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Abstract

This article describes a method for constructing a special rule (we call it synergy rule) that
uses as its input information the outputs (scores) of several monotonic rules which solve
the same pattern recognition problem. As an example of scores of such monotonic rules we
consider here scores of SVM classifiers.

In order to construct the optimal synergy rule, we estimate the conditional probability
function based on the direct problem setting, which requires solving a Fredholm integral
equation. Generally, solving a Fredholm equation is an ill-posed problem. However, in our
model, we look for the solution of the equation in the set of monotonic and bounded
functions, which makes the problem well-posed. This allows us to solve the equation
accurately even with training data sets of limited size.

In order to construct a monotonic solution, we use the set of functions that belong to
Reproducing Kernel Hilbert Space (RKHS) associated with the INK-spline kernel (splines
with Infinite Numbers of Knots) of degree zero. The paper provides details of the methods
for finding multidimensional conditional probability in a set of monotonic functions to
obtain the corresponding synergy rules. We demonstrate effectiveness of such rules for
1) solving standard pattern recognition problems,

2) constructing multi-class classification rules,
3) constructing a method for knowledge transfer from multiple intelligent teachers in the
LUPI paradigm.

Keywords: conditional probability, synergy, ensemble learning, intelligent teacher, priv-
ileged information, knowledge transfer, support vector machines, SVM+, classification,
learning theory, kernel functions, regression

1. Introduction
The standard setting of pattern recognition problem requires, in the given set of functions

f(x,a),a € A defined in the space X € R"™, to find the function f(x, ) such that the
indicator function y = 0(f(x,«)) € {0,1} (in this paper, the indicator function is defined
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as follows: 0(x) =0 for x < 0 and §(z) = 1 for z > 0) minimizes the loss functional

R(@) = [ Iy~ 1(z.0)ldp(a)
if the probability measure p(z,y), « € X, y € {0,1} is unknown but iid data

(331>y1)> R (xﬁayﬁ)7 T; € X7 Yi € {07 1}

generated according to p(z,y) = p(y|x)p(x) are given (in the standard pattern recognition
terminology, conditional probability P(y|z) defines an unknown law of classification given
by Teacher and P(x) defines an unknown generator of events that should be classified by
the learning machine).

In this article, we illustrate our approach using Support Vector Machine (SVM) al-
gorithms. The SVM algorithm construct an approximation of the desired classification
function by first mapping vectors x € X into vectors z € Z and then constructing a sepa-
rating hyperplane in space (Z,y). The obtained rule is used for classification of unknown
iid vectors distributed according to the same unknown probability measure p(x, ).

The conditional probability of class y = 1 given x depends on the position of vector z
relative to the obtained hyperplane

s;i = (w, z;) + b,

where w, b are the parameters estimated by SVM: if s; > 0, vector x; belongs to class y; = 1,
otherwise it belongs to the opposite class y; = 0.

As Platt (1999) observed, the smaller is the (negative) score s; for vector z;, the closer
is the conditional probability P(y = 1|s;) to zero and, the larger is the (positive) score s;,
the closer is the conditional probability P(y = 1|s;) to one. Platt introduced a method
for mapping SVM scores into values of conditional probability based on two hypotheses, a
general one and a special one.

The general hypothesis: Conditional probability function p(y = 1|s) is a monotonic
function of variable s.

The special hypothesis: Conditional probability function can be approximated well
with sigmoid functions with two parameters:

1
Py =1|s) = A. B L
(y =1|s) [ Topl—As+ B} €cR

Using the maximum likelihood technique, Platt (1999) introduced effective methods
to estimate both parameters A, B (see Lin et al., 2007).

Platt’s approach was shown to be useful for calibration of SVM scores. Nevertheless, this
method has certain drawbacks: even if the conditional probability function for SVM is
monotonically increasing, it does not necessarily have the form of a two-parametric sigmoid
function.



SYNERGY OF MONOTONIC RULES

12
—— Actual = -eeeee Platt — —Monotonic
il L
Platt estimate error 4.9% ,/
0. | Monotonic estimate error 1.8% rs

0.6

04

0.2

12
——Actual e Platt — =Monotonic
1 e
Platt estimate error 6.3% ,/
0.8 Monotonic estimate error 2.3% /

12
——Actual e Platt — =Monotonic

Platt estimate error 7.3% /
0& | Monotonic estimate error 1.7%

-0.2

Figure 1: Comparison of conditional probability estimates.
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It is easy to construct examples where suggested sigmoid function does not approximate
well the desired monotonic conditional probability function. Figure 1 illustrates the condi-
tional probability approximations (for a sample consisting of 96 random numbers that are
evenly split between both classes) for Platt’s approach and for the special one-dimensional
case of the algorithm described further in this paper.

The one-dimensional problem mentioned in the previous paragraph has the following
form: given pairs (values s; of SVM scores and corresponding classifications y;)

(81>y1)7 SERE) (Sﬁvyﬁ)a

find an accurate approximation of the monotonic conditional probability function p(y = 1]s).
Section 3 describes a technique for construction of a monotonic approximation of the desired
function. This approximation provides a more accurate estimate than the one based on
sigmoid functions.

In this paper, we consider a more general (and more important) problem than this
one-dimensional one. Suppose we have d different SVMs, solving the same classification
problem. Also, suppose that the probability of class y = 1 given scores s = (s!,...,s%) of d
SVMs is a multidimensional monotonic conditional probability function: for any coordinate
k and any fixed values of the other coordinates (s',...,s*™1 s¥*1 _ s9) the higher is the
value of score s*, the higher is the probability P(y = 1|s).

The goal of this article is to find a method for estimation of the monotonic conditional
probability function P(y = 1|s) for multidimensional vectors s = (s',...,s%); that is,
to combine, in a single probability value, the results of multiple (namely, d) SVMs. We
show that estimating conditional probability function in a set of monotonic functions has
a significant advantage over estimating conditional probability function in a general, non-
monotonic set of functions: it forms a well-posed problem rather than an ill-posed problem.

The decision rule for a two-class pattern recognition problem can be obtained using the
estimated conditional probability function P(y = 1|s) as

v=0(Pu=119-3).

This article is organized as follows. In Section 2, we consider the problem of estimating
conditional probability function. We show that the problem of conditional probability
estimation in general sets of functions is #ll-posed. However, this problem is well-posed
for sets of nonnegative bounded (by 1) monotonic functions. Therefore, the problem of
estimating the monotonic conditional probability function can be solved more accurately
than the general problem of estimating conditional probability function. In Section 3, we
describe methods of estimating monotonic conditional probability functions. In Section 4,
we apply methods of estimating monotonic conditional probability function based on the
scores generated by several different SVMs solving the same pattern recognition problem.
Here we estimate monotonic conditional probability function of class y = 1 given all the
scores and we obtain the so-called synergy rule of classification. In Section 5, we consider a
method for knowledge transfer from multiple intelligent teachers.

Remark. It is important to note that, in classical machine learning literature, there are
ensemble methods that combine several rules (see Dietterich (2000), Zhang and Ma (2012),
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Tsybakov (2003), Lecué (2007)). The difference between ensemble rules and synergy rules
is in the following:

1) Ensemble rule is a result of structural combination (such as voting or weighted
aggregation) of several classification rules.

2) Synergy rule defines the optimal solution to the problem of combining several
scores of monotonic rules. It is based on effective methods of conditional probability
estimation in the set of monotonic functions.

3) Synergy rule is constructed only for monotonic rules (such as SVM) in contrast to
ensemble rule which combines any rules. Synergy is the property of monotonicity of
the solution.

