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Abstract

Many data mining and statistical machine learning algorithms have been developed to
select a subset of covariates to associate with a response variable. Spurious discoveries
can easily arise in high-dimensional data analysis due to enormous possibilities of such
selections. How can we know statistically our discoveries better than those by chance?
In this paper, we define a measure of goodness of spurious fit, which shows how good a
response variable can be fitted by an optimally selected subset of covariates under the null
model, and propose a simple and effective LAMM algorithm to compute it. It coincides with
the maximum spurious correlation for linear models and can be regarded as a generalized
maximum spurious correlation. We derive the asymptotic distribution of such goodness of
spurious fit for generalized linear models and L1 regression. Such an asymptotic distribution
depends on the sample size, ambient dimension, the number of variables used in the fit, and
the covariance information. It can be consistently estimated by multiplier bootstrapping
and used as a benchmark to guard against spurious discoveries. It can also be applied to
model selection, which considers only candidate models with goodness of fits better than
those by spurious fits. The theory and method are convincingly illustrated by simulated
examples and an application to the binary outcomes from German Neuroblastoma Trials.

Keywords: Bootstrap, Gaussian approximation, generalized linear models, L1 regression,
model selection, sparsity, spurious correlation, spurious fit

1. Introduction

Technological developments in science and engineering lead to collections of massive amounts
of high-dimensional data. Scientific advances have become more and more data-driven, and
researchers have been making efforts to understand the contemporary large-scale and com-
plex data. Among these efforts, variable selection plays a pivotal role in high-dimensional
statistical modeling, where the goal is to extract a small set of explanatory variables that are
associated with given responses such as biological, clinical, and societal outcomes. Toward
this end, in the past two decades, statisticians have developed many data learning meth-
ods and algorithms, and have applied them to solve problems arising from diverse fields
of sciences, engineering and humanities, ranging from genomics, neurosciences and health
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sciences to economics, finance and machine learning. For an overview, see Bühlmann and
van de Geer (2011) and Hastie, Tibshirani and Wainwright (2015).

Linear regression is often used to investigate the relationship between a response variable
Y and explanatory variables X = (X1, . . . , Xp)

T. In the high-dimensional linear model
Y = XTβ∗ + ε, the coefficient β∗ is assumed to be sparse with support S0 = supp(β∗).
Variable selection techniques such as the forward stepwise regression, the Lasso (Tibshirani,
1996) and folded concave penalized least squares (Fan and Li, 2001; Zou and Li, 2008) are
frequently used. However, it has been recently noted in Fan, Guo and Hao (2012) that
high dimensionality introduces large spurious correlations between response and unrelated
covariates, which may lead to wrong statistical inference and false scientific discoveries. As
an illustration, Fan, Shao and Zhou (2015) considered a real data example using the gene
expression data from the international ‘HapMap’ project (Thorisson et al., 2005). There,
the sample correlation between the observed and post-Lasso fitted responses is as large as
0.92. While conventionally it is a common belief that a correlation of 0.92 between the
response and a fit is noteworthy, in high-dimensional scenarios, this intuition may no longer
be true. In fact, even if the response and all the covariates are scientifically independent in
the sense that β∗ = 0, simply by chance, some covariates will appear to be highly correlated
with the response. As a result, the findings obtained via any variable selection techniques
are hardly impressive unless they are proven to be better than by chance. To simplify
terminology, in this paper we say that the discovery (by a variable selection method) is
spurious if it is no better than by chance.

To guard against spurious discoveries, one naturally asks how good a response can be
fitted by optimally selected subsets of covariates, even when the response variable and the
covariates are not causally related to each other, that is, when they are independent. Such
a measure of the goodness of spurious fit (GOSF) is a random variable whose distribution
can provide a benchmark to gauge whether the discoveries by statistical machine learning
methods any better than a spurious fit (chance). Measuring such a goodness of spurious fit
and estimating its theoretical distributions are the aims of this paper. This problem arises
from not only high-dimensional linear models and generalized linear models, but also robust
regression and other statistical model fitting. To formally measure the degree of spurious
fit, Fan, Shao and Zhou (2015) derived the distributions of maximum spurious correlations,
which provide a benchmark to assess the strength of the spurious associations (between
response and independent covariates) and to judge whether discoveries by a certain variable
selection technique are any better than by chance.

The response, however, is not always a quantitative value. Instead, it is often binary;
for example, positive or negative, presence or absence and success or failure. In this regard,
generalized linear models (GLIM) serve as a flexible parametric approach to modeling the
relationship between explanatory and response variables (McCullagh and Nelder, 1989).
Prototypical examples include linear, logistic and Poisson regression models which are fre-
quently encountered in practice.

In GLIM, the relationship between the response and covariates is more complicated and
cannot be effectively measured via Pearson correlation coefficient, which is essentially a
measure of the linear correlation between two variables. We need to extend the concept
of spurious correlation or the measure of goodness of spurious fit to more general models
and study its null distribution. A natural measure of goodness of fit is the likelihood
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ratio statistic, denoted by LRn(s, p), where n is the sample size and s is size of optimally
fitted model. It measures the goodness of spurious fit when X and Y are independent.
This generalization is consistent with the spurious correlation studied in Fan, Shao and
Zhou (2015), that is, applying LRn(s, p) to linear regression yields the maximum spurious
correlation. We plan to study the limiting null distribution of 2LRn(s, p) under various
scenarios. This reference distribution then serves as a benchmark to determine whether the
discoveries are spurious.

To gain further insights, let us illustrate the issue by using the gene expression profiles
for 10, 707 genes from 251 patients in the German Neuroblastoma Trials NB90-NB2004
(Oberthuer et al., 2006). The response labeled as “3-year event-free survival” (3-year EFS)
is a binary outcome indicating whether each patient survived 3 years after the diagnosis
of neuroblastoma. Excluding five outlier arrays, there are 246 subjects (101 females and
145 males) with 3-year EFS information available. Among them, 56 are positives and 190
are negatives. We apply Lasso using the logistic regression model with tuning parameter
selected via ten-fold cross validation (40 genes are selected). The fitted likelihood ratio

2L̂R = 211.96. To judge the credibility of the finding of these 40 genes, we should compare
the value 211.96 with the distribution of the Goodness Of Spurious Fit (GOSF) 2LRn(s, p)
when X and Y are indeed independent, where n = 246, p = 10, 707 and s = 40. This
requires some new methodology and technical work. Figure 1 shows the distribution of
the GOSF estimated by our proposed method below and indicates how abnormal the value
211.96 is. It can be concluded that the goodness of fit to the binary outcome is not statis-
tically significantly better than GOSF.

Figure 1: Lasso fitted likelihood ratio 2L̂R in comparison to the distribution of GOSF
2LRn(s, p) with n = 246, p = 10, 707 and s = 40.
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The above result shows that the 10-fold cross-validation chooses a too large model with
40 variables. This prompts us to reduce the model sizes along the Lasso path such that
their fits are better than GOSF. The results are reported in Table 2. The largest model
along the LASSO path that fits better than GOSF has model size 17. We can use the
cross-validation to select a model with model size no more than 17 or to select a best model
among all models that fit better than GOSF. This is another important application of our
method.

