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Abstract

This paper provides a general technique for lower bounding the Bayes risk of statistical
estimation, applicable to arbitrary loss functions and arbitrary prior distributions. A lower
bound on the Bayes risk not only serves as a lower bound on the minimax risk, but also
characterizes the fundamental limit of any estimator given the prior knowledge. Our bounds
are based on the notion of f -informativity (Csiszár, 1972), which is a function of the
underlying class of probability measures and the prior. Application of our bounds requires
upper bounds on the f -informativity, thus we derive new upper bounds on f -informativity
which often lead to tight Bayes risk lower bounds. Our technique leads to generalizations of
a variety of classical minimax bounds (e.g., generalized Fano’s inequality). Our Bayes risk
lower bounds can be directly applied to several concrete estimation problems, including
Gaussian location models, generalized linear models, and principal component analysis
for spiked covariance models. To further demonstrate the applications of our Bayes risk
lower bounds to machine learning problems, we present two new theoretical results: (1) a
precise characterization of the minimax risk of learning spherical Gaussian mixture models
under the smoothed analysis framework, and (2) lower bounds for the Bayes risk under
a natural prior for both the prediction and estimation errors for high-dimensional sparse
linear regression under an improper learning setting.

Keywords: Bayes risk, Minimax risk, f -divergence, f -informativity, Fano’s inequality,
Smoothed analysis

1. Introduction

Consider a standard setting where we observe data points X taking values in a sample
space X . The distribution of X depends on an unknown parameter θ ∈ Θ and is denoted
by Pθ. The goal is to compute an estimate of θ based on the observed samples. Formally,
we denote the estimator by d(X), where d : X → Θ is a mapping from the sample space
to the parameter space. The risk of the estimator is defined by EθL(θ, d(X)) where L :
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Θ × A 7→ [0,∞) is a non-negative loss function. This framework applies to a broad scope
of machine learning problems. Taking sparse linear regression as a concrete example, the
data X represents the design matrix and the response vector; the parameter space is the
set of sparse vectors; the loss function can be chosen as a squared loss.

Given an estimation problem, we are interested in the lowest possible risk achievable
by any estimator, which will be useful in justifying the potential of improving existing
algorithms. The classical notion of optimality is formalized by the so-called minimax risk.
More specifically, we assume that the statistician chooses an optimal estimator d, then the
adversary chooses the worst parameter θ by knowing the choice of d. The minimax risk is
defined as:

Rminimax(L; Θ) := inf
d

sup
θ∈Θ

EθL(θ, d(X)). (1)

The minimax risk has been determined up to multiplicative constants for many impor-
tant problems. Examples include sparse linear regression (Raskutti et al., 2011), clas-
sification (Yang, 1999), additive models over kernel classes (Raskutti et al., 2012), and
crowdsourcing (Zhang et al., 2016).

The assumption that the adversary is capable of choosing a worst-case parameter is
sometimes over-pessimistic. In practice, the parameter that incurs a worst-case risk may
appear with very small probability. To capture the hardness of the problem with this prior
knowledge, it is reasonable to assume that the true parameter is sampled from an underlying
prior distribution w. In this case, we are interested in the Bayes risk of the problem. That
is, the lowest possible risk when the true parameter is sampled from the prior distribution:

RBayes(w,L; Θ) := inf
d

∫
Θ
EθL(θ, d(X))w(dθ). (2)

If the prior distribution w is known to the learner, then the Bayes estimator attains the
Bayes risk (Berger, 2013). But in general, the Bayes estimator is computationally hard to
evaluate, and the Bayes risk has no closed-form expression. It is thus unclear what is the
fundamental limit of estimators when the prior knowledge is available.

In this paper, we present a technique for establishing lower bounds on the Bayes risk
for a general prior distribution w. When the lower bound matches the risk of any existing
algorithm, it captures the convergence rate of the Bayes risk. The Bayes risk lower bounds
are useful for three main reasons:

1. They provide an idea of the difficulty of the problem under a specific prior w.

2. They automatically provide lower bounds for the minimax risk and, because the min-
imax regret is always larger than or equal to the minimax risk (see, for example,
Rakhlin et al. (2013)), they also yield lower bounds for the minimax regret.

3. As we will show, they have an important application in establishing the minimax
lower bound under the smoothed analysis framework.

Throughout this paper, when the loss function L and the parameter space Θ are clear from
the context, we simply denote the Bayes risk by RBayes(w). When the prior w is also clear,
the notation is further simplified to R.
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1.1 Our Main Results

In order to give the reader a flavor of the kind of results proved in this paper, let us consider
Fano’s classical inequality (Han and Verdú, 1994; Cover and Thomas, 2006; Yu, 1997) which
is one of the most widely used Bayes risk lower bounds in statistics and information theory.
The standard version of Fano’s inequality applies to the case when Θ = A = {1, . . . , N}
for some positive integer N with the indicator loss L(θ, a) := I{θ 6= a} (I stands for the
zero-one valued indicator function) and the prior w being the discrete uniform distribution
on Θ. In this setting, Fano’s inequality states that

RBayes(w) ≥ 1− I(w,P) + log 2

logN
(3)

where I(w,P) is the mutual information between the random variables θ ∼ w and X with
X|θ ∼ Pθ (note that this mutual information only depends on w and P = {Pθ : θ ∈ Θ}
which is why we denote it by I(w,P)). Fano’s inequality implies that when I(w;P) is large
i.e., when the information that X has about θ is large, then the risk of estimation is small.

A natural question regarding Fano’s inequality, which does not seem to have been asked
until very recently, is the following: does there exist an analogue of (3) when w is not
necessarily the uniform prior and/or when Θ and A are arbitrary sets, and/or when the loss
function is not necessarily I{θ 6= a}? An interesting result in this direction is the following
inequality which has been recently proved by Duchi and Wainwright (2013) who termed it
the continuum Fano inequality. This inequality applies to the case when Θ = A is a subset
of Euclidean space with finite strictly positive Lebesgue measure, L(θ, a) = I{‖θ− a‖2 ≥ ε}
for a fixed ε > 0 (‖ · ‖2 is the usual Euclidean metric) and the prior w being the uniform
probability measure (i.e., normalized Lebesgue measure) on Θ. In this setting, Duchi and
Wainwright (2013) proved that

RBayes(w) ≥ 1 +
I(w,P) + log 2

log (supa∈Aw{θ ∈ Θ : ‖θ − a‖2 < ε})
. (4)

It turns out that there is a very clean connection between inequalities (3) and (4).
Indeed, both these inequalities are special instances of the following inequality:

RBayes(w) ≥ 1 +
I(w,P) + log 2

log (supa∈Aw{θ ∈ Θ : L(θ, a) = 0})
(5)

Indeed, the term w{θ ∈ Θ : L(θ, a) = 0} equal to 1/N in the setting of (3) and it is equal
to w{θ ∈ Θ : ‖θ − a‖2 < ε} in the setting of (4).

Since both (3) and (4) are special instances of (5), one might reasonably conjecture that
inequality (5) might hold more generally. In Section 3, we give an affirmative answer by
proving that inequality (5) holds for any zero-one valued loss function L and any prior w.
No assumptions on Θ, A and w are needed. We refer to this result as generalized Fano’s
inequality. Our proof of (5) is quite succinct and is based on the data processing inequality
(Cover and Thomas, 2006; Liese, 2012) for Kullback-Leibler (KL) divergence. The use of the
data processing inequality for proving Fano-type inequalities was introduced by Gushchin
(2003).
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The data processing inequality is not only available for the KL divergence. It can
be generalized to any divergence belonging to a general family known as f -divergences
(Csiszár, 1963; Ali and Silvey, 1966). This family includes the KL divergence, chi-squared
divergence, squared Hellinger distance, total variation distance and power divergences as
special cases. The usefulness of f -divergences in machine learning has been illustrated in
Reid and Williamson (2011); Garcıa-Garcıa and Williamson (2012); Reid and Williamson
(2009).

For every f -divergence, one can define a quantity called f -informativity (Csiszár, 1972)
which plays the same role as the mutual information for KL divergence. The precise def-
initions of f -divergences and f -informativities are given in Section 2. Utilizing the data
processing inequality for f -divergence, we prove general Bayes risk lower bounds which
hold for every zero-one valued loss L and for arbitrary Θ, A and w (Theorem 2). The gen-
eralized Fano’s inequality (5) is a special case by choosing the f -divergence to be KL. The
proposed Bayes risk lower bounds can also be specialized to other f -divergences and have
a variety of interesting connections to existing lower bounds in the literature such as Le
Cam’s inequality, Assouad’s lemma (see Theorem 2.12 in Tsybakov (2010)), Birgé-Gushchin
inequality (Gushchin, 2003; Birgé, 2005). These results are provided in Section 3.

In Section 4, we deal with nonnegative valued loss functions L which are not necessarily
zero-one valued. Basically, we use the standard method of lower bounding the general
loss function L by a zero-one valued function and then use our results from Section 3 for
lower bounding the Bayes risk. This technique, in conjunction with the generalized Fano’s
inequality, gives the following lower bound (proved in Corollary 12)

RBayes(w,L; Θ) ≥ 1

2
sup

{
t > 0 : sup

a∈A
w{θ : L(θ, a) < t} ≤ 1

4
e−2I(w,P)

}
. (6)

A special case of the above inequality has appeared previously in Zhang (2006, Theorem 6.1)
(please refer to Remark 13 for a detailed explanation of the connection between inequality
(6) and (Zhang, 2006, Theorem 6.1)).

We also prove analogues of the above inequality for different f divergences. Specifically,
using our f -divergence inequalities from Section 3, we prove, in Theorem 9, the following
inequality which holds for every f divergence:

RBayes(w,L; Θ) ≥ 1

2
sup

{
t > 0 : sup

a∈A
w{θ : L(θ, a) < t} < 1− uf (If (w,P))

}
(7)

where If (w,P) represents the f -informativity and uf (·) is a non-decreasing [0, 1]-valued
function that depends only on f . This function uf (·) (see its definition from (31)) can be
explicitly computed for many f -divergences of interest, which gives useful lower bounds in
terms of f -informativity. For example, for the case of KL divergence and chi-squared diver-
gence, inequality (7) gives the lower bound in (6) and the following inequality respectively,

RBayes(w,L; Θ) ≥ 1

2
sup

{
t > 0 : sup

a∈A
w{θ : L(θ, a) < t} ≤ 1

4(1 + Iχ2(w,P))

}
. (8)

where Iχ2(w,P) is the chi-squared informativity.
Intuitively, inequality (7) shows that the Bayes risk is lower bounded by half of the largest

possible t such that the maximum prior mass of any t-radius “ball” (w{θ : L(θ, a) < t}) is
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less than some function of f -informativity. To apply (7), one needs to obtain upper bounds
on the following two quantities:

1. The “small ball probability” supa∈Aw{θ : L(θ, a) < t}, which does not depend of the
family of probability measures P.

2. The f -informativity If (w,P), which does not depend on the loss function L.

We note that a nice feature of (7) is that L and P play separately roles. One may first
obtain an upper bound Iup

f for the f -informativity If (w,P), then choose t so that the small

ball probability w{θ : L(θ, a) < t} can be bounded from above by 1− uf (Iup
f ). The Bayes

risk will be bounded from below by t/2. It is noteworthy that the terminology “small ball
probability” was used by Xu and Raginsky (2014) (this paper proved information-theoretic
lower bounds on the minimum time in a distributed function computation problem).

We do not have a general guideline for bounding the small ball probability. It needs to be
dealt with case by case based on the prior and the loss function. But for upper bounding the
f -informativity, we offer a general recipe in Section 5 for a subclass of divergences of interest
(power divergences for α /∈ [0, 1)), which covers the chi-squared divergence as one of the
most important divergences in our applications. These bounds generalize results of Haussler
and Opper (1997) and Yang and Barron (1999) for mutual information to f -informativities
involving power divergences. As an illustration of our techniques (inequality (7) combined
with the f -informativity upper bounds), we apply them to a concrete estimation problem in
Section 5. We further apply our results to several popular machine learning and statistics
problems (e.g., generalized linear model, spiked covariance model, and Gaussian model with
general loss) in Appendix C.

In Section 6 and Section 7, we present non-trivial applications of our Bayes risk lower
bounds to two learning problems: the first one is a unsupervised learning problem, while
the second one is a supervised learning problem. Section 6 studies smoothed analysis for
learning mixtures of spherical Gaussians with uniform weights. Although learning mixtures
of Gaussians is a computationally hard problem, it has been shown recently by Hsu and
Kakade (2013) that under the assumptions that the Gaussian means are linearly indepen-
dent, it can be learnt in polynomial time by a spectral method. We perform a smoothed
analysis on a variant of the algorithm (Hsu and Kakade, 2013), showing that the linear
independence assumption can be replaced by perturbing the true parameters by a small
random noise. The method described in Section 6 achieves a better convergence rate than
the original algorithm of Hsu and Kakade (2013). Furthermore, we apply the Bayes risk
lower bound techniques to show that the algorithm’s convergence rate is unimprovable, even
under smoothed analysis (i.e. when the true parameters are randomly perturbed). Section 6
highlights the usefulness of our techniques in proving lower bounds for smoothed analysis,
which appears to be challenging using traditional techniques of the minimax theory.

In Section 7, we consider the high-dimensional sparse linear regression problem and
we provide Bayes risk lower bounds for both prediction error and estimation error under a
natural prior on the regression parameter belonging to the set of k-sparse vectors. Although
lower bounds for sparse linear regression have been well-studied (see, e.g., Raskutti et al.
(2011); Zhang et al. (2014) and references therein), these bounds only focus on the minimax
or the worst-case scenario and thus are too pessimistic in practice. Indeed, the parameters
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that usually attain these minimax lower bounds have zero probability under any continuous
prior, so that their average effects might be negligible. The fundamental limits of sparse
linear regression under a realistic prior is, to the best of the our knowledge, unknown. The
developed tool of lower bounding Bayes risks can be directly applied to characterize these
limits. Moreover, our Bayes risk lower bound is flexible in the sense that by tuning the
variance of the prior of non-zero elements of θ, it provides a wide spectrum of lower bounds.
For one particular choice of the variance, our Bayes risk lower bounds match the minimax
risk lower bounds. This gives a natural least favorable prior for sparse linear regression,
while the known least favorable prior in Raskutti et al. (2011) is a non-constructive discrete
prior over a packing set of the parameter space that cannot be sampled from. We also
work under the improper learning setting where we allow non-sparse estimators for the true
regression vector (even though the true regression vector is assumed to be sparse).

1.2 Related Works

Before finishing this introduction section, we briefly describe related work on Bayes risk
lower bounds. There are a few results dealing with special cases of finite dimensional
estimation problems under (weighted/truncated) quadratic losses. The first results of this
kind were established by Van Trees (1968), and Borovkov and Sakhanienko (1980) with
extensions by Brown and Gajek (1990); Brown (1993); Gill and Levit (1995); Sato and
Akahira (1996); Takada (1999). A few additional papers dealt with even more specialized
problems e.g., Gaussian white noise model (Brown and Liu, 1993), scale models (Gajek and
Kaluszka, 1994) and estimating Gaussian variance (Vidakovi and DasGupta, 1995). Most of
these results are based on the van Trees inequality (see Gill and Levit (1995) and Theorem
2.13 in Tsybakov (2010)). Although the van Trees inequality usually leads to sharp constant
in the Bayes risk lower bounds, it only applies to weighted quadratic loss functions (as its
proof relies on Cauchy-Schwarz inequality) and requires the underlying Fisher information
to be easily computable, which limits its applicability. There is also a vast body of literature
on minimax lower bounds (see, e.g., Tsybakov (2010)) which can be viewed as Bayes risk
lower bounds for certain priors. These priors are usually discrete and specially constructed
so that the lower bounds do not apply to more general (continuous) priors. Another related
area of work involves finding lower bounds on posterior contraction rates (see, e.g., Castillo
(2008)).

1.3 Outline of the Paper

The rest of the paper is organized in the following way. In Section 2, we describe notations
and review preliminaries such as f -divergences, f -informativity, data processing inequality,
etc. Section 3 deals with inequalities for zero-one valued loss functions. These inequalities
have many connections to existing lower bound techniques. Section 4 deals with nonnegative
loss functions and we provide inequality (7) and its special cases. Section 5 presents upper
bounds on the f -informativity for power divergences for α /∈ [0, 1). Some examples are also
given in this section. Section 6 studies smoothed analysis for learning mixtures of spherical
Gaussians with uniform weights using our technique. We conclude the paper in Section
1.3. Due to space constraints, we have relegated some proofs and additional examples and
results to the appendix.
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2. Preliminaries and Notations

We first review the notions of f -divergence (Csiszár, 1963; Ali and Silvey, 1966) and f -
informativity (Csiszár, 1972). Let C denote the class of all convex functions f : (0,∞)→ R
which satisfy f(1) = 0. Because of convexity, the limits f(0) := limx↓0 f(x) and f ′(∞) :=
limx↑∞ f(x)/x exist (even though they may be +∞) for each f ∈ C. Each function f ∈ C
defines a divergence between probability measures which is referred to as f -divergence. For
two probability measures P and Q on a sample space having densities p and q with respect
to a common measure µ, the f -divergence Df (P ||Q) between P and Q is defined as follows:

Df (P ||Q) :=

∫
f

(
p

q

)
qdµ+ f ′(∞)P{q = 0}. (9)

We note that the convention 0 · ∞ = 0 is adopted here so that f ′(∞)P{q = 0} = 0 when
f ′(∞) = ∞ and P{q = 0} = 0. Note that Df (P‖Q) = +∞ when f ′(∞) = +∞ and
P{q = 0} > 0. Also note that f(1) = 0 implies that Df (P‖Q) = 0 when P = Q.

Certain divergences are commonly used because they can be easily computed or bounded
when P and Q are product measures. These divergences are the power divergences corre-
sponding to the functions fα defined by

fα(x) =


xα − 1 for α 6∈ [0, 1];

1− xα for α ∈ (0, 1);

x log x for α = 1;

− log x for α = 0.

Popular examples of power divergences include:

1) Kullback-Leibler (KL) divergence: α = 1, Df1(P ||Q) =
∫
p log(p/q)dµ if P is ab-

solutely continuous with respect to Q (and it is infinite if P is not absolutely continuous
with respect to Q). Following the conventional notation, we denote the KL divergence by
D(P ||Q) (instead of Df1(P ||Q)).

2) Chi-squared divergence: α = 2, Df2(P ||Q) =
∫

(p2/q)dµ − 1 if P is absolutely
continuous with respect to Q (and it is infinite if P is not absolutely continuous with
respect to Q). We denote the chi-squared divergence by χ2(P ||Q) following the conventional
notation.

