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Abstract

We consider a hidden Markov model, where the signal process, given by a diffusion, is only
indirectly observed through some noisy measurements. The article develops a variational
method for approximating the hidden states of the signal process given the full set of
observations. This, in particular, leads to systematic approximations of the smoothing
densities of the signal process. The paper then demonstrates how an efficient inference
scheme, based on this variational approach to the approximation of the hidden states, can
be designed to estimate the unknown parameters of stochastic differential equations. Two
examples at the end illustrate the efficacy and the accuracy of the presented method.

Keywords: Variational inference, stochastic differential equations, diffusion processes,
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1. Introduction

Diffusion processes modeled by stochastic differential equations (SDEs) appear in several
disciplines varying from mathematical finance to systems biology. For example, in systems
biology stochastic differential equations are used for efficient modeling of the states of the
chemical species in a reaction system when they are present in high abundance Wilkinson
(2006). Oftentimes, the state of the system or the signal process is not directly observed,
and inference of the state trajectories and parameter of the system has to be achieved
based on noisy partial observations. Typically, in such a scenario, the observation data is
conveniently modeled as a function of the hidden state corrupted with independent addi-
tive noise. However, generalizations of this basic setup, which, for example, could include
stronger coupling between the hidden signal and the observation processes, are often used
for modeling more complex phenomena.

In such a model optimal filtering theory concerns itself with recurrent estimation of the
current state of the hidden signal process given the observation data until the present time.
This is particularly useful in tracking problems where the estimation of the current location
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of an object needs to be constantly updated as new noisy information flows in. On the other
hand, optimal smoothing involves the class of methods which can be used in reconstruction
of any past state of the signal process given a set of measurements up to the present time.
More specifically, given the signal process X and the observation process Y , filtering theory
entails computation of the conditional expectations of the form E

[
φ(Xt)|FYt

]
, where {FYt }

denotes the filtration generated by the process Y . The σ-algebra FYt contains all the
information about the observation process Y up to the present time t. Smoothing, however,
involves evaluation of the conditional expectations of the form E

[
φ(Xs)|FYt

]
, where s < t.

The smoothing techniques can also be viewed as tools of estimation of the current state
given a data set which includes future observations. This interpretation is particularly
relevant in statistics, where such techniques are essentially the means of computing certain
posterior conditional densities given the observation set. The present article focusses on a
variational approach to this smoothing problem and later employs the method for estimation
of parameters of diffusion processes.

Evaluation of such conditional expectations or densities are quite difficult, since they
are often solutions of suitable (stochastic) partial differential equations. These are usu-
ally infinite-dimensional problems and analytical solutions are generally impossible. Hence,
effort has been directed toward developing of a variety of numerical schemes for efficient
approximation of these conditional densities. While Markov chain Monte Carlo methods for
inference use discretization of the given SDE for writing down an approximate likelihood
Kushner and Dupuis (2001); Pagès and Pham (2005); Andrieu et al. (2010), particle meth-
ods approximate the (posterior) conditional densities by suitably weighted point masses
Crisan and Lyons (1999); Del Moral et al. (2001); Bain and Crisan (2009). However, these
methods often rely on a suitable discretization of the problem which is mostly done in an
ad-hoc way. Since a theoretical framework for obtaining approximations is not present, the
approximation error might be difficult to quantify.

In contrast, the present paper focusses on a variational approach to this estimation
problem. The main idea in such a method is to approximate the (posterior) conditional
probability distribution of the system’s state (given the observed data) by an appropri-
ate Gaussian distribution, where the optimal parameters for the Gaussian distribution are
obtained by minimizing the relative entropy (or Kullback-Leibler distance) between the
posterior process and a suitable approximating SDE. Earlier works like Archambeau et al.
(2007, 2008); Archambeau and Opper (2011); Cseke et al. (2013); Vrettas et al. (2015)
considered the case when the signal process is modeled by an SDE with a constant diffu-
sion term. The advantage of working with a constant diffusion term is that it implies that
the approximating SDE will simply have a linear drift so that marginals are distributed
as Gaussian. This simple expression of the SDE with a linear drift makes the subsequent
optimization problem for finding the suitable parameters for this approximating SDE eas-
ier. However, since most physical phenomena cannot be realistically modeled by SDEs with
constant diffusion term, there is a pressing need of extending the approach to general SDEs.
One natural but naive approach in this regard could be to freeze the diffusion term at an
appropriate value, that is, to take the zeroth order expansion of the diffusion coefficient.
Although simple to implement, the efficacy of the method is not guaranteed by theoreti-
cal results and will vary from case to case, and a reasonable error analysis might require
unreasonably restrictive conditions on the model.
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Instead, the present article delves much deeper in to the problem and develops methods
for finding the optimal approximating SDE such that the relative entropy between it and
the true posterior process is minimized subject to the condition that the marginals of the
former follow Gaussian distributions. The main obstacle that needs to be overcome in this
approach stems from the fact that unlike the previous case, the approximating SDE here
cannot be taken to be the one with a linear drift; and a suitable expression of it needs to
be found so that the marginals are still Gaussian. This has been achieved in Theorem 9. In
fact, our work outlines the most general techniques for approximating the posterior density
by any density from the exponential family or mixture of exponential families. In this
connection we would like to note that the reason for requiring that the marginals follow a
Gaussian distribution or more generally, a distribution from the exponential family because
this results in a finite-dimensional smoother which can be used for approximating a wide
range of distributions.

It should be noted that the variational method considered here is different from the
so-called extended Kalman filter (EKF) in two ways: first, EKF is employed for filtering
problems; but more importantly, EKF starts by linearizing the signal (prior) SDE and then
freezing its diffusion term, while the variational approach is concerned with approximation
of the posterior SDE. Therefore even though in the constant diffusion term case, the ap-
proximating SDE happens to have linear drift and thus resulting in a Gaussian smoother, it
is not based on the same philosophy behind the EKF. And as mentioned before, in the non-
constant diffusion term case although our method can be used to obtain a finite-dimensional
smoother, in particular, a Gaussian smoother, it completely avoids any form of linearization
of the given SDE or subsequent freezing of the diffusion term.

In our paper this variational approximation method has been formulated as an optimal
control problem. The advantage of this theoretical framework is that necessary conditions
for global optimality are then obtained by employing the Pontryagin maximum principle.
This leads to considerable computational advantages of the variational method compared to
numerically solving the underlying (stochastic) PDEs, that is highlighted by two examples.

The later part of the paper focusses on the important topic of parameter inference of
SDEs. The above scheme of estimating the hidden states and the smoothing densities is
cleverly used in designing an efficient method for estimating parameters of SDEs. In particu-
lar, the paper proposes an iterative EM-type algorithm which aims to compute approximate
maximum likelihood estimates of the parameters in a tractable way. Two illustrative exam-
ples, which are important in mathematical finance, demonstrate the accuracy and efficiency
of the proposed algorithms. Future projects will address more complicated models.

The layout of this article is as follows: In Section 2 we formally introduce the problem
setting. We consider as a running example throughout the manuscript a geometric Brownian
motion. The variational approximation idea is motivated in Section 3 leading to a specific
class of optimization problems that is addressed in Section 4. It is then reformulated
in Section 5 as an optimal control problem and necessary conditions for optimality are
derived. Section 6 explains how the variational approximation can be used to infer unknown
parameters of the model. Section 7 discusses the presented variational approximation in
the context of a discrete time measurement model. The theoretical results are applied in
Section 8 to two examples: a geometric Brownian motion and to the Cox-Ingersoll-Ross
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process. We finally conclude with some remarks and directions for future work in Section 9.
Certain technical proofs are relegated to the appendix.

Notation. Hereafter, In is the n-dimensional identity matrix and Ei is the n× n matrix
where the ii-th entry is one and zero elsewhere. We let Sym(n,R) and GL(n,R) be respec-
tively the set of symmetric and invertible n × n matrices with real entries. For matrices
A,B ∈ Rn×n let

〈
A,B

〉
:= tr(A>B) denote the Frobenius inner product. For a vector

b ∈ Rn and a positive definite matrix A, we employ the norm ‖b‖A :=
√
b>A−1b. We define

the standard n−simplex as ∆n := {x ∈ Rn : x ≥ 0,
∑n

i=1 xi = 1}. Let C := C([0, T ],Rn) de-
note the space of continuous functions on [0, T ] taking values in Rn. Let S be a metric space,
equipped with its Borel σ-field B(S). The space of all probability measures on (S,B(S)) is
denoted by P(S). The relative entropy (or Kullback-Leibler divergence) between any two
probability measures µ, ν ∈ P(S) is defined as

D
(
µ||ν

)
:=

{ ∫
log
(

dµ
dν

)
dµ, if µ� ν

+∞, otherwise,

where� denotes absolute continuity of measures and dµ
dν is the Radon-Nikodym derivative.

By convention measurable means Borel-measurable in the sequel. Given an S-valued random
variable X with Law(X) = µ ∈ P(S), let Eµ

[
X
]

denote the expectation of X.

2. Model setup

As usual, we will work on a complete probability space (Ω,F ,P) equipped with a filtration
{Ft} satisfying the usual conditions, that is, {Ft} is complete, right continuous and contains
all the P-null sets. The basic objects in our study consist of a signal process X and an
observation process Y , both of which are assumed to be {Ft}- adapted. The unobserved
signal process X is modeled by the following stochastic differential equation describing the
state evolution of a dynamical system:

dXt = f(Xt)dt+ σ(Xt)dWt, X0 = x0, 0 ≤ t ≤ T, (1)

where f : Rn → Rn, σ : Rn → Rn×n, and W is an n-dimensional Brownian motion
independent of x0. The observation process Y is modeled as noisy measurements of some
function of the signal process X. Mathematically, Y is defined as

Yt =

∫ t

0
h(Xs)ds+Bt, (2)

where h : Rn → Rm is called the observation function and B is an m-dimensional Brownian
motion independent of x0 and W.

Assumption 1 We stipulate that

(i) f and σ are globally Lipschitz;

(ii) and h is twice continuously differentiable.

4



Variational inference for hidden diffusion processes

It is known Kallenberg (2002) that under Assumption 1 there exists a unique strong solution
to the SDE (1). Given the observed data up to some time T , {Ys : s ≤ T}, the goal of the
paper is to outline an approximation method for the smoothing density, PS(x, t), which is
the conditional probability density of Xt given {Ys : s ≤ T}. In other words, the smoothing
density is defined by the equation:

E
[
φ(Xt)|FYT

]
=

∫
φ(x)PS(x, t) dx, (3)

up to a.s. equivalence, where φ is any bounded measurable function from Rn to R and
{FYt } denotes the filtration generated by the process Y .

More generally, we will be interested in approximating the full conditional probability
measure on the path space, C ≡ C([0, T ],Rn). To describe this mathematically, assume that
a regular conditional probability measure P

[
·|FYT

]
is chosen. Then there exists a measurable

probability kernel y ∈ C → Πpost(·, y) ∈ P(C) such that for any measurable set A ⊂ C,

P
[
X[0,T ] ∈ A|FYT

]
= Πpost(A, Y[0,T ]).

Given the observation process up to time T , Y[0,T ], we now describe a characterization of
the probability measure Πpost(·, Y[0,T ]), which will play a pivotal role for our purposes. The

probability measure Πpost(·, Y[0,T ]) is actually the distribution of a diffusion process X̄T on
C, and the latter is obtained by a modification of the original signal process X:

dX̄T
t = g(X̄T

t , t)dt+ σ(X̄T
t )dW̄t, X̄T

0 = x0, (4)

where W̄ is an {Ft}-adapted Brownian motion that is independent of Y . Notice that the
diffusion coefficient of the above SDE (which we will henceforth call the posterior SDE or
posterior diffusion) is same as that of the original SDE, and the drift of this posterior SDE
is time-dependent and is obtained as

g(x, t) := f(x) + a(x)∇ logw(x, t), (5)

where a(x) := σ(x)σ(x)>. We give details about the (random) function w a little later, but
the important point to note here is that the new drift function is the old drift function with
an extra additive term, and the observation process Y[0,T ] enters into the characterization
of Πpost(·, Y[0,T ]) only through w.

