters % error % wins per method
ntree mtry RF RR-RF RF RR-RF Ties

50 1 5.269 4.464 16.98 53.40 29.62
2 5.011 4.237 15.80 50.20 34.00
3 4.960 4.155 16.14 51.10 32.76
4 4.963 4.077 15.30 52.75 31.95

500 1 5.246 4.414 11.76 52.98 35.26
2 4.981 4.226 13.53 48.41 38.06
3 4.904 4.144 14.90 49.22 35.88
4 4.944 4.096 13.80 51.53 34.67

5000 1 5.227 4.385 10.29 52.52 37.19
2 4.975 4.196 13.48 49.57 36.95
3 4.860 4.133 15.23 47.76 37.01
4 4.964 4.132 14.22 51.14 34.64

Table 2: Performance comparison of the standard random forest algorithm (RF) and a mod-
ified version with randomly rotated feature space for each tree (RR-RF) on the
iris data set. Ntree is the total number of trees in the forest, mtry the number of
randomly selected features considered at each decision node. Statistically signifi-
cant differences in mean error percentage and win percentage at the 1% level are
denoted in bold.

As in the detailed tests, both classifiers made use of the same tree induction algorithm,
implemented in the randomForest R package, but the feature space was randomly rotated
prior to the construction of each tree for the RR-RF algorithm. Since the iris data set
only includes 4 predictors, the number of randomly selected features at each decision node
(mtry) only has feasible values in 1-4, allowing for an exhaustive comparison. For each
parameter setting, we selected 50% of the data (75 cases) at random as the learning data
set, while the other half served as the test data set. The experiment was repeated 10000
times for each parameter setting and we kept track of the average error percentage of each
method, as well as the percentage of times each method outperformed the other. Once
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completed, a Wilcoxon signed-rank test was performed to compare the classification error
percentage and win percentage of the original method with that of the modified classifier
and to ascertain statistical significance at the 1% level. The modified ensemble featuring
random rotation appears to universally outperform the original classifiers on this data set,
regardless of parameter settings and in a statistically significant manner. However, it should
be noted that the goal of this experiment was not to demonstrate the general usefulness of
random rotations – this is achieved by the detailed experiments in the previous section –
but rather to show the robustness to parameter changes for a specific data set.

Table 3 shows the analogous results for extra trees, which select both the split feature
and the split point at random. Here we used the tree induction algorithm implemented in
the extraTrees R package. In theory, there exist an infinite number of feasible split points
(ncut) that could be chosen but for simplicity, we have only attempted ncut values in the
range 1-4, meaning that at most 4 random split points were considered in the tests. The
improvement due to rotation is again universal and statistically significant. For reasonable
parameters (e.g. ntree ≥ 50), the new method matches or outperforms the original method
in over 94% of the randomly generated cases and the performance improvement is 21.7%
on average. This is again a very encouraging result, as it demonstrates that the results
above are robust, even if non-default parameters are used for the base learners. It is also
interesting to note that randomly rotated extra tree ensembles outperform randomly rotated
random forests here and they tend to do best with lower ncut values, indicating that more
randomness (via rotation, feature selection, and split selection) is helpful for this particular
problem.

Table 4 shows comparable results with a gradient boosting machine from the gbm R package
(Ridgeway, 2013). Since boosting is an additive procedure, where later trees have an explicit
dependence on earlier trees in the ensemble, the comparison of the two methods is not as
straightforward. More specifically, step (B).(2) in Listing 1 cannot be performed without
knowing (and being able to reuse) fm−1 in the case of boosting. Unfortunately, the most
common software packages for boosting (and gbm in particular) do not provide an interface
for this. Of course, we could have implemented our own boosting library but then it would
not be obvious that the improvement in predictive performance was entirely due to the
rotation. For this reason, we opted to demonstrate boosting with a widely used package
but on groups of trees, with one rotation per group of 50 trees. The rationale for this choice
of group size was that the first few boosting iterations often lead to rapid improvements. In
this case, we compared the original method, consisting of 5000 trees in a single ensemble,
to a modified version with 100 sub-forests of 50 trees each, whereby each sub-forest was
created on a randomly rotated feature space. In other words, the 50 trees in each sub-forest
had a dependency, whereas the sub-forests themselves were independent of each other. The
final classification was achieved through voting. As is evident from Table 4, randomly
rotated gradient boosting machines even outperformed random forests and extra trees on
this data set in terms of percentage error. Even when we handicapped the new method by
only providing it with relative ranks of the data it outperformed the original (unrotated)
method, although not by the same margin.
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Extra Tree Ensemble Comparison (iris)

parameters % error % wins per method
ntree ncut ET RR-ET ET RR-ET Ties

50 1 5.335 3.994 7.18 66.11 26.71
2 5.281 4.101 7.84 63.04 29.12
3 5.183 4.078 8.41 60.69 30.90
4 5.238 4.152 8.86 60.14 31.00