2. Overview of Methods

In this section, we present a short overview of the direct constructive setting of estimation
of conditional probability, as presented in (Vapnik and Izmailov, 2015¢) and (Vapnik and
Izmailov, 2015a). The method is quite general, and, in this section, we do not even assume
that the probability has to belong to [0, 1].

2.1 Glivenko-Cantelli Theory

In (Vapnik et al., 2015), (Vapnik and Izmailov, 2015¢), (Vapnik and Izmailov, 2015a), we
introduced direct constructive methods for solving the main problems of statistical inference.
All these methods are based on Glivenko-Cantelli theory, which forms the foundation of

classical statistics. This theory states that the joint cumulative distribution function of
several variables X = (X*',..., X"

F(x)=P{X'<a',... X" <2"}
can be estimated from the observations
Xq,...,X,

by empirical cumulative distribution function
1 £ n
k
=3 TToe -t 0
where 6(z* — X¥) is the step function (indicator function for z > 0).

Classical statistical theory provides bounds on the rate of convergence of Fy(z) to the
desired function F'(z) for the one-dimensional case (Massart, 1990):

P{sup|Fy(z) — F(z)| > e} < 2exp{—2e(}. (2)
T
Application of VC theory to n-dimensional case (Vapnik, 1998) gives the bound

Plsup|Fie) — F(a)| 2 2) < exp { - (2= 230 ) o}, 3)

5
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2.2 Direct Setting of Conditional Probability Estimation

Estimation of cumulative distribution function using empirical data is a foundation for
estimation of more sophisticated characteristics of stochastic events such as density function,
conditional density function, regression function, conditional probability function etc.

1. We call function p(z) the density function of the random events X ~ F(x) if its
integral defines the cumulative distribution function

/H(x—X)p(X)dX =F(z), XeR"

2. Let pair (z,y), * € X, y € Y € R! be a random event. We call

o) = PS5 pla) >0,

the conditional density function; it defines the conditional density of the value of y
given observation z.

3. Let pair (z,y), x € X, y € {0,1} be a random event. We call

p(SE, Y= 1)

@ p(x) >0,

ply =1lz) =

the conditional probability function; it defines conditional probability of y = 1 given
observation .

4 We call the integral
f(@) =/yp(y\x)dy,

the regression function f(x); it defines conditional expectation of value y given obser-
vation x.

The definition of conditional probability can be rewritten (see Vapnik and Izmailov
(2015c¢), Vapnik and Izmailov (2015a)) in the form of the solution of integral equation

[ 86 = X0ply = UX)AF(X) = Fla,y = 1) (4)

These papers describe the direct constructive way of estimation of the conditional probabil-
ity function as solving a multidimensional Fredholm integral equation (4) when cumulative
distribution functions F'(z) and F(z,y = 1) are unknown but data

(xlvyl)v ey (Ifayf)

are given. This setting is called direct because it is based on the definition of conditional
probability. It is called constructive because there exists an empirical cumulative distribu-
tion function, defined as (1), that converges to the real cumulative distribution function
with the rates (2) and (3).
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In order to find the conditional probability (i.e., to solve equation (4)), we use the ap-
proximations Fy(z) and Fy(x,y = 1) = Fy(z|ly = 1)Py(y = 1) instead of unknown functions
F(z), F(x,y =1). As shown in (Vapnik and Izmailov, 2015c) and (Vapnik and Izmailov,
2015a), statistical inference problems, such as (1) conditional density estimation, (2) condi-
tional probability estimation, (3) regression estimation, (4) ratio of two densities estimation,
can be formulated as follows: solve the integral equation

/ 0( — 2)f(2)dF(2) = (By) " F*(2)

in the situation when the cumulative distribution functions F'(z), F*(z), and the value
E(y) are unknown but their approximations in the form of empirical cumulative functions
Fy(z), F/(z) and empirical average Py(y = 1) can be obtained using data

(Zlay1)7 ERE) (Zfayf)-

2.3 Fredholm Integral Equations of the First Kind

We consider the linear operator equations
Af =, (5)

where A maps elements f of the metric space F; into elements ® of the metric space FEs.
Let A be a continuous one-to-one operator, which maps a set M C FE; onto a set N’ C E»,
i.e., AM = N. The solution of such operator equation exists and is unique, i.e., inverse
operator A~! is defined:

M=A"N.

The crucial question is whether this inverse operator A™! is continuous. If it is, then
close functions in N are mapped by A~! to close functions in M; that is, a “small” change
in the right-hand side of (5) results in a “small” change of its solution. In this case, the
operator A~! is called stable (Tikhonov and Arsenin, 1977). If, however, the inverse operator
is discontinuous, then “small” changes in the right-hand side of (5) can cause a significant
change of its solution. In this case, the operator A~! is unstable.

The equation (5) is well-posed if its solution (1) exists, (2) is unique, and (3) is stable.
Otherwise, the equation (5) is #ll-posed.

We are interested in the situation when the solution of operator equation exists, and is
unique. In this case, the stability of the operator A~! determines whether (5) is ill-posed
or well-posed. If the operator is unstable, then, generally speaking, any numerical solution
of (5) is meaningless (a small error in the right-hand side of (5) can cause a large change of
its solution).

Here we consider the linear integral operator

b
Af(z) = / K (o, ) f (u)du

defined by the kernel K(¢,u), which is a symmetric positive definite function that is con-
tinuous almost everywhere on a <t <b, ¢ < x <d. This kernel maps the set of functions
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{f(t)}, continuous on [a, b], unto the set of functions {®(x)}, also continuous on [c,d]. The
corresponding Fredholm equation of the first kind (Tikhonov and Arsenin, 1977)

b
/ K (2, u) f(u)du = B(x)

requires finding the solution f(u) given the right-hand side ®(z). It is known that these
integral equations are ill-posed.

In our problem, not only the right-hand side of (5) is an approximation but also the
operator of (5) is defined approximately. In (Vapnik, 1995), such equations are called
stochastic ill-posed problems.

2.4 Methods of Solving Ill-Posed Problems

In this subsection, we consider methods for solving ill-posed operator equations.

2.4.1 INVERSE OPERATOR LEMMA

The following Inverse Operator Lemma (see Tikhonov and Arsenin, 1977) is the key enabler
for solving ill-posed problems.

Lemma. If A is a continuous one-to-one operator defined on a compact set M* C M,
then the inverse operator A~ is continuous on the set N* = AM*.

It is known that bounded monotonic functions form a compact set. Therefore, if we
restrict the set of solutions of Fredholm integral equations to the class of bounded monotonic
functions, we will make the corresponding equation well-posed. This is exactly the reason
of our targeting the monotonic solutions in this paper.

Thus, as follows from Inverse Operator Lemma, the conditions of existence and unique-
ness of the solution of an operator equation imply that the problem is well-posed on the
compact M*. The third condition (stability of the solution) is automatically satisfied. This
lemma is the basis for all constructive ideas of solving ill-posed problems. We describe one
of them in the next subsection.

2.4.2 REGULARIZATION METHOD

Suppose that we have to solve the operator equation (4) defined by a continuous one-to-one
operator A mapping M into N, where we assume that the solution of (5) exists. Also,
suppose that, instead of the right-hand side ®(x), we are given its approximations ®4(x),
where

Py (®(x), Ps(x)) < 6.

Our goal is to solve the equations
Af =25

when 6 — 0.
Consider a lower semi-continuous functional W (f) (called the regularizer) that has the
following three properties:

1. the solution of (5) belongs to the domain D(W) of the functional W ( f);
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2. the values W(f) of W are non-negative in the domain of W;
3. the sets M, = {f: W(f) < ¢} are compact for any ¢ > 0.