To see this characterization of Πpost(·, Y[0,T ]), we first look at the usual filtering density
PF (x, t), which is naturally defined by

E
[
φ(Xt)|FYt

]
=

∫
φ(x)PF (x, t) dx. (6)

Under suitable technical conditions, the filter density PF satisfies the Kushner-Stratonovich
equation (for example, see Stratonovich (1960); Kushner (1967); Bain and Crisan (2009)).
For our purposes, however, it is convenient to work with the unnormalized filter density
p(x, t), that is, PF (x, t) = p(x, t)(

∫
Rn p(x, t)dx)−1, which satisfies the so-called Zakai equa-

tion Zakai (1969) {
dp(x, t) = A∗p(x, t)dt+ p(x, t)h(x)>dYt

p(x, 0) = p0(x).
(7)

5



Sutter, Ganguly and Koeppl

Here p0 denotes the density of x0 and A∗ is the adjoint of the infinitesimal generator of the
process X given by Aψ(x) =

∑
i fi(x) ∂

∂xi
ψ(x) + 1

2

∑
i,j ai,j(x) ∂2

∂xi∂xj
ψ(x) for ψ ∈ C2

0(Rn,R).

We next consider the backward stochastic partial differential equation (SPDE)

{
dw(x, t) = −Aw(x, t)dt− w(x, t)h(x)>dYt

w(x, T ) = 1.
(8)

Conditions about existence of solutions to (7) and (8) can be found in Pardoux (1981/82).
It is well known (Pardoux, 1981/82, Corollary 3.8) that the smoothing density can be
expressed as

PS(x, t) =
p(x, t)w(x, t)∫

Rn p(x, t)w(x, t)dx
. (9)

Now by using (7), (8) and (9), it can be shown1 that the smoothing density solves the
following Kolmogorov forward equation


 ∂

∂t
+
∑

i

∂

∂xi
g(x, t)− 1

2

∑

i,j

∂2

∂xi∂xj
aij(x)


PS(x, t) = 0, (10)

with the drift term g defined by (5). In other words, the conditional probability measure
Πpost(·, Y[0,T ]) on C is induced by the diffusion process X̄T as defined in (4).

Evaluating Πpost(·, Y[0,T ]) is what is known as the path estimation problem. Except for
a few simple cases, the SPDEs, that are involved in this estimation of the hidden path, are
analytically intractable. The variational approach that we undertake in this paper actually
has the goal of approximating Πpost(·, Y[0,T ]). Toward this end, a natural objective is to
approximate Πpost(·, Y[0,T ]) by a probability measure such that the corresponding marginals
of the latter come from a known family of distributions (e.g, exponential family). As a
result, the marginal of this approximating probability measure at time t approximates the
smoothing density PS(x, t). The procedure adopted in this article involves finding the
optimal parameters of this approximating distribution by minimizing the relative entropy
between the posterior distribution and the approximating one.

2.1 Example: Geometric Brownian Motion

We present as a running example throughout the article the geometric Brownian motion
that is used to model stock prices in the Black-Scholes model, see Shiryaev (1999). The
system dynamics (1) is given by a one-dimensional geometric Brownian motion

dXt = κXtdt+ λXtdWt, X0 = x0 ∼ logN (µ, σ), (11)

for 0 ≤ t ≤ T , λ, κ > 0 and an observation process (2) defined by

Yt =

∫ t

0
Xsds+Bt. (12)

It is straightforward to see that Assumption 1 holds in this setting.

1. See Appendix A for a detailed derivation.
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3. Variational approximation: Motivation

Let Πprior denote the distribution of the original signal process X on C, that is, for a
measurable A ⊂ C, Πprior(A) ≡ P

[
X[0,T ] ∈ A

]
. Define the two terms

HT (X[0,T ], y) := −h(XT )yT +

∫ T

0
ysdh(Xs) +

1

2

∫ T

0
‖h(Xs)‖2ds (13)

I(HT (·, y)) := − log

(∫
exp (−HT (·, y)) dΠprior

)
. (14)

Let y be a sample path of the observation process Y on the interval [0, T ]. Then notice that
by the pathwise Kallianpur-Striebel formula (or the Bayes formula), we have

dΠpost(·, y)

dΠprior
=

exp(−HT (·, y))∫
exp(−HT (·, y))dΠprior

=
exp(−HT (·, y))

L(y)
.

where L(y) =
∫

exp(−HT (·, y))dΠprior. Consequently, L(y) can be interpreted naturally
as the likelihood of the path y, or equivalently, I(HT (·, y)) is viewed as the negative log-
likelihood of the sample path y. The term HT (X[0,T ], y) can be interpreted as the X-
conditional information and the information in the observation that Y = y, see Mitter and
Newton (2003) for more details. Now for any probability measure Q2 on C([0, T ],R), the
relative entropy between Q and Πpost(·, y) can be expressed by the following lemma.

Lemma 2 D
(
Q||Πpost(·, y)

)
= −I(HT (·, y)) + D

(
Q||Πprior

)
+ EQ

[
HT (·, y)

]
.

Proof. The proof essentially follows the one in (van Handel, 2007, Lemma 2.2.1). Splitting
the relative entropy and using the pathwise Kallianpur-Striebel formula yields

D
(
Q||Πprior

)
=

∫ [
log

(
dQ

dΠpost(·, y)

)
+ log

(
dΠpost(·, y)

dΠprior

)]
dQ

= D
(
Q||Πpost(·, y)

)
+

∫
log

(
dΠpost(·, y)

dΠprior

)
dQ

= D
(
Q||Πpost(·, y)

)
+

∫
log

(
exp(−HT (·, y))∫

exp(−HT (·, y))dΠprior

)
dQ

= D
(
Q||Πpost(·, y)

)
− EQ

[
HT (·, y)

]
− log

(∫
exp(−HT (·, y))dΠprior

)
.

Mitter and Newton Mitter and Newton (2003) provide an information-theoretic interpre-
tation to this result. They interpret the term (14) as the total information available to
the estimator Q through the sample path y. On the other hand, they call the quantity
F(Q, y) := D

(
Q||Πprior

)
+ EQ

[
HT (·, y)

]
the apparent information of the estimator. By

non-negativity of the relative entropy F(Q, y) ≥ I(HT (·, y)) with equality if and only if
Q = Πpost(·, y). In this sense, a suboptimal estimator appears to have access to more
information than is actually available.

2. Q will be called the approximating probability measure in the sequel.

7



Sutter, Ganguly and Koeppl

Since the total information I(HT (·, y)) does not depend on Q, minimizing the relative
entropy between Q and Πpost(·, y) over a class of probability measures Q is equivalent to
minimizing the apparent information F(Q, y). This motivates to consider an approximating
distribution Q on C that is characterized as the solution to the following optimization
problem:

Problem 3 Minimize D
(
Q||Πprior

)
+ EQ

[
HT (·, y)

]
subject to

(i) Q is a probability distribution induced by an SDE of the form

dZt = u(Zt, t)dt+ σ(Zt)dWt, Z0 = x0, 0 ≤ t ≤ T ; (15)

(ii) The marginals of Q at time t, i.e., the distribution of Zt, belong to a chosen family of
distributions.

We will show in the remainder of this article how Problem 3 can be restated as an optimal
control problem, which leads to a standard formulation of necessary optimality conditions
in terms of Pontryagin’s maximum principle.

Note that the objective function of Problem 3 is known to be strictly convex with re-
spect to Q, see Csiszár (1975). The constraint (ii) restricts the feasible set approximating
distributions Q to a nonconvex set. Note that such problems (i.e., absence of constraint (i)
have been studied in the literature Pinski et al. (2015)). In our setting, the set of feasible
solutions is also coupled with the first constraint (i), that parametrizes the feasible set of
distributions in terms of the drift function u. This coupling is investigated in Section 4, in
particular Theorem 9 characterizes the set of all drift terms u such that the distribution
induced by (15) has finite dimensional marginals that belong to a given family of distri-
butions. Hence, Problem 3 can alternatively be interpreted as minimizing the objective
function over a class of drift functions u that induce Q via (15) and such that Q satisfies
constraint (ii). For example, if the goal is to approximate the posterior distribution Πpost

by a distribution Q whose marginals are normal distributions, then one aims to find a drift
term u such that the objective function is minimized and such that the solution Zt to (15)
admits a normal distribution.

Remark 4 Notice that the unconstrained optimization of the objective function in Problem
3 with respect to Q will simply yield the minimizer Q to be Πpost. Since, as discussed in
the beginning of Section 2, Πpost is induced by the SDE, (4), the constraint (i) in Problem
3 is essentially inbuilt. In other words, it is the constraint (ii) which plays the crucial role
in the methods outlined in this paper.

The objective function in Problem 3, in particular the relative entropy between the approx-
imating distribution Q and the prior distribution Πprior can be simplified, since due to the
constraint (i) the underlying SDEs (15) and (1) share the same diffusion coefficient. In view
of (15) and (1), consider two SDEs for 0 ≤ t ≤ T

dXt = f(Xt)dt+ σ(Xt)dWt, dZt = u(Zt, t)dt+ σ(Zt)dWt, X0 = Z0 = x0,

with u : Rn×R→ Rn, f : Rn → Rn, σ : Rn → Rn×n, W an n-dimensional Brownian motion
independent of x0 and both SDEs satisfying Assumption 1. Let (Ω,FT , P ) be a probability
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space, where FT is the sigma algebra σ(Ws : s ≤ T ) and let Πprior and Q denote the the
laws of Xt and Zt with respect to P . It follows by Girsanov’s Theorem Øksendal (2003),
that

EQ
[

log

(
dQ

dΠprior

)]
=

1

2
EQ
[ ∫ T

0
ϕ(s, ω)>ϕ(s, ω)ds

]
,

where ϕ(s, ω) := σ(Zs(ω))−1 (u(Xs(ω))− f(Xs(ω))) . Therefore, the relative entropy be-
tween Q and Πprior is

D
(
Q||Πprior

)
=

1

2
EQ
[ ∫ T

0
‖u(Xs, s)− f(Xs)‖2a(Xs) ds

]
,

where ‖u(x, s)− f(x)‖2a(x) := (u(x, s)− f(x))> a(x)−1 (u(x, s)− f(x)). Hence, the objec-
tive function in Problem 3 can be expressed as

D
(
Q||Πprior

)
+ EQ

[
HT (·, y)

]

=

∫ T

0
EQ
[

1

2
‖u(Xt, t)− f(Xt)‖2a(Xt)

+ yt

(
u(Xt, t)

>∇h(Xt)

+
1

2
σ(Xt)

>∇2h(Xt)σ(Xt)

)
+

1

2
‖h(Xt)‖2

]
dt− yTEQ

[
h(XT )

]
,

(16)

where the last equality is due to Fubini’s Theorem and Itô’s Lemma. The two coupling
constraints (i) and (ii) in Problem 3 are studied in the next section and will finally allow
us to reformulated Problem 3 as an optimal control problem.

4. Multi-dimensional SDE with prescribed marginal law

This section establishes conditions on the drift function in the approximate SDE (15) such
that the induced marginal distributions evolve in a given exponential family.

Definition 5 (Exponential family) Let H1, . . . ,Hm be Hilbert spaces and let H =
∏m
i=1Hi

be endowed with the inner product
〈
·, ·
〉
. Let the functions ci : Rn → Hi for i = 1, . . . ,m be

linearly independent, have at most polynomial growth, be twice continuously differentiable
and denote c(x) = (c1(x), . . . , cm(x)). Assume that the convex set
Γ :=

{
Θ ∈ H : ψ(Θ) = log

∫
exp

(〈
Θ, c(x)

〉)
dx <∞

}
has non-empty interior. Then

EM(c) = {p(·,Θ),Θ ∈ Λ}, p(x,Θ) := exp
(〈

Θ, c(x)
〉
− ψ(Θ)

)
,

where Λ ⊆ Γ is open, is called an exponential family of probability densities.

Definition 6 (Mixture of exponential families) Let EM(c(i)) for i = 1, . . . , k be expo-
nential families according to Definition 5. Then

EM(c(1), . . . , c(k)) =

{ k∑

`=1

ν`p`(·,Θ(`)) : p`(·,Θ(`)) ∈ EM(c(`)), ν ∈ ∆k

}

is called a mixture of k exponential families of probability densities.
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Consider the stochastic differential equation (15), where u : Rn × R→ Rn, σ : Rn → Rn×d
and W is a d-dimensional Brownian motion independent of x0.

Assumption 7

1. The SDE (15) satisfies Assumption 1.

2. The initial condition x0 has a density p0 that is absolutely continuous with respect to
the Lebesgue measure and has finite moments of any order.

3. The unique solution Xt to (15) admits a density p(x, t) that is absolutely continuous
with respect to the Lebesgue measure and that satisfies the Kolmogorov forward
equation.