500 1 5.244 3.971 4.09 66.02 29.89
2 5.157 4.045 4.75 60.85 34.40
3 5.118 4.056 5.16 59.67 35.17
4 5.114 4.111 5.54 57.68 36.78

5000 1 5.257 4.044 4.73 66.09 29.18
2 5.175 4.003 3.32 60.86 35.82
3 5.038 4.079 4.71 56.20 39.09
4 5.046 4.053 5.55 56.92 37.53

Table 3: Performance comparison of the standard extra trees algorithm (ET) and a modified
version with randomly rotated feature space for each tree (RR-ET) on the iris
data set. Ntree is the total number of trees in the ensemble, ncut the number
of randomly selected split points considered at each decision node. Statistically
significant differences in mean error percentage and win percentage at the 1% level
are denoted in bold.

Gradient Boosting Comparison (iris)

parameters performance
rank only type ntree shrinkage %error %wins

no GBM 1x5000 0.0005 5.063 9.62
no RR-GBM 100x50 0.0500 3.831 57.26

yes GBM 1x5000 0.0005 5.063 22.97
yes RR-GBM 100x50 0.0500 4.385 46.17

Table 4: Performance comparison of the standard gradient boosting machine (GBM) and
a modified version with randomly rotated feature space for each sub-forest of 50
trees (RR-GBM) on the iris data set. A classifier was trained for each parameter
setting on a random half of the data and tested on the remaining half. Ntree is the
total number of trees in the ensemble, expressed as the product of the number of
generated sub-forests (each on a randomly rotated feature space) times the number
of trees in each sub-forest. The procedure was repeated 10000 times. Statistically
significant differences in mean error percentage and win percentage at the 1% level
are denoted in bold. For the robust rank only version, a ranking of each predictive
variable was performed using the train data, while the test vectors received an
interpolated ranking based solely on relative order information with respect to the
train data.
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4.6 A Note on Diversity

In Appendix B we closely follow Breiman (2001) to derive an ensemble diversity measure
that is applicable to the case of random rotation ensembles. In particular, we show that just
like for random forests we can express the average correlation of the raw margin functions
across all classifiers in the ensemble in terms of quantities we can easily estimate, specifically

ρ̄(·) =
Vx,y[Ψ(x, y)]

Eθ1,θ2 [σ(ψ(x, y, θ))]2
. (8)

That is, average correlation ρ̄ is the variance of the margin across instances Vx,y[Ψ(x, y)], di-
vided by the expectation of the standard deviation σ of the raw margin across (randomized)
classifiers squared. Full definitions of these quantities can be found in Appendix B.

As an example of the usefulness of this correlation measure, we estimated ρ̄ with mtry =
{1, 4} on the iris example and achieved a correlation of 0.32 and 0.61, respectively. Clearly,
the random split selection decorrelates the base learners. We then performed the same
calculation including random rotation and achieved 0.22 and 0.39, respectively. In both
cases, the correlation decreased by approximately one third. In contrast, the expected
margin only decreased by 3.5%, meaning that the accuracy of the individual base learners
was only very modestly affected.

5. Conclusion

Random rotations provide a natural way to enhance the diversity of an ensemble with
minimal or no impact on the performance of the individual base learners. Rotations are
particularly effective for base learners that exhibit axis parallel decision boundaries, as
is the case for all of the most common tree-based learning algorithms. The application of
random rotation is most effective for continuous variables and is equally applicable to higher
dimensional problems.

A generalization of random rotations only uses a subset of rotations for out of sample
predictions. This subset is chosen by observing the out-of-bag performance of each rotation
in sample. Initial tests revealed that dropping the least effective decile of all random rota-
tions generally improved out of sample performance but more research is needed because
the procedure potentially introduces model bias.

Random rotations may also prove to be useful for image analysis. For example, axis-
aligned methods for image processing, such as wavelet smoothing, may benefit from repeated
random rotations to ensure that the methods become axis-independent.