3) When α = 1/2, one has Df1/2(P ||Q) = 1 −
∫ √

pqdµ which is a half of the squared

Hellinger distance. That is, Df1/2(P ||Q) = H2(P ||Q)/2, where H2(P ||Q) =
∫

(
√
p−√q)2dµ

is the squared Hellinger distance between P and Q.

The total variation distance ‖P −Q‖TV is another f -divergence (with f(x) = |x− 1|/2)
but not a power divergence.

One of the most important properties of f -divergences is the “data processing inequality”
(Csiszár (1972) and Liese (2012, Theorem 3.1)) which states the following: let X and Y be
two measurable spaces and let Γ : X → Y be a measurable function. For every f ∈ C and
every pair of probability measures P and Q on X , we have

Df (PΓ−1||QΓ−1) ≤ Df (P ||Q), (10)
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where PΓ−1 and QΓ−1 denote the induced measures of Γ on Y, i.e., for any measurable set
B on the space Y, PΓ−1(B) := P (Γ−1(B)), QΓ−1(B) := Q(Γ−1(B)) (see the definition of
induced measure from Definition 2.2.1. in Athreya and Lahiri (2006)).

Next, we introduce the notion of f -informativity (Csiszár, 1972). Let P = {Pθ : θ ∈ Θ}
be a family of probability measures on a space X and w be a probability measure on Θ.
For each f ∈ C, the f -informativity, If (w,P), is defined as

If (w,P) = inf
Q

∫
Df (Pθ||Q)w(dθ), (11)

where the infimum is taken over all possible probability measures Q on X . When f(x) =
x log x (so that the corresponding f -divergence is the KL divergence), the f -informativity
is equal to the mutual information and is denoted by I(w,P). We denote the informativity
corresponding to the power divergence Dfα by Ifα(w,P). For the special case α = 2, we
use the more suggestive notation Iχ2(w,P). The informativity corresponding to the total
variation distance will be denoted by ITV (w,P).

Additional notations and definitions are described as follows. Recall the Bayes risk (2)
and the minimax risk (1). When the loss function L and parameter space Θ are clear from
the context, we drop the dependence on L and Θ. When the prior w is also clear from
the context, we denote the Bayes risk by R and the minimax risk by Rminimax. We need
certain notation for covering numbers. For a given f -divergence and a subset S ⊂ Θ, let
Mf (ε, S) denote any upper bound on the smallest number M for which there exist prob-
ability measures Q1, . . . , QM that form an ε2-cover of {Pθ, θ ∈ S} under the f -divergence
i.e.,

sup
θ∈S

min
1≤j≤M

Df (Pθ||Qj) ≤ ε2. (12)

We write the covering number as MKL(ε, S) when f(x) = x log x and Mχ2(ε, S) when
f(x) = x2− 1. We write Mα(ε, S) when f = fα for other α ∈ R. We note that logMf (ε, S)
is an upper bound on the metric entropy. The quantity Mf (ε, S) can be infinite if S is
arbitrary. For a vector x = (x1, . . . , xd) and a real number p ≥ 1, denote by ‖x‖p the `p-
norm of x. In particular, ‖x‖2 denotes the Euclidean norm of x. I(A) denotes the indicator
function which takes value 1 when A is true and 0 otherwise. We use C, c, etc. to denote
generic constants whose values might change from place to place.

3. Bayes Risk Lower Bounds for Zero-one Valued Loss Functions and
Their Applications

In this section, we consider zero-one loss functions L and present a principled approach
to derive Bayes risk lower bounds involving f -informativity for every f ∈ C. Our results
hold for any given prior w and zero-one loss L. By specializing the f -divergence to KL
divergence, we obtain the generalized Fano’s inequality (5). When specializing to other
f -divergences, our bounds lead to some classical minimax bounds of Le Cam and Assouad
(Assouad, 1983), more recent minimax results of Gushchin (2003); Birgé (2005) and also
results in Tsybakov (2010, Chapter 2). Bayes risk lower bounds for general nonnegative
loss functions will be presented in the next section.

We need additional notations to state the main results of this section. For each f ∈ C, let
φf : [0, 1]2 → R be the function defined in the following way: for a, b ∈ [0, 1]2, φf (a, b) is the

8
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f -divergence between the two probability measures P and Q on {0, 1} given by P{1} = a
and Q{1} = b. By the definition (9), it is easy to see that φf (a, b) has the following
expression (recall that f ′(∞) := limx↑∞ f(x)/x):

φf (a, b) =


bf
(
a
b

)
+ (1− b)f

(
1−a
1−b

)
for 0 < b < 1;

f(1− a) + af ′(∞) for b = 0;

f(a) + (1− a)f ′(∞) for b = 1.

(13)

The convexity of f implies monotonicity and convexity properties of φf , which is stated in
the following lemma.

Lemma 1 For each f ∈ C, for every fixed b, the map g(a) : a 7→ φf (a, b) is non-increasing
for a ∈ [0, b] and g(a) is convex and continuous in a. Further, for every fixed a, the map
h(b) : b 7→ φf (a, b) is non-decreasing for b ∈ [a, 1].

We also define the quantity

R0 := inf
a∈A

∫
Θ
L(θ, a)w(dθ), (14)

where the decision a does not depend on dataX. Note thatR0 represents the Bayes risk with
respect to w in the “no data” problem i.e., when one only has information on Θ, A, L and the
prior w but not the data X. For simplicity, our notation for R0 suppresses its dependence
on w. Because the loss function is zero-one valued so that L(θ, a) = 1− I(L(θ, a) = 0), the
quantity R0 has the following alternative expression:

R0 = 1− sup
a∈A

w(B(a)), (15)

where
B(a) := {θ ∈ Θ : L(θ, a) = 0} , (16)

and w(B(a)) is the prior mass of the “ball” B(a). It will be important in the sequel to
observe that the Bayes risk, RBayes(w) is bounded from above by R0. This is obvious
because the risk with some data cannot be greater than the risk in the no data problem
(which can be viewed as an application of the data processing inequality). Formally, if
D = {d : ∃a ∈ A such that d(x) = a ∀x ∈ X} is the class of the constant decision rules,
then R0 = infd∈D

∫
Θ EθL(θ, d(X))w(dθ) ≥ RBayes(w). Because 0 ≤ RBayes(w) ≤ R0, we

have RBayes(w) = 0 when R0 = 0. We shall therefore assume throughout this section that
R0 > 0.

The main result of this section is presented next. It provides an implicit lower bound
for the Bayes risk in terms of R0 and the f -informativity If (w,P) for every f ∈ C. The
only assumption is that L is zero-one valued and we do not assume the existence of the
Bayes decision rule.

Theorem 2 Suppose that the loss function L is zero-one valued. For any f ∈ C, we have

If (w,P) ≥ φf (RBayes(w), R0) (17)

where φf and R0 are defined (13) and (14) respectively.
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Figure 1: Illustration on why (17) leads to a lower bound on RBayes(w). Recall that R ≤ R0

and r 7→ φf (r,R0) is non-increasing in r for r ∈ [0, R0]. Given If (w,P) as an upper bound
of φf (RBayes(w), R0), we have RBayes(w) ≥ RL = g−1(If (w,P)) and thus RL serves as a
Bayes risk lower bound.

Before we prove Theorem 2, we first show that the inequality (17) indeed provides an
implicit lower bound for the Bayes risk R := RBayes(w) since R ≤ R0 and r 7→ φf (r,R0) is
non-increasing in r for r ∈ [0, R0] (Lemma 1). Therefore, let g(r) := φf (r,R0). We have

RBayes(w) ≥ g−1(If (w,P)), (18)

where g−1(x) := inf{0 ≤ r ≤ R0, g(r) ≤ x} is the generalized inverse function of the
non-increasing g(r). As an illustration, we plot φf (r,R0) for f(x) = x log x and the cor-
responding Bayes risk lower bound g−1(If (w,P)) in Figure 1. The lower bound (18) can
be immediately applied to obtain Bayes risk lower bounds when the f -divergence in (17)
is chi-squared divergence, total variation distance, or Hellinger distance (see Corollary 7).
However, for the KL divergence, there is no simple form of g−1(x). To obtain the corre-
sponding Bayes risk lower bound, we can invert (17) by utilizing the convexity of g(r), which
will give a generalized Fano’s inequality (see Corollary 5). In particular, since r 7→ φf (r,R0)
is convex (see Lemma 1),

φf (R,R0) ≥ φf (r,R0) + φ′f (r−, R0)(R− r) for every 0 < r ≤ R0

where φ′f (r−, R0) denotes the left derivative of x 7→ φf (x,R0) at x = r. The monotonicity
of φf (r,R0) in r (Lemma 1) gives φ′f (r−, R0) ≤ 0 and we thus have,

R ≥ r +
φf (R,R0)− φf (r,R0)

φ′f (r−, R0)
for every 0 < r ≤ R0.

Inequality (17) If (w,P) ≥ φf (R,R0) can now be used to deduce that (note that φ′f (r−, R0) ≤
0)

R ≥ r +
If (w,P)− φf (r,R0)

φ′f (r−, R0)
for every 0 < r ≤ R0. (19)

10
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The inequalities (18) and (19) provide general approaches to convert (17) to an explicit
lower bound on R.

Theorem 2 is new, but its special case Θ = A = {1, . . . , N}, L(θ, a) := I{θ 6= a} and
the uniform prior w is known (see Gushchin (2003) and Guntuboyina (2011b)). In such
a discrete setting, w(B(a)) = 1/N for any a ∈ A and thus R0 = 1 − 1/N . The proof
of Theorem 2 heavily relies on the following lemma, which is a consequence of the data
processing inequality for f -divergences (see (10) in Section 2).

Lemma 3 Suppose that the loss function L is zero-one valued. For every f ∈ C, every
probability measure Q on X and every decision rule d, we have∫

Θ
Df (Pθ||Q)w(dθ) ≥ φf (Rd, Rd

Q) (20)

where

Rd :=

∫
Θ
EθL(θ, d(X))w(dθ) , Rd

Q :=

∫
X

∫
Θ
L(θ, d(x))w(dθ)Q(dx). (21)

We note that Lemma 3 is of independent interest, which can be applied to establish minimax
lower bound as shown in the following remark.
Proof [Proof of Lemma 3]

Let P denote the joint distribution of θ and X under the prior w i.e., θ ∼ w and
X|θ ∼ Pθ. For any decision rule d, Rd in (21) can be written as Rd = EPL(θ, d(X)). Let
Q denote the joint distribution of θ and X under which they are independently distributed
according to θ ∼ w and X ∼ Q respectively. The quantity Rd

Q in (21) can then be written

as Rd
Q = EQL (θ, d(X)).

Because the loss function is zero-one valued, the function Γ(θ, x) := L(θ, d(x)) maps
Θ×X into {0, 1}. Our strategy is to fix f ∈ C and apply the data processing inequality (10)
to the probability measures P,Q and the mapping Γ. This gives

Df (P||Q) ≥ Df (PΓ−1||QΓ−1), (22)

where PΓ−1 and QΓ−1 are induced measures on the space {0, 1} of Γ. In other words, since
L is zero-one valued, both PΓ−1 and QΓ−1 are two-point distributions on {0, 1} with

PΓ−1{1} =

∫
ΓdP = EPL(θ, d(X)) = Rd, QΓ−1{1} =

∫
ΓdQ = Rd

Q.

By the definition of the function φf (·, ·), it follows that Df (PΓ−1||QΓ−1) = φf (Rd, Rd
Q). It

is also easy to see Df (P||Q) =
∫

ΘDf (Pθ||Q)w(dθ). Combining this equation with inequal-
ity (22) establishes inequality (20).

With Lemma 3 in place, we are ready to prove Theorem 2.
Proof [Proof of Theorem 2]

We write R as a shorthand notation of RBayes(w). By the definition (11) of If (w,P), it
suffices to prove that ∫

Df (Pθ‖Q)w(dθ) ≥ φf (R,R0) (23)

11



Chen and Guntuboyina and Zhang

for every probability measure Q.

Notice that R ≤ R0. If R = R0, then the right hand side of (17) is zero and hence the
inequality immediately holds. Assume that R < R0. Let ε > 0 be small enough so that
R+ ε < R0. Let d denote any decision rule for which R ≤ Rd < R+ ε and note that such a
rule exists since R = infdR

d. It is easy to see that

Rd
Q =

∫
X

∫
Θ
L(θ, d(x))w(dθ)Q(dx) ≥

∫
X

(
inf
a∈A

∫
Θ
L(θ, a)w(dθ)

)
Q(dx) = R0.

We thus have R ≤ Rd < R+ ε < R0 ≤ Rd
Q. By Lemma 3, we have∫

Θ
Df (Pθ‖Q)w(dθ) ≥ φf (Rd, Rd

Q).

Because x 7→ φf (x,Rd
Q) is non-increasing on x ∈ [0, Rd

Q], we have

φf (Rd, Rd
Q) ≥ φf (R+ ε, Rd

Q).

Because x 7→ φf (R+ ε, x) is non-decreasing on x ∈ [R+ ε, 1], we have

φf (R+ ε, Rd
Q) ≥ φf (R+ ε, R0).

Combining the above three inequalities, we have∫
Θ
Df (Pθ‖Q)w(dθ) ≥ φf (Rd, Rd

Q) ≥ φf (R+ ε, Rd
Q) ≥ φf (R+ ε, R0).

The proof of (23) completes by letting ε ↓ 0 and using the continuity of φf (·, R0) (continuity
was noted in Lemma 1). This completes the proof of Theorem 2.

Remark 4 Lemma 3 can also be used to derive minimax lower bounds in a different way.
For example, when the minimax decision rule d exists (e.g., for finite space Θ and A (Fer-
guson, 1967)), we have Rd ≤ Rminimax. If the probability measure Q is chosen so that
Rminimax ≤ Rd

Q, then, by Lemma 1, the right hand side of (17) can be lower bounded by

replacing Rd with Rminimax which yields∫
Θ
Df (Pθ||Q)w(dθ) ≥ φf (Rminimax, R

d
Q). (24)

Similarly, this inequality can be converted to an explicit lower bound on minimax risk. We
will show an application of this inequality in deriving Birgé-Gushchin inequality (Gushchin,
2003; Birgé, 2005) in Section 3.3.

3.1 Generalized Fano’s Inequality

In the next result, we derive the generalized Fano’s ienquality (5) using Theorem 2. The
inequality proved here is in fact slightly stronger than (5); see Remark 6 for the clarification.

12
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Corollary 5 (Generalized Fano’s inequality) For any given prior w and zero-one loss
L, we have

RBayes(w,L; Θ) ≥ 1 +
I(w,P) + log(1 +R0)

log (supa∈Aw(B(a)))
, (25)

where B(a) is defined in (16).

Proof [Proof of Corollary 5]
We simply apply (19) to f(x) = x log x and r = R0/(1 + R0), it can then be checked

that

φf (r,R0) = − log(1 +R0)− 1

1 +R0
log(1−R0), φ′f (r−, R0) = log(1−R0),

Inequality (19) then gives

R ≥ 1 +
I(w,P) + log(1 +R0)

log(1−R0)

which proves (25).

Remark 6 This inequality is slightly stronger than (5) because R0 ≤ 1 (thus log(1 +R0) ≤
log 2). For example, when Θ = A = {0, 1}, L(θ, a) := I{θ 6= a} and w{0} = w{1} = 1/2,
the inequality (5) leads to a trivial bound since the right hand side of (5) is negative.
However, since R0 = 1/2, the inequality (25) still provides a useful lower bound when
I(w,P) is strictly smaller than log 2− log(3/2).

As mentioned in the introduction, the classical Fano inequality (3) and the recent con-
tinuum Fano inequality (4) are both special cases (restricted to uniform priors) of Corollary
5. The proof of (4) given in Duchi and Wainwright (2013) is rather complicated with a
stronger assumption and a discretization-approximation argument. Our proof based on
Theorem 2 is much simpler. Lemma 3 also has its independent interest. Using Lemma 3,
we are able to recover another recently proposed variant of Fano’s inequality in Braun and
Pokutta (2014, Proposition 2.2). Details of this argument are provided in Appendix A.2.

3.2 Specialization of Theorem 2 to Different f-divergences and Their
Applications

In addition to the generalized Fano’s inequality, Theorem 2 allows us to derive a class of
lower bounds on Bayes risk for zero-one losses by plugging other f -divergences. In the next
corollary, we consider some widely used f -divergences and provide the corresponding Bayes
risk lower bounds by inverting (17) in Theorem 2.

Corollary 7 Let L be zero-one valued, w be any prior on Θ and R = RBayes(w,L,Θ). We
then have the following inequalities

(i) Chi-squared divergence:

R ≥ R0 −
√
R0(1−R0)Iχ2(w,P). (26)

13
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(ii) Total variation distance:
R ≥ R0 − ITV (w,P). (27)

(iii) Hellinger distance:

R ≥ R0 − (2R0 − 1)
h2

2
−
√
R0(1−R0)h2(2− h2). (28)

provided h2 ≤ 2R0. Here h2 =
∫

Θ

∫
ΘH

2(Pθ‖Pθ′)w(dθ)w(dθ′).

See Appendix A.3 for the proof of the corollary. The special case of Corollary 7 for
Θ = A = {1, . . . , N}, L(θ, a) = I{θ 6= a} and w being the uniform prior has been discovered
previously in Guntuboyina (2011b). It is clear from Corollary 7 that the choice of f -
divergence will affect the tightness of the lower bound for R. In Appendix A.5, we provide
a qualitative comparison of the lower bounds (25), (26) and (28). In particular, we show
that in the discrete setting with Θ = A = {1, . . . , N}, the lower bounds induced by the
KL divergence and the chi-squared divergence are much stronger than the bounds given by
the Hellinger distance. Therefore, in most applications in this paper, we shall only use the
bounds involving the KL divergence and the chi-squared divergence.

Corollary 7 can be used to recover classical inequalities of Le Cam (for two point hypothe-
ses) and Assouad (Theorem 2.12 in Tsybakov (2010) with both total variation distance and
Hellinger distance) and Theorem 2.15 in Tsybakov (2010) that involves fuzzy hypotheses.
The details are presented in Appendix A.4.

3.3 Birgé-Gushchin’s Inequality

In this section, we expand (24) in Remark 4 to obtain a minimax risk lower bound due to
Gushchin (2003) and Birgé (2005), which presents an improvement of the classical Fano’s
inequality when specializing to KL divergence.

Proposition 8 (Gushchin, 2003; Birgé, 2005) Consider the finite parameter and action
space Θ = A = {θ0, θ1, . . . , θN} and the zero-one valued indicator loss L(θ, a) = I{θ 6= a},
for any f -divergence,

φf (Rminimax, 1−Rminimax/N) ≤ min
0≤j≤N

1

N

∑
i:i 6=j

Df

(
Pθi ||Pθj

)
. (29)

Proof [Proof of Proposition 8]
To prove Proposition 8, it is enough to prove that 1

N

∑
i:i 6=j Df (Pθi ||Pθj ) ≥ φf (Rminimax, 1−

Rminimax/N) for every j ∈ {0, . . . , N}. Without loss of generality, we assume that j = 0.
We apply (20) with the uniform distribution on Θ \ {θ0} = {θ1, . . . , θN} as w, Q = Pθ0 and
the minimax rule for the problem as d. Because d is the minimax rule, Rd ≤ Rminimax. Also

Rd
Q =

1

N

N∑
i=1

Eθ0L(θi, d(X)) =
1

N
Eθ0

N∑
i=1

I{θi 6= d(X)}.