1.1 Structure of the paper

In Section 2, we introduce a general measure of spurious fit via generalized likelihood ratios,
which extends the concept of spurious correlation in the linear model to more general
models, including generalized linear models and robust linear regression. We also introduce
a local adaptive majorization-minimization (LAMM) algorithm to compute the GOSF.
Section 3 presents the main results on the limiting laws of goodness of spurious fit and
their bootstrap approximations. For conducting inference, we use the proposed LAMM
algorithm to compute the bootstrap statistic. In Section 4, we discuss an application of our
theoretical findings to high-dimensional statistical inference and model selection. Section 5
presents numerical studies. Proofs of the main results, Theorems 2 and 6, are provided
in Section 6; in each case, we break down the key steps in a series of lemmas with proofs
deferred to the appendix.

1.2 Notations

We collect standard pieces of notation here for readers’ convenience. For two sequences {an}
and {bn} of positive numbers, we write an = O(bn) or an . bn if there exists a constant
C > 0 such that an/bn ≤ C for all sufficiently large n; we write an � bn if there exist
constants C1, C2 > 0 such that, for all n large enough, C1 ≤ an/bn ≤ C2; and we write
an = o(bn) if limn→∞ an/bn = 0, respectively. For a, b ∈ R, we write a ∨ b = max(a, b).

For every positive integer `, we write [`] = {1, 2, . . . , `}, and for any set S, we use Sc

to denote its complement and |S| for its cardinality. For any real-valued random variable
X, its sub-Gaussian norm is defined by ‖X‖ψ2 = sup`≥1 `

−1/2(E|X|`)1/`. We say that a
random variable X is sub-Gaussian if ‖X‖ψ2 <∞.

Let p, q be two positive integers. For every p-vector u = (u1, . . . , up)
T, we define its `q-

norm to be ‖u‖q =
(∑p

i=1 |ui|q
)1/q

, and set ‖u‖0 =
∑p

i=1 I{ui 6= 0}. Let Sp−1 = {u ∈ Rp :
‖u‖2 = 1} be the unit sphere in Rp. Moreover, for each subset S ⊆ [p] with |S| = s ∈ [p],
we denote by uS the s-variate sub-vector of u containing only the coordinates indexed by
S. We use ‖M‖ to denote the spectral norm of a matrix M.

2. Goodness of spurious fit

Let Y, Y1, . . . , Yn be independent and identically distributed (i.i.d.) random variables with
mean zero and variance σ2 > 0, and X,X1, . . . ,Xn be i.i.d. p-dimensional random vectors.
We write

X = (X1, . . . , Xp)
T, X = (X1, . . . ,Xn)T ∈ Rn×p and Xi = (Xi1, . . . , Xip)

T, i = 1, . . . , n.
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For s ∈ [p], the maximum s-multiple correlation between Y and X is given by

R̂n(s, p) = max
α∈Rp:‖α‖0≤s

ĉorrn(Y,αTX), (1)

where ĉorrn(·, ·) denotes the sample Pearson correlation coefficient. When Y and X are
independent, we regard R̂n(s, p) as the maximum spurious (multiple) correlation. The
limiting distribution of R̂n(s, p) is studied in Cai and Jiang (2012) and Fan, Guo and Hao
(2012) when s = 1 and X ∼ N(0, Ip) (the standard normal distribution in Rp), and later
in Fan, Shao and Zhou (2015) under a general setting where s ≥ 1 and X is sub-Gaussian
with an arbitrary covariance matrix.

For binary data, the sample Pearson correlation is not effective for measuring the regres-
sion effect. We need a new metric. In classical regression analysis, the multiple correlation
coefficient, also known as the R2, is the proportion of variance explained by the regression
model. For each submodel S ⊆ [p], its R2 statistic can be computed as

R2
S = max

θ∈Rs
ĉorr2

n(Y,XT
S θ). (2)

Then, the maximum s-multiple correlation R̂n(s, p) can be expressed as the maximum R2

statistic:

R̂2
n(s, p) = max

S⊆[p]:|S|=s
R2
S . (3)

The concept of R2 can be extended to more general models. For binary response models,
Maddala (1983) suggested the following generalization: − log(1 − R2) = 2

n{`(β̂) − `(0)},
where `(β̂) = logL(β̂) and `(0) = logL(0) denote the log-likelihoods of the fitted and the
null model, respectively. This motivates us to use the likelihood ratio as a generalization of
the goodness of fit beyond the linear model.

Let Ln(β), β ∈ Rp be the negative logarithm of a quasi-likelihood process of the
sample {(Yi,Xi)}ni=1. For a given model size s ∈ [p], the best subset fit is β̂(s) :=
argminβ∈Rp:‖β‖0≤sLn(β). The goodness of such a fit, in comparison with the baseline fit
Ln(0), can be measured by

LRn(s, p) := Ln(0)− Ln(β̂(s)) = Ln(0)− min
β∈Rp:‖β‖0≤s

Ln(β). (4)

When X and Y are independent, it becomes the Goodness OF Spurious Fit (GOSF).
According to (2) and (3), this definition is consistent with the maximum spurious correlation
when it is applied to the linear model with Gaussian quasi-likelihood, where Ln(β;β0, σ) =
1
2 log(2πσ2) + 1

2‖Y − β0 − Xβ‖22/σ2 and Y = (Y1, . . . , Yn)T.

Throughout, we refer to Ln(·) as the loss function which is assumed to be convex.
This setup encompasses the generalized linear models (McCullagh and Nelder, 1989) with
Ln(β) =

∑n
i=1{b(XT

i β)−YiXT
i β} under the canonical link where b(·) is a model-dependent

convex function (we take the dispersion parameter as one, as we don’t consider the dispersion
issue), robust regression with Ln(β) =

∑n
i=1 |Yi −XT

i β|, the hinge loss Ln(β) =
∑n

i=1(1−
YiX

T
i β)+ in the support vector machine (Vapnik, 1995) and exponential loss Ln(β) =
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∑n
i=1 exp(−YiXT

i β) in AdaBoost (Freund and Schapire, 1997) in classification with Y
taking values ±1.

The prime goal of this paper is to derive the limiting laws of GOSF LRn(s, p) in the
null setting where the response Y and the explanatory variables X are independent. Here,
both s and p can depend on n, as we shall use double-array asymptotics. We will mainly
focus on the GLIM and robust linear regression that are of particular interest in statistics.

2.1 Generalized linear models

Recall that (Y1,X1), . . . , (Yn,Xn) are i.i.d. copies of (Y,X). Assume that the conditional
distribution of Y given X = x ∈ Rp belongs to the canonical exponential family with the
probability density function taking the form (McCullagh and Nelder, 1989)

f(y;x,β∗) = exp
[
{y xTβ∗ − b(xTβ∗)}/φ+ c(y, φ)

]
, (5)

where β∗ = (β∗1 , . . . , β
∗
p)T is the unknown p-dimensional vector of regression coefficients,

and φ > 0 is the dispersion parameter. The log-likelihood function with respect to the
given data {(Yi,Xi)}ni=1 is

∑n
i=1 c(Yi, φ) + φ−1

∑n
i=1{YiXT

i β − b(XT
i β)}. For simplicity,

we take φ = 1 with the exception that in the linear model with Gaussian noise, φ = σ2 is
the variance. Two other showcases are

1. Logistic regression: b(u) = log(1 + eu), u ∈ R and φ = 1.

2. Poisson regression: b(u) = eu, u ∈ R and φ = 1.

In GLIM, the loss function is Ln(β) =
∑n

i=1{b(XT
i β)−YiXT

i β}. By (4), the generalized
measure of goodness of fit for GLIM is

LRn(s, p) = nb(0)− min
β∈Rp:‖β‖0≤s

Ln(β). (6)

In Section 3, we derive under mild regularity conditions the limiting distribution of GOSF
LRn(s, p) in the null model. This extends the classical Wilks theorem (Wilks, 1938). Here,
we interpret LRn(s, p) as the degree of spuriousness caused by the high-dimensionality.