The idea of regularization is to find a solution for (5) as an element minimizing the
so-called regularized functional

~

R\(f, ®s) = p,(Af, ®5) + W (f), feDW) (6)

with regularization parameter v > 0.

The following theorem holds true (Tikhonov and Arsenin, 1977).

Theorem 1. Let E\ and E5 be metric spaces, and suppose that, for ® € N, there
exists a solution of (5) that belongs to compact M. for some c. Suppose that, instead of the
ezact right-hand side ® in (5), its approvimations' ®s € Ey are such that pp,(®,®5) < 4.
Consider the sequence of parameters v such that

2

v(6) — 0 for § — 0, and 6li_r>n07(25)§r<oo. (7)

Then the sequence of solutions fg(é) minimizing the functionals R s)(f, ®s) on D(W) con-
verges to the exact solution f (in the metric of space E1) as § — 0.

In a Hilbert space, the functional W (f) may be chosen as || f||? for a linear operator A.
Although the sets M, are only weakly compact in this case, regularized solutions converge
to the desired one. Such a choice of regularized functional is convenient since its domain
D(W) is the whole space E;. In this case, however, the conditions on the parameters v are
more restrictive than in the case of Theorem 1: 7 should converge to zero slower than §2.

Thus the following theorem holds true (Tikhonov and Arsenin, 1977).

Theorem 2. Let Ey be a Hilbert space and W (f) = ||f|[?. Then, if v(5) satisfies (7)

with r = 0, the regularized elements f;(é) converge to the exact solution f in E1 as § — 0.

2.4.3 STOCHASTIC ILL-POSED PROBLEMS

Let Ay be approximations of A and ®; be approximations of ®. In order to solve stochastic
ill-posed problems

Aef = Py, (8)
we will also use the regularization method minimizing the functional
Tof = ||Acf — o, + 12 F). 9)

Here, with increasing number of observations ¢, functions ®, converge to the actual function
® and operator Ay converges to the actual operators A in the sense that

Af — Aof||?
la—alr=  sup A2l

— o0 0. 10
retaip<cy QAP - (10

As was shown in (Vapnik (1998)), if the desired solution belongs to one of the compacts
{f; Q(f) < C}, the sequence of approximations ®, of the right-hand side of equation and

1. The elements ®s do not have to belong to the set N.
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the sequence of approximations A, of the operators converge in probability to, respectively,
® and A, and v, — 0 in (9) is such that

A2
L1l — 4]

=0,
{—00 Ye

then the sequence of minima converges to the desired function.
In (Vapnik and Izmailov (2015¢)), (Vapnik and Izmailov (2015a)), it was shown that
our specific integral equations satisfy the required conditions.

2.5 V-Matrix Method of Estimation of Conditional Probability Function

In order to find the conditional probability from the observations, we solve stochastic ill-
posed problem (8) using regularization method (9), where approximations of the right-hand
side of equation ® and operator A are defined. We define two terms of (9) as:

1. the square of the distance p?(A.f, ®;) in space Fs between functions (we omit the
common normalizing multiplier 1/¢ in these definitions since it does not affect the
subsequent derivations):

0
Af(z) = 0(z — X;)f(X;) and y(x Zyj v —
i=1
where (X;,vi),...,i=1,...,0, X; € R%, y; € {0,1} are training data;
2. the regularization functional Q(f), to be defined below.

2.5.1 CHOICE OF DISTANCE AND DEFINITION OF V-MATRIX

Below, we use Lo-distance in space E5 in the general form

P 20) = [(Af(a) = @) Pola)duta),
where o(z) is a non-negative function and u(x) is a probability measure; some choices for

o(x) and p(z) were considered in (Vapnik and Izmailov (2015¢)), (Vapnik and Izmailov
(2015a)). To simplify computations, we chose

d
= Hak(xk) and p(z Huk ), where z = (2!,... 2%).
=1

Then we can rewrite the square of distance p? in the explicit form

d ¢ d
/Zf Lo - xh) = 3w [ ot~ Hak Jajup(2*) =
=1 j=1

k=1 k=1

¢
Z f(X -2 Z yif (X\Vig + Y viyVig,

,7=1 ,j=1 i,j=1

10
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where we have denoted
d
Vi =TIV v = [0(a* — minxf X5 ) (o)),
k=1

We denote by V the (¢ x ¢)-dimensional matrix of elements V;;, by f the ¢/-dimensional
vector f = (f(X1),..., f(Xy))T, and by Y the ¢-dimensional vector Y = (y1,...,y)’. In
matrix notations, we can rewrite the square of distance as follows:

o =fTvE—2oTVY + YTVY.

2.5.2 CHOICE OF REGULARIZATION FUNCTIONAL

Suppose that the solution of our integral equation (4) belongs to the RKHS (Reproducing
Kernel Hilbert Space) associated with kernel K (z,z*) (symmetric positive definite function
of vector variables x,z* € X). This means that RKHS has inner product such that for any
function f(z) from the space, the equality

holds true. According to Mercer theorem, any positive definite kernel K (x,z*) can be
represented as

K(2,2*) =) Mep(@)dr(z™),
p

where {¢(x)} is a system of orthonormal functions in F; and {A;} is a sequence of non-
negative values converging to zero, where k = 1,2, .. ..
It is easy to check that the functions

fla,a) =" apop(),
k=1

belong to RKHS associated with kernel K (x,z*) if the inner product between two functions
f(x,a) and f(z,b) has the form

o

(Fla,a). f(a,5) = 3 B2,
i
and, therefore, the norm of function f(z,a) is
2N~ %
1f(z,a)] :Z)\?, (11)
k=1

We will chose the norm of function from RKHS as the regularizer Q(f) = ||f||?. As follows
from (11), the set of functions with their norm bounded by C

© 9
a

f(z,a)|]*> = Z/\*k <C
=1 "k

11
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is a compact. Therefore, we use as a regularizer in (9) the norm of function in RKHS
PP+l fIIP = £TVE =2 TVY + YIVY £ (12)

An important property of RKHS for applicatons is defined by the so-called Representer
Theorem (Kimeldorf and Wahba (1970)), according to which the minimum of (12) has an
expansion on elements K (z;,z) defined on the training data z1,...,z,

V4
f(z,a) = ZaiK(xi,x), (13)

and the norm of function f in RKHS is defined as

¢
AP =" aiaK (i, ). (14)
ij=1
To simplify the notations, we introduce ¢-dimensional vector A = (ay, .. ., ay), f~-dimensional
vector functions K(z) = (K(x1,2),...,K(z,2))" and (¢ x £)-dimensional matrix K =

(K (w3, 7).
Using these notations, we can rewrite (13) and (14) as

fl@)=KT(@)A, f=KA, [[f|]P=ATKA.

2.5.3 V-MATRIX KERNEL REGRESSION

In order to solve our integral equation using the regularization technique, we have to mini-
mize, with respect to vector A, the functional

W(A) = ATKVEKA - 20TKVY + AT KA; (15)

in this functional, the third term of (12) was omitted since it does not depend on A. The
solution has the form

f(z) = ATK(2), (16)

where one has to minimize functional (15) in order to find A.
The minimum of (15) has the closed-form representation

A= (VK +~I) VY. (17)

Note that for y; € {0,1} in Y = (y1,..,y¢)7, expression (17) estimates the conditional
probability; for y; € R, this expression estimates the regression.