It is easy to verify that
∑N

i=1 I{θi 6= d(X)} = N − I{θ0 6= d(X)}. We thus have Rd
Q =

1− Eθ0L(θ0, d(X))/N . Because d is minimax, Eθ0L(θ0, d(X)) ≤ Rminimax and thus

Rd
Q ≥ 1−Rminimax/N. (30)
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(a) φf (1/2, b) (b) uf (x)

Figure 2: Illustration of φf (1/2, b) and uf (x) for f(x) = x log x.

On the other hand, we have Rminimax ≤ N/(N + 1). To see this, note that the minimax
risk is upper bounded by the maximum risk of a random decision rule, which chooses among
the N + 1 hypotheses uniformly at random. For this random decision rule, its risk is N

N+1

no matter what the true hypothesis is. Thus, N
N+1 is an upper bound on the minimax risk.

We thus have, from (30), that Rd
Q ≥ 1 − Rminimax/N ≥ Rminimax. We can thus apply (24)

to obtain

1

N

N∑
i=1

Df (Pθi ||Pθ0) ≥ φf (Rminimax, 1−Rminimax/N).

which completes the proof Proposition 8.

4. Bayes Risk Lower Bounds for Nonnegative Loss Functions

In the previous section, we discussed Bayes risk lower bounds for zero-one valued loss
functions. We deal with general nonnegative loss functions in this section. The main result
of this section, Theorem 9, provides lower bounds for RBayes(w,L; Θ) for any given loss L
and prior w. To state this result, we need the following notion. Fix f ∈ C and recall the
definition of φf in (13). We define uf : [0,∞) 7→ [1/2, 1] by

uf (x) := inf {1/2 ≤ b ≤ 1 : φf (1/2, b) > x} (31)

and if φf (1/2, b) ≤ x for every b ∈ [1/2, 1], then we take uf (x) to be 1. By Lemma 1, it is
easy to see that uf (x) is a non-decreasing function of x. For example, for KL-divergence
with f(x) = x log x, we have φf (1/2, b) = 1

2 log 1
4b(1−b) and uf (x) = 1

2 + 1
2

√
1− e−2x (see

Figure 2). We are now ready to state the main theorem of this paper.

Theorem 9 For every Θ,A, L, w and f ∈ C, we have

RBayes(w,L; Θ) ≥ 1

2
sup

{
t > 0 : sup

a∈A
w(Bt(a, L)) < 1− uf (If (w,P))

}
, (32)

where
Bt(a, L) := {θ ∈ Θ : L(θ, a) < t} for a ∈ A and t > 0. (33)

15



Chen and Guntuboyina and Zhang

Proof [Proof of Theorem 9]

Fix Θ,A, L, w and f . Let I := If (w,P) be a shorthand notation. Suppose t > 0 is such
that

sup
a∈A

w (Bt(a, L)) < 1− uf (I). (34)

We prove below that RBayes(w,L; Θ) ≥ t/2 and this would complete the proof. Let Lt
denote the zero-one valued loss function Lt(θ, a) := I {L(θ, a) ≥ t}. It is obvious that
L ≥ tLt and hence the proof will be complete if we establish that RBayes(w,Lt; Θ) ≥ 1/2.
Let R := RBayes(w,Lt; Θ) for a shorthand notation.

Because Lt is a zero-one valued loss function, Theorem 2 gives

I ≥ φf (R,R0) where R0 = 1− sup
a∈A

w (Bt(a, L)). (35)

By (34), it then follows that R0 > uf (I). By definition of uf (·), it is clear that there exists
b∗ ∈ [1/2, R0) such that φ(1/2, b∗) > I (this in particular implies that R0 ≥ 1/2). Lemma
1 implies that b 7→ φf (1/2, b) is non-decreasing for b ∈ [1/2, 1], which yields φf (1/2, b∗) ≤
φf (1/2, R0). The above two inequalities imply I < φf (1/2, R0). Combining this inequality
with (35), we have

φf (1/2, R0) > I ≥ φf (R,R0).

Lemma 1 shows that a 7→ φf (a,R0) is non-increasing for a ∈ [0, R0]. Thus, we have R ≥ 1/2.

We further note that because uf (x) is non-decreasing in x, one can replace If (w,P) in
(32) by any upper bound Iup

f i.e., for any Iup
f ≥ If (w,P), we have

RBayes(w,L; Θ) ≥ 1

2
sup

{
t > 0 : sup

a∈A
w(Bt(a, L)) < 1− uf (Iup

f )

}
. (36)

This is useful since If (w,P) is often difficult to calculate exactly. When f(x) = x log x,
Haussler and Opper (1997) provided a useful upper bound on the mutual information
I(w,P). We describe this result in Section 5 where we also extend it to power divergences
fα for α 6∈ [0, 1] (which covers the case of chi-squared divergence).

Remark 10 From the proof of Theorem 9, it can be observed that the constant 1/2 in the
right hand side of (32) and in the definition of uf (·) can be replaced by any c ∈ (0, 1]. This
gives the sharper lower bound:

RBayes(w,L; Θ) ≥ sup
c∈(0,1]

(
c sup

{
t > 0 : sup

a∈A
w (Bt(a, L)) < 1− uf,c(If (w,P))

})
,

where uf,c(x) = inf{c ≤ b ≤ 1 : φf (c, b) ≥ x}. Since obtaining exact constants is not our
main concern, the inequality (32) is usually sufficient to provide Bayes risk lower bounds
with correct dependence on the model and prior.
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Remark 11 We note that the lower bound presented in Theorem 9 might not be tight for
some special priors, e.g., when the prior w has extremely large density in some small region
of the parameter space. We call such regions with unbounded density as spikes in the prior
distribution. As a concrete example, let Θ = A be a subset of a finite dimensional Euclidean
space containing the origin with L being the Euclidean distance and let w denote the mixture
of the uniform priors over the balls B1(0, L) and Bε(0, L) for some very small 0 < ε � 1.
In this case, the mixture component Bε(0, L) is a spike. If ε is very small, then the term
supa∈Aw(Bt(a, L)) might be too big for Theorem 9 to establish a tight lower bound.

Even in such extreme cases, the tight lower bound can be salvaged by partitioning the
parameter space Θ into finite or countably many disjoint subsets Θi, i ≥ 0 and to apply
Theorem 9 to w restricted to each Θi. To illustrate this technique, suppose that w has a
Lebesgue density ϕ that is bounded from above. Let ϕmax denote the supremum of ϕ. We
partition the parameter space Θ into disjoint subsets Θ0,Θ1, . . . with

Θi := {θ ∈ Θ : 2−(i+1)ϕmax < ϕ(θ) ≤ 2−iϕmax}. (37)

Then, we apply Theorem 9 to w restricted to each Θi. More specifically, let wi denote the
probability measure w restricted to Θi i.e., wi(S) := w(S ∩ Θi)/w(Θi) for any measurable
set S ⊆ Θi. we have

RBayes(w,L; Θ) ≥
∑
i

w(Θi)RBayes(wi, L; Θi), (38)

where RBayes(wi, L; Θi) = infd
∫

Θi
EθL(θ, d(X))wi(dθ). To see this, for any decision rule d,

we have Rd(w,L; Θ) =
∑∞

i=1w(Θi)R
d(wi, L; Θi); then take infimum over all possible d on

both sides,

RBayes(w,L; Θ) = inf
d
Rd(w,L; Θ)

≥
∞∑
i=1

w(Θi) inf
d
Rd(wi, L; Θi) =

∞∑
i=1

w(Θi)RBayes(wi, L; Θi)

One can lower bound each Bayes risk RBayes(wi, L; Θi) for all i using Theorem 9. Since the
density of wi differs by a factor at most 2, the spiking prior problem will no longer exist
while applying Theorem 9 for wi. We also note that another useful application of such a
partitioning technique is presented in Corollary 17.

Now take the concrete example of the mixture of the uniform priors over B1 := B1(0, L)
and Bε := Bε(0, L). It is clear from (37) that Θ0 = Bε and Θk = B1\Bε for some k > 0
and the rest of Θi’s are empty sets. Applying (38), we have

RBayes(w,L; Θ) ≥w(Bε)RBayes(w1, L;Bε) + w(B1\Bε)RBayes(w2, L;B1\Bε)
≥w(B1\Bε)RBayes(w2, L;B1\Bε)

Note that w(B1\Bε) is lower bounded by a universal constant. Then we can lower bound
RBayes(w2, L;B1\Bε) using Theorem 9 and obtain a tight lower bound up to a constant factor
that is independent of ε (see an example of deriving Bayes risk lower bound for estimating
the mean of a Gaussian model with uniform prior on a ball in Section 5).
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For specific f ∈ C, the right hand side of (36) can be explicitly evaluated as shown in
the next corollary.

Corollary 12 Fix Θ,A, L, w and P. The Bayes risk RBayes(w,L; Θ) satisfies each of the
following inequalities (the quantity Iup

f represents an upper bound on the corresponding f -
informativity):

(i) KL divergence:

RBayes(w,L; Θ) ≥ 1

2
sup

{
t > 0 : sup

a∈A
w (Bt(a, L)) <

1

4
e−2I

up
f

}
. (39)

(ii) Chi-squared divergence:

RBayes(w,L; Θ) ≥ 1

2
sup

t > 0 : sup
a∈A

w (Bt(a, L)) <
1

4
(

1 + Iupf

)
 . (40)

(iii) Total variation distance:

RBayes(w,L; Θ) ≥ 1

2
sup

{
t > 0 : sup

a∈A
w (Bt(a, L)) <

1

2
− Iupf

}
. (41)

(iv) Hellinger distance: If Iup
f < 1− 1/

√
2, then we have

RBayes(w,L; Θ) ≥ 1

2
sup

{
t > 0 : sup

a∈A
w (Bt(a, L)) <

1

2
−
(

1− Iupf
)√

Iupf

(
2− Iupf

)}
. (42)

Proof [Proof of Corollary 12]
Inequality (39) involving KL divergence: Suppose f(x) = x log x so that Df (P ||Q) =

D(P ||Q) equals the KL divergence. Then the function uf (x) in (31) has the expression for
all x > 0,

uf (x) = inf
{

1/2 ≤ b ≤ 1 : b(1− b) < e−2x/4
}

=
1

2
+

1

2

√
1− e−2x.

The elementary inequality
√

1− a ≤ 1− a/2 gives for all x > 0,

uf (x) ≤ 1− 1

4
e−2x.

Inequality (32) reduces to the desired inequality (39):

RBayes(w,L; Θ) ≥ 1

2
sup

{
t > 0 : sup

a∈A
w (Bt(a, L)) <

1

4
e−2Iupf

}
.

The proof of the Bayes risk lower bounds for the other three f -divergences are similar
and thus we only present the form of uf (x). Inequality (40) involves chi-squared divergence
with f(x) = x2 − 1. Therefore, we have for all x > 0,

uf (x) = inf

{
1/2 ≤ b ≤ 1 :

(1− 2b)2

4b(1− b)
> x

}
=

1

2
+

1

2

√
x

1 + x
≤ 1− 1

4(1 + x)
.

18



On Bayes risk lower bounds

Inequality (41) involves total variation distance with f(x) = |x− 1|/2. Then

uf (x) = inf {1/2 ≤ b ≤ 1 : |1− 2b| > 2x} =
1

2
+ x.

Inequality (42) involves Hellinger divergence with f(x) = 1−
√
x and thus

uf (x) = inf
{

1/2 ≤ b ≤ 1 : 1−
√
b/2−

√
(1− b)/2 > x

}
=

{
1 if x ≥ 1− 1/

√
2

1
2 + (1− x)

√
x(2− x) if x < 1− 1/

√
2.

Remark 13 A special case of Corollary 12(i) appeared as Zhang (2006, Theorem 6.1). To
see that Zhang (2006, Theorem 6.1) is indeed a special case of (39), note first that (39) is
equivalent to

RBayes(w,L; Θ) ≥ 1

2
sup

{
t > 0 : inf

a∈A

1

w(Bt(a, L))
> 2Iup + log 4

}
. (43)

Here Iup is any upper bound on the mutual information. One such upper bound on the
mutual information is

Iup =

∫
Θ

∫
Θ
D(Pθ‖Pξ)w(dξ)w(dθ) (44)

That Iup is an upper bound on the mutual information can be seen for example by using
concavity of the logarithm (46) when the family {Qξ, ξ ∈ Ξ} is chosen to be the same as
{Pθ, θ ∈ Θ}. Using (44) in (43), we obtain

RBayes(w,L; Θ) ≥ 1

2
sup

{
t > 0 : inf

a∈A

1

w(Bt(a, L))
> 2

∫
Θ

∫
Θ
D(Pθ‖Pξ)w(dξ)w(dθ) + log 4

}
.

If we now specialize to the setting when the probability measures {Pθ, θ ∈ Θ} are all n-
fold product measures i.e., when each Pθ is of the form Pn

θ for some class of probabilities
{Pθ, θ ∈ Θ}, then the inequality becomes

RBayes(w,L; Θ) ≥ 1

2
sup

{
t > 0 : inf

a∈A

1

w(Bt(a, L))
> 2n

∫
Θ

∫
Θ
D(Pθ‖Pξ)w(dξ)w(dθ) + log 4

}
.

This inequality is precisely Zhang (2006, Theorem 6.1).

5. Upper Bounds on f-informativity and Examples

Application of Theorem 9 requires upper bounds on the f -informativity If (w;P). This
is the subject of this section. We focus on the power divergence fα for α ≥ 1 which
includes the KL divergence and chi-squared divergence as special cases. Recall that in the
comment/paragraph below Corollary 7 (see also Section A.5 in the appendix), we provided
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motivation for restricting our attention to such divergences as opposed to e.g., Hellinger
distance.

We assume that there is a measure µ on X that dominates Pθ for every θ ∈ Θ. None of
our results depend on the choice of the dominating measure µ.

When the f -informativity is the mutual information, Haussler and Opper (1997) have
proved useful upper bounds which we briefly review here. Let P and {Qξ, ξ ∈ Ξ} be
probability measures on X having densities p and {qξ, ξ ∈ Ξ} respectively with respect to
µ. Let ν be an arbitrary probability measure on Ξ and Q̄ be the probability measure on
X having density q̄ =

∫
Ξ qξν(dξ) with respect to µ. Haussler and Opper (1997) proved the

following inequality

D
(
P ||Q̄

)
≤ − log

(∫
Ξ

exp (−D(P ||Qξ)) ν(dξ)

)
. (45)

Now given a class of probability measures {Pθ, θ ∈ Θ}, applying the above inequality for
each Pθ and integrating the resulting inequalities with respect to a probability measure w
on Θ, Haussler and Opper (1997, Theorem 2) obtained the following mutual information
upper bound:

I(w,P) ≤ −
∫

Θ
log

(∫
Ξ

exp (−D(Pθ||Qξ)) ν(dξ)

)
w(dθ). (46)

In the special case when Ξ = {1, . . . ,M} and ν is the uniform probability measure
on Ξ, we have Q̄ = (Q1 + . . .+QM ) /M and inequality (45) then becomes D(P ||Q̄) ≤
− log

(
1
M

∑M
j=1 exp (−D(P ||Qj))

)
. Because

∑M
j=1 exp(−D(P‖Qj)) ≥ exp (−minj D(P‖Qj)),

we obtain
D(P‖Q̄) ≤ logM + min

1≤j≤M
D(P‖Qj).

Inequality (46) can be further simplified to

I(w,P) ≤ logM +

∫
Θ

min
1≤j≤M

D(Pθ||Qj)w(dθ). (47)

This inequality can be used to give an upper bound for f -informativity in terms of the KL
covering numbers. Recall the definition of MKL(ε,Θ) from (12). Applying (47) to any fixed
ε > 0 and choosing {Q1, . . . , QM} to be an ε2-covering, we have

I(w,P) ≤ inf
ε>0

(
logMKL(ε,Θ) + ε2

)
. (48)

When w is the uniform prior on a finite subset of Θ, the above inequality has been proved
by Yang and Barron (1999, Page 1571). If MKL(ε,Θ) is infinity for all ε, then (48) gives
∞ as the upper bound on I(w,P) and thus (39) will lead to a trivial lower bound 0 for
RBayes. In such a case, one may find a subset Θ̃ ⊂ Θ for which MKL(ε, Θ̃) is bounded and
contains most prior mass. If w̃ denotes the prior w restricted in Θ̃, then it is easy to see
that RBayes(w,L; Θ) ≥ w(Θ̃)RBayes(w̃, L; Θ̃). Then we can use (39) and (48) to lower bound
RBayes(w̃, L; Θ̃) .

In the next theorem, we extend inequalities (45) and (46) to power divergences corre-
sponding to fα for α /∈ [0, 1]. We also note that in Appendix B.2, we demonstrate the
tightness of the bound (49) in Theorem 14 by a simple example.
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Theorem 14 Fix α /∈ [0, 1] and let fα ∈ C be as defined in Section 2. Under the setting of
inequalities (45) and (46), we have

Dfα(P ||Q̄) ≤
[∫

Ξ
(Dfα(P ||Qξ) + 1)1/(1−α) ν(dξ)

]1−α
− 1. (49)

and

Ifα(w,P) ≤
∫

Θ

[∫
Ξ

(Dfα(Pθ||Qξ) + 1)1/(1−α) ν(dξ)

]1−α
w(dθ)− 1. (50)

To prove Theorem 14, the following lemma is critical (the proof of this lemma in given
in Appendix B.1).

Lemma 15 Fix r < 1. Let µ be a probability measure on the space T and let S := {u :

T → R+ : u ∈ Lrµ(T )}. Then the map f : S → R defined by f(u) :=
(∫
T u(t)rµ(dt)

)1/r
is

concave in u.