While random rotations are certainly not a panacea, they are helpful frequently enough
that we contend standard data mining packages should provide users the option to randomly
rotate the feature space prior to inducing each base learner.

17



Blaser and Fryzlewicz

Appendix A

The following listings provide illustrations in two commonly used programming languages
for the generation of a random rotation matrix using the indirect method described in
section 3 above. The code is kept simple for illustrative purposes and does not contain
error checking or performance optimizations.

Listing 2: Random Rotation in C++ using Eigen
#include ”MersenneTwister . h”
#include <Eigen/Dense>
#include <Eigen/QR>

using namespace Eigen ;

// C++: g ene ra t e random n x n r o t a t i o n matr ix
void random rotat ion matr ix (MatrixXd& M, int n)
{

MTRand mtrand ; // t w i s t e r w i th random seed

MatrixXd A(n , n ) ;
const VectorXd ones (VectorXd : : Ones (n ) ) ;

for ( int i =0; i<n ; ++i )
for ( int j =0; j<n ; ++j )

A( i , j ) = mtrand . randNorm ( 0 , 1 ) ;

const HouseholderQR<MatrixXd> qr (A) ;
const MatrixXd Q = qr . householderQ ( ) ;
M = Q ∗ ( qr . matrixQR ( ) . d iagona l ( ) . array ( )

< 0 ) . s e l e c t (−ones , ones ) . asDiagonal ( ) ;

i f (M. determinant ( ) < 0)
for ( int i =0; i<n ; ++i )

M( i , 0 ) = −M( i , 0 ) ;
}

Listing 3: Random Rotation in R
# gene ra t e random member o f o r t h o gona l group O(n)
random ro ta t i on matrix i n c l f l i p <− function (n)
{

QR <− qr (matrix (rnorm(nˆ2) , ncol=n )) # A = QR
M <− qr .Q(QR) %∗% diag ( sign (diag (qr .R(QR) ) ) ) # diag (R) > 0
return (M)

}

# gene ra t e random member o f s p e c i a l o r t h o g ona l group SO(n)
random ro ta t i on matrix <− function (n)
{

M <− random ro ta t i on matrix i n c l f l i p (n)
i f ( det (M)<0) M[ , 1 ] <− −M[ , 1 ] # de t (M) = +1
return (M)

}

18



Random Rotation Ensembles

Appendix B

In this appendix, we closely follow Breiman (2001) to derive an ensemble diversity measure
that is applicable to random rotation ensembles.

For a given input vector x, we define the label of the class to which classifier fM (x)
assigns the highest probability, save for the correct label y, to be jMmax, that is

jMmax := arg max
j 6=y

P (fM (x) = j). (9)

Using this definition, we denote the raw margin function ψ(x, y) for a classification tree
ensemble fM (x) as

ψ(x, y, θ) = I(fM (x) = y)− I(fM (x) = jMmax), (10)

with indicator function I(·). This expression evaluates to +1 if the classification is correct,
-1 if the most probable incorrect class is selected, and 0 otherwise. The margin function
Ψ(x, y) is its expectation, that is

Ψ(x, y) = Eθ[ψ(x, y, θ)]

= P (fM (x) = y)− P (fM (x) = jMmax). (11)

The margin function Ψ(x, y) represents the probability of classifying an input x correctly
minus the probability of selecting the most probable incorrect class.

If we denote the out-of-bag instances for classification tree T (x; θm,Ωm) as Om, then these
probabilities can be estimated as

P̂ (fM (x) = k) =

∑M
m=1 I(T (x; θm,Ωm) = k ∧ (x, y) ∈ Om)∑M

m=1 I((x, y) ∈ Om)
, (12)

where the denominator counts the number of base learners for which (x, y) is out-of-bag. If
we were to use a separate testing data set S, as we do in our examples, this can be further
simplified to

P̂ (fM (x) = k) =
1

M

M∑
m=1

I(T (x; θm,Ωm) = k), (13)

where any instance (x, y) must be selected from S. From this, the expected margin can be
estimated as

Êx,y[Ψ(x, y)] = Êx,y[P̂ (fM (x) = y)− P̂ (fM (x) = jMmax)] (14)

and its variance as

V̂x,y[Ψ(x, y)] = Êx,y[(P̂ (fM (x) = y)− P̂ (fM (x) = jMmax))2]− Êx,y[Ψ(x, y)]2. (15)

The expectations are computed over the training set for the out-of-bag estimator or the
testing data set respectively, depending on which approach is used.
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Using Chebyshev’s inequality, we can derive a bound for the probability of achieving a
negative margin, a measure of the generalization error:

P (Ψ(x, y) < 0) ≤ P (|Ex,y[Ψ(x, y)]−Ψ(x, y)| ≥ Ex,y[Ψ(x, y)])

≤ Vx,y[Ψ(x, y)]

Ex,y[Ψ(x, y)]2
, (16)

which can be estimated from equations (14) and (15). Clearly, this inequality is only useful
if the expected margin is positive because otherwise the classification is no better than
random.

