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Abstract

Graphical models express conditional independence relationships among variables. Al-
though methods for vector-valued data are well established, functional data graphical mod-
els remain underdeveloped. By functional data, we refer to data that are realizations of
random functions varying over a continuum (e.g., images, signals). We introduce a notion
of conditional independence between random functions, and construct a framework for
Bayesian inference of undirected, decomposable graphs in the multivariate functional data
context. This framework is based on extending Markov distributions and hyper Markov
laws from random variables to random processes, providing a principled alternative to naive
application of multivariate methods to discretized functional data. Markov properties facil-
itate the composition of likelihoods and priors according to the decomposition of a graph.
Our focus is on Gaussian process graphical models using orthogonal basis expansions. We
propose a hyper-inverse-Wishart-process prior for the covariance kernels of the infinite co-
efficient sequences of the basis expansion, and establish its existence and uniqueness. We
also prove the strong hyper Markov property and the conjugacy of this prior under a finite
rank condition of the prior kernel parameter. Stochastic search Markov chain Monte Carlo
algorithms are developed for posterior inference, assessed through simulations, and applied
to a study of brain activity and alcoholism.

Keywords: graphical model, functional data analysis, gaussian process, model uncer-
tainty, stochastic search

1. Introduction

Graphical models provide a powerful tool for describing conditional independence struc-
tures between random variables. In the multivariate data case, Dawid and Lauritzen (1993)
defined Markov distributions (distributions with Markov property over a graph) of random
vectors which can be factorized according to the structure of a graph. They also introduced
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hyper-Markov laws serving as prior distributions in Bayesian analysis. The special case of
Gaussian graphical models, in which a multivariate Gaussian distribution is assumed and
the graph structure corresponds to the zero pattern of the precision matrix (Dempster,
1972; Lauritzen, 1996), is well studied. Computational algorithms, such as Markov chain
Monte Carlo (MCMC) and stochastic search, are developed to estimate the graph based
on the conjugate hyper-inverse-Wishart prior and its extensions (Giudici and Green, 1999;
Roverato, 2002; Jones et al., 2005; Scott and Carvalho, 2008; Carvalho and Scott, 2009).

In the frequentist literature, notable works on graphical models include the graphical
LASSO (Yuan and Lin, 2007; Friedman et al., 2008; Mazumder and Hastie, 2012a,b) and
the neighborhood selection approach (Meinshausen and Biithlmann, 2006; Ravikumar et al.,
2010). The graphical LASSO induces sparse estimation of the precision matrix of the
Gaussian likelihood through [; regularization. The neighborhood selection approach relies
on estimating the neighborhood of each node separately by regressing each variable on all the
remaining variables, sparsifying with [y regularization, and then stitching the neighborhoods
together to form the global graph estimate. Various extensions, computational methods, and
theoretical properties have been developed in these frameworks (Lam and Fan, 2009; Hofling
and Tibshirani, 2009; Cai et al., 2011; Witten et al., 2011; Yang et al., 2012; Mazumder and
Hastie, 2012a,b; Anandkumar et al., 2012; Loh and Wainwright, 2013).

The graphical modeling literature focuses primarily on vector-valued data with each
node corresponding to one variable. Many applications, however, involve functional data—
data that are realizations of random functions varying over a continuum such as a time
interval or a spatial domain. Common types of functional data include signals, images,
and many emerging high-throughput digital measurements. The dependence structure of
functional data is of interest in a wide range of applications. For example, in neuroimaging,
we are often interested in the dependence network across brain regions, where data from
each region are of functional form (e.g., EEG/ERP signals, MRI/fMRI regions). In bioin-
formatics, we often need to model gene networks based on time-course gene expression data
(Ma et al., 2006), treating each time-course as a continuous process. In epigenetics, it is of
interest to study how cells are differentiated into organs (cell lineage and differentiation) by
exploring the dependence structure of genome-wide methylation levels across different cell
types, and for each cell type, the methylation level can be considered as a function of the
genomic locations.

Although there is increasingly rich literature on generalizations to accommodate matrix-
variate graphical models (Wang and West, 2009), time varying graphical models (Zhou et al.,
2010; Kolar and Xing, 2011), and dynamic linear models (Carvalho and West, 2007), the
generalization to functional data has not received much attention in the literature. In re-
cent work, Qiao et al. (2015) extended the graphical LASSO of Yuan and Lin (2007) to
the functional data case. They estimate the graph by maximizing a penalized log-Gaussian
likelihood constructed through truncated basis expansion, and prove the consistency of the
estimated edges. In this paper, we propose Bayesian graphical models for functional data
following a fundamentally different approach. In particular, we construct the graphical
model directly in the space of infinite dimensional random functions through establish-
ing the Markov distributions and hyper Markov laws for random processes, and propose a
Bayesian framework that generally holds for all random processes. We then demonstrate
the special case of a multivariate Gaussian process in the space of square integrable func-
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tions. Through representing the random functions with orthogonal basis expansions, we
transform functional data from the function space to the isometrically isomorphic space of
basis coefficients, where Markov distributions and hyper Markov laws can be conveniently
constructed. We further propose a hyper-inverse-Wishart-process prior for the covariance
kernels of the coefficient sequences, and study theoretical properties of the proposed prior
such as existence and uniqueness. We also establish the strong hyper Markov property and
conjugacy of this prior under a finite rank condition for the prior kernel parameter, which
implies that the covariance kernel of the coefficient sequences is a priori finite dimensional.
To perform posterior inference, we introduce a regularity condition which allows us to write
the likelihood and prior density and design stochastic search MCMC algorithms for poste-
rior sampling. Performance of the proposed approach is demonstrated through simulation
studies and analysis of brain activity and alcoholism data.

To our knowledge, the proposed approach is the first considering functional data graph-
ical models from a Bayesian perspective. It extends the theory of Dawid and Lauritzen
(1993) from multivariate data to multivariate functional data. Most existing graphical
model approaches often naively apply multivariate methods to functional data after per-
forming discretization or feature extraction. Such approaches may not take full advantage
of the fact that data arise from a function and can lack reasonable limiting behavior. Our
graphical model framework guarantees proper theoretical behavior as well as computational
convenience.

2. Graphical Models for Multivariate Functional Data

In this section, we first review graphical models for multivariate data in Section 2.1,
then introduce graphical models for multivariate functional data in Section 2.2, and finally
present the specific case of Gaussian process graphical models in Section 2.3.

2.1 Review of Graph Theory and Gaussian Graphical Models

We follow Dawid and Lauritzen (1993), Lauritzen (1996), and Jones et al. (2005). Let
G = (V, E) denote an undirected graph with a vertex set V' and a set of edge pairs F =
{(i,7)}. Each vertex corresponds to one variable. Two variables a and b are conditionally
independent if and only if (a,b) ¢ E. A graph or a subgraph is complete if all possible
pairs of vertices are joined by edges. A complete subgraph is mazimal if it is not contained
within another complete subgraph. A maximal subgraph is called a cligue. If A, B, C
are subsets of V with V. = AU B, C = AN B, then C is said to separate A from B if
every path from a vertex in A to a vertex in B goes through C. C' is called a separator
and the pair (A4, B) forms a decomposition of G. The separator is minimal if it does not
contain a proper subgraph which also separates A from B. While keeping the separators
minimal, we can iteratively decompose a graph into a sequence of prime components — a
sequentially defined collection of subgraphs that cannot be further decomposed (Jones et al.,
2005). If all the prime components of a connected graph are complete, the graph is called
decomposable. All the prime components of a decomposable graph are cliques. Iteratively
decomposing a decomposable graph G produces a perfectly ordered sequence of cliques and
separators (Cy, S2,Co,...,Sm,Cy) such that S; = H;_1 N C; and H; 1 = C1U---UCj_q.
Let C = {C1,...,Cy,} denote the set of cliques and & = {Ss,...,S5,,} denote the set of
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separators. The perfect ordering means that for every ¢ = 2,...,m, there is a j < ¢ with
S; C Cj (Lauritzen, 1996, page 15).