Note that the discrete version of Lemma 15 states that f(u) =
(∑M

i=1 u
r
i /M

)1/r
is a concave

function of u ∈ RM+ when r < 1.
In fact, since we will apply this lemma to prove Theorem 14 with r = 1

1−α , the condition
r < 1 in Lemma 15 translates into α 6∈ [0, 1] in Theorem 14. We are now ready to prove
Theorem 14.
Proof [Proof of Theorem 14]

By the identity that Dfα(P ||Q) = Df1−α(Q||P ), we have

Dfα(P ||Q̄) = Df1−α(Q̄||P ) =

∫
X
p

(∫
Ξ

qξ
p
ν(dξ)dµ

)1−α
− 1

=

∫
X
p

∫
Ξ

[(
qξ
p

)1−α
]1/(1−α)

ν(dξ)dµ

1−α

− 1

Let u(ξ, x) =
(
qξ
p

)1−α
. Since 1

1−α < 1 when α 6∈ [0, 1], Lemma 15 implies that u(ξ, x) 7→(∫
Ξ u(ξ, x)1/(1−α)ν(dξ)

)1−α
is concave in u. Applying Jensen’s inequality,

Dfα(P ||Q̄) ≤

∫
Ξ

[∫
X
p

(
qξ
p

)1−α
dµ

]1/(1−α)

ν(dξ)

1−α

− 1

=

(∫
Ξ

[
Df1−α(Qξ||P )

]1/(1−α)
ν(dξ)

)1−α
− 1.

This completes the proof of (49) because Df1−α(Qξ||P ) = Dfα(P ||Qξ). The proof of (50)
follows by applying (49) for P = Pθ and then integrating the resulting bound with respect
to w(dθ).

For α > 1, one can deduce an upper bound analogous to (48) for the fα-informativity
which is described in the next corollary. Recall the notion of the covering numbers Mα(ε,Θ)
from Section 2.
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Corollary 16 For every α > 1, we have

Ifα(w,P) ≤ inf
ε>0

(1 + ε2)Mα(ε,Θ)α−1 − 1. (51)

In particular, when Dfα is the chi-square divergence, Corollary 16 implies

Iχ2(w,P) ≤ inf
ε>0

(1 + ε2)Mχ2(ε,Θ)− 1. (52)

Note that Corollary 16 gives trivial bound when Mα(ε,Θ) equals ∞ for all ε > 0. This can
be handled in a way similar to that outlined in the discussion after (48).

Proof [Proof of Corollary 16]

Let Q1, . . . , QM be probability measures on X and fix θ ∈ Θ. Inequality (49) applied to
P = Pθ, Ξ := {1, . . . ,M} and the uniform probability measure on Ξ as ν gives

Dfα(Pθ‖Q̄) ≤Mα−1

 M∑
j=1

(1 +Dfα(Pθ‖Qj))1/(1−α)

1−α

− 1

We now use (note that α > 1)

M∑
j=1

(1 +Dfα(Pθ‖Qj))1/(1−α) ≥ max1≤j≤M (1 +Dfα(Pθ‖Qj))1/(1−α)

= (1 + min1≤j≤M Dfα(Pθ‖Qj))1/(1−α) .

This gives

Dfα(Pθ‖Q̄) ≤Mα−1

(
1 + min

1≤j≤M
Dfα(Pθ‖Qj)

)
− 1.

We now fix ε > 0 and apply the above with {Q1, . . . , QM} taken to be an ε2-cover of Θ
under the fα-divergence. We then obtain

Dfα(Pθ‖Q̄) ≤ inf
ε>0

(1 + ε2)Mα(ε,Θ)α−1 − 1.

The proof is complete by integrating the above inequality with respect to w(dθ).

We now turn to applications of the Bayes risk lower bounds in Corollary 12 and the infor-
mativity upper bounds in this section. We present a toy example here and postpone more
complicated examples (e.g., generalized linear model, spiked covariance model, Gaussian
model with general prior and loss) to Appendix C.

Example 1 (Gaussian model with uniform priors on large balls) Fix d ≥ 1. Sup-
pose Θ = A ⊆ Rd and let L(θ, a) := ‖θ − a‖22. For each θ ∈ Rd, let Pθ denote the Gaussian
distribution with mean θ and covariance matrix σ2Id×d (σ2 > 0 is a constant). Let w be
the uniform distribution on the closed ball of radius Γ centered at the origin. Let Γ ≥ σ

√
d.
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We will show below how to obtain the tight Bayes risk lower bound using Corollary 12 along
with the f -informativity upper bound in Corollary 16.

We can assume that Θ (and A) is the closed ball of radius Γ centered at the origin as w
puts zero probability outside this ball. We use the inequality (40) induced by the chi-squared
divergence. To establish the lower bound, we need to upper bound supa∈Aw(Bt(a, L)) and the
chi-squared informativity. The former can be easily controlled because supa∈Aw(Bt(a, L)) ≤(√
t/Γ
)d
. For the latter, we use (52), which requires an upper bound on Mχ2(ε,Θ). Note

that χ2(Pθ‖Pθ′) = exp
(
‖θ − θ′‖2/σ2

)
−1 for θ, θ′ ∈ Θ. As a consequence, χ2(Pθ‖Pθ′) ≤ ε2 if

and only if ‖θ− θ‖2 ≤ ε′ := σ
√

log(1 + ε2). Therefore, by a standard volumetric argument,
we have

Mχ2(ε,Θ) ≤
(

Γ + ε′/2

ε′/2

)d
≤
(

3Γ

ε′

)d
=

(
3Γ

σ
√

log(1 + ε2)

)d
provided ε′ ≤ Γ. In particular, if we take ε :=

√
ed − 1, then ε′ = σ

√
d ≤ Γ, we will obtain

Mχ2(ε,Θ) ≤ (3Γ/(σ
√
d))d. Inequality (52) then gives Iχ2(w,P) ≤

(
3eΓ
σ
√
d

)d
− 1. Let Iup

f be

the right hand side. If we choose t = cdσ2 for a sufficiently small constant c > 0, then we
have supa∈Aw(Bt(a, L)) < 1

4(1 + Iup
f )−1. Inequality (40) then gives

RBayes(w,L; Θ) ≥ cdσ2. (53)

This lower bound is tight due to the trivial upper bound RBayes(w,L; Θ) ≤ dmin(σ2,Γ2)
since RBayes(w,L; Θ) is smaller than the risk of the constant estimator 0 as well as the
trivial estimator of the observation itself.

This example allows us to compare the bound given by Theorem 9 for different f ∈ C.
We argue below that using KL divergence and applying (39) along with inequality (48) for
controlling the mutual information will not yield a tight lower bound for this example. In
other words, the same strategy that works for f(x) = x2−1 does not work for f(x) = x log x.
To see this, notice that D(Pθ‖Pθ′) = ‖θ−θ′‖2/σ2 for θ, θ′ ∈ Θ. As a result, D(Pθ‖Pθ′) ≤ ε2
if and only if ‖θ − θ′‖ ≤

√
2εσ. The same volumetric argument again gives MKL(ε,Θ) ≤(

3Γ√
2εσ

)d
provided

√
2εσ ≤ Γ. The bound (48) implies that the mutual information I(w,P)

is bounded by

I(w,P) ≤ inf
0<ε≤Γ/(

√
2εσ)

(
d log

(
3Γ√
2εσ

)
+ ε2

)
= d log

(
3Γ

σ
√
d

)
+
d

2
.

Let Iup
f be the right hand side above. The maximum t > 0 for which (

√
t/Γ)d < 1

4 exp
(
−2Iup

f

)
is on the order of d2σ4/Γ2. This means that inequality (39) implies a weaker lower bound
Ω(d2σ4/Γ2), which is suboptimal when dσ2 is small or when Γ is large. This is in contrast
with the optimal bound (53).

In the above example, a direct application of Theorem 9 with f(x) = x log x does not pro-
duce a tight lower bound. This is mainly because, when the prior is over a large parameter
space (e.g., a ball of a constant radius), the upper bound of mutual information over the en-
tire parameter space Θ in (48) could be too loose. This can be corrected by partitioning the
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parameter space Θ into small hypercubes, and applying our bounds for the prior restricted
to each hypercube separately so that the mutual information inside the partition can be
appropriately upper bounded using (48). This is another illustration of the idea described
in Remark 11. We first describe this method in a more general setting in the following
corollary and then apply it to the setting of Example 1. We use the following notation. For
measurable subsets S of a Euclidean space, Vol(S) denotes the volume (Lebesgue measure)
of S.

Corollary 17 Let Θ = A ⊆ Rd. Suppose that the prior w has a Lebesgue density fw that
is positive over Θ. For each θ ∈ Θ and δ > 0, let

rδ(θ) := sup

{
fw(θ1)

fw(θ2)
: θi ∈ Θ and ‖θi − θ‖2 ≤

√
dδ for i = 1, 2

}
.

Suppose also the existence of A > 0 such that D(Pθ1‖Pθ2) ≤ A‖θ1 − θ2‖22 for all θ1, θ2 ∈ Θ
and the existence of V > 0 (which may depend on d) and p > 0 such that supa∈AVol(Bt(a, L)) ≤
V td/p for every t > 0. Then

RBayes(w,L; Θ) ≥ 1

2
sup

0<δ≤A−1/2

[
e−2pδp(8V )−p/d

∫
Θ

(
1

rδ(θ)

)p/d
w(dθ)

]
. (54)

The proof of Corollary is quite technically involved and thus is deferred to Appendix
B.3.

We demonstrate below that this corollary yields the correct rate in Example 1. More
examples (e.g., estimation problem in generalized linear model, spiked covariance model,
and Gaussian model with a general loss) are given in Appendix C.

Example 2 (Gaussian model with uniform priors on large balls (continued)) Consider
the same setting as in Example 1. Because D(Pθ‖Pθ′) = ‖θ − θ′‖22/(2σ2), we can take
A = (2σ2)−1 in Corollary 17. Moreover, because L(θ, a) = ‖θ − a‖22, it is easy to see that
supa∈AVol(Bt(a, L)) ≤ td/2Vol(B) which means that we can take p = 2 and V = Vol(B) in
Corollary 17 where B is the unit ball in Rd. Finally, because w is the uniform prior, we
have rδ(θ) = 1 for all θ ∈ Θ. Corollary 17 therefore gives

RBayes(w,L; Θ) ≥ 1

2
sup

0<δ≤
√

2σ

(
e−48−2/dδ2Vol(B)−2/d

)
.

This matches the tight lower bound (53) by noting that Vol(B)1/d � d−1/2.

6. Smoothed Analysis for Spherical Gaussian Mixture Models with
Uniform Weights

Smoothed analysis is a useful technique for analyzing algorithms that fail in the worst case
but succeed with high probability in the average case. For parameter estimation problems,
smoothed analysis assumes that the parameter to be estimated is randomly perturbed
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by a small noise, and the data is generated with respect to the perturbed parameter as
well. Under this setting, if the set of “bad” parameters that fail the estimator has zero
measure, then the estimator will succeed almost surely after the perturbation. Smoothed
analysis has been successfully applied to analyze linear programming (Blum and Dunagan,
2002; Dunagan et al., 2011; Hsu and Kakade, 2013; Spielman and Teng, 2003), integer
programming (Röglin and Vöcking, 2007), binary search trees (Manthey and Reischuk,
2007), and other combinatorial problems (Banderier et al., 2003). See the paper by Spielman
and Teng (2003) for a survey of existing works.

In this section, we use smoothed analysis to study an important problem in statistical
estimation: learning mixture of spherical Gaussians. The problem of computing the maxi-
mum log-likelihood estimator is NP-hard (Arora and Kannan, 2005). However, if the true
parameters are perturbed by a random noise, then we demonstrate that a variant of the
polynomial-time algorithm proposed by Hsu and Kakade (2013) succeeds in estimating the
Gaussian means. We present an upper bound on the algorithm’s mean-squared error using
smoothed analysis, which achieves a better rate than the original algorithm of Hsu and
Kakade (2013). Furthermore, we apply the Bayes risk lower bound developed in this paper
to show that, the mean squared-error achieved by this algorithm is unimprovable, even un-
der smoothed analysis. To the best of our knowledge, the lower bound cannot be established
by traditional information-theoretic techniques for lower bounding minimax risks.

6.1 Learning Mixture of Gaussians

We study estimating the parameter of a Gaussian mixture model (GMM). The parameter
of a GMM is a d-by-k matrix θ := (θ1, . . . , θk). Each θi ∈ Rd represents the mean of the
i-th mixture component. We assume that the number of components k is much less than
the dimensionality d. Suppose that n i.i.d. instances {xi}ni=1 are sampled from the GMM
with each xi ∈ Rd. Equivalently, it is generated by the following procedure: First, an
integer zi is uniformly sampled from {1, . . . , k}. This integer is called the membership of
the i-th instance1. Then, the vector xi is drawn from the spherical Gaussian distribution
N(θzi ; Id×d). The goal is to estimate the parameters θ.

Information theoretically, the GMM model is learnable if the Gaussian means are well
seperated. Let D represent the minimum distance between two distinct component means.
Vempala and Wang (2004) show that, as long as D > C for C being a sufficiently large
constant, the estimation error on θ scales as O(n−1/2). However, the algorithm achieving
this rate has O(kk) time complexity. When the mutual distance D is large enough, there
are poly(n, d, k)-time algorithms to estimate the model parameters. In particular, Dasgupta
(1999) presents an algorithm for D = Ω(

√
d). Arora and Kannan (2005) and Dasgupta and

Schulman (2000) present algorithms for D = Ω(d1/4). Vempala and Wang (2004) reduce
this distance lower bound to Ω(k1/4). However, designing poly(n, d, k)-time algorithm for
Ω̃(1)-separated GMMs is a long-standing open problem.

Hsu and Kakade (2013) proposed a method that does not need the well-separation
condition. The only assumption is that {θ1, . . . , θk} are linearly independent. Let σmin > 0
be the smallest singular value of the matrix θ. Their algorithm runs in poly(n, d, k)-time

1. For simplicity, we focus on the case when all mixture components have equal weights, but our argument
can be easily generalized to the case of non-uniform weights.
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and achieves the following bound for estimator θ̂:

‖θ̂ − θ‖2F = O
(

poly(d, k, 1/σmin) log(1/δ)

n

)
with probability at least 1− δ. (55)

Here, ‖ · ‖F denotes the matrix Frobenius norm. In general, we cannot guarantee that
σmin > 0. However, if we add a small perturbation on the true component means, then
the assumption is satisfied almost surely. More precisely, we assume that there is a matrix
θ∗ ∈ Rd×k so that each entry of matrix θ is sampled from θij ∼ N(θ∗ij ; ρ

2). The following
lemma lower bounds the smallest singular value.

Lemma 18 (Ge et al. (2015), Lemma G.16) Let θ∗ ∈ Rd×k and suppose that d ≥ 3k.
If all entries of θ∗ are independently perturbed by N(0, ρ2) to yield matrix θ. For any ε > 0,
with probability at least 1−c1(c2ε)

d, the smallest singular value of matrix θ is lower bounded
by:

σmin > ερ
√
d.

Here, c1, c2 are universal constants.

We choose ε, ρ ∼ n−c for a sufficiently small c > 0, then the perturbation diminishes to
zero, and if σmin > ερ

√
d holds, then the right-hand side of equation (55) converges to zero

at a polynomial rate as n → ∞. Lemma 18 implies that the probability of this event is
at least 1 − O(n−cd). Thus, with high probability, the estimator θ̂ is consistent under the
smoothed analysis.

The convergence rate of the estimator θ̂ can be improved if we add a mild assumption
that D = Õ(

√
log(nk)). Although the main focus of the paper is on lower bounds, the upper

bound result on the estimation of θ̂ in learning mixture of Gaussians is of its independent
interest. To obtain the upper bound on E[‖θ̂ − θ‖2F ], we first establish the following lemma:

Lemma 19 Let the mutual distance satisfy D ≥ c1

√
log(nk/δ) ≥ 3 for a sufficiently

large constant c1. With probability at least 1 − δ, the inequality ‖xi − θj‖2 − ‖xi − θzi‖2 ≥
c2(d log(nk/δ))−1/2 holds for a constant c2 > 0, for any i ∈ [n] and any j ∈ [k]\{zi}.

The proof of this technical lemma is relegated to Appendix D. Lemma 19 shows that
with high probability, the distance of a random sample to its true component mean is
significantly less than the distance to any other means. Let θ̂j represent the j-th column

of θ̂. When the sample size n is sufficiently large, the method of Hsu and Kakade (2013)
guarantees that ‖θ̂j − θj‖2 < o((d log(nk/δ))−1/2) for any j ∈ [k]. Thus, Lemma 19 implies

that the distance of xi to θ̂zi is smaller than the distance to any other estimated centers.
As a consequence, we may recover the membership of instances by computing the center
that is the closest to them.

ẑi = arg min
j∈[k]
‖xi − θ̂j‖2.

According to Lemma 19, with high probability we have ẑi = zi for any i ∈ [n]. Given the
membership, we refine the mean estimates by:

θ̂j ←
∑

i:ẑi=j
xi

|{i : ẑi = j}|
.
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Since the membership is uniformly assigned, with high probability the sample size of the
j-th Gaussian component is lower bounded by n

2k . Thus, with high probability the squared

error of θ̂j will be upper bounded by O(dk/n). Since there are k components, the overall
squared error is bounded by O(dk2/n). Putting pieces together, we have an upper bound
on the mean-squared error of parameter estimation.

Proposition 20 Suppose that d ≥ 3k and n is greater than a fixed polynomial function of
(d, k, 1/ρ). Let the true parameter θ be ρ-perturbed from an arbitrary matrix θ∗ ∈ Rd×k. In
addition, assume that the distances between the columns of θ∗ are at least D = c

√
log(nk)

for some universal constant c. Then there is a universal constant C such that the estimator
θ̂ described above achieves mean-square error:

E[‖θ̂ − θ‖2F ] ≤ Cdk2

n
.

6.2 Minimax Risk of Smoothed Analysis

In this section, we formalize the notion of minimax risk under smoothed analysis. Similar to
the classical statistical setting, the minimax risk under smoothed analysis can be defined in
a game theoretic way. The learner first chooses an estimator θ̂, then the adversary chooses
a parameter θ∗ from the parameter space Θ, which is randomly perturbed to form the true
parameter θ. The data X is generated with respect to θ. Under this random perturbation
framework, the minimax risk is defined as:

Rminimax := inf
θ̂

sup
θ∗∈Θ

Eθ[L(θ̂(X), θ)] (56)

where L(·, ·) is the loss function. In our GMM application, the parameters are the means of
mixture components. The parameter space is the set of means whose mutual distances are
lower bounded by D. The true parameter is generated by a random Gaussian perturbation
with variance ρ2. The loss is the Frobenius norm of the difference of matrices.

We note that the minimax risk (56) differs from the classical notion of minimax risk in
that the adversary is not able to explicitly choose the true parameter θ. Instead, the true
parameter is sampled from a prior distribution parametrized by θ∗. This Bayes nature makes
it hard to lower bound the minimax risk (56) using the traditional Le Cam’s or the Fano’s
method. In particular, both the Le Cam’s method and the Fano’s method lower bound
the minimax risk by assuming a uniform prior over a carefully constructed discrete set.
However, in our GMM setting, the prior distribution of parameter θ is always continuous.