2.6 Estimation in a Set of Functions with Bias Term

Below we consider sets of functions {f(x) + b}, where b is a value of bias (to be estimated
from data) and function f(z) belongs to RKHS (note that f(x)+ b does not have to belong
to RKHS). Replacing f(z) with f(z) + b in (16), we can rewrite (15) in the form

W = (KA +b1)TV(KA 4 b1y) — 2(KA 4+ 01D)VY + v ATKA. (18)

12
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Finding the expression for b by minimizing (18)

b= %1{ (Y — KA) (19)

and putting it into equation (18), we obtain the functional for minimization:

T
W= (KA + %m{(y — KA)> 1% (KA + %m{(y — KA)> - (20)

2 (KA + %1e1g(y _ KA))T VY + 7 ATEKA.
In order to simplify this expression, we introduce the notations
E=1- %mT and V= FEVE.
Then

W =ATKVKA - 20T KVY +yATKA + C, (21)

where C are the terms that do not depend on A. Taking the derivative of W over A and
equating it to zero, we see that, in order to minimize (21), vector A has to satisfy the
equation

2KVKA —2KVY +2yKA = 0.

Solving this equation with respect to A, we obtain the closed-form solution
A = (VK +~I)71VY, (22)

which differs from (17) just by using matrix V instead of matrix V.

Therefore, in order to find the conditional probability in the form f(z) = ATK(z) + b,
we have to estimate the vector A using (22) and estimate the bias b using (19).

Remark. The described solution for conditional probability is also applicable for es-
timating regression. In that case, coordinates y; of vector Y = (yi,...,y,)? belong to R!
and the set of functions f(z,a),a € A is a set of real-valued functions from RKHS.

2.7 Indirect Methods of Estimation of Conditional Probability

In addition to direct setting of conditional probability problem, indirect settings also exist.
They are based on the fact that for some loss functions p(y — f(z, «)), under a wide range
of conditions, the minimum of the functional

R= [ oy~ f@c)dpl.) (23)
in the set f(z,a), a € A defines conditional probability function f(z,ap) (provided that

ag € A). In order to estimate the conditional probability, one has to find the function that
minimizes functional (23) if the probability measure Pp(z,y) is unknown but iid sample

(1,91), -5 (e, o) (24)

13
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is given. The standard idea for solving this problem is to minimize the functional

14

Y oy — flai @)+l (@ )l

i=1
There are two classical ideas of choosing the term p(y — f(x, a)):

1. ply — f(z,a)) = (y — f(x,a))?, which leads to regularized kernel least square
method.

2. py— f(z,a)) = |y — f(z, )|, which leads to a more robust regularized kernel least
modulo method.

2.7.1 REGULARIZED KERNEL LEAST SQUARE METHOD

We minimize the functional (23) based on empirical data (24) in the set of functions belong-
ing to RKHS associated with the kernel K (x,2*). For this set, we minimize the empirical

functional ,

D (i = fli, @) = )%+l f (z, ).

i=1
Minimizing this expression over b, we obtain

l

V4
> (fl@ia) +0) = ui
=1

i=1

where we again assume that functions f(z,a),a € A belong to RKHS associated with
kernel K (z,z*). Using the same reasoning as in the previous section, we obtain that the
solution has the form (16), with the expansion coefficients A = (a1, ..., a;)T maximizing
the functional

W =ATKIKA —2ATKZY + yATKA,

where we have denoted
I =FIF.

The vector of coefficients A in closed form is
A= (IK +~I)"'TV.

2.7.2 REGULARIZED KERNEL LEAST MoODULO METHOD

In classical statistics, besides Lo-norm loss function for estimating regression, L;-norm loss
is considered as well. In many situations, Li-norm regression has an advantage over Lg-
norm: it provides the so-called robust regression (Andersen (2008)). As in previous sections,
we estimate the regression in the set of functions { f(x,«) + b}, where each f(z,«) belongs
to RKHS associated with kernel K (z,z*). In order to do that, we minimize the functional

4
R=0Y |y flana) - b + || f(z, @)l 2
=1

14
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We rewrite this problem in an equivalent form: we map vectors x € X into Hilbert space
z € Z defined by the inner product (z;,2;) = K(x;,x;) given by a non-negative definite
kernel K (z,x,). We look for a solution in the form f(z,a) = (w,z) + b, where w,z € Z. In
these notations, we rewrite our minimization problem as follows: minimize the functional

)4
R:CZ&—F(’LU,UJ)
i=1

subject to the constraints

Using Lagrange multiplier method, we construct the Lagrangian

L L L

L=C) &G+ ww) =Y aillys — (w,z) =b)+&] = > af[(—yi + (w, ) +b) + &,

=1 =1 =1

the saddle point of which (minimum with respect to £ and w and maximum with respect
to «) defines the solution.
The solution has the form

y4
flz,a) =) 6K (2, 2) +b,
=1

where, in order to find §; = o] — o, one has to maximize the functional

)4 ¢
R = Zyzdz — % Z (SZ(SJK(J}Z, x)
i=1

ij=1

subject to the constraints

The bias b can be computed as

VA
b=y — Z(SiK(xi,xk),
=1

where k is an index for which |0x| # C.

3. Estimation of Monotonic Conditional Probability Functions

Our goal is to minimize functional (15) in the set of monotonically increasing functions. We
do this by using expansion of desired function on kernels that generate splines with infinite
number of knots (INK-spline) of degree zero. The reason we use these kernels is that
they enable an efficient and straightforward construction of multidimensional monotonic
functions; it is possible that some other kernels might be used for that purpose as well.
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3.1 Kernels for Estimating INK-Splines

According to the definition in the one-dimensional case, splines of degree r with m knots
are defined by the expansion (in this section, we assume that 0 < z < 1)

T

S(xlr,m) = ca® + eplw —ap), (25)

5=0 k=0
where _
(z —ap)} = { E)x - i)ftﬁe;v:ilsc.ez "
We generalize expansion (25) using infinite number of knots:
r [e e}
Soo() = Z csx® + /0 g(m)(x — 1)l dr.
5=0

Following the approach from (Vapnik (1998)), (Izmailov et al. (2013)), we define the kernel
with infinite number of knots (INK-spline) of degree r for expansion of the function of one
variable z > 0 in the form

9] r k
C . .
Ky (x;,x5) = /0 (x; —7)(xj — 1) dr = kzo m[mm{mi,xj}]w R g — |

(here we modified the definition of INK-kernel from (Vapnik (1998)), (Izmailov et al. (2013))
by omitting its polynomial portion).
For r = 0, the INK-spline kernel has the form
Ko(z;, zj) = min{x;, x; }; (26)

for r = 1, the INK-spline kernel has the form
1 . 3 1 . 2
Ky (2, 25) = 5 (min{zs, 233)° + 5 (min{as, 25})" [os — 21,

In the multidimensional case, the INK-spline of degree r is defined as
d
K, (zj,xj) = H Kr(xf,xf), r=(z',... 2%,
k=1

3.2 Estimating One-Dimensional Monotonic Conditional Probability Function

In classical statistics, there are methods for estimation of monotonic (isotonic) regression
(see Best and Chakravarti, Mair et al. (2009), Sysoev et al. (2011), Meyer (2013)), focusing
on maintaining the monotonicity on the observed sample points. Below we describe a
method of estimating conditional probability that is a monotonic function in the whole
space; the method is based on INK-splines with infinite number of knots.
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We estimate the monotonic conditional probability function in the set of INK-splines
of degree zero (piecewise constant spline function with infinite number of knots). We start
with one-dimensional case where x > 0. For this kernel, the solution is defined as

¢
flz) =ANK(z) +b= Z a; min{z;, z} + b. (27)

i=1

To specify monotonically increasing function, we impose additional constraints for (27):
specifically, we consider the subset of functions (27) for which the inequality

df (z, @) >0

Ve >0 28
2 >0, ez (28)

is valid. Since any function (27) is a piecewise linear continuous function, in order for it to
be monotonic, it is sufficient for that function to satisfy the constraints

x], Zaz xi—x;) >0, j=1,...,¢,
(29)
dfOCk Zal>0

Indeed, consider three possible cases:

1. Let < min{zy,...,z1}. Then, since O(x; —x) =1 forall i =1,..., L, the value (28)
is non-negative according to the second inequality in (29).