Problem 8 Let EM(c(1), . . . , c(k)) be a mixture of exponential families, let p0 be a density
contained in EM(c(1), . . . , c(k)), let σ be a diffusion term and let a(·) := σ(·)σ(·)>. Let
U(x0, σ) denote the set of all drifts u such that x0, u, σ and its related SDE (15) satisfy As-

sumption 7. Assume U(x0, σ) to be non-empty. Then given a curve t 7→ p(·,Θ(1)
t , . . . ,Θ

(k)
t )

in EM(c(1), . . . , c(k)), find a drift in U(x0, σ) whose related SDE has a solution with marginal

density p(·,Θ(1)
t , . . . ,Θ

(k)
t ).

A solution to Problem 8 is given by the following theorem.

Theorem 9 Given the assumptions and notation of Problem 8. Consider the SDE (15)
with drift term

ui(x, t) =
1

2

n∑

j=1

∂

∂xj
aij(x) +

1

2

n∑

j=1

aij(x)

∂
∂xj

p(x,Θ
(1)
t , . . . ,Θ

(k)
t )

p(x,Θ
(1)
t , . . . ,Θ

(k)
t )

− 1

p(x,Θ
(1)
t , . . . ,Θ

(k)
t )

k∑

`=1

ν`p`(x,Θ
(`)
t )
〈

Θ̇
(`)
t , I(`)

i (x)
〉
,

for i = 1, . . . , n, where

I(`)
i (x) :=

∫ xi

−∞
ϕ

(`)
i ((x−i, ξi),Θ

(`)
t ) exp

(〈
Θ

(`)
t , c(`)(x−i, ξi)− c(`)(x)

〉)
dξi, (17)

(xi−, ξi) := (x1, . . . , xi−1, ξi, xi+1, . . . , xn)> and the functions ϕ
(`)
i : Rn × H → H for all

` = 1, . . . , k satisfy

n∑

i=1

〈
Θ̇

(`)
t , ϕ

(`)
i

(
(x−i, ξi),Θ

(`)
t

)〉∣∣∣
ξi=xi

=
〈

Θ̇
(`)
t , c(`)(x)−∇Θψ`(Θ

(`)
t )
〉
. (18)

If u ∈ U(x0, σ), then the SDE (15) solves Problem 8, i.e., Xt has a density

pXt(x) =
k∑

`=1

ν` exp
(〈

Θ
(`)
t , c(`)(x)

〉
− ψ`(Θ(`)

t )
)
, for all t ≤ T.

10
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The proof is provided in Appendix B.

Remark 10 1. For the non-mixture and one-dimensional case (k = n = 1), the result
is known Brigo (2000) and coincides with Theorem 9. Furthermore, it can be seen by
the proof in Brigo (2000) and by invoking the existence and uniqueness theorem for
ODEs, that the drift function u is uniquely determined.

2. For the multi-dimensional case (n > 1), the drift function is not unique anymore, as

there exist multiple choices for ϕ
(`)
i

3. This gives rise to a natural question, if there

exist a particular choice of ϕ
(`)
i such that the integral terms I(`)

i in (17) admit closed-

form expressions. In Section 4.1 (Proposition 11), we derive such functions ϕ
(`)
i for

the mixture of multivariate normal densities.

3. In a non-mixture setting (k = 1), the drift function simplifies to

ui(x, t) =
1

2

n∑

j=1

∂

∂xj
ai,j(x) +

1

2

n∑

j=1

ai,j(x)

〈
Θt,

∂c(x)

∂xj

〉

−
〈

Θ̇t,

∫ xi

−∞
ϕi((x−i, ξi),Θt) exp

[〈
Θt, c(x−i, ξi)− c(x)

〉]
dξi

〉
,

where the functions ϕi have to satisfy (18).

As remarked, the drift term proposed in Theorem 9 consists of the integral terms (17),
that depend on the particular exponential families considered. In the following, we restrict
ourselves to the mixture of multivariate normal densities and show that these integral terms,
and hence the drift function, admit a closed-form expression.

4.1 Mixture of multivariate normal densities

Consider the family of multivariate Gaussian distributions with mean m ∈ Rn and covari-
ance matrix S ∈ Sym(n,R), that can be expressed in terms of Definition 5 as follows. Let
the Hilbert space H = Rn × Rn×n be endowed with the inner product

〈
(a,A), (b, B)

〉
=

a>b+ tr(A>B) and define

Θ = (η, θ) :=

(
S−1m,−1

2
S−1

)
∈ H, c : Rn → H, c(x) = (x, xx>)

ψ : H → R, ψ(Θ) = −1

4
tr(ηη>θ−1) +

1

2
log det

(
−1

2
θ−1

)
+
n

2
log(2π).

(19)

A direct computation, using tr(ηη>θ−1) = η>θ−1η, leads to

p(x,Θ) = exp
(〈
c(x),Θ

〉
− ψ(Θ)

)
=

1

(2π)
n
2 (detS)

1
2

exp

(
−1

2
(x−m)>S−1(x−m)

)
.

3. For example, ϕ
(`)
i (x,Θ

(`)
t ) := δij(c

(`)(x)−∇Θψ`(Θ
(`)
t )) for all j ∈ {1, . . . , n} are feasible choices for ϕ

(`)
i ,

as they satisfy (18).

11
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We point out again that for the proposed variational method, it is favourable if the approx-
imating SDE (15) has a drift function that admits a closed-form expression. Furthermore,
since the drift function is not unique (cf. Remark 10), among all feasible solutions char-

acterized by the ϕ
(`)
i functions, we want to find one that can be computed analytically.

The latter turns out to be a difficult task and depending heavily on the specific exponential
familiy chosen. From now on, we consider the exponential family of the multivariate normal
probability densities that is given by (19). In this setting, it is possible to find functions

ϕ
(`)
i such that the integral terms (17), and therefore the drift function, can be computed in

closed form.

Proposition 11 For the mixture of multivariate normal densities, one possible choice for
the drift function proposed by Theorem 9 is

u(x, t) =
1

2
div
(
a(x)

)
+

∑k
`=1 ν`p`(x,Θ

(`)
t )

p(x,Θ
(1)
t , . . . ,Θ

(k)
t )

(
1

4
θ

(`)
t

−1
θ̇

(`)
t θ

(`)
t

−1
η

(`)
t −

1

2
θ

(`)
t

−1
η̇

(`)
t

− 1

2
θ

(`)
t

−1
θ̇

(`)
t x+ a(x)

(
1

2
η

(`)
t + θ

(`)
t x

))
.

The proof is provided in Appendix C.

Remark 12 For the non-mixture setting the drift term simplifies to

u(x, t) =
1

2
div
(
a(x)

)
+

1

4
θ−1
t θ̇tθ

−1
t ηt −

1

2
θ−1
t η̇t −

1

2
θ−1
t θ̇tx+ a(x)

(
1

2
ηt + θtx

)
,

that in the special case of a constant diffusion term is a linear function, as one would expect.

We introduce the following ansatz for the drift function

u(x, t)=
1

2
div
(
a(x)

)
+

∑k
`=1ν`p`(x,Θ

(`)
t )
(
A

(`)
t +B

(`)
t x+a(x)

(
C

(`)
t +D

(`)
t x
))

p(x,Θ
(1)
t , . . . ,Θ

(k)
t )

, (20)

where B
(`)
t , D

(`)
t ∈ Rn×n and A

(`)
t , C

(`)
t ∈ Rn for all ` = 1, . . . k. The coefficients A

(`)
t , B

(`)
t ,

C
(`)
t and D

(`)
t cannot be chosen arbitrarily. They are coupled according to Proposition 11.

By comparing the coefficients of Proposition 11 and (20) one gets

A
(`)
t =

1

4
θ

(`)
t

−1
θ̇

(`)
t θ

(`)
t

−1
η

(`)
t −

1

2
θ

(`)
t

−1
η̇

(`)
t , B

(`)
t =−1

2
θ

(`)
t

−1
θ̇

(`)
t , C

(`)
t =

1

2
η

(`)
t , D

(`)
t =θ

(`)
t .

Hence, one directly sees that the four parameters A
(`)
t , B

(`)
t , C

(`)
t and D

(`)
t for all ` = 1, . . . , k

are coupled via the two ODEs

dC
(`)
t

dt
= −D(`)

t A
(`)
t −B

(`)
t

>
C

(`)
t ,

dD
(`)
t

dt
= −2D

(`)
t B

(`)
t . (21)

Note that the parametrization introduced in (20) provides relatively simple expression for
the mean and variance of the variational approximation derived in the next section (Sec-
tion 4.2). In the authors’ opinion this parametrization therefore helps to keep the notation
simple.

12
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4.2 Equations for mean and variance

Theorem 9 provides an explicit formula for the drift term in the approximating SDE (15),
that simplifies to (20) in the case of multi-normal marginal densities. Therefore, the mean
and variance of the approximating SDE (15) are characterized via the following two ODEs.

Theorem 13 Consider the SDE (15) with drift term u given by (20), such that the solution

Xt has a marginal density p(x,Θ
(1)
t , . . . ,Θ

(k)
t ) ∈ EM(c1, . . . , ck) that is an arbitrary convex

combination of densities p`(x,Θ
(`)
t ) ∈ EM(c`) for ` = 1, . . . , k. Let m

(`)
t and S

(`)
t denote the

mean and variance of Xt with respect to p`(x,Θ
(`)
t ). Then,

dm
(`)
t

dt
=

1

2
Ep`
[
div
(
a(X)

)]
+A

(`)
t +B

(`)
t m

(`)
t +Ep`

[
a(X)

]
C

(`)
t +Ep`

[
a(X)D

(`)
t X

]
(22)

and

dS
(`)
t

dt
=

1

2
Ep`
[
Xdiv

(
a(X)

)> ]
+

1

2
Ep`
[
div
(
a(X)

)
X>]− 1

2
m

(`)
t Ep`

[
div
(
a(X)

) ]>

− 1

2
Ep`
[
div
(
a(X)

) ]
m

(`)
t

>
+ Ep`

[
a(X)

]
+ S

(`)
t B

(`)
t

>
+B

(`)
t S

(`)
t

+ Ep`
[
XC

(`)
t

>
a(X)

]
+ Ep`

[
a(X)C

(`)
t X>

]
−m(`)

t C
(`)
t

>
Ep`
[
a(X)

]
(23)

− Ep`
[
a(X)

]
C

(`)
t m

(`)
t

>
+ Ep`

[
XX>D

(`)
t a(X)

]
+ Ep`

[
a(X)D

(`)
t XX>

]

−m(`)
t Ep`

[
X>D

(`)
t a(X)

]
− Ep`

[
a(X)D

(`)
t X

]
m

(`)
t

>
.

The proof is provided in Appendix D. Note that given m
(`)
t and S

(`)
t the mean and variance

of Xt can be expressed as mt =
∑k

`=1 ν`m
(`)
t and St =

∑k
`=1 ν`S

(`)
t +

∑k
`=1 ν`m

(`)
t m

(`)
t

>
−

(
∑k

`=1 ν`m
(`)
t )(

∑k
`=1 ν`m

(`)
t )>, respectively.

Remark 14 If the coefficients νi in the convex combination of the marginal density

p(x,Θ
(1)
t , . . . ,Θ

(k)
t ) in Theorem 13 are fixed a priori, the ODEs (22) and (23) are only

sufficient for describing m
(`)
t and S

(`)
t . Oftentimes, however, one is interested in choosing

those coefficients a posteriori, for example by solving an auxiliary optimization problem. In
such a setting the ODEs given by Theorem 13 are necessary and sufficient.

We have studied how to reformulate the constraints (i) and (ii) of Problem 3 by deriv-
ing an expression for the drift term to the approximating SDE (15). In the case that the
marginals in (ii) are restricted to a mixture of multivariate normal densities this reformu-
lation reduces to the ODEs (21), (22) and (23).