If the components of a random vector X = (X7, ..., Xp)T obey conditional independence
according to a decomposable graph G, the joint density can be factorized as

_ HCeC p(Xc)
[[sesp(Xs)’

where X4 = {X;,i € A}. If X is Gaussian with zero mean and precision matrix = 71,
then X; is conditionally independent of X; given Xy, y; j1, denoted by X; 1L X [ Xy 553
if and only if the (7, j)th element of € is zero. In this case p(X | G) is uniquely determined
by marginal covariances {¥¢,3g,C € C,S € S}, which are sub-diagonal blocks of X
according to the clique and separator sets. For a given GG, a convenient conjugate prior for
3 is hyper-inverse-Wishart (HIW) with density

_ eeer(Ec|6,Uo)
nggp(xs | 9, US) ’

where p(3¢ | §, U¢) and p(Xg | 0, Ug) are densities of inverse-Wishart (IW) distributions.
In this paper, the inverse-Wishart follows the parameterization of Dawid (1981), i.e., 3 ~
IW (4, U) if and only if 7! has a Wishart distribution W(§ 4 p— 1, U~!), where § > 0 and
3 is a p by p matrix.

p(X | G)

p(X2]G,6,U)

2.2 Graphical Models for Multivariate Functional Data

Let f = {f; ?:1 denote a collection of random processes where each component f; is
in L?(T;) and each T} is a closed subset of the real line. The domain of f is denoted by
T = |[;_, Tj, where | | denotes the disjoint union defined by | |!_, T; = Uj_, {(t,5) : t € T}}.
For each j, let {¢;;}?°, denote an orthonormal basis of L?(Tj). The extended basis
functions v, = (0,...,0,¢k,0,...,0), with ¢; in the jth component and 0 functions
elsewhere for j = 1,...,p and k = 1,...,00, form an orthonormal basis of L?(T). Let
(L?(T),B(L?(T)), P) be a probability space, where B(L?(T)) is the Borel o-algebra on
L*(T). For V. = {1,2,...,p} and A C V, denote by f4 the subset of f with domain
Ty =] A T;. We define the conditional independence relationships for components of f
in Definition 1.

Definition 1 Let A, B, and C be subsets of V. Then f 4 is conditionally independent of
fp given fo under P, written as £4 1L fp | £c[P], if for any £4 € Dy, where D4 is a
measurable set in L?(T4), there exists a version of the conditional probability P(fa € D4 |
fp,fc) which is B(L?(T¢)) measurable, and hence one may write P(fa € D4 | £, fo) =
P(fa € Dy | fc). Here, B(L*(Tc)) denotes the Borel o-algebra on L*(T¢). Note that this
implies P(fA € Dy, fgp € Dp ’ fc) = P(fA € Dy ’ fo) P(fB € Dp ‘ fc).

We would like to use a decomposable graph G = (V, E) to describe the conditional
independence relationships of components in f, whereby a Bayesian framework can be con-
structed and G can be inferred through posterior inference. To this end, we link the proba-
bility measure P of f with G by assuming that P is Markov over G, as defined in Definition
2.
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Definition 2 Let G = (V, E) denote a decomposable graph. A probability measure P of £
is called Markov over G if for any decomposition (A, B) of G, f4 1L f5 | fanp[P].

Given a decomposable graph G, a probability measure of f with Markov property may
be constructed. To enable the construction, we first state Lemma 1, which generalizes
Lemma 2.5 of Dawid and Lauritzen (1993) from the random variable to the random process
case.

Lemma 1 Letf = (fi,...,f,) be a collection of random processes in L*(T). For subsets
A,BCV ={l,...,p} with AN B # &, suppose that P, and Py are probability measures
of £4 and £, respectively. If P, and Py are consistent, meaning that they induce the same
measure for f anp, then there erists a unique probability measure P for £ 4up such that (i)
Py = Py, (ii) Pp = Py, and (iii) 4 WL f5 | fanp[P]. The measure P is called a Markov
combination of Py and P, denoted as P = Py x Ps.

We provide a proof of Lemma 1 through construction in Appendix B. The main idea
is to first construct the conditional probability P; {- | manp(fa)} from P, where manp :
L?*(T4) — L?(Tanp) is a projection map and Ty = Lljca Tj- We then define P{- | 7p(f)}
based upon P {- | manp(f4)} using disintegration theory (Chang and Pollard, 1997), and
finally construct the joint measure P that satisfies conditions (i)—(iii). With Lemma 1, we
can construct a joint probability measure for f that is Markov over GG. The construction

is based on the perfectly ordered decomposition (C1,S2,Cs, ..., Sm,Cn) of G with S; =
Hi_1NnCjand Hi_1 =C1U---UCj_y. Let {M¢,,i =1,...,m} be a sequence of pairwise
consistent probability measures for {f¢,,i =1,...,m}. We construct a Markov probability

measure P over G through the following recursive procedure

Po, = Mgy, (1)

PHiJrl = PHi*MCi+17 1=1,....,m—1. (2)

One can show that the probability measure constructed this way is the unique Markov

probability measure over G with marginals {M¢,}, and the proof follows that of Theorem

2.6 in Dawid and Lauritzen (1993). We call the probability distribution induced by the
probability measure constructed above the Markov distribution of f over G.

Denote the Markov distribution of f constructed in (1) - (2) by Pg, and denote the
space of all Markov distributions over G by M(G). A prior law for Pg is then supported
on M(G). We follow Dawid and Lauritzen (1993) to define hyper Markov laws and use
them as prior laws for Pg. A prior law £ of Pg is called hyper Markov over G if for any
decomposition (A, B) of G, (Pg)a 1L (Pg)p | (Pg)anp[L], where (Pg)a takes values in
M(G 4) which is the space of all Markov distributions over subgraph G 4. Here, we have
assumed that G is collapsible onto A, therefore ¢ € M(G4) if and only if ¢ = (Pg)a for
some (Pg) € M(G). The following Proposition 1 states that the theory of hyper Markov
laws of Dawid and Lauritzen (1993) applies to our random process setup.

Proposition 1 The theory of hyper Markov laws over undirected decomposable graphs, as
described in Section 3 of Dawid and Lauritzen (1993), holds for random processes.

According to the theory of hyper Markov laws, one can construct a prior law for Pg
using a sequence of consistent marginal laws {£¢,C' € C} in a similar fashion as (1) - (2).
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Denote by £4 the constructed hyper Markov prior for Pg and by II a prior distribution for
the graph G. A Bayesian graphical model for the collection of random processes f can be
described as

f~Pg; Po~ZLq G~IL (3)

As we have yet to specify a concrete example for the probability measure Pg, the above
Bayesian framework remains abstract at the moment. In Section 2.3, we construct Pg
using Gaussian processes and propose a hyper-inverse-Wishart-process law as the prior for
Pg. The prior distribution II is supported on the finite dimensional space of decomposable
graphs with p nodes.

2.3 Gaussian Process Graphical Models for Multivariate Functional Data

Let fo = (fo1,--., fop) be an element in L*(T). Denote by K = {k;; : T; x T; — R}
a collection of covariance kernels such that cov{fi(s), f;(t)} = ki;j(s,t),s € T;,t € T;. We
assume that /C is positive semidefinite and trace class. Positive semidefinite means that

P oo
> Cikcjl/ / kij(s,t) ik (s)dj(t)dsdt > 0
ij=1k,i=1 T; JTi

for any square summable sequence {c;;, i =1,...,p, k =1,...,00}; trace class means that
p oo
S5 [ [ wits.0satsisatvasat < o.
j=11=1 /T /T

Then fg and K uniquely determine a Gaussian process on L?(T') (Prato, 2006), which we
call a multivariate Gaussian process, and write MGP(fy, ). The definition of multivariate
Gaussian process implies that for A C V, f4 ~ MGP(fo4,K4) where K4 = {k;j,i,j € A}.
Furthermore, on a sequence of cliques C = {Cy,...,Cp,}, the marginal Gaussian process
measures for {fo,C € C} are automatically consistent because they are induced from the
same joint distribution. Therefore, we can construct a Markov distribution for f over G
through procedure (1) - (2). We denote the resulting distribution of f by MGP¢q(fo, K¢),
where K¢ = {ki; :4,j € C,C € C}. It is clear from this construction that the distribution
MGP¢ is Markov over G whereas MGP is not.