2. Let min{xy,...,21} < z < max{xy,...,zr}. Without loss of generality, assume the
ordering 1 < wp < ... and the position of x within that ordering as z; < x < x;41.
The function (28) is linear on the interval (z, xj41) and its values at the ends of the

interval are
L L
Z a;f(x; —xj) and Z aif(x; — xj41),
i=1 i=1

which are non-negative, according to the first inequality in (29). Therefore, the func-
tion is also non-negative at any internal point x of the interval (x;,2;41).

3. Let > max{xy,...,xr}. Then, since f(x; —x) =0foralli =1,..., L, the value (28)
is zero.

We introduce the notations
O(z;) = (0(x1 — x;),...,0(xe — )T, j=1,...,L
Using these notations, we rewrite the constraints (29) in the form

ATe(0) >0, ATO(x;)>0, j=1,...,L (30)
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3.2.1 ESTIMATING MONOTONIC CONDITIONAL PROBABILITY USING V-MATRIX
METHOD

In order to find a monotonic solution, we use our method for estimating conditional probabil-
ity function with INK-spline kernel of degree zero with additional £ monotonicity constraints
(30). That is, we have to minimize the functional

W = (KA+b1)TV(KA 4+ b1,) — 2(KA +b1,)TVY + AT KA
(here coordinates of vector Y are y; € {0, 1} subject to £ 4 1 inequality constraints
ATO(0) >0, ATO(z;) >0, j=1,...,¢ (31)

Let £ > 0. Then, in order to construct the conditional probability in the set of non-
negative monotonic functions bounded by the value 1, we have to enforce the constraint
P(y = 1|z) < 1. Thus, taking into account nonnegativity and monotonicity (31), we add

the constraint
ARz =1)+b=AT%+b<1, (32)

where X = (21, ...z)7T.

3.2.2 ESTIMATING MONOTONIC CONDITIONAL PROBABILITY USING Lo-NORM SVM

Using Lo-norm SVM for estimating monotonic conditional probability function, we minimize
the functional
W(A) = ATKKA - 2ATKY + v, ATKA,

with coordinates of Y are y; € {0, 1} subject to £ + 2 inequality constraints (31), (32).

3.2.3 ESTIMATING MONOTONIC CONDITIONAL PROBABILITY USING Li-NORM SVM

We look for a solution of the following quadratic optimization problem: minimize the func-
tional

¢
C |y — flai,a) = bl + || f(z, )
=1

subject to ¢ + 2 inequality constraints (31) and (32), where f(z,a) belongs to RKHS asso-
ciated with the kernel INK-spline of degree zero K (x;,x;) = min(z;, ;).
In matrix form, this problem can be rewritten as follows: minimize the functional

R(&,AN) = C17E+yATKA

subject to the constraints
—{<Y-KA-0b1,<¢,

and ¢ + 2 constraints
ATO0) >0, ATO(z;)>0, i=1,...,¢,
ATR+b<1,

where we have denoted

—

62(617"'7€Z)T7 f:(xla"wxé)T? Y:(ylv"wyé)T'
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3.3 Estimating Multidimensional Monotonic Conditional Probability
Functions

3.3.1 ESTIMATION OF MONOTONIC FUNCTIONS FROM RKHS ASSOCIATED WITH
MULTIPLICATIVE KERNELS

1 d

In multidimensional case, z; = (z;,...,x! YW eHcC R?, where we can assume (by proper

normalization) that H = [0, 1]%. We consider the solution of the equation in the form

¢
fl@) =" aiK(xi,z) +0,
=1

where the kernel generating d-dimensional INK-spline of degree zero has the multiplicative

form
d
K(z;,x) = H min(z;, z")
k=1
We have
l d
flx) = Z a; H min(z¥, z%) + b. (33)
i=1 k=1

Note that the set of functions (33) is monotonic in H if d inequalities

4

d
z;(z) = Zaie(xf —zF) H min(z]",z™) >0, k=1,...,d (34)
. i=1 m#k
hold true for an function and any = = (2!, ... ,J;d) € H. To keep the matrix notations, we

consider diagonal matrix D with diagonal elements h;;

hi = H min(z*, 2™), i=1,...,¢, k=1,...,d.
m#k

Using this notation, we rewrite (34) as

df (x) T k

for all x € H.
In order to find the monotonic conditional probability function, we minimize

R(A,b) = (KA +b1)" V (KA + 1) — 2 (KA +b1)" VY +~(ATKA) (36)

subject to d constrains

inf ATD;0(z%) >0, k=1,...,d
rzeH

This is a difficult problem to solve. Instead, one could construct an approximate solution
by using Monte Carlo ideas: consider N =~ n¢ random (or pseudo-random) elements z; =
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(zf,...,2H)T t =1,..., N belonging to H (Sobol points (Jickel (2004)) could be used, for
instance) and instead of d constraints (35) consider Nd constraints

ATDO@F) >0, k=1,...,d, t=1,...,N. (37)

As in the one-dimensional case, in order to enforce that the value of conditional probability
does not exceed one, we add one more constraint

ATx* +b <1, (38)

where we have denoted by x* the ¢-dimensional vector of products

[()- (]

Therefore, in order to construct d-dimensional approzrimation of monotonic conditional prob-
ability function, one has to minimize functional (36), subject to Nd constraints (37) and
one constraint (38).

3.3.2 ESTIMATING MONOTONIC FUNCTIONS FROM RKHS ASSOCIATED WITH ADDITIVE
KERNELS

Along with functions defined by (multiplicative) INK-spline kernels of degree zero (26) that
can construct approximations to monotonic functions, we consider functions defined by the
additive kernel (which is a sum of one-dimensional kernels)

¢ d
fx) = Z Z of min(z¥, 2%) 4+ b. (39)

In order to find d x £ coefficients a ,k=1,...,d, i =1,...,¢ of expansion in estimating
conditional probability function in the direct setting, we minimize the functional

T

d d
R(Ay, .. Ag,b) = [Z Kl + 01| VY Kphg +ble| — (40)
k=1 k=1
d T d
2 [Z KpAp +0b1,| VY +4 Z(A;{Kk/\k)
k=1 k=1
subject to d x (£ + 1) inequality constraints
Of (z; £
]7 k T s _
o => aff(af =ALO@h) >0, j=1,....4 k=1,...4d,
=1 (41)

y4
8fagka =S b = ATOd) >0, k=1,....d

=1
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where we have denoted by Ay, the /-dimensional vector of of = (o}, ... ,aﬁ)T, k=1,...,d,

by K} the (¢ x £)-dimensional matrix of elements Kj(x¥, x?) = min(zF, x?), and by

O(xh) = (O(zf —ab),..., 005 —ai)T, j=1,....6 k=1,....d

we have denoted the d x ¢ vectors of dimensionality .

Let vector z = (x', ..., 2%) have bounded coordinates 0 < 2* < ¢, k=1,...,,d. Since
conditional probability does not exceed 1, we need one more constraint P(y = 1|cy,...,cq) <
1. That is, we have to add the constraint

d
doAXFyb <, (42)
k=1
where we have denoted X* = (2},..., xlg)T. A function satisfying the conditions (41) and

(42), is monotonic (it can be proven in the same way it was done in Section 3.2).