Our Bayes risk lower bound naturally fits into the setting of smoothed analysis. Let
w∗ be an arbitrary prior distribution over θ∗. Since θ is perturbed from θ∗, the prior w∗

induces a prior w over θ. It is easy to see that the Bayes risk with respect to w is a lower
bound on the minimax risk (56). Thus, it suffices to lower bound the Bayes risk:

RBayes(w,L; Θ) := inf
θ̂
Eθ∼w[L(θ̂(X), θ)].

For the GMM example, we construct the prior distribution w∗ as follow: the j-th column
of θ∗, namely the vector θ∗j ∈ Rd, is sampled from the normal distribution N(Dej ; Id×d),
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where ej is the unit vector of the j-th coordinate. As a consequence, the prior distribution
w samples the j-th column of θ from the normal distribution N(Dej ; (1 + ρ2)Id×d).

In the GMM setting, the membership variables zi are unknown to the estimator. If we
assume that the memberships are given to the estimator, it makes the problem easier so
that the associated Bayes risk is a smaller than or equal to the original Bayes risk. Since
we want to derive a lower bound, we make the assumption that the memberships are given,
then partition the instances into k disjoint subsets according to their memberships. Let the
j-th subset Sj be defined as Sj := {xi : zi = j}. Conditioning on the memberships, the
distributions of {(θj , Sj)}kj=1 are mutually independent. Thus, we have

RBayes(w,L; Θ) ≥
k∑
j=1

inf
θ̂j

Eθj∼wj [L(θ̂j(Sj), θj)] ≥
k∑
j=1

E
[

inf
θ̂j

Eθj∼wj [L(θ̂j(Sj), θj)|nj ]
]

(57)

where wj is the prior distribution N(Dej ; (1 + ρ2)Id×d) and nj is the cardinality of Sj .

We focus on the inner term on the right-hand side, namely inf
θ̂j
Eθj∼wj [L(θ̂j(Sj), θj)|nj ],

and find that it is the Bayes risk of Gaussian mean estimation with nj i.i.d. samples, with
the true parameter θj satisfying a Gaussian prior wj . This Bayes risk can be easily lower
bounded by the techniques that we develop in this paper.

Lemma 21 Suppose that the standard deviation of normal perturbation ρ ≤ 1 and nj ≥ 1.
For a universal constant c, the Bayes risk is lower bounded by

RBayes(wj , nj) := inf
θ̂j

Eθj∼wj [L(θ̂j(Sj), θj)|nj ] ≥
cd

nj
.

Proof [Proof of Lemma 21]
We denote the distribution of instances in Sj by Pθj and let P be the set of such

distributions. Since the support of wj is Rd, we start by defining a prior whose support is
an Euclidean ball of radius Γ :=

√
2d. Let w be the truncated prior satisfying:

w(x) =

{
wj(x)/c1 if ‖x−Dej‖2 ≤ Γ
0 otherwise.

The normalization factor c1 is equal to the total mass of w in the ball {x : ‖x−Dej‖2 ≤ Γ}.
It is straightforward to verify that the radius Γ is sufficiently large so that c1 is lower bounded
by a universal constant. The prior w can be viewed as restricting the original prior in a
finite radius. According to Remark 11, we may lower bound the Bayes risk by

RBayes(wj , nj) ≥ c1 ·RBayes(w, nj).

Thus, it suffices to lower bound the second term on the right-hand side.
We follow the similar steps of Example 1 to establish the lower bound. We start by

upper bounding the terms supa∈Aw(Bt(a, L)) and the chi-squared informativity Iχ2(w,P).
Using definition of the multivariate normal distribution, it is easy to see that

sup
a∈A

w(Bt(a, L)) = w(Bt(Dej , L)) ≤ V (
√
t)

c1(2π(1 + ρ2))d/2
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where V (
√
t) represents the volumn of the Euclidean ball of radius

√
t. Thus, there is a

universal constant c2 such that supa∈Aw(Bt(a, L)) ≤ (c2

√
t/Γ)d. On the other hand, we

follow the same steps of Example 1 to upper bound the chi-square informativity. Note that
our setup has nj i.i.d. observations, but in Example 1 there is only one observation. In this
generalized setup, the chi-square distance χ2(Pθ‖Pθ′) is equal to exp

(
nj‖θ − θ′‖22/σ2

)
−

1. Plugging this formula into the argument of Example 1, we obtain the upper bound
Iχ2(w,P) ≤ (3eΓ

√
nj/d)d − 1.

Let Iup
f be the obtained informativity upper bound. If we choose t = cd/nj for a suffi-

ciently small constant c > 0, then we have supa∈Aw(Bt(a, L)) < 1
4(1+Iup

f )−1. Corollary 12
then gives RBayes(w, nj) ≥ cd/nj .

Combining inequality (57) and Lemma 21, we have

RBayes(w,L; Θ) ≥
k∑
j=1

cdk

2n
P(nj ≤ 2n/k).

Recall that every nj satisfies a binomial distribution B(n, 1/k), which has median bn/kc or
dn/ke, thus the probability P(nj ≤ 2n/k) will be at least 1/2. It implies that the Bayes risk
is lower bounded by Ω(dk2/n). Putting pieces together, we have the following lower bound
on the minimax risk.

Proposition 22 Assume that the standard deviation of normal perturbation ρ ≤ 1, then
for some universal constant c the minimax risk of smoothed analysis is lower bounded by
Rminimax ≥ cdk

2

n .

Comparing proposition 20 and proposition 22, we find that both the upper bound and
the lower bound are tight. More precisely, under the assumptions of proposition 20, the
minimax risk of smoothed analysis is precisely on the order of dk2/n.

7. Bayes Risk Lower Bounds for Sparse Linear Regression

Linear regression is a canonical problem in machine learning and statistics. For a fixed
design matrix X ∈ Rn×d and an unknown parameter θ ∈ Rd, the learner observes a noise-
corrupted response vector y = Xθ + ε, where ε satisfies an isotropic normal distribution
N(0, σ2Id×d). The goal is to take the response vector as input and find an estimator
θ̂ ∈ Rd for the true parameter θ. The risk is measured either by the estimation error
Lest(θ, θ̂) := ‖θ̂ − θ‖22, or by the prediction error Lpre(θ, θ̂) := ‖Xθ̂ −Xθ‖22. Both errors will
be studied in this section.

For high-dimensional linear regression, the dimension d can be much greater than the
sample size n. In order to prevent over-fitting, one needs to impose structural assumptions
on the true parameter, for example, assuming that the the number of non-zero entries in
vector θ is at most k (k � d). Formally, we use B0(k) to represent the set of k-sparse vectors
in Rd, and assume that θ ∈ B0(k). Under this setting, we want to compute an estimator
θ̂ ∈ Rd to minimize the estimation error or the prediction error. Note that the estimator θ̂
does not need to be k-sparse. Hence, our theoretical framework includes improper learners
which are allowed to output non-sparse estimates whenever they achieve small risks.
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The minimax risks of sparse linear regression have been well-studied. Under the same
problem setting, Raskutti et al. (2011) proved information theoretic lower bounds on both
the estimation error and the prediction error. Certain lower bounds have also been proved
under the computation tractability constraint Zhang et al. (2014), or proved for the family
of regularized M-estimators Zhang et al. (2015). All these lower bounds handle the worst-
case scenario — given an arbitrary estimator, they prove the existence of a parameter θ
that attains the lower bound. This setting might be too pessimistic in practice. The goal
of this section is to study the Bayes risk of sparse linear regression under a natural prior,
whose construction is described in the next subsection.

7.1 Prior Definition and Assumptions

We define a prior over k-sparse d-dimensional vectors for the true parameter θ ∈ Rd, referred
to as distribution w, as follows:

1. Uniformly sample a subset of k indices from the integer set {1, 2, . . . , d}, naming this
subset by K.

2. For every index i ∈ K, the coordinate θi is generated by sampling from the normal
distribution N(0, τ2). For any i /∈ K, define θi := 0.

Given an index set K, we use θK as a shorthand notation to denote the coordinates of
the vector θ ∈ Rd whose indices belong to the set K. Similarly, we use θ−K to denote the
subvector whose indices are not in K. Then the the second step of the above generative
process can be rephrased as generating θK ∼ N(0, τ2Ik×k) and defining θ−K = 0. It is clear
that the sampled θ belongs to the k-sparse `0-ball B0(k) :=

{
θ ∈ Rd : ‖θ‖0 ≤ k

}
.

One may consider variants of the the prior defined above. For example, one can assume
that the number of non-zero entries of the vector θ is not exactly equal to k, but random
sampled from a Poisson distribution with mean k. One may also redefine the prior of non-
zero entries to be a non-Gaussian distribution. However, these variants don’t add essential
technical challenge to the analysis, thus we focus on the the prior w as a concrete example
for illustrating the general idea.

We make an additional assumption on the design matrix X that is important for charac-
terizing the minimax risk (see, e.g. Raskutti et al., 2011), and in this section, we study their
effects on the Bayes risk. Specifically, the design matrix X satisfies the sparse eigenvalue
conditions with parameter (κu, κ`) if:

κ`‖β‖2 ≤
‖Xβ‖2√

n
≤ κu‖β‖2 for any (2k)-sparse vector β ∈ Rd. (58)

Here, both κu and κ` are positive constants. As a concrete example, if entries of the ma-
trix X are i.i.d. sampled from a normal distribution, then the matrix is called a Gaussian
random design. This type of matrices have been extensively studied for sparse linear re-
gression (Candes et al., 2006; Guédon et al., 2008), and proved to satisfy condition (58)
with κu/κ` = O(1) (Raskutti et al., 2010). For the rest of this section, we assume that the
design matrix X satisfies the condition (58).
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7.2 Bayes Risk Lower Bounds

For sparse linear regression, we denote the parameter space and action space by Θ = B0(k)
and A = Rd, respectively. We present a Bayes risk lower bound with respect to the prior
distribution defined in Section 7.1, then demonstrate its consequences.

Theorem 23 Assume that the design matrix X satisfies the sparse eigenvalue condition (58),
and that d > k3. There are universal constants c′, c′′ > 0 such that for any τ > 0, we have
Bayes risk lower bounds: RBayes(w,Lest; Θ) ≥ c′ T (τ) and RBayes(w,Lpre; Θ) ≥ c′′ κ2

`T (τ),
where T (τ) is a term defined by

T (τ) := kτ2 max
{ 1

1 + κ2
uτ

2n/σ2
, exp

(
− 4κ2

un

σ2

[
τ2 − σ2 log(d/k)

16κ2
un

]
+

)}
. (59)

The proof of Theorem 23 follows the general strategy that we sketched in earlier sections:
first, we bound the mutual informativity using the techniques described in Section 5, then
we upper bound the probability supa∈Aw(Bt(a, L)) for a specific scalar t > 0. Combining
the two upper bounds with Corollary 12 establishes the theorem. See Appendix E for the
proof. We make a few important remarks of this result in the below.

Estimation versus prediction By Theorem 23, the lower bounds on the estimator error
and the prediction error differ by a factor κ2

` . As a consequence, if we multiply a constant
to the design matrix, then the term κ2

` will also be scaled. If the scalar is very small,
then the lower bound on the prediction error will be close to zero, but the lower on the
estimation error won’t. These are the right scaling for both risks. Indeed, when the design
matrix converges to an all-zero matrix, the true parameters will be hard to identify, but the
constant estimator θ̂ ≡ 0 will be able to achieve a small prediction error.

Comparison with minimax risk lower bounds It is worth comparing Theorem 23
with the well-studied minimax risk lower bound. Under the sparse eigenvalue condition (58),
Raskutti et al. (2011) proved the follow minimax risk lower bound:

inf
θ̂

max
θ∈B0(k)

E[Lest(θ, θ̂)] ≥ c′
σ2k log(d/k)

κ2
un

and inf
θ̂

max
θ∈B0(k)

E[Lpre(θ, θ̂)] ≥ c′′
κ2
`σ

2k log(d/k)

κ2
un

,

(60)

where c′ and c′′ are universal constants. These bounds are matched by Theorem 23. In
particular, if we assume d > k3 and consider the prior distribution with variance:

τ2 =

(
τ2
∗ :=

σ2 log(d/k)

16κ2
un

)
, (61)

then expression (59) implies T (τ) = kτ2, and as a consequence, we have

RBayes(w,Lest; Θ) ≥ c′ σ
2k log(d/k)

κ2
un

and RBayes(w,Lpre; Θ) ≥ c′′
κ2
`σ

2k log(d/k)

κ2
un

, (62)

where c′ and c′′ are universal constants. The minimax risk lower bounds (60) and the Bayes
risk lower bounds (62) thus match by a universal constant factor. Therefore, using our
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technique, we can directly obtain this classical minimax result on sparse linear regression.
It is worth noting that the lower bounds of Raskutti et al. (2011) were proved by constructing
a uniform prior over a discrete packing set over the parameter space. The existence of the
proper packing set was proved in a non-constructive, worst-case fashion, which might be
too pessimistic in practice. In contrast, our lower bound was established for a realistic and
flexible prior which admits a simple closed-form definition and allows for different levels of
variance. The theorem also shows that the prior w with the variance level (61) is in fact a
least favorable prior for sparse linear regression.

Bayes risk on the spectrum of priors Besides the least-favorable setting (61), let us
consider the Bayes risk under other choices of the parameter τ2. When τ2 < τ2

∗ , Theorem 23
implies

RBayes(w,Lest; Θ) ≥ c′ kτ2 and RBayes(w,Lpre; Θ) ≥ c′′ κ2
`kτ

2. (63)

When τ2 → +∞, Theorem 23 implies

RBayes(w,Lest; Θ) ≥ c′ kσ
2

κ2
un

and RBayes(w,Lpre; Θ) ≥ c′′
κ2
`kσ

2

κ2
un

. (64)

In both cases, the Bayes risk lower bounds can be significantly smaller than the minimax
risk. We argue that these lower bounds are essentially tight under specific assumptions.
That is, when taking the prior information into account, we can indeed achieve better rates
than the minimax rate.

First, notice that the upper bound:

Eθ∼w[Lest(θ, θ̂)] ≤ kτ2 and Eθ∼w[Lest(θ, θ̂)] ≤ κ2
ukτ

2.

can always be achieved using the constant estimator θ̂ ≡ 0. It means that for the case of
τ2 < τ2

∗ , the lower bounds (63) are tight under the assumption κu/κ` = O(1).
For the case of τ2 → +∞, we consider the `0-norm constrained estimator:

θ̂ := arg inf
β∈B0(k)

‖Xβ − y‖22. (65)

Whenever κu/κ` = O(1), Raskutti et al. (2011) showed that the estimator (65) achieves an

error bound ‖θ̂ − θ‖22 ≤ c k log(d)
n with high probability for a constant c > 0. Suppose that

τ2 = C k log(d)
n with a scaling factor C > c. For any i ∈ K, the expectation of θ2

i is equal

to τ2, so that the probability of θ2
i ≤ c k log(d)

n is bounded by O(c/C). It means that by

choosing a large enough C (specifically, choosing C � ck), the lower bound θ2
i > c k log(d)

n
will hold for every i ∈ K with a probability close to 1. Combining this fact with the bound
‖θ̂ − θ‖22 ≤ c

k log(d)
n , we find that the support of θ̂ must agree with K, so that the estimator

must satisfy:
θ̂K = arg inf

β∈Rk
‖XKβ − y‖22 and θ̂−K = 0,

where XK is a submatrix of X consisting of columns indexed by K. In other words, the
vector θ̂K is the least-square estimator for a k-dimensional linear regression problem. For
estimators taking this form, both the estimation error and the prediction error are known
to match the lower bound (64) with high probability.
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8. Conclusions

In this paper, we presented lower bounds for the Bayes risk in abstract decision-theoretic
problems. Our bounds are quite general and only require upper bounds on supa∈Aw(Bt(a, L))
and the f -informativity If (w,P) for their application. Because of the generality, the bounds
are not always tight however. For example, the bounds involve supa∈Aw(Bt(a, L)) and this
quantity becomes large when the prior w has a spike. In such situations, our main Bayes
risk lower bound in Theorem 9 will not be tight. In specific examples, this looseness can
be remedied by adhoc fixes such as the one described in Remark 11. Obtaining tight lower
bounds for the Bayes risk in the generality considered in this paper is a challenging open
problem.
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Appendix A. Proofs and Additional Results for Section 3 on Bayes Risk
Lower Bound for Zero-one Loss

A.1 Proof of Lemma 1

Recall the expression (13) of φf (a, b). We first fix b and show that g(a) : a 7→ φf (a, b) is a
non-increasing for a ∈ [0, b]. There is nothing to prove if b = 0 so let us assume that b > 0.
We will consider the cases 0 < b < 1 and b = 1 separately. For 0 < b < 1, note that for
every a ∈ (0, b], we have,

g′L(a) = f ′L

(a
b

)
− f ′R

(
1− a
1− b

)
,

where g′L and f ′L represent left derivatives and f ′R represents right derivative (note that f ′L
and f ′R exist because of the convexity of f). Because a

b ≤
1−a
1−b for every 0 ≤ a ≤ b and f is

convex, we see that

g′L(a) ≤ f ′R
(a
b

)
− f ′R

(
1− a
1− b

)
≤ 0

for every a ∈ (0, b] which implies that g(a) is non-increasing on [0, b].
When b = 1, we have g′L(a) = f ′L(a) − f ′(∞) which is always ≤ 0 because f is convex

(note that f ′(∞) = limx↑∞ f(x)/x = limx↑∞(f(x)− f(1))/(x− 1)).
The convexity and continuity of g follow from the convexity of f and the expression for

φf .
Next, we fix a and show that h(b) : b 7→ φf (a, b) is non-decreasing for b ∈ [a, 1]. For

every b ∈ [a, 1), we have,

h′R(b) = f
(a
b

)
− a

b
f ′L

(a
b

)
− f

(
1− a
1− b

)
+

1− a
1− b

f ′R

(
1− a
1− b

)
, (66)

where h′R represents the right derivative of h. By the convexity of f ,

f
(a
b

)
− f

(
1− a
1− b

)
≥ f ′R

(
1− a
1− b

)(
a

b
− 1− a

1− b

)
. (67)

Combining (66) with (67), we obtain that,

h′R(b) ≥ a

b

(
f ′R

(
1− a
1− b

)
− f ′L

(a
b

))
≥ a

b

(
f ′L

(
1− a
1− b

)
− f ′L

(a
b

))
≥ 0,

where the last inequality is because that a
b ≤

1−a
1−b for every 0 ≤ a ≤ b and f is convex. The

non-negativity of h′R(b) implies that h(b) is non-decreasing on [a, 1].