For the convenience of both theoretical analysis and computation, we represent ele-
ments in L?(T) using orthonormal basis expansions and construct a Bayesian graphical
model in the dual space of basis coefficients. Let {¢;1}72, denote an orthonormal ba-
sis of L?(T}). For example, {¢;,}3, could be a wavelet basis. We have the represen-

tation fj(t) = > poy cjrdjr(t) where ¢ = (fj, djn) = ij [i(t)¢jk(t)dt. The coefficient

sequence ¢j = {cji, k = 1,...,00} lies in the space of square-summable sequences, denoted
by Ejz = {cjk DY opey c]zk < oo}. Denote (2 = ?:1 €j2. Since K? and L%(T}) are isometrically

isomorphic for each j, once an orthonormal basis of L?(T) has been chosen, we have an
identification between the Borel probability measures defined on £? and L?(T); therefore we
can construct statistical models on ¢ without loss of generality. Let ¢ = (c1,...,c,) denote
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the coefficient sequence of f. Then f ~ MGP(fy, K) corresponds to ¢ ~ dMGP(cg, Q), where
dMGP denotes the infinite dimensional discrete multivariate Gaussian processes, cq is the
coefficient sequence of fy and Q = {¢;;(-,-),4,j € V}. Here, g;; is the covariance kernel so
that cov(cik, ¢ji) = qi;j(k,1) for k,1 € {1,2,3,...}. Similarly, f ~ MGPg(fo, K¢) corresponds
to ¢ ~ dMGPg(co, Qc) where Q¢ = {qi;(+,-),4,j € C,C € C}. The collection Q is also
positive semidefinite and trace class, so that Z?,j:1 Z?”l:l cikci1qij(k, 1) > 0 for any square
summable sequence {cy,i = 1,...,p,k = 1,...,00}, and Z?:l > orey qj(k, k) < co. Fur-
thermore, /C relates to Q through equation k;j(s,t) = >3 ¢ij(k, 1) ¢ir(s)¢;i(t). Denote
by P¢ and Pf the probability measures of ¢ and f respectively, then f4 I fg | fo[Pf]
implies ¢4 Il cp | co[P€] and vice versa. Thus, the distribution dMGP¢(cg, Q¢) of ¢ is
again Markov.

Assume that ¢ ~ dMGPg(co, Q¢). The parameters involved in this distribution include
co and Q¢. In this study, we assume that cg is fixed (e.g., a zero sequence) so that the
distribution of ¢ is uniquely determined by Q. As indicated in Section 2.2, we would like
to construct a hyper Markov law for the dMGPq distribution. Since dMGP¢ is uniquely
determined by Qg¢, it is equivalent to construct a hyper Markov law for Q. Given a positive
integer 6 and a collection U = {u;; : N x N — R,4,5 € V} which is symmetric, positive
semidefinite, and trace class, we construct a hyper-inverse-Wishart-process (HIWP) prior
for Q¢ following Theorem 1.

Theorem 1 Assume that ¢ ~ dAMGP¢g(co, Qc). Suppose that ¢ is a positive integer, and
U is a collection of kernels that is symmetric, positive semidefinite and trace class. Then
there exists a sequence of pairwise consistent inverse-Wishart processes determined by d
and Uc = {u;j,1,j € C'},C € C, based on which one can construct a unique hyper Markov
law for Q¢, which we call a hyper-inverse-Wishart-process, and write Q¢ ~ HIWP¢ (4, Uc),
where Ue = {u;;,1,5 € C,C € C}.

Based on Theorem 1, a Bayesian Gaussian process graphical model can be written as
c ~ dMGP¢(co, Qc), Q¢ ~ HIWPg(0,Ue), G ~ 1L (4)

It is of interest to investigate the properties of the HIWP prior and the corresponding
posterior distribution. As shown in Dawid and Lauritzen (1993), one nice property of the
HIW law is the strong hyper Markov property, which leads to conjugacy as well as convenient
posterior computation at each clique. In case of the HIWP prior, the strong hyper Markov
property is defined such that for any decomposition (A, B) of G in model (4), Q BlA L Qa,
where Qp4 denotes the conditional distribution (i.e., conditional covariance) of cp given
c4. In the following proposition, we show that the HIWP¢ prior constructed in Theorem 1
is strong hyper Markov when rank(u;;) < oo for 4,5 € V.

Proposition 2 Suppose that the collection of kernels U satisfies that rank(u;;) < oo for
1,7 € V, then the hyper-inverse- Wishart-process prior constructed in Theorem 1 satisfies the
strong hyper Markov property. That is, if Qc ~ HIWPg(6,Uc), then for any decomposition
(A, B) of G, Qpja L Qa, where Qp|4 denotes the conditional distribution (e.g., conditional
covariance) of cp given c4.

The finite rank condition for the prior parameters {u;;} in Proposition 2 is a relatively
strong condition under which the HIWP satisfies the strong hyper Markov property. It
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implies that the covariance kernel Q¢, thus the sequence c, is a priori finite dimensional.
Whether the strong hyper Markov property still holds without this condition remains a
challenging open problem. In the online appendix, we have included several interesting
results made through our preliminary study, which may provide useful insights into further
investigations of this problem. The strong hyper Markov property of HIWPg ensures that
the joint posterior of Q¢ (conditional on ) can be constructed from the marginal posterior
of Q¢ (conditional on G) at each clique C, as stated in Theorem 2. Therefore one essen-
tially transforms the Bayesian analysis to a sequence of sub-analyses at the cliques, which
substantially reduces the size of the problem.

Theorem 2  Suppose that ¢; ~ dMGPg(co, Qc),i = 1,...,n are independent and identi-
cally distributed. Further assume that the prior of Q¢ is HIWPq(0,Uc) where the collection
of kernels U satisfies that mnk(u”) < oo for i ] € V. Then the conditional posterior of
Qc given {c;} and G is HIWPG(8,Uc), where 6 = 6 +n, Ue = {w;j,1,j € C,C € C} and
Uij = uij + 1 q(ci — coi) ® (cj — coj). Here @ denotes the outer product. Furthermore,
the marginal distribution of {c;} given {G,co,d, Uc} is again Markov over G.

Theorem 2 implies that when rank(u;;) < oo for i,j € V, the HIWPg(0,Uc) prior is
a conjugate prior for Q¢ in the dAMGP¢(co, Qc) likelihood. Note that here the likelihood,
the prior, and the posterior are all conditional on G, which makes Bayesian inference of
G tractable. Model (4) and results in Theorem 2 provide the theoretical foundation for
practical Bayesian inference under a reasonable regularity condition, as discussed in Section
3.

3. Bayesian Posterior Inference

Despite the fact that functional data are realizations of inherently infinite-dimensional
random processes, data can only be collected at a finite number of measurement points.
Essentially, estimating the conditional independence structure of infinite-dimensional ran-
dom processes based on a finite number of measurement points is an inverse problem and
therefore requires regularization. Miiller and Yao (2008) reviewed two main approaches
for regularization in functional data analysis—finite approximation through, e.g., suitably
truncating the basis expansion representation and penalized likelihood. In this paper, we
suggest performing posterior inference based on approximating the underlying random pro-
cesses with orthogonal basis functions. In particular, we assume the following regularity
condition:

Condition 1 The functional data £ are observed discretely on a dense grid t = | |t;
with t; = (L1, tjm;@m)) and mj(n) — 0o as n — oo. One can find Mj(n) so that
the underlying random process f; can be approximated with an M;j-term orthogonal basis
expansion .]/C; = Zl]\;ljl cjipji, with approximation error ||f; — .]/C;‘HL2 = Op(n=P) with 8 > 1/2
foralljeV.

Essentially, Condition 1 requires that the discretely-measured functional data capture
sufficient information about the underlying random processes, so that we can approximate
each f; with a negligible approximation error. This condition provides the consistency of
the basis representation, i.e., the approximation error converges to zero with order Op(n_ﬁ )
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when M; increases with the sample size n. We need such a condition in order to guarantee
that the behavior of { f;} is not too outrageous. Certain assumptions, such as the decay rate
of the eigenvalues of f;, the smoothness property of f;, or the characteristics of the basis
functions, will determine the specific rate 5 (De Boor, 2001; Jansen and Oonincx, 2015).
However, under our generic setup, since we prefer not to specify particular assumptions, we
only require a mild range for the convergence rate. Condition 1 is a basic assumption in
the functional setting, and a similar regularity condition has been adopted by Qiao et al.
(2015) in a functional graphical model based on the group LASSO penalty.