3.3.3 ESTIMATION OF MULTIDIMENSIONAL MONOTONIC CONDITIONAL PROBABILITY
USING Lo-NORM SVM

In order to estimate the conditional probability in indirect setting, one minimizes func-
tional (36), subject to constraints (37), (38) for multiplicative kernel (or functional (40)
subject to constraints (41), (42) for additive kernel), where V-matrix is replaced with iden-
tity matrix (/-matrix).

3.3.4 ESTIMATION OF MULTIDIMENSIONAL MONOTONIC CONDITIONAL PROBABILITY
UsiNG L1-NorM SVM

In order to estimate multidimensional conditional monotonic function using Lj-norm and
multiplicative INK-spline kernel (33), one minimizes the functional

R(&A) =C1TE+yATKA
subject to the constraints
<Y -KA-0b1,<¢,

and constraints (37), (38). Here we used the notations

—

52(517""£€)T’ Y:(yla"wyf)T'

To estimate multidimensional conditional monotonic function using Li-norm and addi-
tive INK-spline kernel (39), one minimizes the functional

d
R(§,A) = C1{E+ | AL KAy,
k=1
subject to the constraints
d
€< Y—ZKkAk — b1, <&,
k=1

and constraints (41), (42).
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3.3.5 COMPUTATIONAL ISSUES

Quadratic optimization problem. In order to estimate a multidimensional monotonic
function using multiplicative kernel, one has to solve a quadratic optimization problem of
order £ subject to N = fd inequality constraints.

With additive kernel, one has to estimate d x (¢ 4+ 1) parameters under d x (£ + 1)
constraints. To decrease the computation amount:

1. One can replace V-matrix with /-matrix.

2. For additive kernel, one can estimate multidimensional conditional probability func-

t

tion in the restricted set of functions where o; = «;, for some or for all ¢.

3. One can consider linear structure of the solution using d one-dimensional estimates of
conditional probability P(y = 1|s*) obtained by solving one-dimensional estimation
problems as described in Section 3.2.1, and then approximate the multidimensional
conditional probability function as

d
P(y=1[s",...,s) =) BPy=1]s"),
t=1

where its weights 5, > 0, >, f5; = 1 are computed by solving an d-dimensional
quadratic optimization problem under d 4+ 1 constraints. That optimization prob-
lem is formulated as follows: minimize the functional

BTpPvPB - 2BTPVY +~BTB

subject to the constraints
B>0, BT1,=1,

where we have denoted by B vector of coefficients B = (1, ..., 84)T, by P the (d x f)-
dimensional matrix P = p(zf), t =1,...,d, i=1,...., L.

Estimation of both the SVMs and the conditional probability using the same
data set. In the examples considered in this section, we construct synergy rules for SVMs
where we use the same training set both for constructing SVM rules s = fi(z), t =1,...,d
and for estimating the conditional probability P(y = 1|s1,. .., Sq).

Suppose that our rules were constructed using different SVM kernels K;(x,y) and the
same training set

(xlvyl)v"'v(vayf) (43)

and let
sﬁ,...,sé, t=1,...,d

be the scores s' = f;(z) obtained using vectors x from (43).

Note that these scores are statistically different from the scores obtained using ¢ elements
of test set (support vectors s* are biased: in the separable case, all |s*| = 1). Therefore, it is
reasonable to use scores obtained in the procedure of k-fold cross-validation for estimating
parameters of SVM algorithm.
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Also, note that while individual components of the same d-dimensional vector S! =
(st,...,s!) are interdependent, the vectors S* themselves are not (they are i.i.d), so the
general theory developed in the previous sections is applicable here for computing condi-
tional probabilities.

4. Synergy of Several SVMs

In this section, we consider several examples of synergy of d SVM rules obtained under
different circumstances:

1. Synergy of d rules obtained using the same training data but different kernels.
2. Synergy of d rulse obtained using different training data but the same kernel.
3. Synergy of d classes classification problem using d one versus the rest rules.

In all these examples, the synergy of the rules is based on estimating the corresponding
monotonic conditional probability function from RKHS associated with additive kernel, as
described in Section 3.3.2.

4.1 Synergy of SVM Rules with Different Kernels

In this section, we show that the accuracy of classification using synergy of SVM rules that
use different kernels can be much higher than the accuracy of a rule based on any kernel.?
The effect of synergy, which is estimated by the number of additional training examples in
training data required to achieve comparable to synergy level of accuracy, can be significant.

We selected the following 9 calibration data sets from UCI Machine Learning Repos-
itory (Lichman (2013)): Covertype, Adult, Tic-tac-toe, Diabetes, Australian, Spambase,
MONK’s-1, MONK’s-2, and Bank marketing. Our selection of these specific data sets was
driven by the desire to ensure statistical reliability of targeted estimates, which translated
into availability of relatively large test data set (containing at least 150 samples). Specific
breakdowns for the corresponding training and test sets are listed in Table 1.

For each of these 9 data sets, we constructed 10 random realizations of training and test
data sets; for each of these 10 realizations, we trained three SVMs with different kernels:
with RBF kernel, with INK-Spline kernel, and with linear kernel. The averaged test errors
of the constructed SVMs are listed in Table 1.

Constructed SVMs provide binary classifications y and scores s. Additional performance
improvements are possible by intelligent leveraging of the results of these classifications.

We compared our approach with the baseline method of voting on classification results
of all three classifications obtained from three different kernels (since we had odd number of
kernels, we did not need any tie-breaking in that vote). The first column of Table 2 shows
the averaged test errors of that voting approach.

The second column of Table 2 shows the averaged test errors of our synergy approach.
Specifically, the data in the second column are based on constructing a 3-dimensional mono-

2. The idea of using several SVMs as ensemble SVM (such as (Wang et al. (2009)) and Stork et al. (2013))
was used in the past for providing improved classification performance; however, these approaches did
not leverage the main monotonicity property of SVM.
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’ Data set Training ‘ Test ‘ Features
Covertype 300 3000 54
Adult 300 26147 123
Tic-tac-toe 300 658 27
Diabetes 576 192 8
Australian 517 173 14
Spambase 300 4301 57
MONK’s-1 124 432 6
MONK’s-2 169 432 6
Bank 300 4221 16

Table 1: Calibration data sets from UCI Machine Learning repository.

Data set ‘ Voting ‘ Synergy ‘ Gain ‘
Covertype | 27.83% | 28.96% | -4.05%
Adult 20.07% | 19.08% | 4.93%
Tic-tac-toe | 1.95% | 1.75% | 10.16%
Diabetes 24.53% | 23.39% | 4.67%
Australian | 12.02% | 12.54% | -4.33%
Spambase | 8.96% | 8.44% | 5.80%
MONK’s-1 | 22.80% | 20.16% | 11.57%
MONK’s-2 | 19.31% | 16.23% | 15.95%
Bank 12.79% | 11.73% | 8.29%

Table 2: Synergy of SVMs with RBF, INK-spline, and linear kernels.

tonic conditional probability function from RKHS associated with additive kernel, as de-
scribed in Section 3.3.2, on triples of SVM scores s. In this column, we assigned the
classification labels y based on the sign of the difference between 3-dimensional conditional
probability and the threshold value 1/2.

The last column of Table 2 contains relative performance gain (i.e., relative decrease of
error rate) delivered by the proposed synergy approach over the benchmark voting algo-
rithm.

The results demonstrate the consistent performance advantage of synergy approach over
its empirical alternative in most of the cases (for 7 data sets out of 9); for some data sets
this advantage is relatively small, but for others it is substantial (in relative terms).

