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IRMAR – UMR CNRS 6625
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Our recent work (Arias-Castro et al., 2016) established the convergence of the mean
shift algorithm under relatively general conditions. After the publication of this article,
Prof. Jose E. Chacón — who has worked on the topic (Chacón and Monfort, 2013; Chacón
and Duong, 2013) — alerted us of a mistake in the proof of the first part of our Theorem 1.
The mistake is in the display following Eq. (32), where we applied the triangle inequality
to the squared Euclidean distance, which of course is incorrect in general.

It turns out that the mistake has a simple and short fix, which we detail below. This
relatively minor mistake would not warrant an errata, except that the same mistake has
been made before by others also working on the convergence of the mean shift algorithm,
including Comaniciu and Meer (2002), as revealed in (Li et al., 2007; Ghassabeh, 2015).
(Prof. Chacón also provided these last two references.)

Below is a slightly modified statement of our Theorem 1 with the additional assumption
that the end point x? of the flow line is an isolated local maximum, meaning that for all
ε > 0 small enough B (x?, ε) contains no local maximum other than x?. Since f is also
assumed of class C3, this is equivalent to assuming that for all ε > 0 small enough, B (x?, ε)
contains only one critical point of f , namely x?, and f (x?) > f (x) for all x ∈ B (x?, ε) such
that x 6= x?.

The equations numbered (xx) refers to the original paper, while equations numbered
(R.xx) are new to this note.

Theorem 1 Let f be a function of class C3. Let (x(t) : t ≥ 0) denote the flow line of f
starting at x0 and ending at an isolated local maximum x? of f . Let (x`) be the sequence
defined in (6) starting at x0 . Then there exists A = A(x0, f) > 0 such that, whenever
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0 < a < A,
lim

`→+∞
x` = x?.

Denote by xa(t) the following polygonal line

xa(t) = x`−1 + (t/a− `+ 1)(x` − x`−1), ∀t ∈ [(`− 1)a, `a).

Assume Hf (x?) has all eigenvalues in (−ν,−ν) for some 0 < ν < ν. Then, there exists a
C = C(x0, f, ν, ν) > 0 such that, for any 0 < a < A,

sup
t≥0
‖xa(t)− x(t)‖ ≤ Caδ, δ :=

ν

ν + ν
.

The rest of this note is dedicated to a corrected proof of the first part of this theorem.
Claims 1 and 2 refer to the first two claims in the original published proof of Theorem 1.
(Note that in the proof of Claim 1, we can assume without loss of generality that f(x) > 0
over B(x0, 3r0). Also notice that x0 is not a global minimum of f since x0 is not a critical
point of f and f is C3.) In the published proof of Theorem 1, the second claim on page 15
should be removed.

Now replace the claim on page 16 by the following definition, observation and Claims
A, B and C:

For any η > 0, denote by C(η) the connected component of Lf (f(x?)− η) that contains
x?. Notice that since x? is a local maximum, for all η > 0 small enough

C(η) = C (x∗, η) , (R.1)

where C (x∗, η) be the connected component of

{y : f (x∗)− η ≤ f (y) ≤ f (x∗)}

that contains x∗.
Claim A. Let y∗ be such that f (y∗) = f (x∗), but y∗ 6= x∗. For all η > 0 small

enough y∗ /∈C (x∗, η). Choose such a y∗. Since x∗ is an isolated local maximum, for all
ε > 0 small enough, y∗ /∈ B (x∗, ε) and for some ηε > 0, f (y) < f (x∗) − ηε for all y ∈
B (x∗, ε)−B (x∗, ε/2) . Note that ηε > 0 can be chosen as small as desired by choosing ε > 0
small enough. Suppose y∗ ∈ C (x∗, ηε), then since C (x∗, ηε) is connected and x∗ ∈ C (x∗, ηε)
there is a continuous path lying inside C (x∗, ηε) joining x∗ and y∗. Such a path would have
to pass through a point y ∈ C (x∗, ηε)∩

(
B (x∗, ε)−B (x∗, ε/2)

)
for which f (y) < f (x∗)−ηε.

This cannot happen, since y ∈ C (x∗, ηε) forces f (x∗)−ηε ≤ f (y). Hence for all for all η > 0
small enough y∗ /∈ C (x∗, η) .

Claim B. For all η > 0 small enough C (x∗, η) contains only one critical point of f .
Towards proving this we shall first show that for all ε > 0 there exists an η > 0 such that

C (x∗, η) ⊂ B (x∗, ε) . (R.2)

To see this, for any η > 0 small, denote the contour set

c (η) = {y : f (y) = f (x∗)− η, y ∈ C (x∗, η)} .
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Note that each contour set c (η) is closed and hence is compact. (To see this, by Claim
1, we may assume that L(f(x0)) is bounded and thus compact. Therefore, since c (η) ⊂
C (x∗, η) ⊂ L(f(x0)), c (η) is compact.) Since c

(
2−k
)

is compact, for each k ≥ 1 large
enough there exists a xk ∈ c

(
2−k
)

such that

rk := sup
{
‖y − x∗‖ : y ∈ c

(
2−k
)}

= ‖xk − x∗‖ .

Observe that since f (xk) → f (x∗) and x∗ is isolated, necessarily by a compactness argu-
ment, xk → x∗. To see this, suppose that for some subsequence yj of xk we have yj → y∗.
Necessarily f (y∗) = f (x∗) and y∗ ∈ C (x∗, η) for all η > 0. However by Claim A, necessarily
y∗ = x∗. Thus xk → x∗, which implies rk → 0. Noting that for all large k

C
(
x∗, 2−k

)
⊂ B (x∗, rk) ,

we see that for all ε > 0 there exists an η > 0 such that (R.2) holds. Therefore, since for all
small enough ε > 0, B (x∗, ε) contains only one critical point of f , we get that for all η > 0
small enough C (x∗, η) contains only one critical point of f .

Claim C. (x`) converges to x?. By Claim B and (R.1), there exists η0 > 0 small enough
such that C(η0) contains no critical point of f other than x?. Moreover since f is C3, there
exists ε > 0 such that B̄(x?, ε) ⊂ C(η0). Let `ε be such that ‖x(t`ε)− x?‖ ≤ ε/2 and let aε
be such that [

e`εaεκ2
√
d − 1

]
κ1aε = ε/2.

Assume now that a ≤ A1 ∧ aε, where A1 is defined in (31). Then, by (33) and the triangle
inequality,

‖x`ε − x?‖ ≤ ‖x`ε − x(t`ε)‖+ ‖x(t`ε)− x?‖ ≤ ε.

Thus, x`ε belongs to B̄(x?, ε), and so to C(η0). By Claim 2 the values of f are increasing
along the polygonal curve xa, so x` belongs to C(η0) for all ` ≥ `ε.

Since the sequence (f(x`) : ` ≥ 0) is increasing and bounded, it is convergent and since

f(x`+1)− f(x`) ≥
a

2
‖∇f(x`)‖2,

we deduce that

lim
`→∞

‖∇f(x`)‖ = 0.

Recall that by Claim 1 we can assume that L(f(x0)) is bounded in which case C(η0) is
compact. Then we conclude that (x`) is convergent with x` → x? by continuity of the
gradient of f and the fact that x? is the only critical point of f in C(η0).
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