3.1 Bayesian Posterior Inference under the Regularization Condition

The regularity from Condition 1 enables us to write the density functions of the Markov
distributions and hyper Markov laws so that posterior inference can be practically imple-
mented. Denoting M = (M, ..., M,), we can explicitly write the density function for the
truncated process ¢M = (le\/h’ ceey ci\,/[p), and an MCMC algorithm can then be designed for
the posterior inference of the underlying graph G. The density function of ¢ is

o Ilcec p(e | 03,407 Qc)

M M
p(C ‘CO 7QC7G)* )
[Ises p(cg | Cé{g, Qs)

(5)

where Qg is a block-wise covariance matrix with the (4, j)th block formed by {q¢;;(k,l),k =
L,...,M;,l =1,...,M;}, and Qg, Qg are submatrices of Q. corresponding to clique C
and separator S, respectively. The HIWPq prior of Q¢ induces a hyper inverse-Wishart
prior with density

_ eeer(Qc 16, Uc)
HSeS p(QS | 57 US) ’

where p(Q¢ | §,U¢) is the density of inverse-Wishart defined in Dawid (1981), U¢ is a
submatrix of U¢ corresponding to clique C, and Ug is a block-wise matrix formed by {u;;}
in the same way as Qg is formed by {¢;;}. The p(Qg | 6, Ug) component in the denominator
is defined similarly. Based on (5) and (6), and assuming that {c;,s = 1,...,n} is a random
sample of ¢, one can further integrate out Q. to get the marginal density

P(Qc | G) (6)

_n yh(8,Ue)
M M _ (2 M) 2\ 2 C)
lox cy ,G)=(2m) 2\&i ——, 7
p({ci"} o, G) = (2m) h(3. ) (7)
where -
h(5,Ug) — Meee 30U TFIT L6 +de — 1))
) HSES|% US‘(5+d28_1)P;51{%(6+d3—1)}’

and d. and d; are the dimensions of U and Ug respectively, and T'(a) = 7(0=1)/4 H?;é I'a—
i/2). The denominator h(d,U¢) in (7) is defined in the same way. Based on these results,
posterior inference can be done through sampling from the posterior density

p(G [ {cM}, cf") o p({c} | b, G) p(G), (8)
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where p(G) is the density function corresponding to the prior distribution G ~ II, which
is a discrete distribution supported on all decomposable graphs with p nodes. Giudici and
Green (1999) used the discrete uniform prior Pr(G = Gy) = 1/d for any fixed p-node
decomposable graph G, where d is the total number of such graphs; Jones et al. (2005)
used the independent Bernoulli prior with probability 2/(p — 1) for each edge, which favors
sparser graphs (Giudici, 1996). The following MCMC algorithm describes the steps to
generate posterior samples based on (8).

Algorithm 1
Step 0. Set an initial decomposable graph G and set the prior parameters ¢y, §, and Up.

Step 1. With probability 1 — q, propose G by randomly adding or deleting an edge from G
(each with probability 0.5) within the space of decomposable graphs; with probabil-
ity q, propose G from a discrete uniform distribution supported on the set of all
decomposable graphs. Accept the new G with probability

a:mm{l (G| {e}, e} p<G|é>}_

PG [ {eM}, ) p(G | G)

Repeat Step 1 for a large number of iterations until convergence is achieved.

Detailed derivations are available in the online appendix. The above algorithm is a
Metropolis-Hastings sampler with a mixture of local and heavier-tailed proposals, also called
a small-world sampler. The “local” move involves randomly adding or deleting one edge
based on the current graph, and the “global” move is achieved through the discrete uniform
proposal. Guan et al. (2006) and Guan and Krone (2007) have shown that the small-world
sampler leads to much faster convergence especially when the posterior distribution is either
multi-modal or spiky.

3.2 Bayesian Posterior Inference for Noisy Functional Data

The theory in Section 2 and the posterior inference in Section 3.1 relies on the assumption
that the distribution of f (and c) is Markov over GG. In many situations, it is more desirable
to make such an assumption in a hierarchical model. For example, when functional data
are subject to measurement error, one might wish to incorporate an additive error term and
consider the following model

yz]t:fz](t)+gzyta i:1>"'7n7 jzlv"'vpa tetj? (9)

where {y;ji,t € t;} are noisy observations measured on a dense grid t; = (¢;1,...,%jm;),
{fij} are the underlying true functions, and {e;j;,t € t;} are measurement errors. We
assume that {f;;} and {g;;;,t € t;} are mutually independent of each other. The inference
of model (9) involves both smoothing (i.e., estimating f;;) and estimation of the underlying
graph G. We achieve these goals simultaneously through fitting a Bayesian hierarchical
model.

In particular, we assume that {f;;} are Gaussian processes in L*(T}), and denote {c;;x}
their basis coefficients corresponding an orthonormal basis {¢;;}7,. With this representa-
tion, model (9) has the form y;j; = > ;2 cijrdjr(t) + €ije, and {c;;} is a discrete Gaussian
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process. We further assume that the measurement error ;; = {ajt,t € tj} is Gaussian
white noise with variance 0]2, ie., gj ~ N (O,UJZ) independently across all ¢ for ¢t € t;.
Truncating at the M;th basis element, we can reparameterize the model as

M;
vije = ) Cijkdn(t) + Eije,  t €L, (10)
k=1

where €;5; is a new residual term that consists of the approximation error of the truncated
series (e.g., Y pe My+1 cijk®;k(t)) and the measurement error. If we concatenate the noisy
observations to form a vector

— (s, ) ) . T
yi = (y21t117 cee 7y11t1m1 s Yiptpry - - 7yzptpmp)

and denote ¢} the vector formed by the basis coefficients {cijr,7=1,...,p,k=1,..., M;},
then model (10) can be written as y; = ®cM + &;, where ® = diag{¢y,...,¢,} is a
>_;m; by >, M; block-diagonal matrix with the jth diagonal block containing ¢; =
[®j1(t5) - - @i, (t5)], and €; denote the concatenated vector of the new residual terms. We
assume that &; ~ N (0, A) where A = diag(s717] ,... ,sglﬁp). Notice that if Q¢ = cov(cM),
then cov(yM) = ®Qc®T + A. The diagonals of ®Qc®” and A can not be separately
identifiable. Therefore, we treat A as a fixed model parameter, whose quantity can be
pre-determined by the approximation 5]2. R 312-, where 3]2- is the estimation of 0]2 using local
smoothing on {e;;;}.

Applying a prior for ¢M in the form of (5) (conditional on G) and the HIWP prior for
the covariance matrix Q¢ in the form of (6), we obtain the density function for the joint
posterior

p({c!'},Qe. G [ {yi}) o [T plyi | M, A) p(c} | ), Qe, G) p(Qe | G) p(G). (1)

i=1

From (11), we can integrate out Q¢ to obtain the marginal posterior distribution of {cfw }
and G. The MCMC algorithm for generating posterior samples based on (11) is listed in
Algorithm 2.

Algorithm 2
Step 0 Set initial values for {cf\/l}, G and set the model parameters 9§, cé\/[, U and A.

Step 1 Conditional on {cM}, update G ~ p(G | {cM},c}!) using the small-world sampler
as described in Step 1 of Algorithm 1, where p(G | {cM}, e is computed based on
(11).

Step 2 Given G, update Qc ~ p(Qc | {cM}, G), which takes the same form as (6) except

that § and U are replaced by 6 and U respectively using the formulae in Theorem
2.

Step 8 Conditional on G and Qc, update cM ~ N(p;, V), where V.= (®TA'®@+Q;")~?
and p; = V(®TA ly; + lecéw).