This substantial performance improvement of synergy can be also viewed as a viable
alternative to brute force approaches relying on accumulation of (big) data. Indeed, for
the already considered Adult data set, we compared results of our synergy approach on a
training data set consisting of 300 samples to an alternative approach relying on training
SVM algorithms on larger training data sets. Specifically, we trained SVMs with RBF
kernel and INK-Spline kernel on Adult data sets containing 1,000 and 3,000 samples. The
results, shown in Table 3, suggest that synergy of two rules, even on training data set of
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| Training size | 300 | 1000 | 3000 |

RBF 20.95% | 19.21% | 18.49%
INK-Spline 19.77% | 18.72% | 18.38%
Synergy 17.92% - -

Table 3: Synergy versus training size increase.

limited size, can be better that straightforward SVMs on training data sets of much larger
sizes (in this example, equivalent to the increase of training sample by more than a factor
of 10).

4.2 Synergy of SVM Rules Obtained on Different Training Data

Suppose we are dealing with “big data” situation, where the number L of elements in the
training data set

(3317?/1)’"'7(55[”3/[/)’ (44)

is large. Consider the SVM method that uses a universal kernel®. Generally speaking, with
the increase of size ¢ of training data, the expected error rate of the obtained SVM rule
monotonically converges to the Bayesian rule (here the expectation is taken both over the
rules obtained from different training data of the same size ¢ and over test data). The
typical learning curve shows the dependence of that expected error rate on the size ¢ of
training data as a hyperbola-looking curve consisting of two parts: the beginning of the
curve, where the error rate falls steeply with the increase of ¢, and the tail of the curve,
where the error rate slowly converges to the Bayesian solution. Suppose that the transition
from the “steeply falling” part of the curve to the “slowly decreasing” part of the curve
(sometimes referred to as the “knee” of the curve) occurs for some £*. Assuming that large
number L in (44) is greater than ¢*, we partition the training data (44) into J subsets
containing ¢ elements each (here L = J¢ and ¢ > ¢* as well):

(1"(15—1)3—&-1’ y(t—l)@—l—l)a DRI (xtéu ytf)) t= ]-7 ey J (45)

On each of these J disjoint training subsets we construct its own SVM rule (independent
of other rules)

yze(ft(xaaf))7 tzlvvJ

For each of these SVM rules, we construct (as described in Section 3.3.2) its own one-
dimensional monotonic conditional probability function P;(y = 1|st), t =1,...,J.

Then, using these J one-dimensional monotonic condition probability functions, we
construct the J-dimensional (s = (s!, ..., s7)) conditional probability function as follows:

J
Payn(y = 1s) Z (y =1|s"). (46)

Kw—‘

3. A universal kernel (for example, RBF) can approximate well any bounded continuous function.
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| Training size | 300 | 300 [ 300 [ 900 | 1000 | 3000 |
RBF SVM 20.77% | 19.06% | 21.40% | 20.01% | 19.21% | 18.49%

Voting on 3 subsets N/A N/A N/A | 19.44% - -
Synergy on 3 subsets | N/A N/A N/A | 18.52% - -

Table 4: Synergy versus training size increase.

The Synergy decision rule in this case has the form

y=0(Panty =115~ 3).

Note that (46) forms an unbiased estimate of the values of learning curve describing con-
ditional probability for training data of (different) size ¢. Since the training data (45) for
different ¢ are independent, the averaging of J conditional probability values decreases the
variance of resulting conditional probability by a factor of J. In this approach, by choosing
an appropriate value of £, one can optimally solve the bias-variance dilemma.

To illustrate this approach, we again used Adult data set. Specifically, we trained SVMs
with RBF kernel on Adult data sets containing 900, 1,000 and 3,000 samples. For the
first of these samples (containing 900 elements), we also executed the following procedure:
we split it into three subsets containing 300 elements each, trained RBF SVM on each of
them, and then constructed two combined decision rules: (1) voting on the labels of three
auxiliary SVMs, and (2) synergy of three SVMs as described in this section. The results,
shown in Table 4, suggest that Synergy of rules on disjoint data sets can be better that
straightforward SVMs on training data sets of much larger sizes (in this example, equivalent
to the increase of training sample by a factor of 3).

Comparison of Table 3 and Table 4 suggests that synergy of SVMs with different SVM
kernels obtained on the same data set may be more beneficial (equivalent to ten-fold increase
of training sample size) than the synergy of SVMs with the same kernel obtained on different
subsets of of that data set (equivalent to three-fold increase of training sample size).

Thus it is reasonable to assume that, for big data set (44), Synergy of SVM rules obtained
on different training data and Synergy of SVM rules with different kernels (described in
previous Section 4.1) can be unified to create an even more accurate synergy rule. This
unification can be implemented in the following manner.

Consider d kernels K, (x,2'), k =1,...,d. For each of these kernels, using the method
described in Section 3.3.2, we construct the corresponding condition probability function

J
Z (y = 1]s'(r)),

where we have denoted by P;(y = 1|s'(r)) the conditional probability function estimated
for the rule with kernel K, (x,2’) and for the jth subset of training data (44) with the fixed
t. Let introduce the vector p = (p', ..., p") where

pT:Psyn(y:”S(T))7 r=1,...,d.

K.\}—‘

Psyn(y = 1‘
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Using these vectors, we estimate the d-dimensional conditional probability function Py, (y =

1|p) = Psyn(y = 1‘]71, ""pd)‘
The resulting double reinforced Synergy rule has the form

y=1=0 (Psyn(y =1|p) — ;) )

4.3 Multi-Class Classification Rules

Constructing decision rules for multi-class classification is an important problem in pattern
recognition. In contrast to methods for constructing two-class classification rules, which
have solid statistical justifications, existing methods for constructing d > 2 class classifica-
tion rules are based on heuristics.

One of the most popular heuristics, one versus rest (OVR), suggests first to solve the
following d two-class classification problems: in problem number k (where k = 1,...,d),
the examples of class k are considered as examples of the first class and examples of the all
other classes 1,...,(k —1),(k+1),...,d are considered as the second class. Using OVR
approach, one constructs d different two-class classification rules

y=0(fu(x)) k=1,...,d

The new object z, is assigned to the class k, where kth rule provides the maximum score
for x.:
k = argmax{sl, ..., s?}, where st = fi(x,).

This method of d-class classification is not based on a clear statistical foundation®.

Here we implement the following multi-class classification procedure. For every k (where
k=1,...,d), we solve the corresponding OVR SVM problem, for which all the elements
with the original label k are marked with y = 1, while all the other elements are marked
with y = 0. Upon solving all these d problems, we can, for any given vector x and any class
k, compute its score si(x) provided by the kth SVM rule.

After that, for every k (where k = 1,...,d) we use the obtained scores for estimating
conditional probability of the class k based on the scores (3!, ... ,§d) where
N ) ifm=%k
—Sm fm#k

This transformation of scores is used to maintain the monotonicity of the overall conditional
probability function. To estimate the function

P(k) = P(k|s,...,59),
as in Section 3.3.2, we use the representation

¢
P(k[s',...,5) =) |aimin{s}, 5"} + 8, ) _min{s}, 5}, k=1,....,d
i=1 t#£k

4. Another common heuristics called one versus one (OVO): it suggests to solve C3 two-class classification
problems separating all possible pairs of classes. To classify a new object z*, one uses a voting scheme
based on the obtained C? rules.
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’ Data set ‘ Classes ‘ Features | Training ‘ Test ‘ OVR ‘ Synergy ‘ Gain ‘
Vehicle 4 18 709 236 | 17.45% | 14.15% | 18.91%
Waveform 3 40 200 4800 | 20.10% | 18.31% | 8.90%
Cardiotocography 3 21 300 1826 | 15.83% | 12.05% | 23.87%

Table 5: Synergy for multi-class classification.