2.2 L1 regression

In this section, we revisit the high-dimensional linear model

Y = Xβ∗ + ε or Yi = XT
i β
∗ + εi, i = 1, . . . , n, (7)

where Y = (Y1, . . . , Yn)T is the response vector and ε = (ε1, . . . , εn)T is the n-vector of
measurement errors. Robustness considerations lead to least absolute deviation (LAD) re-
gression and more generally quantile regression (Koenker, 2005). For simplicity, we consider
the `1-loss Ln(β) =

∑n
i=1 |Yi −XT

i β|, β ∈ Rp. The generalized measure of goodness of fit
(4) now becomes

LRn(s, p) = ‖Y ‖1 − min
β∈Rp:‖β‖0≤s

Ln(β). (8)

The limiting distribution of GOSF LRn(s, p) is studied in Section 3.4.
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In particular, if ε1, . . . , εn in (7) are i.i.d. from the double exponential distribution
with the density fε(u) = 1

2e
−|u|, u ∈ R, the `1-loss Ln(·) corresponds to the negative log-

likelihood function. In general, we assume that the regression error εi has median zero,
that is, P(εi ≤ 0) = 1

2 . Hence, the conditional median of Yi given Xi is XT
i β
∗ for i ∈ [n],

and β∗ = argminβ∈RpEX{Ln(β)}, where EX(·) = E(· |X1, . . . ,Xn) denotes the conditional
expectation given {Xi}ni=1.

2.3 An LAMM algorithm

The computation of the best subset regression coefficient β̂(s) in (4) requires solving a com-
binatorial optimization problem with a cardinality constraint, and therefore is NP-hard. In
the following, we suggest a fast and easily implementable method, which combines the for-
ward selection (stepwise addition) algorithm and a local adaptive majorization-minimization
(LAMM) algorithm (Lange, Hunter and Yang, 2000; Fan et al., 2015) to provide an approx-
imate solution.

Our optimization problem is minβ∈Rp:‖β‖0≤s f(β), where f(β) = Ln(β). We say that a

function g(β |β(k)) majorizes f(β) at the point β(k) if f(β(k)) = g(β(k) |β(k)) and f(β) ≤
g(β |β(k)) for all β ∈ Rp. An majorization-minimization (MM) algorithm initializes at β(0)

and then iteratively computes β(k+1) = argminβ∈Rp:‖β‖0≤s g(β |β(k)). The target value of
such an algorithm is non-increasing since

f(β(k+1))
majorization

≤ g(β(k+1) |β(k))
minimization

≤ g(β(k) |β(k))
initialization

= f(β(k)). (9)

We now majorize f(β) at β̂(k) by an isotropic quadratic function

gλ(β | β̂(k)) = f(β) +
〈
∇f(β̂(k)),β − β̂(k)

〉
+
λ

2
‖β − β̂(k)‖22, β ∈ Rp. (10)

This is a valid majorization as long as λ ≥ maxβ ‖∇2f(β)‖ (this will be relaxed below).
The isotropic form on the right-hand side of (10) allows a simple analytic solution given by

β̂
(k+1)
λ = argminβ∈Rp:‖β‖0≤s g(β |β(k)) =

{
β̂(k) − λ−1∇f(β̂(k))

}
[1:s]

.

Here, we used the notation that for any β ∈ Rp, β[1:s] ∈ Rp retains the s largest (in
magnitude) entries of β and assigns the rest to zero.

Remark 1 To implement the MM algorithm, we need to compute the gradient of the
objective function of interest. In the L1 regression, the loss function Ln(β) =

∑n
i=1 |Yi −

XT
i β|, β ∈ Rp is not differentiable everywhere. Recall that the subdifferential of the

absolute function h(x) = |x|, x ∈ R is given by

∂h(x) =


{1}, if x > 0,
[−1, 1], if x = 0,
{−1}, if x < 0.

With slight abuse of notation, we suggest a randomized algorithm using the stochastic
subgradient ∇Ln(β) =

∑n
i=1 I(Yi −XT

i β > 0) − I(Yi −XT
i β > 0) + UiI(Yi −XT

i β = 0),
where U1, . . . , Un are i.i.d. random variables uniformly distributed on [−1, 1].
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We propose to use the stepwise forward selection algorithm to compute an initial esti-
mator β̂(0). As the MM algorithm decreases the target value as shown in (9), the resulting
target value is no larger than that produced by the stepwise forward selection algorithm.

To properly choose the isotropic parameter λ > 0 without computing the maximum
eigenvalue, we use the local adaptive procedure as in Fan et al. (2015). Note that, in order
to have a non-increasing target value, the majorization is not actually required. As long
as f(β(k+1)) ≤ g(β(k+1) |β(k)), arguments in (9) hold. Starting from a prespecified value
λ = λ0, we successfully inflate λ by a factor ρ > 1. After the `th iteration, λ = λ` = ρ`−1λ0.

We take the first ` such that f(β̂
(k+1)
λ`

) ≤ gλ`(β̂
(k+1)
λ`

| β̂(k)) and set β̂(k+1) = β̂
(k+1)
λ`

. Such an
` always exists as a large ` will major the function f . We then continue with the iteration in
the MM part. A simple criteria for stopping the iteration is that |f(β̂(k+1))− f(β̂(k))| ≤ ε
for a sufficiently small ε, say 10−5. We refer to Fan et al. (2015) for a detailed computational
complexity analysis of the LAMM algorithm.

While the LAMM algorithm can be applied to compute β̂(s) in a general setting, in our
application, the algorithm is mainly applied to compute GOSF under the null model (see
Figure 1 and Section 3.5). From our simulation experiences, our algorithm delivers a good
enough solution under the null model. It always provides an upper certificate f(β̂0) to the
problem min‖β‖0≤s f(β), where β̂0 is the output of the LAMM algorithm. As in Bertsimas,
King and Mazumder (2016), if needed to verify the accuracy of our method, a lower certifi-
cate is f(β̂1), where β̂1 is the solution to the convex problem min‖β‖1≤Bs f(β), and Bs is a

sufficient large constant so that the L0-solution satisfies ‖β̂(s)‖1 ≤ Bs. For example, under
the null model, it is well known that ‖β̂(s)‖1 = OP{s

√
(log p)/n}. Therefore, we can take

Bs = Css
√

(log p)/n for a sufficiently large constant Cs. A data-driven heuristic approach

is to take Bs = 2‖β̂1(s)‖1 along the Lasso path such that ‖β̂1(s)‖0 = s.
Note that the minimum target value falls in the interval [f(β̂1), f(β̂0)]. If this interval

is very tight, we have certified that β̂0 is an accurate solution.