Repeat Step 1 ~ 8 for a large number of iterations until convergence is achieved.
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3.3 Other Practical Computational Issues

Calculating the coefficient sequences {c;} from the functional observations {f;} requires
the selection of an orthonormal basis {¢;r,j =1,...,p,k =1,...,00}. If a known basis is
chosen (e.g., Fourier), the coeflicient sequences can be estimated by c;jr = (fij, ¢jx) using
numerical integration. Another convenient choice is the eigenbasis of the autocovariance
operators of {f;}, in which case the coefficient sequences are called functional principal
component (FPC) scores. The corresponding basis representation is called Karhunen-Loeve
expansion. The eigenbasis can be estimated using the method of Ramsay and Silverman
(2005) or the Principal Analysis by Conditional Expectation (PACE) algorithm of Yao
et al. (2005). Owing to the rapid decay of the eigenvalues, the eigenbasis provides a more
parsimonious and efficient representation compared with other bases. Furthermore, the
FPC scores within a curve are mutually uncorrelated, so one may set the prior parameter
U¢ to be a matrix with blocks of diagonal sub-matrices, or simply a diagonal matrix.

In addition to the estimation of coefficient sequences, a suitable truncation of the in-
finite sequences {c;} is needed to facilitate practical posterior inference. We suggest to
pre-determine the truncation parameters using approximation criteria, following Rice and
Silverman (1991) or Yao et al. (2005). This includes cross-validation (Rice and Silverman,
1991), applying the pseudo Akaike information criterion (Yao et al., 2005), or controlling
the fraction-of-variance-explained (FVE) in the FPC analysis (Lei et al., 2014).

4. Simulation Study

Three simulation studies were conducted to assess the performance of posterior infer-
ence using the Gaussian process graphical models outlined in Section 2.3 and Section 3.
Simulation 1 corresponds to the smooth functional data case (without measurement error),
and Simulation 2 corresponds to the noisy data case when measurement error is considered.
Both simulations are based on a true underlying graph with 6 nodes, demonstrated in Fig-
ure 1 (a). In simulation 3, we show the performance of the proposed Bayesian inference in
a p > n case, with the number of nodes p = 60 and the sample size n = 50.

4.1 Simulation 1: Graph Estimation for Smooth Functional Data

Multivariate functional data are generated on the domain [0, 1] using Fourier basis with
the number of basis functions {Mj}§:1 varying from 3 to 7. The true eigenvalues are
generated from Gamma distributions and are subject to exponential decay. The conditional
independence structure is determined by a p X p correlation matrix Rg, with the inverse
Ry ! containing a zero pattern corresponding to the graph in Figure 1 (a). We then generate
principal component scores from a multivariate normal distribution with zero mean and a
block-wise covariance matrix Q = ZRZ, which has dimension Z?Zl M;. Here R is a block-
wise correlation matrix that has a diagonal form in each block. In particular, the (i, 7)th
block of R, denoted by R;;, satisfies that R;; = (Ryo); ;I where I is a rectangular identity
matrix with size M; x M;. An image plot of R is shown in Figure 1(d), with its data-
domain counterpart (the correlation of f evaluated on a grid t) shown in Figure 1(c). The
multivariate functional data are finally generated through linearly combining the eigenbasis
using the principal component scores. A common mean function is added to each curve.
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Figure 1: Plots of Simulation 1. (a) The true underlying graph; (b) The first 10 samples of
{fij»i=1,...,6}; (c) The image plot of the underlying data-domain correlation
matrix; (d) The image plot of the underlying correlation matrix R.

The generated data contain n = 200 independent samples, and each sample contains six
curves measured on six different grids. We display the first 10 samples in Figure 1(b).
Based on the data generated above, we estimate the principal component scores {c;}
using the PACE algorithm of Yao et al. (2005) and determine the truncation parameter
{M;} using the FVE criterion with a 90% threshold, resulting in {M;} values around 5. We

apply Algorithm 1 and set 6 =5 and U = ZRZ where Z = dlag{)\;,/f, k=1,...,M;,j =

1,...,p}, {)\jk} are the estimated eigenvalues and R is set to be the 1dent1ty marix. A
total of 5,000 MCMC iterations are performed. Starting from the empty graph, the chain
reaches the true underlying graph in around 500 iterations. We have also tried implementing
Algorithm 1 with different initial graphs; all implementations resulted in the same posterior
mode at the true underlying graph.

We compare the performance of our approach with three other related methods: the
Gaussian graphical model of Jones et al. (2005) based on Metropolis-Hastings (GGM-MH),
the graphical LASSO (GLASSO) of Friedman et al. (2008), and the matrix-normal graphical
model (MNGM) of Wang and West (2009). As both GGM-MH and GLASSO assume that
each node is associated with one variable, we reduce the dimension of the functional data
by retaining only the first principal component score. The MNGM method assumes matrix
data, so we take the first five principal component scores and stack them up to form a
6 x 5 matrix for each sample. In the MNGM method, graph estimates across the rows and
columns are obtained simultaneously, and only that across the rows is of interest to us.

The simulation results are demonstrated in the top panel of Table 1. Summary statistics,
such as running-time, mis-estimation rate, sensitivity and specificity are calculated for each
method. The running-time was obtained using a laptop with Intel(R) Core(TM) i5 CPU,
M430 with 2.27 GHZ processor and 4GB RAM. The comparison of running-time shows that
the GLASSO method is the fastest. This is because GLASSO does not require posterior
sampling. However, GLASSO relies on a penalized optimization approach which requires
determination of the tuning parameter. In this simulation, we have selected the tuning
parameter that results in the lowest mis-estimation rate with respect to the underlying true
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graph. When the true graph is unknown, the tuning procedure can be time-consuming.
The MNGM is much slower to implement, perhaps due to the numerical approximation of
the marginal density in the MCMC algorithm.

Data Method nFPC  Time nKEdge nUnique MisR Sen Spec
FDGM-S 3-5 38 7.66 3 0.02 096 1.0

Smooth GGM-MH 1 0.15 9.55 63 0.10 1.0  0.78
GLASSO 1 - - - 0.13 - -
MNGM 5 4067.73  5.83 36 0.21 0.66 0.93
FDGM-N 3-5 64 7.86 5 0.01 0.98 1.0

Noisy GGM-MH 1 0.39 9.62 59 0.11 1.0 0.77
GLASSO 1 - - - 0.13 - -
MNGM 5 4086.38  6.33 18 0.26 0.65 0.85

Table 1: Summary statistics of simulation 1 and 2. nFPC: number of FPCs used to ap-
proximate each curve; Time: running time (in seconds) based on 5000 MCMC
iterations; nEdge: total number of edges of the graph averaged across all posterior
samples; nUnique: number of unique graphs visited after the burnin period; MisR:
mean mis-estimation rate with respect to the true graph; Sen: sensitivity; Spec:
specificity; FDGM-S: the proposed functional data graphical model for smooth
data, based on Algorithm 1; FDGM-N: the proposed functional data graphical
model for noisy data, based on Algorithm 2; GGM-MH: Gaussian graphical model;
GLASSO: graphical LASSO; MNGM: matrix-normal graphical model.

In Table 1, the mis-estimation rate is defined as the proportion of mis-estimated edges,
obtained by averaging across all posterior samples. The sensitivity is the proportion of
missed edges among the true edges, and the specificity is the proportion of over-estimated
edges among the true non-edge pairs. The top panel of Table 1 shows that the proposed
functional data graphical model provides the smallest mis-estimation rate as well as the
highest sensitivity and specificity. We also observe that, although relying on excessive di-
mension reduction, the Gaussian graphical model and the GLASSO still provide reasonably
good estimates. This suggests that for problems involving more nodes (>50), we can use
these methods to obtain an initial estimate before applying our approach.

4.2 Simulation 2: Graph Estimation for Noisy Functional Data

We add Gaussian white noise to the functional data generated in Simulation 1 to demon-
strate the performance of posterior inference for noisy data. The variances of the additive
Gaussian white noise {;j;,t € t;} are generated from a gamma distribution with mean 2.5
and variance 0.25, resulting in a signal-to-noise ratio around 9, where the signal-to-noise
ratio is defined by f;;(t)/var{e;;;} and is averaged across the grid points and the samples.
We apply model (11) and generate posterior samples using Algorithm 2. The eigenbasis
and the variance of the noise are estimated simultaneously using the PACE algorithm. The
parameter A is determined using the estimated variance of the Gaussian white noise, and
the other model parameters are set to be the same as in Simulation 1. The posterior infer-
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Figure 2: Plot of Simulation 3. The estimated graph based on the marginal inclusion prob-
ability for each edge.

ence results are compared with the other three methods in the bottom panel of Table 1.
Similar patterns are observed as in Simulation 1. In particular, the proposed functional data
graphical model shows a clear advantage in accurately estimating the graph. Estimates of
the functions {f;;} and their time-domain correlations are provided in the online appendix.