Finally, we replace the heuristic procedure of choosing the class k& based on maximization
of underlying scores with the following procedure that is based on the framework described
above; this procedure uses estimated d conditional probabilities P(k|sy, ..., sq) (probability
of class k = 1,...,d given all d scores) and chooses the class t corresponding to the maximum
value of the conditional probability:

t = argmax{P(1[5%,...,59),..., P(d|s,...,59)}.

We compared our synergy approach with the standard OVR approach for the data sets
Vehicle, Waveform, and Cardiotocography from UCI Machine Learning Repository (Lich-
man (2013)). Training and test sets were selected randomly from these data sets; the
number of elements in each are shown in Table 5; the table also shows the error rates
achieved by OVR and synergy algorithm, along with relative performance gain obtained
with our approach. The results confirm the viability of our framework.

5. Synergy of Learning from Several Intelligent Teachers

In (Vapnik and Izmailov (2015d)), (Vapnik and Izmailov (2015b)), we introduced the con-
cept of knowledge transfer from Intelligent Teacher to student. Knowledge transfer is possi-
ble in the framework of Learning Using Privileged Information (LUPI) paradigm introduced
in (Vapnik (2006)) and (Vapnik and Vashist (2009)). According to this paradigm, iid train-
ing examples are generated by some unknown generator P(z),x € X and Intelligent Teacher
who supplies vectors x with information (z*,y) according to some (unknown) Intelligence
generator P(z*,y|x),x* € X*, y € {—1,1}, forming training triplets

(331>$>1k>y1)7---a(J%JUZW)- (47)

Vector z corresponding to vector z; is called privileged information, and generator P(z*, y|z)
is called generator of intelligent (due to z*) information. Privileged information is available
only for training examples and is not available for test examples. In contrast to LUPI,
classical learning paradigm considers a primitive teacher that just generates classification y
for any x according to P(y|z) (with no additional explanation x*), forming training pairs

(37173/1), ey (x€7y£)‘
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Knowledge transfer mechanism. Consider the second® mechanism in LUPI paradigm
the knowledge transfer mechanism to construct a better decision rule. Given triplets (47),
we can consider two pattern recognition problems:

1. Pattern recognition problem defined in space X : Using data, (z1,41), ..., (x¢, ye), find
in the set of functions f(z, ), a € A the rule y = sgn{ f;(x)} that minimizes the probability
of test errors (in space X).

2. Pattern recognition problem defined in space X*: Using data, (z7,v1),..., (2}, ye),
find in the set of functions f*(z*,a*), o € A* the rule y = sgn{f/(z*)} that minimizes the
probability of test errors (in space X*).

Suppose that, in space X*, one can find a rule y = sgn{fj(z*)} that is better (more
accurate) than the corresponding rule y = sgn{ fo(z)} in space® X.
The question arises: Can the knowledge about a good rule

)4
fi(a®) =Yy K (af,a*) +b° (48)
i=1
in space X* help to find a good rule

l
fg(x) = Z yiaiK(wi, x) + b (49)
i=1

in space X7

Consider the following example. Suppose that our goal is to classify images x; of biopsy
in pixel space X into two categories: cancer and non-cancer.

Suppose that, along with images x; in pixel space X, we are given description of the
images x} € X* (privileged information), reflecting the existing model of developing cancer:

o Aggressive proliferation of A-cells into B-cells.
e Absence of any dynamic in standard picture of sells distribution.

Since pixel space X is universal (it can be used for many problems, for example, in
pixel space, one can distinguish male faces from female ones), and space of descriptions X*
reflects just the model of cancer development”, the VC dimension of the corresponding set
of functions in X space has to be larger than the VC dimension of the corresponding set of
functions in X*.

Therefore the rule constructed from ¢ examples in space X* will be more accurate than
the rule constructed from ¢ examples in space X. That is why transferring the rule from
space X* into space X can be helpful.

5. The first mechanism is called similarity control described in (Vapnik and Izmailov (2015d)), (Vapnik
and Izmailov (2015b)). The second mechanism of knowledge transfer, described there and further in
this paper, is related to SVM technology. However, the idea of knowledge transfer is general and can be
implemented for other learning algorithms.

6. This is always the case if space X is a subset of X*.

7. In this example, generator P(z*,y|x) is intelligent since for any picture of the event x it describes the
essence of the event. Using descriptions of the essence of an event makes classification of the event a
relatively easy problem.
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Knowledge representation in space X*. To transfer knowledge from space X* into
space X, we use three elements of knowledge representation developed in 1950’s in Artificial
Intelligence (see Brachman and Levesque, 2004):

1. Fundamental elements of the knowledge in X*.

2. Main frames (fragments) of the knowledge in X*.

3. Structure of knowledge: combination of the frames in X*.

For LUPI using SVM?:

1. The fundamental elements are defined by k support vectors of rule (48) in X*.

2. The frames in X* are defined by the functions K*(z}, z*), s=1,... k.

3. The structure of the knowledge (48) is linear in the frames.

Algorithm for knowledge transfer. In order to transfer knowledge from space X*
to space X, one has to make two transformations in the training triplets (47):

1 n
FO

™7 into k-dimensional vectors

1. To transform n-dimensional vectors of z; = (x
Frp = (o1(i), -, or(:) "

2. Use the target values f;(z]) obtained for ¥ in rule (48) instead of the values y; given
for z; in triplet (47).

(1) In order to transform vector x, one constructs k-dimensional space as follows: for
any frame K*(z*,z%),s = 1,...,k in space X*, one constructs its image (function) ¢s(x)
in space X that is defined by the relationship

ba(z) = /K(x;‘,a:*)P(x*|x)dx*, s=1,.. .k
This requires to solve the following regression estimation problem: given data
(x1,27),..., (e, 27), where 2z = K(a¥, x),

find k regression functions ¢s(x), s = 1,. .., k, forming the space F(z) = (¢1(z), ..., ¢r(z))".
(2) Replace target value y; in triplets (47) with scores f;(z*) given (48).
Therefore the knowledge transfer algorithm transforms the training triplet?

(Fzy, a1, f7 (27)), -, (Fae, g, f7 (27)))- (50)

It uses triplets (50) instead of triplets (47).

Synergy of several Intelligent Teachers. Suppose now that Student tries to learn
how to solve the same problem from several (say two) Intelligent Teachers. For simplicity,
let both Teachers use the same training data (z;,v;), ¢ = 1,...,¢ but different privileged
information (different explanations)

(1, 27,91)s -+ (Te, 7, Ye)
and
(l‘lu x**7yl)) ceey (xewrz*a yﬁ)

Constructing, using these triplets, two different rules and corresponding synergy rule, one
obtains the synergy effect of two Intelligent Teachers.

8. Different concepts of fundamental elements, frames, and structure of knowledge can be applied for
different algorithms.
9. In the simplified version, pairs (Fz;,s;), i =1,...,¢.

30



SYNERGY OF MONOTONIC RULES

6. Conclusion

In this paper, we showed that:

1. Scores s = (s!,..., s%) of several monotonic classifiers (for example, SVMs) that solve
the same pattern recognition problem can be transformed into multi-dimensional monotonic
conditional probability functions P(y|s) (probability of class y given scores s).

2. There exists an effective algorithm for such transformation.

3. Classification rules obtained on the basis of constructed conditional probability func-

tions significantly improve performance, especially in multi-class classification cases.
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