3. Asymptotic distribution of goodness of spurious fit

3.1 Preliminaries

Define p× p covariance matrices

Σ = E(XXT) and Σ̂ = n−1
n∑
i=1

XiX
T
i . (11)

For s ∈ [p], we say that S ⊆ [p] is an s-subset if |S| = s. For every s-subset S ⊆ [p], let ΣSS

and Σ̂SS be the s × s sub-matrices of Σ and Σ̂ containing the entries indexed by S × S,
that is,

ΣSS = E(XSX
T
S ), Σ̂SS = n−1

n∑
i=1

XiSX
T
iS . (12)

Condition 3.1 The covariates are standardized to have unit second moment, that is,
E(X2

j ) = 1 for j = 1, . . . , p. There exits a random vector U ∈ Rp satisfying E(UUT) = Ip,

such that X = Σ1/2U and A0 := supv∈Sp−1 ‖vTU‖ψ2 <∞.
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For 1 ≤ s ≤ p, the s-sparse condition number of Σ is given by

γs = γs(Σ) =
√
λmax(s)/λmin(s), (13)

where λmax(s) = maxu∈Sp−1:‖u‖0≤s u
TΣu and λmin(s) = minu∈Sp−1:‖u‖0≤s u

TΣu denote the
s-sparse largest and smallest eigenvalues of Σ, respectively.

Let G = (G1, . . . , Gp)
T ∼ N(0,Σ) be a centered Gaussian random vector with covari-

ance matrix Σ. For any s-subset S ⊆ [p], GS ∼ N(0,ΣSS). Define the random variable

R0(s, p) = max
S⊆[p]:|S|=s

‖Σ−1/2
SS GS‖2, (14)

which is the maximum of the `2-norms of a sequence of dependent chi-squared random
variables with s degrees of freedom. The distribution of R0(s, p) depends on the unknown
Σ and can be estimated by the multiplier bootstrap in Section 3.5. It will be shown that
this distribution is the asymptotic distribution of GOSF. In particular, for the isotropic
case where Σ = Ip, R0(s, p) = G2

(1) + · · ·+G2
(s), the sum of the largest s order statistics of

p independent χ2
1 random variables.

3.2 Generalized linear models

For i.i.d. observations {(Yi,Xi)}ni=1 from the distribution in (5), define individual residuals
εi = Yi−EX(Yi) = Yi−b′(XT

i β
∗) with conditional variance VarX(εi) = φb′′(XT

i β
∗), where

VarX(·) = EX{· − EX(·)}2. In particular, under the null model, Y is independent of X
with mean µY := E(Y ) = b′(0) and variance σ2

Y := Var(Y ) = φb′′(0).

Condition 3.2 There exists a0 > 0 such that E exp{uσ−1
Y (Y − µY )} ≤ exp(a0u

2/2) holds
for all u ∈ R. The function b(·) in (5) satisfies

min
u:|u|≤1

b′′(u) ≥ a1 and max
u:|u|≤1

|b′′′(u)| ≤ A1 (15)

for some constants a1, A1 > 0.

Condition 3.2 is satisfied by a wide class of GLIMs, including the logistic and Poisson
regression models. The following theorem shows that, under certain moment and regularity
conditions, the distribution of the generalized likelihood ratio statistic 2LRn(s, p) can be
consistently approximated by that of R2

0(s, p) given in (14).

Theorem 2 Let Conditions 3.1 and 3.2 be satisfied. Assume that φ = 1 in (5), p, n ≥ 3
and 1 ≤ s ≤ min(p, n). Then, under the null model (7) with β∗ = 0,

sup
t≥0

∣∣P{2LRn(s, p) ≤ t
}
− P{R2

0(s, p) ≤ t}
∣∣

≤ C
[
{s log(γspn)}7/8n−1/8 + γ1/2

s {s log(γspn)}2n−1/2
]
, (16)

where C > 0 is a constant depending only on a0, a1, A0, A1 in Conditions 3.1 and 3.2.

Remark 3 We regard Theorem 2 as a nonasymptotic, high-dimensional version of the
celebrated Wilks theorem. In the low-dimensional setting where s = p is fixed, Theorem 2
reduces to the conventional Wilks theorem, which asserts that the generalized likelihood
ratio statistic converges in distribution to χ2

p. In addition, we also provide a Berry-Esseen
bound in (16).
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3.3 Linear least squares regression

As a specific case of GLIM, we consider the linear regression model (7) with the loss function
Ln(β) = 1

2‖Y − Xβ‖22. The corresponding likelihood ratio statistic

LRn(s, p) =
1

2
‖Y ‖22 − min

β∈Rp:‖β‖0≤s
Ln(β) (17)

then coincides with that in (6) with b(u) = 1
2u

2. We state the null limiting distribution
of LRn(s, p) in a general case, where ε1, . . . , εn are i.i.d. copies of a sub-Gaussian random
variable ε. Specifically, we assume that

Condition 3.3 ε is a centered, sub-Gaussian random variable with Var(ε) = σ2 > 0 and
K0 := ‖ε‖ψ2 <∞. Moreover, write v` = E(|ε|`) for ` ≥ 3.

The following corollary is a particular case of the general result Theorem 2 with b(u) =
1
2u

2, u ∈ R and φ = σ2. By examining the proof of Theorem 2 and noting that b′′′ ≡ 0,
it can be easily shown that the second term on the right-side of (16) vanishes. Hence, the
proof is omitted.

Corollary 4 Let Conditions 3.1 and 3.3 hold. Assume that p, n ≥ 3 and 1 ≤ s ≤ min(p, n).
Then, under the null model (7) with β∗ = 0,

sup
t≥0

∣∣P{2LRn(s, p) ≤ t
}
− P

{
σ2R2

0(s, p) ≤ t
}∣∣ ≤ C{s log(γspn)}7/8n−1/8,

where C > 0 is a constant depending only on A0 and K0 in Conditions 3.1 and 3.3.

Remark 5 Under the null model, the variance σ2 can be consistently estimated by σ̂2
0 =

n−1
∑n

i=1(Yi − Ȳ )2, where Ȳ = n−1
∑n

i=1 Yi. Under the same conditions of Corollary 4, it
can be proved that

sup
t≥0

∣∣P{2LRn(s, p) ≤ t
}
− P

{
σ̂2

0R
2
0(s, p) ≤ t

}∣∣ . {s log(γspn)}7/8n−1/8,

which is in line with Theorem 3.1 in Fan, Shao and Zhou (2015). To see this, note that

2LRn(s, p) = ‖Y ‖22 − min
S⊆[p]:|S|=s

min
θ∈Rs

‖Y − XSθ‖22

= max
S⊆[p]:|S|=s

Y TXS(XT
SXS)−1XT

SY = max
α∈Rp:‖α‖0≤s

(Y TXα)2/‖Xα‖22.

The estimator σ̂2
0, used in computing the maximum spurious correlation, can be seriously

biased beyond the null model and hence adversely affect the power. Thus, we suggest using
either the refitted cross-validation procedure (Fan, Guo and Hao, 2012) or the scaled Lasso
estimator (Sun and Zhang, 2012) to estimate σ2.

10
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3.4 Linear median regression

We now state an analogous result to Theorem 2 regarding the `1-loss considered in Sec-
tion 2.2.