4.3 Simulation 3: Graph Estimation When p is Greater than n

To further investigate the performance of the proposed approach when the number of
nodes p is greater than the sample size n, we design another simulation study with p = 60
and n = 55. The true graph contains 60 nodes, among which 2 are singletons and 58
are connected with edges. The total number of edges in the true graph is 121. Smooth
functional data are simulated following the procedure described in Section 4.1. With the
simulated data, we apply the PACE algorithm to estimate {c;} and determine the truncation
parameters using the FVE criterion with a 95% threshod. We then apply Algorithm 1 and
set prior parameters § and U following Simulation 1. Posterior samples of the graph are
obtained for 30,000 MCMC iterations after removing 10,000 burn-in samples.

The posterior inference results are summarized in a circular graph plot in Figure 2,
where we show an estimated graph by thresholding the marginal inclusion probability for
each edge—the proportion that each edge is included in the posterior samples—to be greater
than 0.03. In Figure 2, the colors indicate the levels of the marginal inclusion probabilities,
the colored dashed lines indicate edges that are mistakenly estimated, and the gray dashed
lines indicate edges that are missed. This gives 105 estimated edges, among which 98 are
correctly estimated, and 7 are mistakenly estimated. Additionally, 23 edges in the true
graph are missed. We have also calculated the summary statistics similarly as in previous
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simulations, resulting in mean mis-estimation rate 0.02, sensitivity 0.77, and specificity
0.99. Extra simulation runs show that the sensitivity level is improved when we increase
the sample size n.

5. Analysis of Event-related Potential Data in an Alcoholism Study

We apply the proposed method to event-related potential data from an alcoholism study.
Data were initially obtained from 64 electrodes placed on subjects’ scalps that captured
EEG signals at 256 Hz during a one-second period. The measurements were taken from
122 subjects, of which 77 belonged to the alcoholism group and 45 to the control group.
Each subject completed 120 trials. During each trial, the subject was exposed to either a
single stimulus (a single picture) or two stimuli (a pair of pictures) shown on a computer
monitor. We band-pass filtered the EEG signals to extract the « frequency band in the
range of 8-12.5 Hz. The filtering was performed by applying the eegfilt function in the
EEGLAB toolbox of Matlab. The a-band signal is known to be associated with inhibitory
control (Knyazev, 2007). Research has shown that, relative to control subjects, alcoholic
subjects demonstrate unstable or poor rhythm and lower signal power in the a-band signal
(Porjesz et al., 2005; Finn and Justus, 1999), indicating decreased inhibitory control (Sher
et al., 2005). Moreover, regional asymmetric patterns have been found in alcoholics—
alcoholics exhibit lower left a-band activities in anterior regions relative to right (Hayden
et al., 2006). In this study, we aim to estimate the conditional independence relationships
of a-band signals from different locations of the scalp, and expect to find evidence that
reflects differences in brain connectivity and asymmetric pattern between the two groups.

Since multiple trials were measured over time for each subject, the EEG measurements
may not be treated as independent due to the time dependence of the trials. Furthermore,
since the measurements were taken under different stimuli, the signals could be influenced by
different stimulus effects. To remove the potential dependence between the measurements
and the influence of different stimulus types, for each subject, we averaged the band-filtered
EEG signals across all trials under the single stimulus, resulting in one FEwvent-related po-
tential (ERP) curve per electrode per subject. ERP is a type of electrophysiological signal
generated by averaging EEG segments recorded under repeated applications of a stimu-
lus, with the averaging serving to reduce biological noise levels and enhance the stimulus
evoked neurological signal (Brandeis and Lehmann, 1986; Bressler, 2002). Based on the
preprocessed ERP curves, we further removed subjects with missing nodes, and balanced
the sample size across the two groups, producing multivariate functional data with n = 44
and p = 64 for both the alcoholic and the control group. We applied model (4) using coeffi-
cients of the eigenbasis expansion. The number of eigenbasis {M;} was determined through
retaining 90% of the total variation; this resulted in 4-7 coeflicients per f;. We collected
30,000 posterior samples using Algorithm 1, in which the first 10,000 were treated as the
burn-in period. The model was fitted for both the alcoholic and the control group, and
convergence of the MCMC was justified by running multiple chains starting with various
initial values.

The posterior results are summarized in Figure 3. The plots in (a) and (b) show the
marginal inclusion probabilities for edges in the alcoholic and the control group respectively,
where the edge color indicates the proportion that each edge is included in the posterior
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Summary of posterior inference: the marginal inclusion probabilities for edges in
the alcoholic group (a) and the control group (b); the boxplots of connectivity
measures: the number of edges connecting with nodes in the frontal and parietal
regions (c), and the overall total number of edges (d); the boxplots of asymmetry
measures: the number of asymmetric edges for nodes in the frontal and the
parietal regions (e), and the overall total number of asymmetric edges (f). In
(a) and (b), the edge color indicates the magnitude of the posterior inclusion
probability. In (c)—(f), the alcoholic group is abbreviated as “al”, and the control
group is abbreviated as “ct”.

To distinguish different regions, we used light blue to highlight nodes in the

frontal region, used dark green to highlight nodes in the parietal region, and used green to
indicate nodes in the central and occipital regions. Comparing (a) with (b), we see that
the alcoholic group contains more edges connecting the left frontal-central, right central,
and right parietal regions than the control group. The control group, on the other hand,
contains more edges connecting the middle and right frontal regions, as well as the left
parietal region than the alcoholic group.
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To further compare with established results, we calculated two summary statistics for
connectivity: the number of edges connected with nodes in a specific region, and the overall
total number of edges. We also calculated two additional summary statistics for asymmetry:
the number of asymmetric edges for all nodes in a specific region, and the overall total
number of asymmetric edges. We summarized these summary statistics across the two
groups using boxplots in Figure 3 (c)—(f), and calculated the posterior probability that the
alcoholic group is greater than, equal to, or less than the control group for each statistic.
Results show that, with probability ~ 1, the alcoholic group has fewer edges than the control
group in the frontal and the parietal region, and has fewer overall total number of edges;
with probability 0.95, the alcoholic group has more asymmetric edges than the control
group in the frontal region; and with probability ~ 1, the alcoholic group has higher overall
total number of asymmetric edges than the control group. These results indicate that the
alcoholic group exhibits decreased regional and overall connectivity, increased asymmetry in
the frontal region, and increased overall asymmetry. These observations are consistent with
the findings of Hayden et al. (2006), who studied the asymmetric patterns at two frontal
electrodes (F3, F4) and two parietal electrodes (P3, P4) using the analysis of variance
method based on the resting-state a-band power. In comparison, our analysis provides
connectivity and asymmetric pattern of all 64 electrodes simultaneously whereas Hayden
et al. (2006) only focuses on the four representative electrodes.

6. Discussion

We have constructed a theoretical framework for graphical models of multivariate func-
tional data and proposed a HIWP prior for the special case of Gaussian process graphical
models. For practical implementation, we have suggested a posterior inference approach
based on a regularization condition, which enables posterior sampling through MCMC al-
gorithms.

One concern is whether it is possible to perform exact posterior inference without the
regularity condition on approximation, i.e., inferring the graph directly from the joint pos-
terior p(G|{c;}) x p({c;}|G)p(G) based on model (4), where p({c;}|G) is the marginal
likelihood (with the covariance kernel Q¢ integrated out) and p(G) is the prior distribution
for G. Although the above joint posterior is theoretically well-defined according to Theo-
rem 2, exact posterior sampling is difficult due to the fact that the density function for the
marginal likelihood can only be calculated on a finite dimensional projection of {c;}.

In posterior inference, the influence of the approximation error on the posterior distribu-
tion can be quantified empirically. Assuming that the functional data are pre-smoothed, the
approximation error can be quantified by calculating the difference of the £? norms between
the full sequence and the truncated sequence. The influence on the posterior distribution
can be quantified by measuring the sensitivity of the posterior distribution to the change
of truncation (Saltelli et al., 2000). For example, based on model (4) one may calculate
the Kullback-Leibler divergence for two different truncation parameters M and M’. An
alternative method for pre-determining the truncation parameter is to choose a prior for M
in a Bayesian hierarchical model, in which case hybrid MCMC algorithms are needed for
fitting both models (4) and (11). The posterior sampling in these models would become
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more complicated because the dimension of the truncated sequences and the size of the
covariance matrix Q¢ would change whenever M is updated.