A.2 A Variant of Fano’s Inequality from Braun and Pokutta (2014)

One of the main results in Braun and Pokutta (2014) (Proposition 2.2) establishes the
following variant of Fano’s inequality. Consider the setting of Lemma 3. In particular,
recall the quantities Rd and Rd

Q from (21) and also the sets B(a), a ∈ A from (16). (Braun
and Pokutta, 2014, Proposition 2.2) proved the following: for any decision rule d,

Rd ≥ −I(w,P)−H(Rd)− logwmax

log [(1− wmin)/wmax]
, (68)
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whereH(x) := −x log x−(1−x) log(1−x), wmin := infa∈Aw(B(a)) and wmax := supa∈Aw(B(a)).
Below we provide a proof of this inequality using Lemma 3. The proof given in Braun

and Pokutta (2014) is quite different proof. Using (20) from Lemma 3 with f(x) = x log x,
we have for any decision rule∫

Θ
Df (Pθ‖Q)w(dθ) ≥ Rd log

Rd

Rd
Q

+ (1−Rd) log
1−Rd

1−Rd
Q

.

We can rewrite this as∫
Θ
Df (Pθ‖Q)w(dθ) ≥ −H(Rd)−Rd logRd

Q − (1−Rd) log(1−Rd
Q) (69)

where H(x) := −x log x− (1− x) log(1− x). Since L in Lemma 3 is zero-one valued.

Rd
Q = 1− EQw(B(d(X))) (70)

where EQ denotes expectation taken under X ∼ Q and and B(d(X)) is defined in (16). As
a result, we have

1−max
a∈A

w(B(a)) ≤ Rd
Q ≤ 1−min

a∈A
w(B(a)). (71)

Using the bounds in (71) on the right hand side of (69), we deduce∫
Θ
Df (Pθ‖Q)w(dθ) ≥ −H(Rd)−Rd log (1− wmin)− (1−Rd) logwmax.

where wmin := infa∈Aw(B(a)) and wmax := supa∈Aw(B(a)) for notational simplicity. Tak-
ing the infimum on the left hand side above over all probability measures Q, we obtain

I(w,P) ≥ −H(Rd)−Rd log (1− wmin)− (1−Rd) log (wmax) .

Provided wmin + wmax < 1, one can rewrite the above inequality as (68). This completes
the proof of (68).

A.3 Proof of Corollary 7

1. Proof of inequality (26): Applying Theorem 2 with f(x) = x2 − 1, we obtain

Iχ2(w,P) ≥ (R0 −R)2

R0(1−R0)

Because R ≤ R0, we can invert the above to obtain (26).

2. Proof of inequality (27): Theorem 2 with f(x) = |x− 1|/2 gives

ITV (w,P) ≥ R0

2

∣∣∣∣ RR0
− 1

∣∣∣∣+
1−R0

2

∣∣∣∣ 1−R
1−R0

− 1

∣∣∣∣ = R0 −R,

where the last equality uses the fact that R ≤ R0. Inverting the above inequality, we
obtain (27).
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3. Proof of inequality (28): Theorem 2 with f(x) = f1/2(x) = 1−
√
x gives

If1/2(w,P) ≥ 1−
√
RR0 −

√
(1−R)(1−R0). (72)

Assume that Pθ has density pθ with respect to a common dominating measure µ. We
shall show below that

If1/2(w,P) = 1−

√∫
X
u2dµ where u :=

∫
Θ

√
pθw(dθ). (73)

To see this, fix a probability measure Q that has a density q with respect to µ. We
can then write∫

Θ
Df1/2(Pθ‖Q)w(dθ) = 1−

∫
X

√
q

(∫
Θ

√
pθw(dθ)

)
dµ = 1−

∫
X

√
qu2dµ

It follows then from the Cauchy-Schwarz inequality that∫
Θ
Df1/2(Pθ||Q)w(dθ) = 1−

∫
X

√
qu2 dµ ≥ 1−

√∫
X
u2 dµ,

with equality holding when q is proportional to u2. This proves (73). We now see
that ∫

X
u2 dµ =

∫
Θ

∫
Θ

∫
X

√
pθ
√
pθ′ dµ w(dθ)w(dθ′) = 1− 1

2
h2 (74)

where h2 is defined as

h2 =

∫
Θ

∫
Θ
H2(Pθ‖Pθ′)w(dθ)w(dθ′). (75)

This, together with (72) and (73), gives the inequality

√
RR0 +

√
(1−R)(1−R0) ≥

√
1− h2

2
(76)

Now under the assumption h2 ≤ 2R0, the right hand side of the inequality (76) lies
between

√
1−R0 and 1. On the other hand, it can be checked that, as a function

in R, the left hand side of (76) is strictly increasing from
√

1−R0 (at R = 0) to 1
at (R = R0). Therefore, from (76), we know that R ≥ R̂ where R̂ ∈ [0, R0] is the
solution to the equation obtained by replacing the inequality (76) with an equality.
One can solve this equation and obtain two solutions. One of two solutions can be
discarded by the fact that R ≤ R0. The other solution is given by:

R̂ = R0 − (2R0 − 1)
h2

2
−
√
R0(1−R0)

√
h2(2− h2)

and thus we have R ≥ R̂ which proves inequality (28).
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We note that the lower bound on R in (28) only holds under the condition h2 ≤ 2R0.
When h2 > 2R0, inequality (28) holds for every R ∈ [0, RQ∗ ] and thus cannot provide
a non-trivial lower bound on R. As an example, when Θ = A = {1, . . . , N}, L(θ, a) =
I{θ 6= a} and w is the uniform prior on Θ, it is easy to see that R0 = 1− (1/N) and

h2 =
1

N2

∑
θ 6=θ′

H2(Pθ‖Pθ′) ≤ 2
N(N − 1)

N2
= 2RQ∗ . (77)

Inequality (28) therefore is equivalent to

R ≥ 1− 1

N
− N − 2

N

h2

2
−
√
N − 1

N

√
h2(2− h2).

This recovers the result in Example II.6 in Guntuboyina (2011b).

A.4 Derivations of Le Cam’s Inequality (Two Hypotheses) and Assouad’s
Lemma and other Results from Corollary 7

To demonstrate the application of Corollary 7, we apply it to derive the two hypotheses
version of Le Cam’s inequality (with total variation distance) and Assouad’s lemma (see
Theorem 2.12 in (Tsybakov, 2010)).

The simplest version of the Le Cam’s inequality, the so-called two-point argument, is
an easy corollary of (27). Indeed, applying (27) with Θ = A = {θ0, θ1}, L(θ, a) = I{θ 6= a}
and w{0} = w{1} = 1/2 (and note that R0 = 1/2), we obtain that for any distribution Q
on X ,

1

2
(‖Pθ0 −Q‖TV + ‖Pθ1 −Q‖TV ) ≥ ITV (w,P) ≥ 1/2−R.

Taking Q = (Pθ0 + Pθ1)/2, we obtain Le Cam’s inequality:

Rminimax ≥
1

2
(1− ‖Pθ0 − Pθ1‖TV ) . (78)

The more involved Le Cam’s inequality considers Θ = A = Θ0 ∪Θ1 for two disjoint subsets
Θ0 and Θ1 and loss function L(θ, a) = I{θ ∈ Θ1, a ∈ Θ2} + I{θ ∈ Θ2, a ∈ Θ1}. The
inequality states that for every pair of probability measures w0 and w1 concentrated on Θ0

and Θ1 respectively,

Rminimax ≥
1

2
(1− ‖m0 −m1‖TV ) (79)

where m0 and m1 are marginal densities given by mτ (x) =
∫
pθ(x)wτ (dθ) for τ = 0, 1. To

prove (79), consider the prior w = (w0 + w1)/2. Under this prior, the problem is easily
converted to the previous binary testing problem. In particular, the data generating process
under the prior w can be viewed as first sampling τ ∼ Uniform {0, 1} and then X ∼ mτ .
The decision a ∈ A can be converted into the binary decision τ̂ = I(a ∈ Θ1). The loss
function is L(τ, τ̂) = I(τ 6= τ̂). The Bayes risk under the prior w can be re-written as,

RBayes(w,L; Θ) =
1

2
inf
τ̂

∑
τ=0,1

∫
X
I(τ 6= τ̂(x))mτ (x)µ(dx), (80)
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which has the same form as the Bayes risk in the earlier binary testing problem. Applying
the same argument as for proving (78), we obtain the lower bound on the Bayes risk in
(80), RBayes(w,L; Θ) ≥ 1

2 (1− ‖m0 −m1‖TV ), which further implies (79).
Another classical minimax inequality involving the total variation distance is Assouad’s

inequality (Assouad, 1983) which states that if Θ = A = {0, 1}d and the loss function L is
defined by the Hamming distance, i.e., L(θ, a) =

∑d
i=1 I(θi 6= ai), then

Rminimax ≥
d

2
min

L(θ,θ′)=1
(1− ‖Pθ − Pθ′‖TV ) . (81)

This inequality is also a consequence of (27): let w be the uniform probability measure on
Θ and L1(θ, a) = I(θ1 6= a1). Under w, the marginal distribution of the first coordinate is
w1{0} = w1{1} = 1/2. Letmτ (x) :=

∑
θ:θ1=τ pθ(x)/2d−1 for τ ∈ {0, 1} be the corresponding

marginal density of X and let Q(x) = 1
2 (m0(x) +m1(x)). Applying the same argument

as for proving (78), we obtain that the minimax risk for the zero-one valued loss function
L1(θ, a) is bounded below by 1

2 (1− ‖m0 −m1‖TV ) ≥ 1
2 minL(θ,θ′)=1 (1− ‖Pθ − Pθ′‖TV ).

Repeating this argument for Li(θ, a) := I{θi 6= ai} for i = 2, . . . , d and adding up the
resulting bounds, we obtain (81).

By using Le Cam’s inequality (see, e.g., Lemma 2.3 in (Tsybakov, 2010)) which states
that:

‖Pθ − Pθ′‖TV ≤

√
H2(Pθ‖Pθ′)

(
1− 1

4
H2(Pθ‖Pθ′)

)
,

the inequality in (81) further implies the Hellinger distance version of Assouad’s inequality
in the book Tsybakov (2010, Theorem 2.12), i.e.,

Rminimax ≥
d

2
min

L(θ,θ′)=1

{
1−

√
H2(Pθ‖Pθ′)

(
1− 1

4
H2(Pθ‖Pθ′)

)}
. (82)

A.5 Comparison of the Bounds for Different Divergences

We provide some qualitative comparisons of Bayes risk lower bounds given by Theorem
2 for different power divergences. In particular, let us consider the discrete setting where
Θ = A = {θ1, . . . , θN}, L(θ, a) = I{θ 6= a}, and w is the discrete uniform. Note that in such
a “multiple testing problem” setup, R0 is equal to 1−(1/N). We take N sufficiently large so
that R0 is close to 1. To establish minimax lower bounds, a typical approach is to reduce the
estimation problem to a multiple hypotheses testing problem in the aforementioned setup,
then try to prove that the Bayes risk R ≥ c > 0 (see Section 2.2. in Tsybakov (2010)).
Without loss of generality, we take c = 1/2 and we shall see how the three inequalities (25),
(26) and (28) work to establish R ≥ 1/2.

Let us start with (25) corresponding to KL divergence, which is equivalent to the classical
Fano’s inequality (3) in the discrete setting. To establish R ≥ 1/2, the following condition
should hold:

I(w,P) ≤ 1

2
log

(
N

4

)
. (83)

We remark that I(w,P) is at most logN even if every the pairwise KL divergenceD(Pθi‖Pθj )
equals∞ for i 6= j. This fact will be clear from the inequality (47) from Section 5 (letM = N
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and Qj = Pθj for 1 ≤ j ≤ M). The upper bound on I(w,P) in (47) further provides a
sufficient condition to verify (83).

Now we turn to (26) corresponding to the chi-squared divergence. Since R0 = 1−(1/N),
inequality (26) implies a sufficient condition for R ≥ 1/2:

Iχ2(w,P) ≤ N2

N − 1

(
1

2
− 1

N

)2

. (84)

When N is large, the above condition is equivalent to Iχ2(w,P) ≤ N/4. Note that the maxi-
mum possible value of Iχ2(w,P) in this discrete setting is N−1 (even when χ2(Pθi‖Pθj ) =∞
for every i 6= j) and this follows from our upper bounds on f -informativity for a class of
power divergences in (50) (see Section 5).

The conditions (83) and (84) don’t imply each other. The chi-squared divergence is
always greater than the KL divergence (see Lemma 2.7 in Tsybakov (2010)), but the upper
bound required by (84) is also weaker than that required by (83). For both divergences,
constructing more hypotheses (i.e., choosing N > 2) is often helpful for showing R ≥ 1/2.

For the Hellinger distance (inequality (28)), we claim that it gives no more useful bounds
than those obtained by a simple two point argument. To see this, since R0 = 1 − (1/N),
inequality (28) implies

R ≥ 1− 1

N
− N − 2

N

h2

2
−
√
N − 1

N

√
h2(2− h2)

where h2 =
∑

i,j H
2(Pθi ||Pθj )/N2. When N is large, the above inequality reduces to ef-

fectively R ≥ 1 − (h2/2). Therefore a sufficient condition for R ≥ 1/2 is h2 ≤ 1, which is
equivalent to,

1

N(N − 1)/2

∑
i<j

H2(Pθi ||Pθj ) ≤
N

N − 1
.

When N is large, the above displayed condition implies the existence of i < j for which
H2(Pθi ||Pθj ) ≤ 1. Let w̃ denote the prior w̃{i} = w̃{j} = 1/2. It is easy to see that the

Bayes risk for w̃ equals RBayes(w̃) = 1
2

(
1− ‖Pθi − Pθj‖TV

)
. By Le Cam’s inequality (see

Lemma 2.3 in Tsybakov (2010)), we have,

RBayes(w̃) ≥ 1

2

1−H(Pθi ||Pθj )

√
1−

H2(Pθi ||Pθj )
4


Since H(Pθi ||Pθj ) ≤ 1, it is easy to verify from the above that RBayes(w̃) ≥ 1/8. Therefore
in this discrete setting, if inequality (28) implies RBayes(w) ≥ 1/2, then there is a much
simpler two point prior w̃ for which RBayes(w̃) ≥ 1/8. It shows that for Hellinger distance,
considering N > 2 hypotheses is not more useful than using a pair of hypotheses. The
reason is that the Hellinger informativity can be written as an expression involving pairwise
Hellinger distances. In particular, it can be seen from the proof of inequality (28) that

If1/2(w,P) = 1−
(

1− 1

2N2

∑
i,j

H2(Pθi ||Pθj )
)1/2

.
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In contrast, the mutual information, I(w,P), cannot be written in terms of D(Pθi‖Pθj ) for
i 6= j (recall that I(w,P) is always at most logN even when D(Pθi‖Pθj ) =∞ for all i 6= j).
The same holds for Iχ2(w,P) as well (which is always at most N−1 even if χ2(Pθi‖Pθj ) =∞
for all i 6= j).

If the eventual goal of obtaining Bayes risk lower bounds is to obtain lower bounds up to
multiplicative constants on the minimax risk, then the bound in (28) gives no more useful
bounds than those obtained by the simple two point argument. In this sense, inequality
(28) induced by Hellinger distance is not as useful as inequalities (25) and (26). In fact, the
Hellinger distance is seldom used in lower bounding minimax risk involving many hypotheses
(for example, none of the minimax rates in the examples of Tsybakov (2010) involving
multiple hypotheses testing are established via Hellinger distance).

Appendix B. Proofs and Additional Results for Section 5 on Upper
Bounds on f-informativity

B.1 Proof of Lemma 15

Let φ(t) ≡ tr with φ′(t) = rtr−1 and φ′′(t) = r(r − 1)tr−2 and ϕ(t) = t1/r with ϕ′(t) =
1
r t

(1−r)/r. Then

f(u) = ϕ

(∫
T
φ(u(t))µ(dt)

)
.

To prove the concavity of f(u), considering the scalar function

h(s) = ϕ

(∫
T
φ(u(t) + sv(t))µ(dt)

)
, (85)

for arbitrary u, v ∈ Lrµ(T ). We notice that concavity of f is equivalent to concavity at zero
for all functions of the form h, and we therefore only have to show that h′′(0) ≤ 0. Let
g(s) =

∫
T φ(u(t) + sv(t))µ(dt),

h′(s) =ϕ′(g(s))

∫
T
φ′(u(t) + sv(t))v(t)µ(dt)

h′′(s) =ϕ′′(g(s))

(∫
T
φ′(u(t) + sv(t))v(t)µ(dt)

)2

+ ϕ′(g(s))

∫
T
φ′′(u(t) + sv(t))v2(t)µ(dt)

By plugging in the definitions of φ(t), ϕ(t), g(s) and setting s = 0, we have

h′′(0) =
1− r
f(u)

((
f(u)1−r

∫
T
u(t)r−1v(t)µ(dt)

)2

− f(u)2−r
∫
T
u(t)r−2v2(t)µ(dt)

)
Applying the Cauchy-Schwarz inequality(∫

T
a(t)b(t)µ(dt)

)2

≤
(∫

T
a(t)2µ(dt)

)(∫
T
b(t)2µ(dt)

)
with a(t) =

(
f(u)
u(t)

)−r/2
and b(t) = v(t)

(
f(u)
u(t)

)1−r/2
and noticing that r < 1, we have

h′′(0) ≤ 0, which completes the proof.
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B.2 Example Demonstrating the Effectiveness of Theorem 14

In this example, we show the tightness of the upper bound in (49) in terms of chi-squared
divergence (α = 2). In particular, let the distribution P be the n-fold product of N(0, 1)
and Qξ be the n-fold product of N(ξ, 1) where ξ ∼ N(0, 1). It is straightforward to show
that the marginal distribution Q̄ is a n-dimensional Gaussian distribution with mean 0 and
covariance matrix In + 1n1

T
n , where 1n denotes the n-dimensional all one vector and In the

n× n identity matrix.

Since χ2(P ||Qξ) = exp(nξ2)− 1, the right hand side of (49) equals to
√

2n+ 1− 1. The
term χ2(P ||Q̄) on the left hand side of (49) is difficult to evaluate. However, we can lower
bound χ2(P ||Q̄) using the following standard inequality exp

(
D(P ||Q̄)

)
−1 ≤ χ2(P ||Q̄) (see

Lemma 2.7 in Tsybakov (2010)). By the closed-form expression for KL divergence between
two multivariate Gaussian distributions, we have D(P ||Q̄) = 1

2 (log(n+ 1)− n/(n+ 1)) and
thus

e−1/2
√
n+ 1− 1 ≤ exp

(
D(P ||Q̄)

)
− 1 ≤ χ2(P ||Q̄)

As we can see, the upper bound
√

2n+ 1− 1 in (49) is quite tight and χ2(P ||Q̄) is on the
order of

√
n.

B.3 Proof of Corollary 17

Fix 0 < δ ≤ A−1/2. Partition the entire parameter space Θ into small hypercubes each
with side length δ. For each such hypercube S and let πS denote the probability measure
w conditioned to be in S i.e., πS(C) := w(C)/w(S) for measurable set C ⊆ S.