Condition 3.4 The noise ε1, . . . , εn in (7) are i.i.d. copies of a random variable ε satisfying
E|ε|κ < ∞ for some 1 < κ ≤ 2. There exist positive constants a2 < (E|ε|)−1, A2 and A3

such that the distribution function Fε(·) and the density function fε(·) of ε satisfy

2 max{1− Fε(u), Fε(−u)} ≤ (1 + a2u)−1 for all u ≥ 0, (18)

max
u∈R

fε(u) ≤ A2 and max
u:|u|≤1

max
{
|f ′ε(u+)|, |f ′ε(u−)|

}
≤ A3. (19)

Theorem 6 If p, n ≥ 3 and 1 ≤ s ≤ min(p, n), then under the null model (7) with β∗ = 0
and Conditions 3.1 and 3.4, we have

sup
t≥0

∣∣P{2LRn(s, p) ≤ t
}
− P

{
R2

0(s, p)/{2fε(0)} ≤ t
}∣∣

≤ C1 n
1−κ + C2

[
{s log(γspn)}7/8n−1/8 + γ1/4

s {s log(γspn)}3/2n−1/4
]
,

(20)

where LRn(s, p) is given by (8), C1 > 0 is a constant depending on a2, κ, E|ε|, E|ε|κ and
C2 > 0 is a constant depending on a2, A0, A2 and A3 in Conditions 3.1 and 3.4.

Remark 7 Under the null model, the unknown parameter fε(0) can be consistently esti-
mated by the kernel density estimator f̂ε(0) = (nh)−1

∑n
i=1K(Yi/h), where K(·) is a kernel

function and h = hn > 0 is the bandwidth. For simplicity, we may use the Epanechnikov
kernel function KEpa(u) = 3

4(1 − u2)I(|u| ≤ 1) along with the rule-of-thumb bandwidth

hROT = 2.34 σ̂0n
−1/5, where σ̂2

0 = n−1
∑n

i=1(Yi − Ȳ )2.

3.5 Multiplier bootstrap procedure

The distribution of the random variable R0(s, p) given by (14) depends on the unknown
covariance matrix Σ. In practice, it is natural to replace Σ by Σ̂ = n−1

∑n
i=1XiX

T
i

and G ∼ N(0,Σ) by Ĝ ∼ N(0, Σ̂) in the definition of R0(s, p). With this substitu-
tion, the distribution of R0(s, p) can be simulated. In particular, Ĝ can be simulated as
n−1/2

∑n
i=1 eiXi, where e1, . . . , en are i.i.d. standard normal random variables that are

independent of {Xi}ni=1. The resulting estimator is

Rn(s, p) = max
S⊆[p]:|S|=s

‖Σ̂−1/2
SS ĜS‖2, (21)

which is a multiplier bootstrap version of R0(s, p). The following proposition follows directly
from Theorem 3.2 in Fan, Shao and Zhou (2015).

Proposition 8 Assume that Condition (3.1) holds, 1 ≤ s ≤ min(p, n) and s log(γspn) =
o(n1/5) as n → ∞. Then supt≥0 |P{R0(s, p) ≤ t} − P{Rn(s, p) ≤ t |X1, . . . ,Xn}| → 0 in
probability.

11
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The computation of Rn(s, p) requires solving a combinatorial optimization. This can be
alleviated by using the LAMM algorithm in Section 2.3. To begin with, by Remark 5, we
write Rn(s, p) in (21) as

R2
n(s, p) = max

S⊆[p]:|S|=s
eTXS(XT

SXS)−1XT
Se = ‖e‖22 − min

β∈Rp:‖β‖0≤s
‖e− Xβ‖22,

where e = (e1, . . . , en)T and XS = (X1S , . . . ,XnS)T for every subset S ⊆ [p]. This can be
computed approximately by the LAMM algorithm in Section 2.3, resulting in the solution
β̂(s). Finally, we set R2

n(s, p) = ‖e‖22 − ‖e− Xβ̂(s)‖22.
The numerical performance may be improved by employing mixed integer optimization

formulations (Bertsimas, King and Mazumder, 2016). Such an attempt, however, is beyond
the scope of the paper and we leave it for future research.

4. Spurious discoveries and model selection

Based on the theoretical developments in Section 3, here we address the question whether
discoveries by machine learning and data mining techniques for GLIM are any better than
by chance. For simplicity, we focus on the Lasso. Let qα(s, p) be the upper α-quantile of
the random variable R0(s, p) defined by (14). Assume that the dispersion parameter φ in
(5) equals 1. By Theorem 2, we see that for any prespecified α ∈ (0, 1),

P
{

2LRn(s, p) ≤ q2
α(s, p)

}
→ 1− α, (22)

where LRn(s, p) is as in (6).
Let β̂λ = argminβ{Ln(β) + λ‖β‖1} be the `1-penalized maximum likelihood estimator

with ŝλ = |Ŝλ| = |supp(β̂λ)|, where λ > 0 is the regularization parameter. The goodness of
fit is likelihood ratio Ln(0)−Ln(β̂λ). Since ŝλ covariates are selected, it should be compared
with the distribution of GOSF LRn(s, p) by taking s = ŝλ. In view of (22), if

Ln(β̂λ) ≥ Ln(0)− q2
α(ŝλ, p)/2 = nb(0)− q2

α(ŝλ, p)/2,

then we may regard the discovery of variables Ŝλ as unimpressive, no better than fitting by
chance, or simply spurious.

In practice, the unknown quantile qα(s, p) should be replaced by its bootstrap version
qn,α(s, p), the upper α-quantile of Rn(s, p) defined by (21). This leads to the following

data-driven criteria for judging where the discovery Ŝ(λ) is spurious:

Ln(β̂λ) ≥ nb(0)− q2
n,α(ŝλ, p)/2. (23)

The theoretical justification is given by Theorem 2 and Proposition 8. In particular, when
the loss is quadratic, this reduces to the case studied by Fan, Shao and Zhou (2015).

The concept of GOSF and its theoretical quantile provide important guidelines for model
selection. Let β̂cv be a cross-validated Lasso estimator, which selects ŝcv = ‖β̂cv‖0 important
variables. Due to the bias of the `1 penalty, the Lasso typically selects far larger model size
since the visible bias in Lasso forces the cross-validation procedure to choose a smaller
value of λ. This phenomenon is documented in the simulations studies. See Table 1 in

12
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Section 5.2. With an over-selected model, both the goodness of fit L̂Rλ = Ln(0)− Ln(β̂λ)
and the spurious fit can be very large, and so is the finite sample Wilks approximation
error. To avoid over-selecting, we suggest an alternative procedure that uses the quantity
qn,α(s, p) as a guidance to choose the tuning parameter, which guards us from spurious

discoveries. More specifically, for each λ in the Lasso solution path, we compute L̂Rλ and
qn,α(s, p)|s=ŝλ with a prespecified α. Starting from the largest λ, we stop the Lasso path the

first time that the sign of 2L̂Rλ−q2
n,α(ŝλ, p) is changed from positive to negative, and let λ̂fit

be the smallest λ satisfying 2L̂Rλ ≥ q2
n,α(ŝλ, p). Denote by ŝfit the corresponding selected

model size. This value can be regarded as the maximum model size for Lasso (or any other
variable selection technique such as SCAD) to choose from. Another viable alternative is
to only select the best cross-validated model among those whose fit are better than GOSF.
We will show in Section 5.2 by simulation studies that this procedure selects much smaller
model size which is closer to the truth.