We have demonstrated the application of the proposed approach through an ERP data
set. By treating ERPs as functional data, we are estimating the systematic brain connec-
tivity that is common across a group of subjects and a time interval. For other modeling
purposes, such as estimating the individual level or dynamic brain connectivity, one could
use multivariate graphical models described in Carvalho and West (2007) or Bilmes (2010).

We have focused on decomposable graphs. In case of non-decomposable graphs, the
proposed HIWP prior may still apply if we replace the inverse-Wishart process prior for
each clique with that for a prime component of the graph. For a non-complete prime
component P, the inverse-Wishart processes prior for Qp is subject to extra constraint
induced by missing edges.

We have applied the proposed method to graphs of small to moderate size, with number
of nodes as large as 60. To deal with larger scale problems (e.g, multivariate functional data
with hundreds or thousands of functional components), more efficient large-scale compu-
tational techniques such as the fast Cholesky factorization (Li et al., 2012) can be readily
combined with our MCMC algorithms. Furthermore, non-MCMC algorithms may be more
computationally efficient in case of large graphs. For example, based on the posterior dis-
tribution of GG in (8), a fast search algorithm may be developed to search for the maximum
a posteriori (MAP) solution following ideas similar to Daumé III (2007) and Jalali et al.
(2011).
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Appendix A. Definitions

Definitions used in the lemmas, theorems and their proofs are listed as follows: (I)
Projection map. Let R be the real line and T be an index set. Consider the Carte-
sian product space RT*T = H(a’ﬁ)eTxTR(“’ﬂ). For a fixed point (o, ) € T x T, we
define the projection map m, g : R7T — R(@A) as T8 ({Zam : (bm) €T xT}) =
T(q,8)- For a subset B C T x T, we define the partial projection 7p : RTXT  RE as
TR ({x(hm) ((Lm)eTxT}) = {m(sy) : (s,) € B}. More generally, for subsets By, Ba,
such that By C By C T x T, we define the partial sub-projections 7p,. B, : RBT — RB2,
by 7y B, ({Tam) : (Lbm) € Bi}) = {w(y) : (s,t) € Ba}. (L) The pullback of a o-
algebra. Let B, g be a o-algebra on R(@5) . We can create a o-algebra on RT*T by
pulling back the B, g) using the inverse of the projection map and define WE‘ 3) (Ba,)) =

«,

{W@l’ﬁ)(A) : A € B} One can verify that Wza,ﬁ)(B(aﬁ)) is a o-algebra. (III) Prod-

uct o-algebra. We define the product o-algebra as B(RT*T) = H(aﬁ)eTxT B(a,3), where

Hapersr Bap = o (U(a,,@)eTxT77@,5)(8(04,/3)0- (IV) Pushforward measure. Given a
measure urxr on the product o-algebra, and a subset B of T' x T, we define the push-
forward measure pup = (7g)sprxT on RP as up(A) = ,uTxT{wgl(A)} for all A € Bg,
where Bg = H(a,ﬁ)eB Ba)- (V) Compatibility. Given subsets By, By of T' x T such that
By C By C T x T, the pushforward measures pup, and pup, are said to obey compatibility
relation if (7, B, )«ltB, = LB,

Appendix B. Proof of Lemma 1

This proof involves some measure-theoretic arguments. The essential idea is to use
disintegration theory Chang and Pollard (1997) to first construct the conditional probability
measure Py {- | manp(fa)} on B(L*(T4)), extend this to P{- | 75(f)} on B(L?(Taup)), and
finally construct the joint measure P which satisfies conditions (i)—(iii).

Denote Ty = |_|j€A T;. Since P; is a finite Radon measure and the projection manp :

L?(Tx) — L?*(Tang) is measurable, we invoke the disintegration theorem to obtain measures
Pi{- | manB(fa)} on B(L?(T,)) satisfying:

(a.1) Pi(X | £anp) = P {X N [L2(Tup) x {manp(fa)}] | Tanp(£a)} forall X € B(L(T4))

(b.1) the map fanp — (Pi)f, s H 1 = /H(fA)dpl(fA | fanp) is measurable for all non-

negative measurable H : L?(T4) — R,

(c.1) PLH = ((manB)«P1)(P)¢,.z H for all nonnegative measurable H : L*(T4) — R,
where (manp)«P1 is the push-forward measure of P;.

Now, we define the measure P{- | 7p(f)} by setting P{A | 75(f)} = Pi{ma(AN[L* (T p) X
{7B(£)}]) | mans(f)}. Note that this is well defined for all measurable A € B(L?*(Taug))
since the sections m4 (AN [L*(Tq\p) % {mp(f)}]) are always measurable, and also that (a)
P{A | mp(f)} = P{AN [L2(TA\B) x {mp(f)}] | 75(f)} holds by construction. Now, let M
denote the set of measurable functions from L?(Tayp) to R satisfying (b) fp — Pr,H
is a measurable function on L?(Tg). We shall argue that M is a monotone class. First,

20



GRAPHICAL MODELS FOR FUNCTIONAL DATA

suppose H,, is a sequence of positive measurable functions in M increasing pointwise to
a bounded measurable function H. For each fixed fp in L?(Tg), we then have that
H,, is a sequence of positive measurable functions increasing pointwise to H, and hence
the monotone convergence theorem implies P¢,H, — Pr,H in an increasing manner.
Since this holds for each fp, we conclude that Pf,H is the point-wise increasing limit of
measurable functions on L?(Tg), and hence it is measurable. Moreover, it is simple to
see that Prylyxy = Pi(X | f4nB)1y(fp\4) is a measurable function on L?(Tg) for all
X € B(L*(T4)) and Y € B(L*(Tp\4)), and hence 1yxy € M. By the Monotone Class The-
orem, we then have that all bounded measurable functions on L?(T4p) satisfy (b), and
hence it will hold for all positive measurable functions on L?(Tayp). Since (b) is satisfied
for all positive measurable functions, we may define the measure PH = PP, H. By con-
StI’llCtiOn, we have that P1L2(TA\B)><J/ = P2P1(L2(TA\B) X {fAﬂB} ’ fAﬁB)]-y(fB) = Pg(y)
and Plyyr2(ry, ,) = P2Pu(X | fanB) = ((manB)«P2) PL(X | fanB) = ((TanB)« 1) PL(X |
fanp) = P1(X). Thus, we also have that PH = PoPr, H = ((75)«P) Py, H for all mea-
surable H, and this is the final property establishing that P(- | fp) is a disintegration of P
with respect to the map 7mp. By the disintegration theorem, this disintegration is a version
of the regular conditional probability of f 4 given fp. Since this version only depends upon
f snp, we conclude that (iii) holds. Finally, we note that any other measure satisfying these
properties must agree with the measure we have constructed on w-system, and therefore
the uniqueness of P immediately follows. |

Appendix C. Proof of Proposition 1

Proof. The Properties 1 - 4 in Dawid and Lauritzen (1993) are treated as axioms;
they are universal properties thus also hold when X,Y, Z are random processes. Since the
graph G is undirected and decomposable, the results on graphical theory in Appendix A of
Dawid and Lauritzen (1993) continue to hold. Properties 1 - 4 and results in Appendix A
imply that results in B1- B7 of Dawid and Lauritzen (1993) continue to hold when P is a
Markov distribution constructed in Lemma 1. Theorem 2.6 and Corollary 2.7 of Dawid and
Lauritzen (1993) are also implied. These results, combined with the definition of marginal
distribution defined by pushforward measure and the definition of conditional probability
measure based on disintegration theory, prove that Lemmas 3.1, 3.3, Theorems 3.9 - 3.10
as well as Propositions 3.11, 3.13, 3.15, 3.16, 3.18 from Dawid and Lauritzen (1993) hold.
|

Appendix D. Lemma 2 and Proof

Lemma 2 Let N be the set of positive integers and I an arbitrary finite subset of it.
Suppose that § > 4 is a positive integer and that u© : N x N — R is a symmetric positive
semidefinite and trace class kernel so that the matrix U formed by {u(i,j),i,j € I}
is symmetric positive semidefinite. Then there exists a unique probability measure p on
(RNXN BRN*NY) satisfying

i (Trxr)«pt = prxr, where pyxr is the law of IW(J, Ury ) defined in Dawid (1981);

ii. if B={(a,pi)}]~; C NxNandg={a}l"y U{Bi}l;, then (7p)«p = up, where
B = (ﬂ-B(—ng)*,u’ng-
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Setting p = IWP(4, U) so that (U);; = u(i,j), we further have that if Q ~ IWP(, U) and
§ > 4, the countably infinite array Q is a positive semidefinite trace class operator on £2(N)
almost surely.