4.3 Example: Geometric Brownian Motion

We continue the geometric Brownian motion example started in Section 2.1. The goal
is to approximate the smoothing density by a normal density. Therefore, according to
Proposition 11, the drift function for the approximating SDE (15) has to be chosen as

u(x, t) = At + (λ2 +Bt)x+ λ2x2(Ct +Dtx), (24)

13
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where the coefficients At, Bt, Ct, Dt are coupled via the two ODEs (21). This choice of drift
function leads to ODEs for the mean and the variance of the posterior process, according
to Theorem 13

dmt

dt
= λ2mt +At +Btmt + λ2Ct(m

2
t + St) + λ2Dt(m

3
t + 3mtSt) (25)

dSt
dt

= λ2(m2
t + 3St) + 2BtSt + 4λ2CtmtSt + 6λ2Dt(m

2
tSt + S2

t ). (26)

5. Optimal control problem formulation

In this section, we show that the optimization problem 3, using the results derived from
Theorem 9, can be reformulated as a standard optimal control problem (OCP), which
conceptually is similar to Mitter and Newton (2003)4. Therefore, the presented variational
approximation method to the path estimation problem for SDEs can be expressed as an
OCP and as such leads to a standard formulation of necessary global optimality conditions
in terms of Pontryagin’s maximum principle. Consider the vector spaces V̂ := Rn × Rn×n,
Ẑ := Rn × Sym(n,R)× Rn × Sym(n,R) and define the trajectories

[0, T ] 3 t 7→ v(`)(t) := (A
(`)
t , B

(`)
t ) ∈ V̂

[0, T ] 3 t 7→ z(`)(t) := (m
(`)
t , S

(`)
t , C

(`)
t , D

(`)
t ) ∈ Ẑ,

for ` = 1, . . . , k. We introduce the state variable z(t) :=
(
z(1)(t), . . . , z(k)(t)

)
∈∏k

`=1 Ẑ =: Z
and the control variable v(t) :=

(
v(1)(t), . . . , v(k)(t)

)
∈∏k

`=1 V̂ =: V for t ∈ [0, T ]. As a first
step, in view of the cost functional (16) of Problem 3, the so-called Lagrangian

EQ
[

1

2
‖u(Xt, t)− f(Xt)‖2a(Xt)

+ yt

(
u(Xt, t)

>∇h(Xt) +
1

2
σ(Xt)

>∇2h(Xt)σ(Xt)

)
+

1

2
‖h(Xt)‖2

] (27)

is expressed as a function of only z(t), v(t) and t. This step, while being exact in some
cases, may require an approximation. In the case that the marginals of Q are mixtures of
normal densities, the expectation of any polynomial in Xt can be expressed as a function of
its mean and variance. If the diffusion term σ is a polynomial, and no mixture is considered
(k = 1), the drift function u, according to (20), is a polynomial. We refer to Section 8 to
see how the Lagrangian can be derived for two concrete examples. Consider a Lagrangian

L : [0, T ]×Z × V → R, L(t, z(t), v(t)) ≈ (27),

where ≈ indicates that in order to express the term (27) by the state and control variables
only, an approximation might be needed, as explained above. Similarly to the Lagrangian,
in view of the cost functional (16), we introduce a terminal cost F : Z → R by

F (z(T )) ≈ −yTEQ
[
h(XT )

]
.

4. Note that Mitter and Newton (2003) addresses a related problem, whose main difference, when compared
to the presented method, is that the variational characterization considered there is exact.

14
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Under the assumption that the drift term σ is a polynomial, the ODEs derived in the
previous section can be expressed in standard form. We define the function H : Z ×V → Z
by

H(z(t), v(t))=
(
H

(1)
1 (z(t), v(t)), . . . ,H

(1)
4 (z(t), v(t)), . . . ,H

(k)
1 (z(t), v(t)), . . . ,H

(k)
4 (z(t), v(t))

)
,

where

dm
(`)
t

dt
=

dz
(`)
1

dt
(t) = H

(`)
1 (z(t), v(t)) ,

dC
(`)
t

dt
=

dz
(`)
3

dt
(t) = H

(`)
3 (z(t), v(t)) ,

dS
(`)
t

dt
=

dz
(`)
2

dt
(t) = H

(`)
2 (z(t), v(t)) ,

dD
(`)
t

dt
=

dz
(`)
4

dt
(t) = H

(`)
4 (z(t), v(t)) ,

for ` = 1, . . . , k are given by (22), (23) and (21). Thus, we have shown so far in this article
that Problem 3 can be reformulated as the following optimal control problem





minimize
v∈M([0,T ],V)

J(v) =
∫ T

0 L(t, z(t), v(t))dt+ F (z(T ))

subject to ż(t) = H(z(t), v(t)), t ∈ [0, T ] a.e.
z(0) = z0,

(28)

where M([0, T ],V) denotes the space of measurable functions from [0, T ] to V. It remains
to discuss how to find the initial condition z0 in the OCP (28). A straightforward, however,
clearly not efficient, method for that is solving the Pardoux equation (8), which according

to (9) provides the smoothing density at initial time as PS(x, 0) = p0(x)w(x,0)∫
Rn p0(x)w(x,0)dx

, from

where z0 can be derived.

5.1 Maximum principle

We derive necessary conditions for global optimality of the optimization problem (28) that
are provided by the Pontryagin maximum principle (PMP). Since the control set V is un-
bounded, we need an extended setting of the standard PMP, see (Clarke, 2013, Section 22.4)
for a comprehensive survey. It requires some further assumptions.

Assumption 15 Let the process (z?(t), v?(t))t∈[0,T ] be a local minimizer for the OCP (28),
that satisfies

(i) The function F is continuously differentiable;

(ii) The functions H and L are continuous and admit derivatives relative to z which are
themselves continuous in all variables (t, z, v);

(iii) There exist ε > 0, a constant c, and a summable function d such that for almost every
t ∈ [0, T ], we have

|z − z?(t)| ≤ ε⇒ |∇z(H,L)(t, z, v?(t))| ≤ c|(H,L)(t, z, v?(t))|+ d(t).

15
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Note that Assumption 15(iii) is implied if

|∇zH(t, z, v)|+ |∇zL(t, z, v)| ≤ c (|H(t, z, v)|+ |L(t, z, v)|) + d(t)

holds for all v ∈ V when z is restricted to a bounded set, which is satisfied by many systems.
Moreover, the condition automatically holds if v? happens to be bounded.

Lemma 16 (PMP (Clarke, 2013, Theorem 22.2)) Given Assumption 15, let the pro-
cess (z?(t), v?(t))t∈[0,T ] be a local minimizer for the problem (28). Then there exists an
absolutely continuous function p : [0, T ]→ Z satisfying

1. the adjoint equation ṗ(t) = −∇z
〈
p(t), H(z?(t), v?(t))

〉
−∇zL(t, z?(t), v?(t)) for almost

every t ∈ [0, T ];

2. the transversality condition p(T ) = ∇zF (z(T ));

3. the maximum condition〈
p(t), H(z?(t), v?(t))

〉
+ L(t, z?(t), v?(t)) = inf

v∈V

〈
p(t), H(z?(t), v)

〉
+ L(t, z?(t), v) for

almost every t ∈ [0, T ].

Remark 17 1. Given that an optimal process (z?, v?) exists5, the maximum condition
3 can be used to derive a feedback law

v?(t) ∈ arg min
v∈V

〈
p(t), H(z?(t), v)

〉
+ L(t, z?(t), v).

2. Lemma 16, basically leads to a boundary value problem with initial conditions for
the states and terminal conditions for the adjoint states, that provides necessary
conditions for global optimality of Problem 3.

We summarize the described method to approximate the smoothing density introduced
so far. It basically consists of the following three steps, that provide a solution to Problem 3:

Step 1 Fix a mixture of exponential families of probability densities, e.g., the mixture of
multivariate normal densities. Theorem 9, that simplifies to Proposition 11 for the
multivariate normal densities, characterizes the approximate posterior SDE (15) whose
solution admits marginal densities evolving in the chosen mixture of exponential fam-
ilies.

Step 2 Given the approximate posterior SDE (15), we derive an optimal control formulation
of Problem 3. For the mixture of multivariate normal densities, this derivation is
presented in Sections 4 and 5 and finally leads to the OCP (28).

Step 3 Necessary conditions for optimality of the OCP (28), and hence for Problem 3, can
be derived from Pontryagin’s maximum principle and result in a structured boundary
value problem.

5. Existence of an optimal process can be assured by standard existence results, see for example (Clarke,
2013, Theorem 23.11).
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Remark 18 It is important to note that the presented method chooses the best approxi-
mating SDE in a desired class using an objective distance measure between the correspond-
ing probability distributions. One crucial advantage of this approach is that this distance
could be quantified and numerically calculated (note that the first term in Lemma 2 can
be directly computed and the remaining two terms form the objective function of the op-
timal control problem considered), and hence the user gets an excellent estimate on the
necessary approximating error. For instance, Figure 1d and Figure 2d demonstrated the
accuracy of corresponding approximating SDEs by plotting the relative entropies between
the approximate models and the exact ones for the two examples considered in the paper.

5.2 Computational complexity

If the initial condition to the OCP (28) is known, the PMP, Lemma 16, reduces to a bound-
ary value problem, that can usually be solved numerically more efficiently than (S)PDEs
by using numerical methods specifically tailored to these problems, such as the shooting
method, see Stoer and Bulirsch (2002). Therefore, the major computational difficulty of
the presented variational approach lies in estimating the initial condition to the OCP (28),
for example via estimating the smoothing density at initial time. A straightforward, how-
ever clearly not efficient, method for that is solving the Pardoux equation (8), as explained
in Section 2, which we used in the numerical examples in Section 8. As such, whereas
the standard PDE approach for computing a smoothing density requires solving a Zakai
equation and the Pardoux equation (8), the presented variational approach relies on only a
Pardoux equation and the mentioned boundary value problem. This can usually be seen as
a reduction in terms of computational effort required and is demonstrated by two numerical
examples in Section 8, Table 1. Moreover, for future work, we aim to study the derivation of
an estimator for the marginal smoothing density at terminal time without solving a Pardoux
equation, that would then allow us to apply the proposed variational approximation method
to high-dimensional problems, see Section 9 for more details. Another idea to circumvent
the estimation of this mentioned terminal condition is to use an alternative approach to the
PMP, for characterizing a solution to the OCP (28) that is briefly described in the following
remark.

Remark 19 (Semidefinite programming) Solutions to the OCP (28) can be charac-
terized via the so-called weak formulation which consists of an infinite-dimensional linear
program, see (Lasserre, 2010, Chapter 10) for details. Therefore, numerical approximation
schemes to such infinite-dimensional linear programs, that have been studied in the liter-
ature, can be employed to solve Problem 3. This approach seems particularly promising
when the data of the OCP (dynamics and costs) are described by polynomials, as then
the seminal Lasserre hierarchy based on solving a sequence of semidefinite programs, is
applicable Lasserre (2001, 2010).

5.3 Example: Geometric Brownian Motion

We continue the geometric Brownian motion example started in Sections 2.1 and 4.3 and
formulate the corresponding optimal control problem (28). Recall that the state variable is
defined as z(t) := (mt, St, Ct, Dt) and the control variable as v(t) := (At, Bt). The ODEs for
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the state variables are given by (21), (25) and (26). The objective function of the optimal
control problem (28) can be expressed as F (x(T )) = −yTmT and

L(t, z(t), v(t)) =
A2
t

2λ2(m2
t + St)

+
At(λ

2 +Bt − κ)

λ2mt
+

(λ2 +Bt − κ)2

2λ2
+AtCt + ytAt

+mt

(
Ct(λ

2 +Bt − κ) +AtDt + yt(λ
2 +Bt)

)

+ (m2
t + St)

(
1

2
λ2C2

t +Dt(λ
2 +Bt − κ) +

1

2
+ λ2ytCt

)

+ (m3
t + 3mtSt)

(
λ2CtDt + λ2ytDt

)
+ (m4

t + 6m2
tSt + 3S2

t )
λ2

2
D2
t ,

where, in order to derive the cost function above, the first two inverse moments of Xt with
respect to Q have been approximated. Due to the non-negativity of the GBM, we use the
approximation EQ

[
X−1
t

]
≈ EQ

[
Xt

]−1
= m−1

t and EQ
[
X−2
t

]
≈ EQ

[
Xt

]−2
= (St + m2

t )
−1,

whose accuracy has been investigated in Garcia and Palacios (2001).

6. Parameter inference

The goal of this section is to outline the use of the techniques, developed so far for path
estimation, for inference of parameters in a hidden Markov model. We consider a class of
dynamical systems

dXκ
t = f(Xκ

t , κ)dt+ σ(Xκ
t , κ)dWt, Xκ

0 = x0, 0 ≤ t ≤ T, (29)

parametrized by κ. The observation process can be modeled by (2), but as discussed in the
next section, the approach discussed below can also be used with necessary modifications
for a discrete observation process.