5. Numerical studies

5.1 Accuracy of the Gaussian approximation

First we ran a simulation study to examine how accurate the Gaussian approximation
R2

0(s, p) is to the generalized likelihood ratio statistic 2LRn(s, p) in the null model. To illus-
trate the method, we focus on the logistic regression model: P(Y = 1|X) = exp(XTβ∗)/{1+
exp(XTβ∗)}. Under the null model β∗ = 0, Y1, . . . , Yn are i.i.d. Bernoulli random variables
with success probability 1/2. Independent of Yi’s, we generate Xi ∼ N(0,Σ) with two
different covariance matrices: Σ1 = (ρ|j−k|)1≤j,k≤p and Σ2 = (σ2,jk)1≤j,k≤p, where

σ2,jk =
(∣∣|j − k|+ 1

∣∣2ρ +
∣∣|j − k| − 1

∣∣2ρ − 2|i− j|2ρ
)
/2, 1 ≤ j, k ≤ p.

The first design has an AR(1) correlation structure (a short-memory process), whereas the
second design reflects strong long memory dependence. We take ρ = 0.8 in both cases.

Figure 2 reports the distributions of generalized likelihood ratios (GLRs) and their
Gaussian approximations (GARs) when n = 400, p = 1000 and s ∈ {1, 2, 5, 10}. The results
show that the accuracy of Gaussian approximation is fairly reasonable and is affected by
the size of s as well as the dependence between the coordinates of X.

5.2 Detection of spurious discoveries

In this section, we conduct a moderate scale simulation study to examine how effective
the multiplier bootstrap quantile qn,α(s, p) serves as a benchmark for judging whether the
discovery is spurious. To illustrate the main idea, again we restrict our attention to the
logistic regression model and the Lasso procedure.

The results reported here are based on 200 simulations with the ambient dimension
p = 400 and the sample size n taken values in {120, 160, 200}. The true regression coefficient
vector β∗ ∈ Rp is (3,−1, 3,−1, 3, 0, . . . , 0)T. We consider two random designs: Σ = Ip
(independent) and Σ = (0.5|j−k|)1≤j,k≤p (dependent).

13
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Figure 2: Distributions of generalized likelihood ratios (red) and Gaussian approximations
(blue) based on 5000 simulations for n = 400, p = 1000 and s = 1, 2, 5, 10 when Σ is equal
to Σ1 (upper panel) or Σ2 (lower panel).

Let β̂cv be the five-fold cross-validated Lasso estimator, which selects a model of size
ŝcv = ‖β̂cv‖0. For a given α ∈ (0, 1), consider the spurious discovery probability (SDP)

P
{
n log(2)− Ln(β̂cv) ≤ q2

n,α(ŝcv, p)/2
}
,

which is basically the probability of the type II error since the simulated model is not null.
We take α = 0.1 and compute the empirical SDP based on 200 simulations. For each
simulated data set, qn,α(s, p)|s=ŝcv, p=400 is computed based on 1000 bootstrap replications.
The results are depicted in Table 1 below.

Table 1: The empirical power and the median size of the selected models with its robust
standard deviation (RSD) in the parenthesis based on 200 simulations when p = 400 and
α = 10%. RSD is the interquantile range divided by 1.34.

n = 120 n = 160 n = 200

Ind. Dep. Ind. Dep. Ind. Dep.

Power 0.595 0.750 0.925 0.980 1.000 1.000

ŝcv 32.0 24.5 40.0 25.5 42.0 29.0
(13.43) (11.94) (13.81) (12.69) (14.18) (14.18)

As reflected by Table 1, the empirical power, which is one minus the empirical SDP,
increases rapidly as the sample size n grows. This is in line with our intuition that the
more data we have, the less likely that the discovery by a variable selection method is
spurious. When the sample size is small, the SDP can be high and hence the discovery
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Ŝcv = supp(β̂cv) should be interpreted with caution. We need either more samples or more
powerful variable selection methods.

We see from Table 1 that the Lasso with cross-validation selects far larger model size
than the true one, which is 5. This is because the intrinsic bias in Lasso forces the cross-
validation procedure to choose a smaller value of λ. We now use our procedure in Section 4
to choose the tuning parameter from the Lasso solution path. As before, we take α = 0.1 in
qn,α(s, p) to provide an upper bound on the model size from perspective of guarding against
spurious discoveries. The empirical median of ŝfit and its robust standard deviation are
9 and 1.87 over 200 simulations when (n, p) = (200, 400) and Σ = (0.5|j−k|)1≤j,k≤p. The
feature over-selection phenomenon is considerably alleviated.

5.3 Neuroblastoma data

In this section, we apply the idea of detecting spurious discoveries to the neuroblastoma data
reported in Oberthuer et al. (2006). This data set consists of 251 patients of the German
Neuroblastoma Trials NB90-NB2004, diagnosed between 1989 and 2004. The complete data
set, obtained via the MicroArray Quality Control phase-II (MAQC-II) project (Shi et al.,
2010), includes gene expression over 10,707 probe sites. There are 246 subjects with 3-year
event-free survival information available (56 positive and 190 negative). See Oberthuer et
al. (2006) for more details about the data sets.

For each λ > 0, we apply Lasso using the logistic regression model to select ŝλ genes.
In particular, ten-fold cross-validated Lasso selects ŝcv = 40 genes. Then we calculate
the goodness of fit L̂Rλ := Ln(0) − Ln(β̂λ) = n log(2) − Ln(β̂λ). Along the Lasso path,
we record in Table 2 the number of selected probes, the corresponding square-root the
goodness of fit (2L̂Rλ)1/2 and upper α-quantiles of the multiplier bootstrap approximations
R0(s, p)|s=ŝλ, p=10,707 with α = 10% and 5% based on 2000 bootstrap replications. For
illustrative purposes, we only display partial Lasso solutions with selected model size ŝλ
lying between 20 and 40. From Table 2, we observe that only the discovery of 17 probes
has a generalized measure of the goodness of fit better than GOSF at α = 5%, whereas the
finding (of the 40 probes) via the cross-validation procedure is likely to over-select.

6. Proofs

We now turn to the proofs of Theorems 2 and 6. In each proof, we provide the primary
steps, with more technical details stated as lemmas and proved in the appendix.

6.1 Proof of Theorem 2

Throughout, we work with the quasi-likelihood Ln(β) = −Ln(β) =
∑n

i=1{YiXT
i β −

b(XT
i β)} and consider the general case where the dispersion parameter φ in (5) is specified

(not necessarily equals 1 to facilitate the derivations for the normal case). For a given
s ∈ [p], define

Qn(s, p) = max
β∈Rp:‖β‖0≤s

Ln(β) and Q∗n = Ln(0).

We divide the proof into three steps. First, for each s-subset S ⊆ [p], we prove Wilks’s
result for the S-restricted model where only a subset of the covariates indexed by S are
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Table 2: Lasso fitted square-root likelihood ratio statistic, the mean cross-validated error,
and upper 0.1- and 0.05-quantiles of the multiplier bootstrap approximation based on 2000
bootstrap samples.