Proof. Let Uryr be a matrix with the law prx7;. We will prove following Tao (2011,
Theorem 2.4.3) as follows: (1) we verify the compatibility of up for all finite B C N x N.
There are two successive cases we shall consider. Case 1: Suppose Is C I; are two finite
subsets of N, then Qp,xr, is the sub-matrix of Qp, x7, obtained by deleting the rows and
columns with indices in I \ Io. If Qpxr, has law pr,«r, = IW(0,Upxr,), then Qr,xr,
has law IW (9, Up,«1,) due to the consistency property of the inverse-Wishart distribution
(Dawid and Lauritzen, 1993, Lemma 7.4). Consequently, (77, Iy x Iy )il xI; = HIyxIs-
Case 2: Let By = {(,8i)}~; € N x N and suppose By = {(ai,ﬁi)}gl C Bj. Set
g1 = {1l U{Bi}l, and go = {ay}], U {EZ ™, so that go x go C g1 x g1. It is clear that
TBy«B; © TB«gixgi = MByégixgi = MBacgaxgs © Mgaxgaégixgr- LOUS,

(7732%31)*:“431 = (7732%31)*(7”91%‘%1 Xgl)*ﬂgl xg1 — (732%31 O TBi+g1 Xgl)*ﬂgl Xg1

= (TBygaxgs © Mgaxgaegixgr)xHgixgr = (TBytgaxgs )+ (Maaxgacgixgr)xHer xgr
= (WBzegzxgz)*Mgszgg = KBy,

where the second to last equality holds because of our demonstration in Case 1. (2) Second,
we claim that the finite dimensional measure pyy; = IW(J, Urxs) is an inner regular prob-
ability measure on the product o-algebra Br.;. We will show that pr«; is a finite Borel
measure on a Polish space, which then implies that py«s is regular, hence inner regular by
Bauer (2001, Lemma 26.2). This is done through (a)—(c) as follows: (a) For finite I, Qrxr
takes values in the space of symmetric and positive semidefinite matrices, denoted by ¥y,
where |N| denotes the number of elements in /. Since the subset of symmetric matrices is
closed in R’*7 it is Polish. Furthermore, the space of symmetric positive semidefinite ma-
trices is an open convex cone in the space of symmetric matrices, hence it is Polish as well.
Therefore the space Wy is Polish. (b) Since iy« s, the law of Qx; ~ IW(J,Ujx 1), has an
almost everywhere continuous density function, ur« s is a measure defined by Lebesgue inte-
gration against an almost everywhere continuous function. Therefore py s is Borel on Wi;,.
As ¥y C R we may extend the measure fi7y; from ;) to R™*! via the Carathéodory
theorem (Tao, 2011, Theorem 1.7.3). In particular, define fiyx;(A) = prxr(AN ‘I/m) for
A € B(R!™T). With extension, prx; is Borel on R’/ and the o-algebra associated is
BRI = Bryr = H(a,ﬁ)eIxIB(a,ﬁ)' (c) The measure 7y is certainly finite since it is a
probability measure.

The compatibility and regularity conditions in (1) and (2) ensure that the Kolmogorov
extension theorem holds. Therefore there exists a unique probability measure p on the
product o-algebra B(RY*N) that satisfies (i) and (ii).

We now prove that if Q ~ IWP(J, U), then the countably infinite array Q is a well-
defined positive semidefinite trace class operator on ¢?(N) almost surely. First, we note that
the spectral theorem ensures the existence of an orthonormal basis of £2(N) that diagonalizes
U. Thus, without loss of generality, we may assume that Q is drawn from IWP (4, U) where
U is a diagonal positive semidefinite trace class operator on ¢?(N).

First, we show each row of Qx is finite almost surely hence is well-defined for all x €
(2(N). Tt is sufficient to show that E[|(Qx);|] < oco. We note that for arbitrary i # j,
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( G iy ) ~ IW (5, < i 0 )) and hence using the moments of finite dimensional
%ij 95 0 ug;

inverse-Wishart, E(¢%) = uZ(0 —2)71(6 —4)71, E(qu) = wuj; (0 — 1)1 —2)7H 6 —4)71,
for 6 > 4. By Tonelli’s theorem, we have that EZj qigj = Zj Eq?j < C’Zj Uilj; =
Cuii Y ;5 Wjjs where C' is the maximum of the above constants. Thus

E[(Qx);]] < [|x]| Equj < o0.

J

Because there are only countably many rows, we have that Qx is finite almost surely for all
rows simultaneously. Consequently, we have that Qx is well-defined for all x € £?(N). Now
we show that Qx € ¢?(N) almost surely. By similar considerations, let q; = (Qx);, then
B(S, llail?) < € (5, ui)’ < o0 and [ Qx|12 < Clx|2 X2, llg|?; this implies that Qx| < o
almost surely hence Qx € ¢?(N) almost surely, and it also implies that the operator norm
|Qllop is finite almost surely.

By construction, we must have that Q is positive semidefinite almost surely since
(Qx,x) = limy, 00 (Qpx,x) > 0, where Q,, is the restriction of Q to its n by n leading
principal minor. Finally, Q is trace class almost surely since E[|tr(Q)|] = >, F(qi) =
(5 — 2)_1 Zl Uiy < O0. |

Appendix E. Proof of Theorem 1

Proof. Based on Lemma 2, we can define a sequence of inverse-Wishart process prior for
Qc, denoted by Q¢ ~ IWP(0,Uc),C € C. These sequences are pairwise consistent due to
the consistency of inverse-Wishart processes and the fact that Ue is a common collection of
kernels. Therefore, we can construct a unique hyper Markov law for Q¢ following procedure
(12) - (13) of Dawid and Lauritzen (1993). And Theorem 3.9 of Dawid and Lauritzen (1993)
guarantees that the constructed hyper Markov law is unique. |

Appendix F. Proof of Proposition 2

Proof. Note that an operator drawn from a hyper-inverse-Wishart process with the
parameter U satisfies rank(u;;) < oo for 4, j € V will have finite-rank almost surely. This
follows by noting that if Q ~ HIWP(8,U) and W is a fixed unitary transformation on £2,
then WTQW ~ HIWP(5, WTUW). Thus, choosing W so that the block representation

WIUw = (U 0

0 O) holds (here, U is a finite matrix and 0’s represent infinite arrays of

zeros), we see that the block representation WT QW = (g 8) holds almost surely, and
that @ ~ IW(d,U). Consequently, we have reduced to the finite-dimensional setting where
the result is well-known. |

Appendix G. Proof of Theorem 2

Proof. By the result of Proposition 1, the HIWP prior is a strong hyper Markov law.
So by Corollary 5.5 of Dawid and Lauritzen (1993), the posterior law of Q¢ is the unique

23



ZHU, STRAWN, AND DUNSON

hyper Markov law specified by the marginal posterior laws at each clique. In other words,
we just need to find the posterior law for the model: ¢; ¢ ~ dMGP(co ¢, Qc) with prior
Qc ~ IWP(4,Uc) for each Qc¢, and use them to construct the posterior law of Q¢ following
(12) - (13) of Dawid and Lauritzen (1993). As in the last proof, choosing an appropriate
transformation reduces this to the finite-dimensional case which is well-known. Finally,
by Proposition 5.6 of Dawid and Lauritzen (1993), the marginal distribution of {c;} given
G, ¢y, 6, Z]c is again Markov over G. [ |

Online Appendix

The online appendix contains more detailed derivations, discussions, and simulation
results.
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