As a natural notation, for each parameter κ, the probability distribution of Xκ
[0,T ] on

C will be denoted by Πκ
prior. Given a sample path {yt : 0 ≤ t ≤ T} of the observa-

tion process Y[0,T ], the objective is to select an optimal κ? ∈ Rd such that the obser-
vation process (Yt)t∈[0,T ] in (2) has a high probability of reproducing the given data y.
This is basically the inference scheme based on classical maximum likelihood estimation,
and we propose an algorithm similar to the lines of expectation maximization (EM) algo-
rithm (see Cappé et al. (2005) for a comprehensive survey), which aims to obtain the op-
timal κ? through multiple iterations. Recalling (14), for each κ, we define Iκ(HT (·, y)) :=

− log
(∫

exp (−HT (·, y)) dΠκ
prior

)
. As already noted in Section 3, for each parameter κ, the

term Iκ(HT (·, y)) provides the total information available through the sample path y, and
can be interpreted as the negative log-likelihood of y given the parameter κ. However, min-
imizing this negative log-likelihood function, even if numerical evaluation of it can be done,
usually is a hard problem. But, as mentioned in Section 3, Lemma 2 and non-negativity
of the relative entropy together imply that an upper bound to this negative log-likelihood

term is given by the apparent information, F(Q, κ) := D
(
Q||Πκ

prior

)
+EQ

[
HT (·, y)

]
. The ad-

vantage of this observation is that this upper bound to the negative log-likelihood function
is also the objective function in Problem 3, for which the program for finding the mini-
mizer Q is by now well-established. Therefore instead of minimizing the actual negative
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log-likelihood, we minimize an upper bound of it. The path to find the right parameter κ
corresponding to the sample path y is now quite standard in statistics. After initialization
of the parameter κ, we find the optimal Q by solving the Problem 3, and then in the sub-
sequent step, for this Q we obtain the optimal parameter κ by minimizing F(Q, κ). This
yields an iterative EM-type algorithm whose details are given below.

EM-type algorithm

initialize i = 0, κi := κ̂0

while i ≤M
Step 1: compute Qi by solving Problem 3 with parameter κi
Step 2: update parameter as κi+1 ∈ arg min

κ
F(Qi, κ)

Step 3: set i→ i+ 1

Remark 20 Analyzing convergence of the above algorithm and consistency of the above
corresponding estimator is the next important step and will be addressed in our future
projects.

We refer to Section 8 for a numerical visualization of this variational parameter inference
method applied to two examples and to Section 9 for a discussion about convergence and
consistency of the estimator as a topic of further research.

7. Discrete time measurement model

In most practical examples, the measurements of physical quantities are processed by com-
puters, and as such the data available are obtained only at discrete times, potentially re-
stricted to a low number. The goal of this section is to outline how the discussed variational
approximation scheme adapts naturally to such cases with obvious modifications.

In this case the signal process (1) is observed through noisy measured data y := {yk}Nk=1

at discrete times t1 ≤ t2 ≤ . . . ≤ tN ≤ T . The canonical model for the observation process
is thus given by

Yk = h(Xk, tk) + ρk, for k = 1, . . . , N, (30)

where Xk := Xtk , h : Rn × R → Rn is a measurable function, the ρk are Rn-valued i.i.d.
Gaussian random variables with zero mean and covariance Rk, and they are independent of
x0 and σ(Ws : s ≤ T ). We consider m such that tm ≤ t < tm+1 and similarly to Section 2
define the filter density p and smoothing density PS by

E
[
φ(X(t))|Y1, . . . , Ym, x0

]
=

∫
φ(x)p(x, t) dx (31)

E
[
φ(X(t))|Y1, . . . , YN , x0

]
=

∫
φ(x)PS(x, t) dx, (32)
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where φ is any measurable function from Rn to R. It is well known (see (Eyink, 2000,
Appendix) for a derivation) that the smoothing can be expressed as

PS(x, t) =
p(x, t)w(x, t)∫

Rn p(x, t)w(x, t)dx
, (33)

where p(x, t) and w(x, t) in between the observation times are the solutions to the

Kolmogorov forward equation:

{
dp(x, t) = A∗p(x, t)dt
p(x, 0) = p0(x),

(34)

Kolmogorov backward equation:

{
dw(x, t) = −Aw(x, t)dt

w(x, T ) = 1,
(35)

punctuated by jumps at the data points tk for k = 1, . . . , N

p(x, t+k ) ∝ p(x, tk) exp

(
y>
kR
−1
k h(x, tk)−

1

2
h(x, tk)

>R−1
k h(x, tk)

)
(36)

w(x, tk) ∝ w(x, t+k ) exp

(
y>
kR
−1
k h(x, tk)−

1

2
h(x, tk)

>R−1
k h(x, tk)

)
. (37)

Similar to the continuous time measurement model, it can be shown that the smooth-
ing density solves the Kolmogorov forward equation given by (10), with drift function
g(x, t) := f(x) + a(x)∇ logw(x, t), where w is the solution to (35). As before, we denote
the prior probability measure by Πprior(A) = P

[
X[0,T ] ∈ A

]
and the posterior probabil-

ity measure, induced by the solution to (10), by Πpost(A, Y ) = P
[
X[0,T ] ∈ A|FYT

]
, where

FYT = σ(x0, Y1, . . . , YN ). Let yk denote a realization of the observation process at the time
tk. The variational approximation derived in Section 3, and, in particular, Problem 3 carries
over to the discrete time observation setting considered here. As before, the path to the
objective function starts from Lemma 2, which holds in this case with

HT (X, y) :=

N∑

i=1

(
1

2
‖R−1

k h(Xi, ti)‖2 − y>
i R
−1
k h(Xi, ti)

)
. (38)

One way to see this is to recast the discrete model in the traditional setup of Section 2,
and then use the Kallianpur-Striebel theorem. To do this, first assume that without loss of
generality Rk = I. Define the function h̄ : C × [0, T ]→ Rn by

h̄(x, t) =
∑

k

(tk+1 − tk)−1/2h(x ◦ η(t), η(t))1{tk≤t<tk+1},

where η : [0, T ]→ [0, T ] is defined as

η(t) = tk, if tk ≤ t < tk+1.

Define the observation model Ỹt =
∫ t

0 h̄(Xs, s) ds+Bt. Notice that for each k,

Ỹk+1 − Ỹk = (tk+1 − tk)1/2h(Xk, tk) + (B(tk+1)−B(tk)),
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and hence
(tk+1 − tk)−1/2(Ỹk+1 − Ỹk) = h(Xk, tk) + ρ̃k,

where ρ̃k
Law
= ρk ∼ N (0, I). In other words, (tk+1 − tk)−1/2(Ỹk+1 − Ỹk) Law

= Yk, and in this
sense the discrete measurement model can be subsumed in the observation model given by
Ỹt =

∫ t
0 h̄(Xs, s) ds+Bt.

Notice that by the definitions of Ỹ and h̄, the exponent in Kallianpur-Striebel formula
is given by

∫ T

0

1

2
‖h̄(X, s)‖2ds−

∫ T

0
h̄(X, s)dỸ (s)=

N∑

k=1

(
1

2
‖h(Xk, tk)‖2 −

(Ỹk+1− Ỹk)>
(tk+1− tk)1/2

h(Xk, tk)

)

Law
=

N∑

k=1

(
1

2
‖h(Xk, tk)‖2 − Y >

i h(Xk, tk)

)
,

which leads to (38). Therefore, in this case the objective function in Problem 3 can be
expressed as

D
(
Q||Πprior

)
+ EQ

[
HT (·, y)

]
=

∫ T

0
EQ
[

1

2
‖u(Xt, t)− f(Xt)‖2a(Xt)

+ ι(Xt, t)

]
dt, (39)

where

ι(Xt, t) =
N∑

i=1

(
y>
i R
−1
k h(Xi, ti)−

1

2
‖R−1

k h(Xi, ti)‖2
)
δ(t− ti). (40)

Section 4 is independent of the considered measurement model, and by following Section 5
we arrive at an optimal control problem (28), where the cost functional is replaced by (39).
The derivation of necessary conditions for global optimality of the optimization problem
(28), compared to the continuous time measurement model, here is somewhat nonstandard,
due to the Dirac delta terms (40) involved in the Lagrangian. However, the problem can
be seen as an OCP with so-called intermediate constraints, for which an extension of the
PMP is available Dmitruk and Kaganovich (2008).

Assumption 21 Let the process (z?(t), v?(t))t∈[0,T ] be a local minimizer for the optimal
control problem (28), that satisfies

(i) Assumptions 15(i) and (ii);

(ii) v? is measurable and essentially bounded.

Lemma 22 (Extended PMP) Let the process (z?(t), v?(t))t∈[0,T ] be a local minimizer for
the problem (28). Given Assumption 21, then there exists an absolutely continuous function
p : [0, T ]→ Z satisfying

1. the adjoint equation ṗ(t) = −∇z
〈
p(t), H(z?(t), v?(t))

〉
−∇zL(t, z?(t), v?(t)) for almost

all t ∈ [0, T ];

2. the transversality conditions p(ti) = p(t−i ) − ∇zEQ
[
ι(X, ti)

]
for i = 1, . . . , N and

p(T ) = 0;
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3. the maximum condition

〈
p(t), H(z?(t), v?(t))

〉
+ L(t, z?(t), v?(t))

= sup
v∈M([0,T ],V)

〈
p(t), H(z?(t), v(t))

〉
+ L(t, z?(t), v(t)) for almost all t ∈ [0, T ].

Proof Follows directly from Dmitruk and Kaganovich (2008), when transforming problem
(28) into an OCP with intermediate constraints.

Remark 23 1. Note that the data (measurements) enter the expression through the
cost function, namely the term (40), which is nonzero only at measurement times
{ti}Ni=1 and leads to jumps in the adjoint state.

2. Lemma 22, basically leads to a boundary value problem, that provides necessary
conditions for optimality of Problem 3. See Section 5.2 for a discussion about how
to numerically solve it. We refer to the numerical examples in Section 8 for the
performance of such a solution.

8. Simulation results

In this section, we present two examples to illustrate the performance of the variational
approximation method introduced. Both examples have important applications in mathe-
matical finance. As a first example, we consider the geometric Brownian motion that we
introduced as a running example in Sections 2.1, 4.3 and 5.3. The second example is con-
cerned with the Cox-Ingersoll-Ross process, that is often used for describing the evolution
of interest rates Cox et al. (1985).

8.1 Geometric Brownian motion

As presented in Sections 2.1, 4.3 and 5.3 we consider a one-dimensional geometric Brownian
motion (GBM) (11) and assume that the available data are noisy observations {yk}Nk=1 at
time tk, modeled by the observation process

Yk = Xtk + ρk,

where {ρk}Nk=1 are i.i.d. normal random variables with zero mean, standard deviation R
and tN = T .

PDE approach. As explained in Section 7, the smoothing density can be characterized by
(33) that is the (normalized) product of two densities w and p. The first density satisfies
equation (35) with jump conditions (37) at the measurement times and terminal condition

w(x, T ) = 1√
2πR

exp
(
−(x−yN )2

2R2

)
. Its marginals are shown in Figure 1a. The second density,

called the filter density, is given by equation (34) with jump conditions (36) and initial

condition p(x, 0) = 1√
2πxσ

exp
(
−(log x−µ)2

2σ2

)
that is given by (11). Its marginals are shown

in Figure 1b. The smoothing density is depicted in Figure 1c as the solid line.
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Variational approximation. Following Section 4.3, the drift function for the approximating
SDE (15) has to be chosen as (24). The optimal control problem can be formulated along the
lines of Section 5.3, choosing the discrete-time measurement setting presented in Section 7.
Note that Assumption 21 can be easily verified to hold, if we restrict the optimizers in (28)
to bounded controls. We solve the boundary value problem obtained from Lemma 22 under
the assumption that the smoothing density at initial time is available, see Section 5.2 for
a discussion about this assumption. The solution is depicted in Figure 1c as the dashed
line. Finally, Figure 1d shows the relative entropy between the marginals of the smoothing
density obtained by the PDE approach and the variational method, and hence reflects the
accuracy of the variational approximation.