λ ŝλ (2L̂Rλ)
1/2 qn,0.1(ŝλ, p) qn,0.05(ŝλ, p) Mean Cross-Validated Error

0.2117 3 9.1389 6.4898 6.6519 1.0641

0.1929 4 9.4753 7.2464 7.4353 1.0450

0.1841 6 9.7273 8.4241 8.6061 1.0346

0.1678 7 10.1670 8.8959 9.0750 1.0092

0.1601 8 10.3675 9.3121 9.5102 0.9974

0.1459 9 10.7263 9.7115 9.9097 0.9751

0.1329 11 11.0739 10.3954 10.6071 0.9543

0.1269 12 11.2376 10.7042 10.9207 0.9452

0.1211 13 11.4330 10.9875 11.2085 0.9359

0.1104 14 11.7764 11.2576 11.4849 0.9186

0.1006 15 12.0756 11.5084 11.7407 0.9006

0.0960 17 12.2096 11.9664 12.2000 0.8934

0.0875 20 12.4788 12.5543 12.7891 0.8815

0.0761 25 12.9535 13.3824 13.6022 0.8651

0.0575 31 13.8675 14.1407 14.3703 0.8361

0.0456 40 14.5588 14.9712 15.2099 0.8255

included. Specifically, we show that the square root deviation of the S-restricted maximum
log-likelihood from its baseline value under the null model can be well approximated by the
`2-norm of the normalized score vector. Second, based on a high-dimensional invariance
principle, we prove the Gaussian/chi-squared approximation for the maximum of the `2-
norms of normalized score vectors. Finally, we apply an anti-concentration argument to
construct non-asymptotic Wilks approximation for 2{Qn(s, p)−Q∗n}.

Step 1: Wilks approximation. In the null model where Y and X are independent,
the true parameter β∗ in (5) is zero, and thus the density function of Y has the form
f(y) = exp{−φ−1b(0) + c(y, φ)}. Moreover, we have

arg max
β∈Rp

EX{Ln(β)} = arg max
β∈Rp

n∑
i=1

EX{YiXT
i β − b(XT

i β)} = 0.

To this see, note that in model (5) with β∗ = 0, E(Y ) = b′(0) and Var(Y ) = φb′′(0). This
implies that EX{Ln(β)} =

∑n
i=1{b′(0)XT

i β − b(XT
i β)}. This function is strictly concave

with respect to β and β = 0 satisfies its first order condition, and hence is its maximizer.

For each s-subset S ⊆ [p], define the S-restricted log-likelihood LSn(θ) =
∑n

i=1{YiXT
iSθ−

b(XT
iSθ)} and the score function ∇LSn(θ) =

∑n
i=1{Yi − b′(XT

iSθ)}XiS , θ ∈ Rs. In this
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notation, it can be seen from (6) that

Qn(s, p) = max
S⊆[p]:|S|=s

max
θ∈Rs

LSn(θ) = max
S⊆[p]:|S|=s

LSn(θ̂S), (24)

where

θ̂S = (θ̂S,1, . . . , θ̂S,s)
T = arg max

θ∈Rs
LSn(θ) (25)

denotes the maximum likelihood estimate of the target parameter for the S-restricted model,
which is given by θ∗S := arg maxθ∈Rs EX{LSn(θ)} = 0.

Given the i.i.d. observations {(Yi,Xi)}ni=1, ∇EX{LSn(θ)} =
∑n

i=1{b′(0)− b′(XT
iSθ)}XiS

and HS(θ) := −∇2EX{LSn(θ)} =
∑n

i=1 b
′′(XT

iSθ)XiSX
T
iS for θ ∈ Rs. In particular, write

H∗S := HS(0) = nb′′(0) Σ̂SS (26)

for ΣSS as in (12). Further, define the S-restricted normalized score

ξ̂S = H
∗−1/2
S ∇LSn(0) = {nb′′(0)}−1/2 Σ̂

−1/2
SS

n∑
i=1

εiXiS , εi = Yi − b′(0). (27)

The following result is a conditional analogue of Corollary 1.12 in the supplement of
Spokoiny (2012), which provides an exponential inequality for the `2-norm of ξ̂S given
{Xi}ni=1. The proofs of this Lemma and other lemmas can be found in the appendix.

Lemma 9 Assume that Conditions 3.1 and 3.2 hold. Then, for every t ≥ 0,

PX
{
‖ξ̂S‖22 ≥ a0φ∆(s, t)

}
≤ 2e−t (28)

holds almost surely on the event {Σ̂SS � 0}, where

∆(s, t) :=

{
s+ (8ts)1/2, if 0 ≤ t ≤ 1

18(2s)1/2,

s+ 6t, if t > 1
18(2s)1/2.

(29)

The following lemma characterizes the Wilks phenomenon from a non-asymptotic per-
spective. Recall that θ̂S at (25) is the S-restricted maximum likelihood estimator, and in
the null model, LSn(0) = Ln(0) = −nb(0), σ2

Y = Var(Y ) = φb′′(0). For every τ > 0, define
the event

E0(τ) =
⋂

S⊆[p]:|S|=s

{
Σ̂SS � 0, max

1≤i≤n
XT
iSΣ̂−1

SSXiS ≤ τ
}
. (30)

Lemma 10 Assume that Conditions 3.1 and 3.2 hold. Then, on the event E0(τ), for any
τ > 0,

PX
(

max
S⊆[p]:|S|=s

∣∣∣[2{LSn(θ̂S)− Ln(0)}]1/2 − ‖ξ̂S‖2
∣∣∣ ≤ C1 φτ

1/2 s log(pn)√
n

)
≤ 5n−1 (31)

whenever n ≥ C2 φτs log(pn), where C1 and C2 are positive constants depending only on
a0, a1, A1 and b′′(0).
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To apply Lemma 10, we need to show first that for properly chosen τ , the event E0(τ)
occurs with high probability. First, applying Theorem 5.39 in Vershynin (2012) to the

random vectors Σ
−1/2
SS X1S , . . . ,Σ

−1/2
SS XnS yields that, for every t ≥ 0,∥∥Σ−1/2

SS Σ̂SSΣ
−1/2
SS − Is

∥∥ =
∥∥n−1Σ

−1/2
SS XT

SXSΣ
−1/2
SS − Is

∥∥ ≤ max(δ, δ2) (32)

holds with probability at least 1 − 2e−t, where δ = C3(s ∨ t)1/2n−1/2, and C3 > 0 is a
constant depending only on A0. This, together with Boole’s inequality implies by taking
t = s log ep

s + log n that, with probability at least 1− 2n−1,

max
S⊆[p]:|S|=s

∥∥Σ−1/2
SS Σ̂SSΣ

−1/2
SS − Is

∥∥ ≤ C3

(
s log ep

s + log n

n

)1/2

≤ 1

2
(33)

whenever n ≥ 4C2
3 (s log ep

s + log n). Providing (33) holds, the smallest eigenvalue of

Σ
−1/2
SS Σ̂SSΣ

−1/2
SS is bounded from below by 1

2 so that λmin(Σ̂SS) ≥ 1
2λmin(ΣSS). More-

over,

XT
iSΣ̂−1

SSXiS ≤ 2λ−1
min(ΣSS)‖XiS‖22 ≤ 2sλ−1

min(ΣSS) max
j∈S

X2
ij . (34)

For the last term on the right-hand side of (34), let ej = (0, . . . , 0, 1, 0, . . . , 0)T be the

unit vector in Rp with 1 at the jth position and note that Xij = eT
j Xi = eT

j Σ
1/2
SSUi with

‖eT
j Σ1/2‖2 = 1, where U1, . . . ,Un are i.i.d. p-dimensional random vectors with covariance

matrix Ip. By Condition 3.1, ‖Xij‖ψ2 = ‖eT
j Σ1/2Ui‖ψ2 ≤ A0 and hence for every t ≥ 0,