For every decision rule d(X), clearly∫
Θ
EΘL(θ, d(X))w(dθ) =

∑
S

w(S)

∫
S
EθL(θ, d(X))dπS(θ)

where the sum above is over all hypercubes S in the partition. This implies therefore that

RBayes(w,L; Θ) ≥
∑
S

w(S)RBayes(πS , L;S).

The proof will therefore be completed if we show that

RBayes(πS , L;S) ≥ 1

2
e−2p8−p/dδpV −p/d

∫
S

(
1

rδ(θ)

)p/d
πS(dθ) (86)

for every fixed hypercube S. So let us fix S and, for notational simplicity, let π := πS . We
will use (39) to prove a lower bound on RBayes(πS , L;S). Note first that

inf
Q

∫
S
D(Pθ||Q)π(dθ) ≤

∫
S

∫
S
D(Pθ||Pθ′)π(dθ)π(dθ′)

≤ A max
θ∈S,θ′∈S

‖θ − θ′‖22 ≤ Adδ2 =: Iup
f . (87)
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Also, letting fmax
w and fmin

w be the maximum and minimum values of fw in S, we have

sup
a∈S

π(Bt(a, L)) ≤ fmax
w

w(S)
Vol(Bt(a, L)) ≤ fmax

w V td/p

fmin
w δd

.

Let θ̃ be an arbitrary point in the set S. Since S has diameter
√
dδ, the set {θ : ‖θ− θ̃‖2 ≤√

dδ} contains S. We obtain from the definition of rδ(θ) that fmaxw /fminw ≤ rδ(θ̃) so that

sup
a∈S

π(Bt(a, L)) ≤ rδ(θ̃)V δ−dtd/p.

Thus, by (87), the choice

t = e−2pAδ2δp

(
1

8V rδ(θ̃)

)p/d
,

leads to supa∈S π(Bt(a, L)) < 1
4e
−2Iupf . Employing (39), we deduce

RBayes(π, L;S) ≥ 1

2
e−2pAδ2δp

(
1

8V rδ(θ̃)

)p/d
≥ 1

2
e−2pδp

(
1

8V rδ(θ̃)

)p/d

where we used the fact that δ2 ≤ 1/A. Because θ̃ ∈ S is arbitrary, we can write

RBayes(π, L;S) ≥ 1

2
e−2pδp(8V )−p/d sup

θ̃∈S

(
1

rδ(θ̃)

)p/d
≥ 1

2
e−2pδp(8V )−p/d

∫
S

(
1

rδ(θ)

)p/d
π(dθ).

This proves (86).

Appendix C. More Examples on Bayes Risk Lower Bounds

In this section, we provide more examples on the applications of derived Bayes risk lower
bound in Theorem 9 and Corollary 12. For the clarity of the presentation, in each example,
we will first present the Bayes risk lower bound and then provide the proof.

C.1 Generalized Linear Model

Fix d ≥ 1 and let Θ = A = Rd with L(θ, a) = ‖θ − a‖p2 for a fixed p > 0. Also fix n ≥ 1
and an n× d matrix X whose rows are written as xT1 , . . . , x

T
n . As in the last example, λmax

denotes the maximum eigenvalue of XTX/n.

For θ ∈ Θ, let Pθ denote the joint distribution of independent random variables Y1, . . . , Yn
where Yi has the density

exp

[
yβi − b(βi)

a(φ)
+ c(y, φ)

]
for y ∈ R (88)
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with βi = xTi θ for i = 1, . . . , n. The parameter φ is taken to be a constant and the functions
a(·), c(·, ·) and b(·) are assumed to be known. We assume the existence of a constant K > 0
such that b′′(β) ≤ K for all β where b′′(·) is the second derivative of b(·). This assumption
indeed holds for many generalized linear models (e.g., binomial, Gaussian) and we will
discuss the case (i.e., Poisson) where this assumption fails at the end of this example.

Let w denote the Gaussian prior with mean zero and covariance matrix τ2Id. Using
Corollary 17, we can prove that

RBayes(w,L; Θ) ≥ C
[
dmin

(
a(φ)

nK
, τ2

)]p/2
(89)

for a constant C that depends only on p. Let us illustrate this lower bound by considering
a simple case of p = 2. We note that the term da(φ)

nK is the well-known minimax risk
of generalized linear model under the squared loss. The parameter τ characterizes the
strength of the prior information. In fact, since τ2I is the variance of the Gaussian prior
distribution, a small value of τ provides strong prior information that each θj should be
concentrated around 0. When τ is large, i.e., with less prior information, the lower bound
of the Bayes risk in (89) is the same as the minimax risk up to a constant factor. On the
other hand, when τ is small, i.e., with strong prior information, the lower bound of the
Bayes risk becomes dτ2, which is smaller than the minimax risk.

The proof of (89) will involve Corollary 17 for which we need to determine A, V and
rδ(θ). As before, it is easy to check that V = Vol(B). To determine A, fix a pair θ1, θ2 and,

letting β
(j)
i = xTi θj for j = 1, 2 and i = 1, . . . , n, observe that

D(Pθ1 ||Pθ2) =
1

a(φ)

n∑
i=1

(
b′(β

(1)
i )

(
β

(1)
i − β

(2)
i

)
−
(
b(β

(1)
i )− b(β(2)

i )
))

By the second order Taylor expansion of b(β
(2)
i ) at the point β

(1)
i , we obtain

D(Pθ1 ||Pθ2) =
1

a(φ)

n∑
i=1

b′′(β̃i)

2
(β

(1)
i − β

(2)
i )2

where β̃i lies between min(β
(1)
i , β

(2)
i ) and max(β

(1)
i , β

(2)
i ). Now because of our assumption

that b′′(·) is bounded from above by K, we get

D(Pθ1‖Pθ2) ≤ K

2a(φ)
‖β(1) − β(2)‖22 =

K

2a(φ)
(θ1 − θ2)TXTX(θ1 − θ2)

≤ nKλmax

2a(φ)
‖θ1 − θ2‖2.

We can thus take A = nKλmax/(2a(φ)) in Corollary 17. Next we control rδ(θ). For given
θ and δ,

rδ(θ) = sup

{
exp

(
− 1

2τ2

(
‖θ1‖22 − ‖θ2‖22

))
: ‖θi − θ‖2 ≤

√
dδ

}
.
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For θ1, θ2 with ‖θi − θ‖2 ≤
√
dδ, i = 1, 2, we have∣∣‖θ1‖22 − ‖θ2‖22

∣∣ =
∣∣‖θ1 − θ‖22 + 2θT (θ1 − θ)− ‖θ2 − θ‖22 − 2θT (θ2 − θ)

∣∣
≤

∣∣‖θ1 − θ‖22 − ‖θ2 − θ‖22
∣∣+ 2‖θ‖2 (‖θ1 − θ‖2 + ‖θ2 − θ‖2)

≤ dδ2 + 4
√
dδ‖θ‖2.

As a result rδ(θ)
−p/d ≥ exp(−pδ2/(2τ2)) exp(−2pδ‖θ‖2/(τ2

√
d)) and hence∫

Θ

(
1

rδ(θ)

)p/d
w(dθ) ≥ exp

(
−pδ

2

2τ2

)∫
Θ

exp

(
−2pδ

τ

‖θ‖2
τ
√
d

)
w(dθ)

≥ exp

(
−pδ

2

2τ2
− 4pδ

τ

)∫
Θ
I
{
‖θ‖2 < 2τ

√
d
}
w(dθ).

By Chebyshev’s inequality, we have∫
Θ
I
{
‖θ‖2 ≥ 2τ

√
d
}
w(dθ) ≤ 1

4τ2d

∫
Θ
‖θ‖22w(dθ) =

1

4
. (90)

Consequently, ∫
Θ

(
1

rδ(θ)

)p/d
w(dθ) ≥ 3

4
exp

(
−
(
pδ2

2τ2
+

4pδ

τ

))
. (91)

Corollary 17 therefore gives

RBayes(w,L; Θ) ≥ 3

8
e−2p(8V )−p/dδp exp

(
−pδ

2

2τ2
− 4pδ

τ

)
whenever δ2 ≤ 1/A.

We make the choice

δ2 := min
(
1/A, τ2

)
= min

(
2a(φ)

nKλmax
, τ2

)
which implies that the exponential term in the right hand side of (91) is bounded from
below by exp(−9p/2). We thus have

RBayes(w,L; Θ) ≥ 3

8
e−13p/2(8V )−p/d

[
min

(
2a(φ)

nKλmax
, τ2

)]p/2
.

The inequality (89) now follows because V 1/d � d−1/2.
The assumption that b′′(β) ≤ K which was used for the proof of (89) holds under some

widely used densities of Yi in (88). For Gaussian distribution in (88), we have b(β) = β2

2
so that b′′(β) = 1 for β ∈ R. For binomial distribution, b(β) = log(1 + exp(β)) and

b′′(β) = exp(β)
(1+exp(β))2

≤ 1
4 for all β ∈ R. However, for Poisson distribution, b(β) = exp(β)

and thus b′′(β) = exp(β) is unbounded on R. To address this issue, we restrict the prior to
the subset Θ̃ = {θ ∈ Θ : ‖θ‖2 ≤ 2τ

√
d} and define the re-scaled prior distribution π on Θ̃

as π(S) = w(S)/w(Θ̃) for any measurable set S ⊆ Θ̃. Let B = maxi=1,...,n ‖xi‖2. For any

β = xTi θ for some i = 1, . . . , n and θ ∈ Θ̃, we have b′′(β) ≤ exp(2τ
√
dB) := K. We note

that such a restriction of the parameter space will not affect the order of the Bayes risk
lower bound. In particular, since now b′′(β) ≤ K when θ ∈ Θ̃, applying the same argument,
we obtain the lower bound on RBayes(π, L; Θ̃). By (90), we have w(Θ̃) ≥ 3/4 and the
lower bound on RBayes(w,L; Θ) can be easily established by noticing that RBayes(w,L; Θ) ≥
w(Θ̃)RBayes(π, L; Θ̃) ≥ 3

4RBayes(π, L; Θ̃).
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C.2 Spiked Covariance Model

Fix Θ = A = B where B is the unit Euclidean closed ball of radius one and let L(θ, a) :=
‖θ− a‖p2 for a fixed p > 0. Also fix n ≥ d/2. For θ ∈ Θ, let Pθ denote the joint distribution
of independent and identically distributed observations X1, . . . , Xn satisfying the Gaussian
distribution with zero mean and covariance matrix Σθ := Id + θθT . This is the problem of
estimating the principal component for a rank-one spiked covariance model. Let w denote
the uniform distribution on B. We shall prove that

RBayes(w,L; Θ) ≥ C
[
min

(
1

2
,
d

n

)]p/2
(92)

where C only depends on p.

The proof is based on the application of (32) with f(x) = x2−1, i.e., on inequality (40).

For this, we need to bound the term supa∈Aw(Bt(a, L)) and the f -informativity corre-
sponding to the chi-squared divergence. It is easy to see that supa∈Aw(Bt(a, L)) ≤ td/p.

For the f -informativity, we will use the bound (51) with α = 2 which requires bounding
Mχ2(ε,Θ). According to (Guntuboyina, 2011a, Theorem 4.6.1), for two Gaussian distribu-

tions with mean zero and covariance matrices Σ1 and Σ2 such that 2Σ−1
1 − Σ−1

2 is positive
definite and ‖Σ1 − Σ2‖2F ≤

1
2λ

2
min(Σ2), we have

χ2 (Nd(0,Σ1)||Nd(0,Σ2)) ≤ exp

(
‖Σ1 − Σ2‖2F
λmin(Σ2)2

)
− 1. (93)

Here ‖ · ‖F denotes the Frobenius norm defined as ‖A‖2F :=
∑

i,j a
2
ij where A = (aij) and

λmin denotes the smallest eigenvalue.

Using this result, we get that for θ1, θ2 ∈ Θ (note that λmin(Σθ) = 1 for all θ),

χ2 (Pθ1 ||Pθ2) ≤ exp
(
n‖Σθ1 − Σθ2‖2F

)
− 1, (94)

provided

2Σ−1
θ1
− Σ−1

θ2
is positive definite and ‖Σθ1 − Σθ2‖2F ≤ 1/2. (95)

In the sequel, whenever we employ (94), the conditions (95) hold. But, for ease of presen-
tation, instead of verifying (95) for every application of (94), we will simply assume (94)
and verify the necessary conditions at the end of the proof. Assuming (94), we see that
χ2(Pθ1‖Pθ2) ≤ ε2 provided ‖Σθ1 − Σθ2‖2F ≤ log(1 + ε2)/n. Now for θ1, θ2 ∈ Θ

‖Σθ1 − Σθ2‖2F = ‖θ1θ
T
1 − θ2θ

T
2 ‖2F = ‖θ1θ

T
1 − θ1θ

T
2 + θ1θ

T
2 − θ2θ

T
2 ‖2F

≤ 2
(
‖θ1‖22 + ‖θ2‖22

)
‖θ1 − θ2‖22 ≤ 4‖θ1 − θ2‖22.

It follows therefore that the ε2-covering number in the chi-squared divergence can be
bounded from above by the

√
log(1 + ε2)/(2

√
n)-covering number of B under the usual

Euclidean norm. Consequently

Mχ2(ε,Θ) ≤
(

36n

log(1 + ε2)

)d/2
provided log(1 + ε2) ≤ 4n.

45



Chen and Guntuboyina and Zhang

We now set ε to satisfy log(1 + ε2) = min (n/2, d) so that Corollary 16 gives

Iχ2(w,P) ≤ Mχ2(ε)(1 + ε2)− 1

≤ exp
(

min
(n

2
, d
)) [

36 max
(

2,
n

d

)]d/2
− 1 =: Iup

f .

It follows that supa∈Aw(Bt(a, L)) < 1
4(1 + Iup

f )−1 provided t = (4(1 + Iup
f ))−p/d. Inequal-

ity (40) then proves

RBayes(w,L; Θ) ≥ 1

2

(
4(1 + Iup

f )
)−p/d

≥ 1

2
(24e)−p

[
min

(
1

2
,
d

n

)]p/2
which implies (92).

It remains to justify the conditions (95) when we used (94). It should be clear that for
this, we only need to verify (95) when

‖Σθ1 − Σθ2‖2F ≤
log(1 + ε2)

n
= min

(
1

2
,
d

n

)
. (96)

We only need to check that 2Σ−1
θ1
−Σ−1

θ2
is positive definite under the above condition. For

this, observe that by Weyl’s inequality,

λmin

(
2Σ−1

θ1
− Σ−1

θ2

)
≥ λmin

(
2Σ−1

θ1

)
− λmax

(
Σ−1
θ2

)
=

2

1 + ‖θ1‖22
− 1 ≥ 0.

This implies that 2Σ−1
θ1
−Σ−1

θ2
is positive semi-definite and ‖θ1‖2 = 1 is a necessary condition

for λmin

(
2Σ−1

θ1
− Σθ2

−1
)

= 0. Under the condition that ‖θ1‖2 = 1, by Sherman-Morrison

formula,

2Σ−1
θ2
− Σ−1

θ1
= Id − θ1θ

T
1 +

θ2θ
T
2

1 + θT2 θ2
.

It is then easy to check that λmin

(
2Σ−1

θ1
− Σ−1

θ2

)
= 0 only if θ2 is orthogonal to θ1. However,

when ‖θ1‖2 = 1 and θ2 is orthogonal to θ1, ‖Σθ1 − Σθ2‖2F = ‖θ1‖22 + ‖θ2‖22 > 1, which
contradicts (96). Therefore 2Σ−1

θ1
− Σ−1

θ2
is positive definite and this completes the proof

of (92).

C.3 Gaussian Model with General Loss

In this example, we consider Gaussian location model with continuous prior with a bounded
Lebesgue density and general loss functions. Here, we do not specify the form of the prior
and loss. We only present this example to illustrate applications of Theorem 9 and Corollary
12. Our main bound is inequality (97). This bound however might be suboptimal for specific
priors w because we do not use knowledge about the specific form of w. However, when
the specific form of w is available, the argument can often be easily modified to improve
inequality (97). We provide examples of this at the end of this subsection.
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C.3.1 Gaussian Model with Squared Loss

Fix d ≥ 1. Suppose Θ = A = Rd and let L(θ, a) := ‖θ − a‖22 where ‖ · ‖2 is the usual
Euclidean norm on Rd. For each θ ∈ Rd, let Pθ denote the Gaussian distribution with
mean θ and covariance matrix σ2Id (σ2 > 0 is a constant). For every prior w on Rd with a
Lebesgue density bounded by W > 0, we have

RBayes(w,L; Θ) &
dσ4W−2/d

(σ2 + V )2
(97)

where

V := min
s∈Rd

∫
Θ

1

d

d∑
i=1

(θi − si)2w(dθ). (98)

To prove (97), we shall apply (32) with f(x) = x log x, i.e., we apply (39). The resulting
f -informativity (a.k.a mutual information) can be bounded in the following way. Because
I(w,P) ≤

∫
D(Pθ‖Q)w(dθ) for every Q. In particular, we take Q to be the Gaussian distri-

bution with mean t and covariance matrix (σ2 +V )Id, where t = argmins∈Rd
∫

Θ
1
d

∑d
i=1(θi−

si)
2w(dθ), i.e., ti =

∫
Θ θiw(dθ) is “center” of the prior. Then, we obtain

I(w,P) ≤
∫

Θ
D
(
N
(
θ, σ2Id

)
||N

(
t,
(
σ2 + V

)
Id
))
w(dθ).

Using the standard formula for the KL divergence between two Gaussians, we deduce that

I(w,P) ≤ 1

2

∫
Θ

[∑d
i=1((θi − ti)2 − V )

σ2 + V
+ d log

σ2 + V

σ2

]
w(dθ)

which by (98) implies that

I(w,P) ≤ d

2
log

σ2 + V

σ2
. (99)

Let Iup
f denote the right hand side above. To apply (39), we also need an upper bound on

supa∈Aw (Bt(a, L)). Because of the assumption that the Lebesgue density of w is bounded
from above by W , we get

sup
a∈A

w (Bt(a, L)) ≤Wtd/2Vol(B) (100)

where B is the Euclidean ball with unit radius. Thus the choice

t = cW−2/dVol(B)−2/d σ4

(σ2 + V )2
,

for a small enough universal positive constant c, ensures supa∈Aw{Bt(a)} < 1
4e
−2Iupf (recall

that Iup
f is the right hand side of(99)). Consequently, inequality (39) implies that RBayes ≥

t/2. The proof of (97) is now completed using the standard fact: Vol(B)1/d � d−1/2.
However, since the form of the prior w is unspecified in this example, the simple upper

bound on supa∈Aw (Bt(a, L)) in (100) could be loose. But this can be easily fixed when
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the concrete form of the prior is available. For example, for a spiked model with a large W
(see an example of mixture prior in Remark 11 in the main text), the lower bound in (97)
could be sub-optimal but can be easily tightened using the proposed chaining technique
in Remark 11 in the main text. For another example, let w be the uniform prior on the
hyper-rectangle H = [−ε, ε] × [−1, 1]d−1 for some very small ε. Here inequality (100) is
equivalent to

sup
a∈A

w (Bt(a, L)) ≤Wtd/2Vol(B).