We now follow Breiman’s argument for obtaining a measure of ensemble diversity in
terms of the random classifier parameters θ, which in our case include the random rotation
in addition to the bootstrap samples. First, we note that for independent and identically
distributed (i.i.d.) random parameters θ1 and θ2, we have

Eθ1,θ2 [ψ(x, y, θ1)× ψ(x, y, θ2)] = Eθ1 [ψ(x, y, θ1)]× Eθ2 [ψ(x, y, θ2)]

= Ψ(x, y)×Ψ(x, y)

= Ψ(x, y)2. (17)

Therefore, the variance of Ψ(x, y) can be reformulated as

Vx,y[Ψ(x, y)] = Ex,y[Ψ(x, y)2]− Ex,y[Ψ(x, y)]2

= Ex,y[Eθ1,θ2 [ψ(x, y, θ1)× ψ(x, y, θ2)]]− Ex,y[Eθ1 [ψ(x, y, θ1)]]× Ex,y[Eθ2 [ψ(x, y, θ2)]]

= Eθ1,θ2 [Ex,y[ψ(x, y, θ1)× ψ(x, y, θ2)]− Ex,y[ψ(x, y, θ1)]× Ex,y[ψ(x, y, θ2)]]

= Eθ1,θ2 [Covx,y[ψ(x, y, θ1), ψ(x, y, θ2)]]

= Eθ1,θ2 [ρ(ψ(x, y, θ1), ψ(x, y, θ2))]× Eθ1,θ2 [σ(ψ(x, y, θ1))× σ(ψ(x, y, θ2))]

= Eθ1,θ2 [ρ(ψ(x, y, θ1), ψ(x, y, θ2))]× Eθ1,θ2 [σ(ψ(x, y, θ))]2. (18)

This result allows us to express the average correlation of the raw margin functions across
all classifiers in the ensemble in terms of quantities we can easily estimate, specifically

ρ̄(·) =
Vx,y[Ψ(x, y)]

Eθ1,θ2 [σ(ψ(x, y, θ))]2
, (19)

where we can use (15) as an estimate of the numerator. In other words, correlation represents
the variance of the margin across instances, divided by the expectation of the standard
deviation of the raw margin across (randomized) classifiers squared.

To estimate the denominator across all random parameters θ – i.e. the individual base
learners and rotations – we can use

Eθ1,θ2 [σ(x, y, θ)] =
1

M

M∑
m=1

√
P (fm(x) = y) + P (fm(x) = jmmax)−

(P (fm(x) = y)− P (fm(x) = jmmax))2, (20)
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where the probabilities are calculated for each individual classifier across all instances (x, y)
in the out-of-bag or test set respectively, i.e. in the case of a test set S we would use

P̂ (fm(x) = k) =
1

|S|
∑

(xi,y)∈S

I(T (xi; θm,Ωm) = k), (21)

with |S| denoting the cardinality of S.
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Appendix C

name cases preds

anneal 798 51
audiology 200 85
balance 625 16
breast-w 699 80
breast-y 286 34
chess 28056 34
cleveland 303 22
credit-a 690 14
flare 1066 21
glass 214 9
hayes-roth 132 4
hepatitis 155 29
horse-colic 300 80
ionosphere 351 33
iris 150 4
led24 3200 24
liver 345 44
lymph 148 18
nursery 12960 19
pima 768 167
segmentation 210 19
solar 323 22
sonar 208 60
soybean 307 97
threeOf9 512 9
tic-tac-toe 958 18
votes 435 32
waveform 5000 21
wine 178 13

Table 5: Description of UCI datasets used to perform the detailed tests of random rotations.
The the total number of available instances, as well as the number of available
predictor variables after preprocessing (including dummy variables for categories)
is shown for each data set. The tests use a random 70% of the available instances
as training set and the remaining 30% as a test set.
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