Parameter inference. We consider the case where the drift parameter κ in (11) is assumed to
be unknown. Figure 1e shows the performance of the EM-Algorithm introduced in Section 6
for an initial guess κ̂0 = 4 of the unknown parameter. It can be seen that the estimator κ̂ is
close to the true value of κ = 1 indicating the efficacy of our algorithm. Also, the algorithm
converges quite rapidly.
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8. Conclusion.
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ferent settings (e.g., reachability type questions, or when estimating a functional ....
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(a) Density w(x, t)
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(a) Density v(x, t)
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7.2.1. Smoothing Density via PDE. As mentioned in Section 2, the likelihood density satisfies
the Kolmogorov backward equation

∂

∂t
PL(x, t) = −a(b− x)

∂

∂x
PL(x, t)− λ2x

2

∂2

∂x2
PL(x, t),

with terminal condition PL(x, T−) = 1√
2πR

exp
(
−(x−yT )2

2R2

)
given by the measurement model (7.5).

Its marginals are shown in Figure 2a. The filter density is given by the Kolmogorov forward equation

∂

∂t
PF (x, t) = aPF (x, t) + (−a(b− x) + λ2)

∂

∂x
PF (x, t) +

1

2
λ2x

∂2

∂x2
PF (x, t),
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λ = 0.1, R = 0.15, T = 0.2s, µ = 0, σ = 0.25, N = 4, t1 = T/4, t2 = T/2, t3 = 3T/4
and t4 = T .

density is depicted in Figure as the dashed line. Finally, Figure shows the
relative entropy between the smoothing density obtained by the PDE solution and
the variational approximation.

Parameter inference. We consider the case where the parameter a in the drift
term of () is unknown. Figure shows the-Algorithm introduced in Section

(e) Parameter inference, κ̂ = 1.1867

Figure 1: Geometric Brownian motion: Comparison of the PDE solution (solid) versus
the variational approach (dashed). The considered numerical values are: κ = 1, λ = 0.1,
R = 0.15, T = 0.2s, µ = 0, σ = 0.25, N = 4, t1 = T/4, t2 = T/2, t3 = 3T/4 and t4 = T .

8.2 Cox-Ingersoll-Ross

Consider as underlying system a Cox-Ingersoll-Ross (CIR) process

dXt = κ(b−Xt)dt+ λ
√
XtdWt, X0 = x0 ∼ N (µ, σ), (41)
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for 0 ≤ t ≤ T and assume that the available data are noisy observations {yk}Nk=1 at time
tk, modeled by an observation process

Yk = Xtk + ρk,

where ρk are i.i.d. normal random variables with zero mean, standard deviation R and
tN = T .

PDE approach. As in the GBM example 8.1, we solve the underlying PDEs introduced
in Section 7, to characterize the smoothing density as the (normalized) product of two
densities v and p. Figure 2a shows the marginals of the first density w, the filter density p
is depicted in Figure 2b and the smoothing density in Figure 2c as the solid line.

Variational approximation. The variational approximation is derived similarly to the GBM
example 8.1, where we chose a drift function for the approximating SDE (15), according to
Theorem 9, as

u(x, t) =
1

2
λ2 +A(t) +B(t)x+ λ2x(C(t) +D(t)x). (42)

The variational approximation to the smoothing density is depicted in Figure 2c as the
dashed line. Finally, Figure 2d shows the relative entropy between the marginals of the
smoothing density obtained by the PDE solution and the variational approximation.
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Tobias: mention that if we could estimate the terminal conditions of the smoothing density this
would lead to a significant improvement in terms of computation time

Acknowledgement: The authors are grateful to Debasish Chatterjee, John Lygeros and Peyman
Mohajerin Esfahani for helpful discussion and pointers to references.
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Fig 2: Cox-Ingersoll-Ross: PDE (solid) vs variational approximation (dashed)

to solving a ordinary initial value problem that is tractable even in relatively large dimensions,
compared to PDEs. Alternatively, it would be interesting to study numerical methods specifically
tailored to the boundary value problems resulting from the maximum principle, such as the shooting
method, see [22] for a comprehensive summary. This should also lead to a significant reduction in
computation time, compared to the presented examples.

Tobias: any more ideas to mention for further research?

Acknowledgement: The authors are grateful to Debasish Chatterjee, John Lygeros and Peyman
Mohajerin Esfahani for helpful discussion and pointers to references.

(c) Smooting density PS(x, t)

20 SUTTER, GANGULY, KOEPPL
SUTTER, GANGULY, AND KOEPPL/PATH ESTIMATION AND VARIATIONAL INFERENCE 15

0.6 0.8 1 1.2 1.4
0

2

4

6

x

t = 0+

t = T
2

t = T
2

+

t = T

(a) Likelihood density PL(x, t)

0.6 0.8 1 1.2 1.4
0

2

4

6

x

t = 0+

t = T
2

t = T
2

+

t = T

(b) Filter density PF (x, t)

0.6 0.8 1 1.2 1.4
0

2

4

6

x

t = 0

t = T
4

t = T
2

t = 3T
4

t = T

(c) Smooting density PS(x, t)

0 0.1 0.2 0.3
0

2 · 10−3

4 · 10−3

6 · 10−3

8 · 10−3

t

D
[
Q||Πpost

]

(d) Relative entropy

0 10 20 30 40 50
1

2

3

4

Iterations of EM algorithm

â
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Tobias: mention that if we could estimate the terminal conditions of the smoothing density this
would lead to a significant improvement in terms of computation time

Acknowledgement: The authors are grateful to Debasish Chatterjee, John Lygeros and Peyman
Mohajerin Esfahani for helpful discussion and pointers to references.

(a) Density v(x, t)

SUTTER, GANGULY, AND KOEPPL/PATH ESTIMATION AND VARIATIONAL INFERENCE 15

0.6 0.8 1 1.2 1.4
0

2

4

6

x

t = 0+

t = T
2

t = T
2

+

t = T

(a) Likelihood density PL(x, t)

0.6 0.8 1 1.2 1.4
0

2

4

6

x

t = 0+

t = T
2

t = T
2

+

t = T

(b) Filter density PF (x, t)

0.6 0.8 1 1.2 1.4
0

2

4

6

x

t = 0

t = T
4

t = T
2

t = 3T
4

t = T

(c) Smooting density PS(x, t)

0 0.1 0.2 0.3
0

2 · 10−3

4 · 10−3

6 · 10−3

8 · 10−3

t

D
[
Q||Πpost

]

(d) Relative entropy

0 10 20 30 40 50
1

2

3

4

Iterations of EM algorithm

â
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Tobias: mention that if we could estimate the terminal conditions of the smoothing density this
would lead to a significant improvement in terms of computation time
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to solving a ordinary initial value problem that is tractable even in relatively large dimensions,
compared to PDEs. Alternatively, it would be interesting to study numerical methods specifically
tailored to the boundary value problems resulting from the maximum principle, such as the shooting
method, see [22] for a comprehensive summary. This should also lead to a significant reduction in
computation time, compared to the presented examples.

Tobias: any more ideas to mention for further research?

Acknowledgement: The authors are grateful to Debasish Chatterjee, John Lygeros and Peyman
Mohajerin Esfahani for helpful discussion and pointers to references.
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Tobias: mention that if we could estimate the terminal conditions of the smoothing density this
would lead to a significant improvement in terms of computation time
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to solving a ordinary initial value problem that is tractable even in relatively large dimensions,
compared to PDEs. Alternatively, it would be interesting to study numerical methods specifically
tailored to the boundary value problems resulting from the maximum principle, such as the shooting
method, see [22] for a comprehensive summary. This should also lead to a significant reduction in
computation time, compared to the presented examples.

Tobias: any more ideas to mention for further research?
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to solving a ordinary initial value problem that is tractable even in relatively large dimensions,
compared to PDEs. Alternatively, it would be interesting to study numerical methods specifically
tailored to the boundary value problems resulting from the maximum principle, such as the shooting
method, see [22] for a comprehensive summary. This should also lead to a significant reduction in
computation time, compared to the presented examples.

Tobias: any more ideas to mention for further research?

Acknowledgement: The authors are grateful to Debasish Chatterjee, John Lygeros and Peyman
Mohajerin Esfahani for helpful discussion and pointers to references.
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Fig. 2: Cox-Ingersoll-Ross: Comparison of the PDE solution (solid) versus the vari-
ational approach (dashed). The considered numerical values are: λ = 0.2, a = 1,
b = 0.3, µ = 1, σ = 0.1, R = 0.1, T = 0.3s, N = 2, t1 = T/2 and t2 = T .

for an initial guess â0 = 4 of the unknown parameter.

Table summarizes the runtimes of the two numerical examples above. It can be
seen that the ODEs provided by the maximum principle can be solved by roughly one

5consists of solving the two PDEs () and ()
6consists of the PDE () and the ODE system in order to solve Problem

(e) Parameter inference, κ̂ = 1.4469

Figure 2: Cox-Ingersoll-Ross: Comparison of the PDE solution (solid) versus the variational
approach (dashed). The considered numerical values are: λ = 0.2, κ = 1, b = 0.3, µ = 1,
σ = 0.1, R = 0.1, T = 0.3s, N = 2, t1 = T/2 and t2 = T .

Parameter inference. We consider the case where the parameter κ in the drift term of (41)
is unknown. Figure 2e shows the EM-Algorithm introduced in Section 6 for an initial guess
κ̂0 = 4 of the unknown parameter. It can be seen that the estimator κ̂ is close to the true
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Table 1: Runtime comparison. The presented variational approach for approximating
the smoothing density is compared with the standard PDE approach for the two examples
in Sections 8.1 and 8.2. All simulations are performed on a 2.3 GHz Intel Core i7 processor
with 8 GB RAM using Matlab.

Geometric Brownian motion Cox-Ingersoll-Ross

Forward PDE (34) 2.02 s 1.33 s
Backward PDE (35) 2.87 s 2.38 s

Boundary value problem 0.10 s 0.23 s

PDE approach6 4.89 s 3.70 s
Variational approach7 2.97 s 2.61 s

value of κ = 1 indicating the efficacy of our algorithm. Also, the algorithm converges very
fast.

Table 1 summarizes the runtimes of the two numerical examples above. It can be seen
that the boundary value problems provided by the maximum principle can be solved by
roughly one magnitude faster than the backward PDE (35), that is the reason for the
speedup of the variational approach compared to the PDE approach. Moreover, it is high-
lighted that the main computational effort in the variational approach is needed to estimate
the marginal smoothing density at initial time, which is done by solving the backward PDE
(35). If, however, the backward density at initial time could be estimated in a more effi-
cient way, e.g., by using an MCMC method, the proposed variational approximation method
could be applicable to high-dimensional problems.

9. Conclusion

The paper is devoted to a variational method for estimating paths of a signal process in
a hidden Markov model. In particular, this leads to approximations of smoothing den-
sity which can be used to reconstruct any past state of the signal process given a full set
of observations. A crucial fact that plays an important role in our method is that the
smoothing distribution is induced by a posterior SDE which itself is a modification of the
original signal process. The presented variational approach proposes an approximate SDE
which minimizes the relative entropy between the posterior SDE and a class of SDEs whose
marginals belong to a chosen mixture of exponential families. In the simplest case of nor-
mal marginals and a posterior SDE with constant diffusion term, the approximating SDE
consists of a linear drift and constant diffusion term, which is well known. It is shown that
the prescribed approximation scheme can be formulated as an optimal control problem, and
necessary conditions for global optimality are obtained by the Pontryagin maximum prin-
ciple. The resulting numerical methods have considerable computational advantages over
numerically solving the underlying (S)PDEs, that is highlighted by two examples. The de-
veloped approximation scheme is then used for designing an efficient method for parameter
inference for SDEs.

6. consists of solving the two PDEs (34) and (35)
7. consists of the PDE (35) and the boundary value problem in order to solve Problem 3
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For future work, as mentioned in Section 5.2, we aim to study how to efficiently estimate
the backward density at initial time. Then, the presented variational approximation method
reduces to solving a PMP-shooting-type boundary value problem that is tractable even in
relatively large dimensions, compared to PDEs. Additionally, it would be interesting to
study numerical methods specifically tailored to the boundary value problems resulting
from the maximum principle, such as the shooting method, see Stoer and Bulirsch (2002)
for a comprehensive summary, as well as the approach of solving the optimal control problem
via its weak formulation as pointed out in Remark 19.
Our future projects will also delve into analyzing the convergence of the EM-type algorithm
used for parameter inference as well as the properties of the obtained estimators. We will
also focus on refining the basic inference algorithm to get better efficiency and speed. One
promising path to take in this direction would be designing of suitable adaptive EM-type
algorithms. It is also conceivable that the ideas mentioned in the paper can be combined
with suitable MCMC schemes or techniques known as Assumed Density Filtering, see Harel
et al. (2015), to get better accuracy and efficiency in high-dimensional models.
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Appendix A. Derivation of Equation (10)

We consider the one-dimensional case; an extension to the multi-dimensional case is straight-
forward. According to (9) the smoothing density is given by PS(x, t) = K(t)p(x, t)w(x, t),

whereK(t) :=
(∫
Rn p(x, t)w(x, t)dx

)−1
. The main idea is to recall that the process (K(t))t∈[0,T ]

is known to be almost surely constant (Pardoux, 1981/82, Theorem 3.2). Therefore

∂

∂t
PS(x, t) = K(t)p(x, t)

∂

∂t
w(x, t) +K(t)w(x, t)

∂

∂t
p(x, t)

=
PS(x, t)

w(x, t)

(
−f(x)w′(x, t)− 1

2
a(x)w′′(x, t)− w(x, t)h(x)>dYt

)

+ w(x, t)

(
−
(
f(x)PS(x, t)

w(x, t)

)′
+

1

2

(
a(x)PS(x)

w(x, t)

)′′
+
PS(x, t)

w(x, t)
h(x)>dYt

)
.