When ε → 0, we have W → ∞ so that the upper bound is fairly loose. However, since H
is the support of w, we can also use the following upper bound:

sup
a∈A

w (Bt(a, L)) ≤Wtd/2Vol(B ∩H).

When ε → 0, we have W → ∞ but Vol(B ∩ H) → 0. In particular, the product limit
limε→0WVol(B∩H)→ 0 is finite. It converges to the maximum value of w (Bt(a, L)) where
w is restricted in a (d − 1)-dimensional subspace of Rd. Once we replace inequality (100)
by the above upper bound, the associated Bayes risk lower bound will be tight.

C.3.2 Gaussian Model with General Loss

Consider the same setup as in the previous example but now allow the loss function to be
L(θ, a) = ‖θ − a‖2 for an arbitrary norm ‖ · ‖ (not necessarily the Euclidean norm) on Rd.
In this case, we obtain the following Bayes risk lower bound:

RBayes(w,L; Θ) &
σ4W−2/d

(σ2 + V )2

d2

(E‖Z‖∗)2
. (101)

where Z is a standard Gaussian vector and ‖ · ‖∗ is the dual norm corresponding to ‖ · ‖
defined by ‖x‖∗ := sup{〈x, y〉 : ‖y‖ ≤ 1}. The quantities W and V are as defined in the
previous example.

The proof of (101) is largely similar to that of (97). We use (39) along with (99) for
controlling I(w,P). To control supa∈Aw(Bt(a, L)), we again use the fact that the Lebesgue
density of w is bounded from above by W to obtain

sup
a∈A

w (Bt(a, L)) ≤WVol
{
θ ∈ Rd : ‖θ‖ <

√
t
}
. (102)

To deal with the volume term above, we use Urysohn’s inequality to obtain an upper bound
in terms of the volume of the unit Euclidean unit ball B. The original reference for Urysohn’s
inequality is Urysohn (1924) but it has been recently used in a statistical context by Ma
and Wu (2015). Urysohn’s inequality gives(

Vol
{
θ ∈ Rd : ‖θ‖ <

√
t
}

Vol(B)

) 1
d

≤
√
t√
d
E‖Z‖∗ with Z ∼ N(0, Id). (103)

Inequalities (102) and (103) together give

sup
a∈A

w (Bt(a, L)) ≤Wtd/2Vol(B)

(
E‖Z‖∗√

d

)d
.
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The choice

t = cVol(B)−2/d W
−2/dσ4

(σ2 + V )2

d

(E‖Z‖∗)2

for a small enough universal positive constant c ensures supa∈Aw{Bt(a)} < 1
4e
−2Iupf (Iup

f

is the right hand side of (99)). The proof of (101) is then completed by noting that
Vol(B)1/d � d−1/2.

Appendix D. Proof of Lemma 19 in Section 6

Consider the i-th instance xi ∈ Rd sampled from N(θzi ; Id×d), where zi is the membership.
Note that for any j ∈ [k]\{zi}, the distance between θzi and θj is lower bounded by D. We
have

‖xi − θj‖22 − ‖xi − θzi‖22 = ‖θj − θzi‖22 − 2〈θj − θzi , xi − θzi〉. (104)

The random variable 〈θj−θzi , xi−θzi〉 satisfies distribution N(0; ‖θj − θzi‖22). Let Φ be the

CDF of the standard normal distribution. Then with probability Φ(
‖θj−θzi‖2−1

2 ), we have

〈θj − θzi , xi − θzi〉 ≤ ‖θj − θzi‖2 ·
‖θj − θzi‖2 − 1

2
. (105)

Combining (104) and (105), we have

‖xi − θj‖22 − ‖xi − θzi‖22 ≥ ‖θj − θzi‖2. (106)

On the other hand, the triangular inequality implies

‖xi − θj‖2 + ‖xi − θzi‖2 ≤ 2‖xi − θzi‖2 + ‖θj − θzi‖2. (107)

The random variable ‖xi − θzi‖22 satisfies a chi-square distribution with d degrees of freedom.
It is upper bounded by βd with probability at least 1 − exp(d2(1 − β + log β)) for any
β > 1 (Dasgupta and Gupta, 2003). Putting (106) and (107) together, we have

‖xi − θj‖2 − ‖xi − θzi‖2 =
‖xi − θj‖22 − ‖xi − θzi‖22
‖xi − θj‖2 + ‖xi − θzi‖2

≥ ‖θj − θzi‖2
2‖θj − θzi‖2 +

√
βd
≥ 3

6 +
√
βd

with probability at least Φ(D−1
2 )−exp(d2(1−β+log β)). By choosing D = c

√
log(nk/δ) and

β = c log(nk/δ)/d for a sufficiently large constant c, this probability is lower bounded by
1− δ/(nk). Applying union bound, the inequality holds for any (i, j) pair with probability
at least 1− δ.

Appendix E. Proof of Theorem 23 in Section 7

We start with a simplified case where the random index set K is given to the estimator.
Knowing this information makes the problem easier, and makes the Bayes risk lower. In
addition, it reduces the d-dimensional regression problem to a k-dimensional problem where
a closed-form of the Bayes risk can be derived, which establishes the following lower bound:
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Claim 1 For any τ > 0, the Bayes risk is lower bounded by:

RBayes(w,Lest; Θ) ≥ 1

1 + κ2
uτ

2n/σ2
· kτ2, and RBayes(w,Lpre; Θ) ≥ 1

1 + κ2
`τ

2n/σ2
· κ2

`kτ
2.

See Section E.1 for the proof.

For the rest of this proof, we establish stronger lower bounds using the fact that the
index set K is unknown. It is easy to verify that for any random variable X sampled from
N(0, 1), the probability of |X| ≥ 1/2 is greater than 1/2. Consider a subset of the parameter
space Θ:

Θ :=
{
θ ∈ Θ : ‖θ‖22 ≤ 2kτ2 and

d∑
i=1

I[|θi| ≥ τ/2] ≥ k/2
}
. (108)

For a random vector θ sampled from the prior distribution w, the quantity ‖θ‖22/τ2 satisfies
a chi-square distribution with k degrees of freedom. For any k ≥ 1, the event ‖θ‖22 ≤ 2kτ2

happens with probability at least 0.84. Given an index set K, for any i ∈ K the random
variable I[|θi| ≥ τ/2] satisfies the Bernoulli distribution with parameter greater than 1/2,
so that the event

∑d
i=1 I[|θi| ≥ τ/2 happens with probability at least 1/2. Combining these

two lower bounds and applying union bound, we obtain w(Θ) ≥ 1/2− (1− 0.84) > 1/4. As
a consequence, if we define a distribution w over the subset Θ by w(A) := w(A∩Θ)/w(Θ),
then Remark 11 implies that

RBayes(w,L; Θ) ≥ w(Θ) ·RBayes(w,L; Θ) ≥ 1

4
RBayes(w,L; Θ). (109)

Hence it suffices to focus on the Bayes risk for the marginal prior w.
Let the action space A := Rd and let the loss function be either the estimation error Lest

or the prediction error Lpre. In order to lower bound the Bayes risk, it suffices to bounded
the chi-square informativity Iχ2(w,P) and the quantity supa∈Aw(Bt(a, L)), then applying
Corollary 12. We begin with an upper bound on the chi-square informativity.

Claim 2 For any τ > 0, the chi-square informativity is bounded by:

Iχ2(w,P) + 1 ≤ exp(2κ2
uτ

2kn/σ2) (110)

See Section E.2 for the proof.

Next, we upper bound the quantity supa∈Aw(Bt(a, L)). We begin by claiming a prop-
erty of all Euclidean balls of small enough radius.

Claim 3 For any point a ∈ Rd, let B(a, r) be the Euclidean ball of radius r centering at a.
If r ≤ 1

8

√
kτ , then there is a universal constant c > 0 such that

sup
a∈A

w(B(a, r)) ≤ ck

(d/k2)k/4

( r√
kτ

)k
.

See Section E.3 for the proof.
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Lower bound on estimation error For the estimation error, we obtain by Claim 3 that
for any t ≤ 1

64kτ
2, the following upper bound holds:

sup
a∈A

w(Bt(a, Lest)) = sup
a∈A

w(B(a,
√
t)) ≤ ck

(d/k2)k/4

( √t√
kτ

)k
. (111)

Combining Claim 3 with inequality (111), and applying inequality (40) in Corollary 12, we
obtain the lower bound:

RBayes(w,Lest; Θ) ≥ 1

2
sup

{
0 < t ≤ kτ2

64
:
( √t√

kτ

)k
≤ (d/k2)k/4

ck
· 1

4
exp(−2κ2

uτ
2kn/σ2)

}
.

The right-hand side is lower bounded by any scalar t satisfying:

t ≤ 1

64
kτ2 and

√
t√
kτ
≤ (d/k2)1/4

c
· 1

41/k
exp(−2κ2

uτ
2n/σ2)

It implies that for some universal constant c′ > 0, we have:

RBayes(w,Lest; Θ) ≥ c′ kτ2 min
{

1, exp(
1

2
log(d/k2)− 4κ2

uτ
2n/σ2)

}
= c′ kτ2 exp

(
min

{
0,

1

2
log(d/k2)− 4κ2

uτ
2n

σ2

})
= c′ kτ2 exp

(
− 4κ2

un

σ2

[
τ2 − σ2 log(d/k2)

8κ2
un

]
+

)
≥ c′ kτ2 exp

(
− 4κ2

un

σ2

[
τ2 − σ2 log(d/k)

16κ2
un

]
+

)
, (112)

where the last inequality uses the assumption d > k3 and its implication log(d/k2) >
1
2 log(d/k).

Combining inequality (112) with Claim 1 yields the lower bound:

RBayes(w,Lest; Θ) ≥ c′ kτ2 max
{ 1

1 + κ2
uτ

2n/σ2
, exp

(
− 4κ2

un

σ2

[
τ2 − σ2 log(d/k)

16κ2
un

]
+

)}
,

which completes the proof.

Lower bound on prediction error For the prediction error, we consider an arbitrary
vector a ∈ Rd and an arbitrary scalar t satisfying

√
t ≤ κ`

16

√
kτ . Let θ′ be the vector in Θ

which minimizes the term 1
n‖X(a− θ′)‖22. If the inequality 1

n‖X(a− θ′)‖22 > t is true, then
we have

sup
a∈A

w(Bt(a, Lpre)) = 0. (113)

Otherwise, we assume that 1
n‖X(a− θ′)‖22 ≤ t. Then for any vector θ ∈ Θ satisfying

1
n‖X(θ − a)‖22 ≤ t, we have the upper bound

1

n
‖X(θ − θ′)‖22 ≤ (n−1/2‖X(θ − a)‖2 + n−1/2‖X(a− θ′)‖2)2 ≤ (

√
t+
√
t)2 ≤ 4t.
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It means that Bt(a, Lpre) ⊆ B4t(θ
′, Lpre). Since the vector θ′ is k-sparse, the the sparse

eigenvalue condition implies that for any vector θ ∈ Θ, if Lpre(θ, θ
′) ≤ 4t, then ‖θ − θ′‖2 ≤

2
√
t

κ`
, so that B4t(θ

′, Lpre) ⊆ B(θ′, 2
√
t

κ`
). Using Claim 3, we have

sup
a∈A

w(Bt(a, Lpre)) ≤ sup
a∈A

w(B(θ′,
2
√
t

κ`
)) ≤ sup

a∈A
w(Bt(a, Lest)) ≤

ck

(d/k2)k/4

( 2
√
t

κ`
√
kτ

)k
.

(114)

Combining equation (113) and inequality (114) we obtain

sup
a∈A

w(Bt(a, Lpre)) ≤
ck

(d/k2)k/4

( 2
√
t

κ`
√
kτ

)k
for any

√
t ≤ κ`

16

√
kτ. (115)

Comparing inequalities (111) and (115), we find that they differ by a factor of (2/κ`)
k. Thus,

following the same steps for deriving inequality (112), we can find a universal constant c′′ > 0
such that:

RBayes(w,Lpre; Θ) ≥ c′′ κ2
`kτ

2 exp
(
− 4κ2

un

σ2

[
τ2 − σ2 log(d/k)

16κ2
un

]
+

)
(116)

Combining inequality (116) with Claim 1 yields:

RBayes(w,Lpre; Θ) ≥ c′′ κ2
`kτ

2 max
{ 1

1 + κ2
`τ

2n/σ2
, exp

(
− 4κ2

un

σ2

[
τ2 − σ2 log(d/k)

16κ2
un

]
+

)}
,

which completes the proof.

E.1 Proof of Claim 1

The Bayes risk of the original problem is lower bounded by that of the following simplified
problem: estimating θ when the index set K is known, and without loss of generality, we
assume that K = [k]. For this case, let X ′ be the submatrix consisting of the first k columns
of matrix X, and let θ′ be the subvectors consisting of the first k coordinate of vectors θ.
Given the response vector y, the posterior distribution of θ′ is equal to

p(θ′|y) ∝ p(θ′)p(y|θ′) = N(θ′; 0, τ2I)N(y;Xθ′, σ2I) ∝ N
(
θ′; Σ−1(X ′)>y, σ2Σ−1

)
,

where Σ := (X ′)>X ′+ σ2

τ2
I is a shorthand notation. As a consequence, the Bayes estimator

θ̂ is given by θ̂K = Σ−1(X ′)>y and θ̂−K = 0. The Bayes risk on the estimation error is
lower bounded by:

RBayes(w,Lest; Θ) = E[‖Σ−1(X ′)>y − θ′‖22] = σ2tr(Σ−1) ≥ σ2

κ2
uτ

2n+ σ2
· kτ2,

where the last inequality uses the sparse eigenvalue condition — it guarantees that all
eigenvalues of the matrix Σ are less than or equal to nκ2

u + σ2/τ2.
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The Bayes estimator for minimizing the prediction error is also given by θ̂K = Σ−1(X ′)>y
and θ̂−K = 0. Thus, the Bayes risk is lower bounded by:

RBayes(w,Lpre; Θ) =
1

n
E[‖X ′(Σ−1(X ′)>y − θ′)‖22] =

σ2

n
tr(X ′Σ−1(X ′)>)

≥ σ2

κ2
`τ

2n+ σ2
· κ2

`kτ
2,

where the last inequality uses the sparse eigenvalue condition — it guarantees that all

eigenvalues of the matrix X ′Σ−1(X ′)> are greater than or equal to
nκ2`

nκ2`+σ
2/τ2

.

E.2 Proof of Claim 2

Corollary 16 shows that the chi-square informativity can be bounded using the covering
number Mχ2(ε,Θ). Consider the zero vector θ0 := 0 and an arbitrary vector θ ∈ Θ. Their
response vectors are generated from Pθ0 := N(0, σ2I) and Pθ := N(Xθ, σ2I), so that the
chi-square divergence between Pθ0 and Pθ is equal to χ2(Pθ0‖Pθ) = exp(‖Xθ‖22/σ2)− 1. By
the sparse eigenvalue condition and the fact that ‖θ‖22 ≤ 2kτ2, we have

χ2(Pθ0‖Pθ) ≤ exp(κ2
un‖θ‖22/σ2)− 1 ≤ exp(2κ2

uτ
2kn/σ2)− 1.

It means that if we choose ε2 = exp(2κ2
uτ

2kn/σ2) − 1, then Mχ2(ε,Θ) = 1, so that the
chi-square informativity is bounded by

Iχ2(w,P) + 1 ≤ (1 + ε2)Mχ2(ε,Θ) = exp(2κ2
uτ

2kn/σ2). (117)

E.3 Proof of Claim 3

Consider an arbitrary vector a ∈ Rd, and let Ia be the set of indices defined by:

Ia = {i ∈ [d] : |ai| ≥ τ/4}.

If |Ia| > 2k, then for any θ ∈ Θ, there are at least k + 1 coordinates such that θi = 0 but
|ai| ≥ τ/4. It means that ‖a− θ‖2 > 1

4

√
kτ . Since r ≤ 1

8

√
kτ , we have w(B(a, r)) = 0.

Otherwise, we assume that |Ia| ≤ 2k. Given an index set K, let wK and wK be the
conditional version of the prior distribution w and w, conditioning on the fact that the
k-sparse index set is K. Recall that for any θ in the support of wK , there are at least k/2
coordinates such that |θi| ≥ τ/2. If |Ia∩K| < k/4, then there at least k/4 coordinates such
that |θi| ≥ τ/2 but |ai| < τ/4. It means that ‖a− θ‖2 > 1

8

√
kτ for any θ in the support of

wK , and as a consequence, we have wK(B(a, r)) = 0.
Thus, a necessary condition for wK(B(a, r)) > 0 to hold is |Ia ∩ K| ≥ k/4. Given

|Ia| ≤ 2k, the number of index set K satisfying this constraint is bounded by
(

2k
k/4

)(d−k/4
3k/4

)
.

To prove this bound, notice that every set K satisfying |Ia ∩ K| ≥ k/4 can be generated
by the following two-step procedure: first, generate k/4 element from Ia; second, generate
the remaining 3k/4 elements from the remaining d − k/4 integers of {1, . . . , d}. There are

totally
(

2k
k/4

)(d−k/4
3k/4

)
ways of generating the set. We note that the same K can have multiple

ways to generate, so that the above combinatorial number is a strict upper bound on the
number of sets.
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For any set K satisfying the above constraint, we have:

wK(B(a, r)) ≤ 4wK(B(a, r)) ≤ 4wK(B(0, r)), (118)

where the last equation holds because wK represents an isotropic normal distribution in Rk,
so that the maximum probability is achieved by centering at the origin. The right-hand side
of inequality (118) the probability a k-dimension normal random variable X ∼ N(0, τ2Ik×k)
satisfying ‖X‖2 ≤ r. As we showed in the proof of Lemma 21, this probability is bounded
by ( c r√

kτ
)k for a universal constant c > 0. Putting pieces together, we have

sup
a∈A

w(B(a, r)) ≤

(
2k
k/4

)(d−k/4
3k/4

)(
d
k

) · 4
( c r√

kτ

)k
.

By the definition of the combinatorial numbers, we have:(
2k
k/4

)(d−k/4
3k/4

)(
d
k

) =

(
2k

k/4

)
k!(d− k/4)!

(3k/4)!d!
≤
(

2k

k/4

)
k!

(3k/4)!

1

dk/4

≤ (2k)k/2

dk/4
=
( d

4k2

)−k/4
.

Combining the two upper bounds above completes the proof.
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