The proof follows by a straightforward computation. We compute in a preliminary step
(
f(x)PS(x, t)

w(x, t)

)′
=

1

w2(x, t)

((
f ′(x)PS(x, t)+f(x)P ′S(x, t)

)
w(x, t)−f(x)PS(x, t)v′(x, t)

)
,

and(
a(x)PS(x, t)

w(x, t)

)′′
=

1

w(x, t)

(
a′′(x)PS(x, t) + 2a′(x)P ′S(x, t) + a(x)P ′′S(x, t)

)

− 1

w2(x, t)

(
2w′(x, t)a′(x)PS(x, t) + 2w′(x, t)a(x)P ′S(x, t) +a(x)PS(x, t)w′′(x, t)

)

+
1

w3(x, t)

(
2a(x)PS(x, t)w′(x, t)2

)
.

Using this two preliminaries, we get

∂

∂t
PS(x, t)

= −f ′(x)PS(x, t)− f(x)P ′S(x, t) + a′(x)P ′S(x, t) +
1

2
(a′′(x)PS(x, t) + a(x)P ′′S(x, t))

− 1

w(x, t)

(
a′(x)w′(x, t)PS(x, t) + a(x)w′′(x, t)PS(x, t) + a(x)w′(x, t)P ′S(x, t)

)

+
1

w2(x, t)
a(x)w′(x, t)2PS(x, t)

= −
(
f ′(x)PS(x, t) + f(x)P ′S(x, t) +

1

w(x, t)

(
a′(x)w′(x, t)PS(x, t)

+ a(x)w′′(x, t)PS(x, t) + a(x)w′(x, t)P ′S(x, t)
)
− 1

w2(x, t)
(a(x)w′(x, t)2PS(x, t))

)

+
1

2

(
a′(x)PS(x, t) + a(x)P ′S(x, t)

)′

= −
((

f(x) + a(x)
w′(x, t)
w(x, t)

)
PS(x, t)

)′
+

1

2

(
a(x)PS(x, t)

)′′

= −
((

f(x) + a(x)
(

logw(x, t)
)′)PS(x, t)

)′
+

1

2

(
a(x)PS(x, t)

)′′
,

and as such (10) holds.
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Appendix B. Proof of Theorem 9

Consider an arbitrary curve t 7→ p(·,Θ(1)
t , . . . ,Θ

(k)
t ) evolving in EM(c(1), . . . , c(k)). Define a

diffusion
dZt = u(Zt, t)dt+ σ(Zt)dBt, Z0 = x0,

with the given diffusion coefficient a(·) = σ(·)σ(·)>. Clearly the density of Zt coincides

with p(·,Θ(1)
t , . . . ,Θ

(k)
t ) if and only if p(·,Θ(1)

t , . . . ,Θ
(k)
t ) satisfies the Kolmogorov forward

equation for Zt, i.e.,

∂p(x,Θ
(1)
t , . . . ,Θ

(k)
t )

∂t
= −

n∑

i=1

∂

∂xi

(
ui(x, t)p(x,Θ

(1)
t , . . . ,Θ

(k)
t )
)

+
1

2

n∑

i=1

n∑

j=1

∂2

∂xi∂xj

(
aij(x)p(x,Θ

(1)
t , . . . ,Θ

(k)
t )
)
.

(43)

We will show this in two steps that (43) holds for the proposed drift term. Consider the
decomposition ui(x, t) = gi(x, t) + γi(x, t) for all i = 1, . . . , n, where

gi(x, t) :=
1

2

n∑

j=1

∂

∂xj
aij(x) +

1

2

n∑

j=1

aij(x)

∂
∂xj

p(x,Θ
(1)
t , . . . ,Θ

(k)
t )

p(x,Θ
(1)
t , . . . ,Θ

(k)
t )

(44)

and

γi(x, t) :=
−1

p(x,Θ
(1)
t , . . . ,Θ

(k)
t )

k∑

`=1

ν`p`(x,Θ
(`)
t )
〈

Θ̇
(`)
t , I(`)

i (x)
〉
. (45)

We use the shorthand notation p(x,Θ
(1:k)
t ) := p(x,Θ

(1)
t , . . . ,Θ

(k)
t ).

Claim 24 The functions gi defined in (44) for all i = 1, . . . , n satisfy

n∑

i=1

∂

∂xi

(
gi(x, t)p(x,Θ

(1:k)
t )

)
=

1

2

n∑

i=1

n∑

j=1

∂2

∂xi∂xj

(
aij(x)p(x,Θ

(1:k)
t )

)
.

Claim 24 follows from a straightforward computation, see Appendix B in the extended
version Sutter et al. (2015) for a detailed derivation.

Claim 25 The functions γi defined in (45) for all i = 1, . . . , n satisfy

∂

∂t
p(x,Θ

(1:k)
t ) = −

n∑

i=1

∂

∂xi

(
γi(x, t)p(x,Θ

(1:k)
t )

)
.

Proof.

∂

∂t
p(x,Θ

(1:k)
t ) =

k∑

`=1

ν`
∂

∂t
p`(x,Θ

(`)
t ) =

k∑

`=1

ν`

〈
Θ̇

(`)
t , c(`)(x)−∇θψ`(Θ(`)

t )
〉
p`(x,Θ

(`)
t ).

Moreover,

∂

∂xi
γi(x, t) =

1

p(x,Θ
(1:k)
t )2

(
∂

∂xi
p(x,Θ

(1:k)
t )

) k∑

`=1

ν`p`(x,Θ
(`)
t )
〈

Θ̇
(`)
t , I(`)

i (x)
〉
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− 1

p(x,Θ
(1:k)
t )

k∑

`=1

ν`

〈
Θ̇

(`)
t , ϕ

(`)
i (x,Θ

(`)
t ) exp[

〈
Θ

(`)
t , c(`)(x)

〉
− ψ`(Θ(`)

t )]
〉
,

where we used

p`(x,Θ
(`)
t )
〈

Θ̇
(`)
t , I(`)

i

〉

=

〈
Θ̇

(`)
t ,

∫ xi

−∞
ϕ

(`)
i ((x−i, ξi),Θ

(`)
t ) exp[

〈
Θ

(`)
t , c(`)(x−i, ξi)

〉
− ψ`(Θ(`)

t )]dξi

〉
.

Therefore,

∂

∂xi

(
γi(x, t)p(x,Θ

(1:k)
t )

)
=

(
∂

∂xi
γi(x, t)

)
p(x,Θ

(1:k)
t ) + γi(x, t)

(
∂

∂xi
p(x,Θ

(1:k)
t )

)

= −
k∑

`=1

ν`

〈
Θ̇

(`)
t , ϕ

(`)
i (x,Θ

(`)
t )
〉
p`(x,Θ

(`)
t ),

and

−
n∑

i=1

∂

∂xi

(
γi(x, t)p(x,Θ

(1:k)
t )

)
=

k∑

`=1

ν`p`(x,Θ
(`)
t )

(
n∑

i=1

〈
Θ̇

(`)
t , ϕ

(`)
i (x,Θ

(`)
t )
〉)

=
k∑

`=1

ν`p`(x,Θ
(`)
t )
〈

Θ̇
(`)
t , c(`)(x)−∇θψ`(Θ(`)

t )
〉

=
∂

∂t
p(x,Θ

(1:k)
t ),

where we used (18).

The two claims imply (43) and hence complete the proof.

Appendix C. Proof of Proposition 11

The proof basically requires Theorem 9 and two additional lemmas. We first propose in

Lemma 26 a choice of functions ϕ
(`)
i that satisfy (18) in Theorem 9. Then we show in a

second step, in Lemma 27, that for this choice the integral terms (17) admit a closed form
expression. We start with a few preparatory results that are needed to prove Proposition 11.
Note that ∇Θψ(Θ) = (∇ηψ(Θ),∇θψ(Θ)) ∈ H and recall that according to (Bernstein, 2009,
p.631) for A ∈ Rn×m, B ∈ Rm×n and X ∈ GL(n,R) d

dX tr
(
AX−1B

)
= −X−1BAX−1 and

d
dX log det

(
AX−1B

)
= −X−1B(AX−1B)−1AX−1 and therefore

∇ηψ(Θ) = −1

2
θ−1η, ∇θψ(Θ) = θ−1

(
1

4
ηη>θ−1 − 1

2
In

)
. (46)

Lemma 26 Consider the functions ϕ
(`)
i : Rn × H → H, where ϕ

(`)
i =

(
ϕ

(`)
1,i , ϕ

(`)
2,i

)
with

ϕ
(`)
1,i : Rn×H → Rn and ϕ

(`)
2,i : Rn×H → Rn×n for ` = 1, . . . , k. Let ϕ

(`)
1,i and ϕ

(`)
2,i be defined

as

ϕ
(`)
1,i((x−i, ξi),Θ

(`)
t ) := θ

(`)
t

−1
Eiθ

(`)
t (c

(`)
1 (x−i, ξi)−∇ηψ`(Θ(`)

t ))
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ϕ
(`)
2,i((x−i, ξi),Θ

(`)
t ) := θ

(`)
t

−1
Ei

(
θ

(`)
t (c

(`)
2 (x−i, ξi)−∇θψ`(Θ(`)

t ))Θ
(`)
t

− 1

2
θ

(`)
t (x−i, ξi)η

(`)
t

>
+

1

2
η

(`)
t (x−i, ξi)>θ

(`)
t

)
θ

(`)
t

−1
.

Then, (18) holds for all ` = 1, . . . , k.

Proof of Lemma 26. According to (19) we have

n∑

i=1

〈
Θ̇

(`)
t , ϕ

(`)
i (x,Θ

(`)
t )
〉

=

n∑

i=1

(〈
η̇

(`)
t , ϕ

(`)
1,i(x,Θ

(`)
t )
〉

+
〈
θ̇

(`)
t , ϕ

(`)
2,i(x,Θ

(`)
t )
〉)

,

consisting of the two components

n∑

i=1

〈
η̇

(`)
t , ϕ

(`)
1,i(x,Θ

(`)
t )
〉

=
n∑

i=1

〈
η̇

(`)
t , θ

(`)
t

−1
Eiθ

(`)
t (c

(`)
1 (x)−∇ηψ`(Θ(`)

t ))

〉

=

〈
η̇

(`)
t ,

n∑

i=1

θ
(`)
t

−1
Eiθ

(`)
t (c

(`)
1 (x)−∇ηψ`(Θ(`)

t ))

〉
=
〈
η̇

(`)
t , c

(`)
1 (x)−∇ηψ`(Θ(`)

t )
〉

and

n∑

i=1

〈
θ̇

(`)
t , ϕ

(`)
2,i(x,Θ

(`)
t )
〉

=

〈
θ̇

(`)
t ,

n∑

i=1

(
θ

(`)
t

−1
Eiθ

(`)
t (c

(`)
2 (x)−∇θψ`(Θ(`)

t ))

− 1

2
θ

(`)
t

−1
Eiθ

(`)
t xη

(`)
t

>
θ

(`)
t

−1
+

1

2
θ

(`)
t

−1
Eiη

(`)
t x>

)〉

=
〈
θ̇

(`)
t , c

(`)
2 (x)−∇θψ`(Θ(`)

t )
〉
− 1

2

〈
θ̇

(`)
t , xη

(`)
t

>
θ

(`)
t

−1
〉

+
1

2

〈
θ̇

(`)
t , θ

(`)
t

−1
η

(`)
t x>

〉

=
〈
θ̇

(`)
t , c

(`)
2 (x)−∇θψ`(Θ(`)

t )
〉
,

where we have used in the last step that

〈
θ̇

(`)
t , xη

(`)
t

>
θ

(`)
t

−1
〉

=

〈
θ̇

(`)
t , θ

(`)
t

−1
η

(`)
t x>

〉
, since

for A ∈ Sym(n,R) and B ∈ Rn×n tr(AB>) = tr(AB).

Lemma 27 For i = 1, . . . , n, j = 1, 2 and ` = 1, . . . , k consider

I(`)
j,i (si, x) :=

∫ si

−∞
ϕ

(`)
j,i ((x−i, ξi),Θ

(`)
t ) exp

(〈
Θ

(`)
t , c(`)(x−i, ξi)− c(`)(x)

〉)
dξi,

where the functions ϕ
(`)
j,i are chosen according to Lemma 26. Then,

I(`)
1,i (si, x) =

1

2
θ

(`)
t

−1
ei exp

(〈
Θ

(`)
t , c(`)(x−i, si)− c(`)(x)

〉)

I(`)
2,i (xi, x) =

1

4
θ

(`)
t

−1
ei(2θ

(`)
t x− η(`)

t )>θ
(`)
t

−1
.
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Note that I(`)
i (x) = (I(`)

1,i (xi, x), I(`)
2,i (xi, x)), where I(`)

i (x) is the function defined in (17)
and ei denote the canonical basis vectors of Rn.
Proof of Lemma 27.

I(`)
1,i (si, x) =

∫ si

−∞
ϕ

(`)
1,i((x−i, ξi),Θ

(`)
t ) exp

(〈
Θ

(`)
t , c(`)(x−i, ξi)− c(`)(x)

〉)
dξi

=
1

2
θ

(`)
t

−1
∫ si

−∞
Ei2θ

(`)
t (c

(`)
1 (x−i, ξi)−∇ηψ`(Θ(`)

t )) exp
(〈

Θ
(`)
t , c(`)(x−i, ξi)− c(`)(x)

〉)
dξi

=
1

2
θ

(`)
t

−1
∫ si

−∞
Ei2θ

(`)
t

(
(x−i, ξi) +

1

2
θ

(`)
t

−1
η

(`)
t

)
exp

(〈
Θ

(`)
t , c(`)(x−i, ξi)− c(`)(x)

〉)
dξi

=
1

2
θ

(`)
t

−1
∫ si

−∞
Ei

(
2θ

(`)
t (x−i, ξi) + η

(`)
t

)
exp

(〈
Θ

(`)
t , c(`)(x−i, ξi)− c(`)(x)

〉)
dξi,

where (46) was used. Consider the substitution z :=
〈

Θ
(`)
t , c(`)(x−i, ξi)− c(`)(x)

〉
that leads

to

I(`)
1,i (si, x) =

1

2
θ

(`)
t

−1
ei exp

(〈
Θ

(`)
t , c(`)(x−i, si)− c(`)(x)

〉)
,

where we used that θ
(`)
t ≺ 0, since θ

(`)
t = −1

2S
(`)
t

−1
and the invese of a negative definite

matrix is negative definite. For the second integral term

I(`)
2,i (x) =

∫ xi

−∞
ϕ

(`)
2,i((x−i, ξi),Θ

(`)
t ) exp

(〈
Θ

(`)
t , c(`)(x−i, ξi)− c(`)(x)

〉)
dξi

=
1

4
θ

(`)
t

−1
∫ xi

−∞
Ei

(
4θ

(`)
t (c

(`)
2 (x−i, ξi)−∇θψ`(Θ(`)

t ))θ
(`)
t − 2θ

(`)
t (x−i, ξi)η

(`)
t

>

+ 2η
(`)
t (x−i, ξi)>θ

(`)
t

)
θ

(`)
t

−1
exp

(〈
Θ

(`)
t , c(`)(x−i, ξi)− c(`)(x)

〉)
dξi

=
1

4
θ

(`)
t

−1
∫ xi

−∞
Ei

(
2θ

(`)
t (x−i, ξi)(x−i, ξi)>2θ

(`)
t − η

(`)
t η

(`)
t

>
+ 2θ

(`)
t

− 2θ
(`)
t (x−i, ξi)η

(`)
t

>
+ 2η

(`)
t (x−i, ξi)>θ

(`)
t

)
θ

(`)
t

−1
exp

(〈
Θ

(`)
t , c(`)(x−i, ξi)− c(`)(x)

〉)
dξi,

where we have used (46). By expanding terms and using integration by parts together with
the first assertion of this lemma

I(`)
2,i (x) =

1

2

∫ xi

−∞

1

2
θ

(`)
t

−1
Ei(2θ

(`)
t (x−i, ξi) + η

(`)
t )(2θ

(`)
t (x−i, ξi)− η(`)

t )>θ
(`)
t

−1
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(〈

Θ
(`)
t , c(`)(x−i, ξi)− c(`)(x)

〉)
dξi

+
1

2
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−∞
θ

(`)
t

−1
Ei exp

(〈
Θ

(`)
t , c(`)(x−i, ξi)− c(`)(x)

〉)
dξi

=
1

2
I(`)

1,i (xi, x)(2θ
(`)
t x− η(`)

t )>θ
(`)
t
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− 1

2

∫ xi

−∞
I(`)
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(`)
t ei)
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(`)
t
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dξi

+
1

2

∫ xi

−∞
θ

(`)
t

−1
Ei exp

(〈
Θ

(`)
t , c(`)(x−i, ξi)− c(`)(x)

〉)
dξi
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=
1

4
θ

(`)
t

−1
ei(2θ

(`)
t x− η(`)

t )>θ
(`)
t

−1

− 1

2

∫ xi

−∞
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ei exp
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1

2
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1
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θ
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t )>θ
(`)
t
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.

Proof of Proposition 11 We decompose the function ui(x, t), given by Theorem 9 into
ui(x, t) = gi(x, t) + γi(x, t) for all i = 1, . . . , n, where

gi(x, t) :=
1

2

n∑

j=1

∂

∂xj
aij(x) +

1

2

n∑

j=1

aij(x)

∂
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t , . . . ,Θ
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t )
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t , . . . ,Θ

(k)
t )

γi(x, t) :=
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(k)
t )
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t )
〈

Θ̇
(`)
t , I(`)

i (x)
〉
.

As a preliminary step by invoking Lemma 27
〈
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(`)
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〉

=
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〉

+
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〈
η̇
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1

2
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〉
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(`)
t ,

1

2
θ
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t
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> − 1

4
θ
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t
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1
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4
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=
1

2
η̇

(`)
t

>(θ
(`)
t
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1
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t
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(`)
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4
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(`)
t

−1
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(`)
t θ

(`)
t

−1
η

(`)
t .

Therefore,

γ(x, t) = − 1

p(x,Θ
(1)
t , . . . ,Θ

(k)
t )

k∑

`=1

ν`p`(x,Θ
(`)
t )

(
1

2
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(`)
t

−1
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1

2
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4
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t θ
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t
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)
.

Furthermore,

∂

∂xj
p(x,Θ

(1)
t , . . . ,Θ

(k)
t ) =

k∑
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ν`

〈
Θ

(`)
t ,
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〉
exp[
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(`)
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Θ

(`)
t ,
(
ej , ejx

> + xe>j
)〉

exp
(〈

Θ
(`)
t , c(`)(x)

〉
− ψ`(Θ(`)
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(`)
t

>
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,
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and therefore

g(x, t) =
1

2
div
(
a(x)

)
+

1

2

∑k
`=1 ν`p`(x,Θ

(`)
t )a(x)

(
η

(`)
t + 2θ

(`)
t x
)

p(x,Θ
(1)
t , . . . ,Θ

(k)
t )

.

Note that our choice of ϕ
(`)
i satisfy (18) as shown in Lemma 26, which then completes the

proof.

Appendix D. Proof of Theorem 13

Lemma 28 For an SDE of the form (15) the mean mt and covariance matrix St of Xt

satisfy
dmt = E

[
u(Xt, t)

]
dt,

dSt =
(
E
[
Xtu(Xt, t)

>]+ E
[
u(Xt, t)X

>
t

]
+ E

[
σ(Xt)σ(Xt)

>]

−mtE
[
u(Xt, t)

]> − E
[
u(Xt, t)

]
m>
t

)
dt.

(47)

Proof. The equation for the mean is trivial. For the variance let Yt := XtX
>
t . Accord-

ing to Itô’s Lemma Øksendal (2003) dYt = Xt(u(Xt, t)dt + σ(Xt)dBt)
> + (u(Xt, t)dt +

σ(Xt)dBt)X
>
t +σ(Xt)σ(Xt)

>dt, and similarly dm2
t =

(
mtE

[
u(Xt, t)

]>
+ E

[
u(Xt, t)

]
m>
t

)
dt.

Hence,

dS(t) = E
[
dY (t)

]
− dm2

t =
(
E
[
Xtu(Xt, t)

>]+ E
[
u(Xt, t)X

>
t

]
+ E

[
σ(Xt)σ(Xt)

>]

−mtE
[
u(Xt, t)

]> − E
[
u(Xt, t)

]
m>
t

)
dt.

Lemma 29 Mean mt and variance St satisfy

mt =
k∑

`=1

ν`m
(`)
t , St =

k∑

`=1

ν`S
(`)
t +

k∑

`=1

ν`m
(`)
t m

(`)
t

>
−
(

k∑

`=1

ν`m
(`)
t

)(
k∑

`=1

ν`m
(`)
t

)>

.

Proof. The statement for the mean is straightforward. For the variance,

St =
k∑

`=1

ν`Ep`
[
XX>]−

(
k∑

`=1

ν`m
(`)
t

)(
k∑

`=1

ν`m
(`)
t
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k∑
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(
Ep`
[
XX>]−m(`)

t m
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t
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)
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(`)
t m

(`)
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−1
−
(

k∑

`=1

ν`m
(`)
t

)(
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`=1

ν`m
(`)
t

)>

Proof of Theorem 13 Consider a drift function u(x, t) given by (20). In view of Lemma
28

dmt

dt
=

k∑

`=1

ν`

(
Ep`

[
1

2
div
(
a(X)

) ]
+A

(`)
t +B

(`)
t m

(`)
t + Ep`

[
a(X)

]
C

(`)
t + Ep`

[
a(X)D

(`)
t X

])
,
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which can be simplified according to Lemma 29, such that

k∑

`=1

ν`
dm

(`)
t

dt
=

k∑

`=1

ν`

(
Ep`

[
1

2
div
(
a(X)

) ]
+A

(`)
t

+B
(`)
t m

(`)
t + Ep`

[
a(X)

]
C

(`)
t + Ep`

[
a(X)D

(`)
t X

])
.

(48)

Note that (48) has to hold for all ν` ≥ 0 such that
∑k

`=1 ν` = 1. Therefore

dm
(`)
t

dt
= Ep`

[
1

2
div
(
a(X)

) ]
+A

(`)
t +B

(`)
t m

(`)
t + Ep`

[
a(X)

]
C

(`)
t + Ep`

[
a(X)D

(`)
t X

]
. (49)

For the variance, we have according to Lemma 29

dSt
dt

=
k∑

`=1

ν`

(
dS

(`)
t

dt
+

dm
(`)
t

dt
m

(`)
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>
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t −mt

(
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.

This implies
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,

where dSt
dt is given according to Lemma 28, by

dSt
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= E
[
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>]+ E
[
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>
t

]
+ E

[
σ(Xt)σ(Xt)

>]−mt

(
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)>

− dmt

dt
m>
t .

Therefore,

k∑
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t
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= E

[
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>]+ E
[
u(Xt, t)X

>
t

]
+ E

[
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−
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`=1
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(
dm

(`)
t
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m

(`)
t

>
+m
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t

(
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(50)

Recall that
dm

(`)
t

dt is given by (49). Next, we compute

E
[
Xu(X, t)>

]
=

k∑

`=1

ν`

(
Ep`

[
1

2
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(
a(X)
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>
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+ Ep`
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a(X)

]
+ Ep`
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,

E
[
u(X, t)X>] =
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(
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2
div
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)
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t m
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Ep
[
σ(X)σ(X)>

]
= Ep

[
a(X)

]
=

k∑

`=1

ν`Ep`
[
a(X)

]
,

such that by evaluating (50) and by recalling that it has to hold for all convex combinations,
we get the assertion (23).
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