P
(

max
1≤i≤n

max
1≤j≤p

X2
ij ≥ t

)
≤ 2

n∑
i=1

p∑
j=1

exp(−C−1
4 t) ≤ 2 exp{log(pn)− C−1

4 t},

where C4 > 0 is a constant depending only on A0. This, together with (34) implies by
taking t = 2C4 log(pn) that, with probability at least 1− 3n−1,

max
1≤i≤n

max
S⊆[p]:|S|=s

XT
iSΣ̂−1

SSXiS ≤ 2λ−1
min(s){1 + 2C4 s log(pn)}. (35)

Now, by (30) and (35), we take τ0 = 2λ−1
min(s){1 + 2C4 s log(pn)} such that the event

E0(τ0) occurs with probability greater than 1 − 3n−1 as long as n ≥ 4C2
3 (s log ep

s + log n).
This, together with Lemma 10 yields that with probability at least 1− 8n−1,

max
S⊆[p]:|S|=s

∣∣∣[2{LSn(θ̂S)− Ln(0)}]1/2 − ‖ξ̂S‖2
∣∣∣ ≤ C5 φλ

−1/2
min (s){s log(pn)}3/2n−1/2 (36)

whenever n ≥ C6(1∨φ)λ−1
min(s){s log(pn)}2, where C5, C6 > 0 are constants depending only

on a0, a1, A0, A1 and b′′(0).

Step 2: Gaussian approximation. For any i = 1, . . . , n and S ⊆ [p], define Zi =

{b′′(0)}−1/2εiXi and ZiS = {b′′(0)}−1/2εiXiS such that ξ̂S = n−1/2
∑n

i=1 Σ̂
−1/2
SS ZiS . More-

over, define

ξ = n−1/2
n∑
i=1

Zi and ξS = n−1/2
n∑
i=1

Σ
−1/2
SS ZiS . (37)
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The following result shows that for each s-subset S ⊆ [p], the `2-norm of the S-restricted
normalized score ξ̂S is close to that of ξS with overwhelmingly high probability.

Lemma 11 Assume that Condition 3.1 holds. Then, for every s-subset S ⊆ [p] and for
every 0 ≤ t ≤ 3

4(n− 2s),

P
[∣∣∣‖ξ̂S‖2 − ‖ξS‖2∣∣∣ > C7{(s+ t)φ∆(s, t)}1/2n−1/2

]
≤ 12.4 e−t, (38)

provided that n ≥ C8(s + t), where ∆(s, t) is as in (29) and C7, C8 > 0 are constants
depending only on a0 and A0.

Using the union bound and taking t = s log ep
s + log n in Lemma 11, we see that with

probability at least 1− 12.4n−1,

max
S⊆[p]:|S|=s

∣∣‖ξ̂S‖2 − ‖ξS‖2∣∣ ≤ C7 φ
1/2(s log ep

s + log n)n−1/2 (39)

whenever n ≥ C9(s log ep
s + log n).

Note that, the random vectors ξ and ξS , S ⊆ [p] defined in (37) satisfy E(ξ) = 0,
E(ξξT) = φΣ, E(ξS) = 0 and E(ξSξ

T
S ) = φIs. The following lemma provides a cou-

pling inequality, showing that the random variable maxS⊆[p]:|S|=s ‖φ−1/2ξS‖2 can be well
approximated, with high probability, by some random variable which is distributed as the
maximum of the `2-norms of a sequence of normalized Gaussian random vectors, that is,

{‖Σ−1/2
SS GS‖2 : S ⊆ [p], |S| = s}.

Lemma 12 Assume that Condition 3.1 holds. Then, there exists a random variable T0
d
=

R0(s, p) such that for any δ ∈ (0, 1],∣∣∣∣ max
S⊆[p]:|S|=s

‖φ−1/2ξS‖2 − T0

∣∣∣∣ ≤ C10

[
δ + {s log(γspn)}1/2n−1/2 + {s log(γspn)}2n−3/2

]
(40)

holds with probability greater than 1−C11

[
δ−3n−1/2{s log(γspn)}2 ∨ δ−4n−1{s log(γspn)}5

]
,

where C10, C11 > 0 are constants depending only on a0 and A0

Step 3: Completion of the proof. We now apply an anti-concentration argument to
construct the Berry-Esseen bound for the square root of the excess 2φ−1{Qn(s, p) − Q∗n}.
To this end, taking δ = {s log(γspn)}3/8n−1/8 in Lemma 12 leads to that, with probability
at least 1− C11{s log(γspn)}7/8n−1/8,∣∣∣∣ max

S⊆[p]:|S|=s
‖φ−1/2ξS‖2 − T0

∣∣∣∣ ≤ C12{s log(γspn)}3/8n−1/8 (41)

whenever n ≥ {s log(γspn)}3. Further, for R0(s, p) in (14), note that

R2
0(s, p) = max

S⊆[p]:|S|=s
max
u∈Ss−1

(uTGS)2

uTΣSSu
= max
u∈F(s,p)

(uTG)2

uTΣu
,
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where G ∼ N(0,Σ) and F(s, p) := {x 7→ uTx : u ∈ Sp−1, ‖u‖0 ≤ s} is a class of linear
functions Rp 7→ R. Hence, it follows from Lemma 7.3 in Fan, Shao and Zhou (2015) with
slight modification and Lemma A.1 in the supplement of Chernozhukov, Chetverikov and
Kato (2014) that, for every t > 0,

sup
u≥0

P(|T0 − u| ≤ t) = sup
u≥0

P
{
|R0(s, p)− u| ≤ t

}
≤ C13

(
s log γsep

s

)1/2
t, (42)

where C13 > 0 is an absolute constant. Combining (42) with the preceding results (36),
(39) and (41) proves (16).

6.2 Proof of Theorem 6

The main strategy of the proof is similar to that of Theorem 2 but technical details are
substantially different. As before, we define the quasi-likelihood Ln(β) = −

∑n
i=1 |Yi −

XT
i β|, β ∈ Rp, and observe that maxβ∈Rp:‖β‖0≤s Ln(β) = maxS⊆[p]:|S|=s maxθ∈Rs LSn(θ),

where LSn(θ) = −
∑n

i=1 |Yi −XT
iSθ|. In the null model (7) with β∗ = 0, we have for each

s-subset S ⊆ [p], arg maxθ EX{LSn(θ)} = 0 by the first order condition and concavity, and
the S-restricted least absolute deviation estimator can be written as

θ̂S = arg max
θ∈Rs

LSn(θ). (43)

We first establish in Lemma 13 an upper bound for the maximum `2-risks of θ̂S .

Lemma 13 Assume that (18) holds and that E|ε|κ <∞ for some 1 < κ ≤ 2. Then, on the
event E0(τ) for τ > 0, the sequence of LAD estimators {θ̂S : S ⊆ [p], |S| = s} satisfies

max
S⊆[p]:|S|=s

‖Σ̂1/2
SS θ̂S‖2 ≤ C1 a

−1
2 {s log(pn)}1/2n−1/2 (44)

with conditional probability (over the randomness of {εi}ni=1) greater than 1−c1n
−1−c2n

1−κ,
where C1, c1 > 0 are absolute constants and c2 > 0 is a constant depending only on a2, κ,
E|ε| and E|ε|κ.

Based on Lemma 13, we further study the concentration property of the Wilks expansion
for the excess LSn(θ̂S)−LSn(0). Since the function LSn(·) is concave, we use ∇LSn(·) to denote
its subgradient. For θ ∈ Rs, let ζS(θ) = LSn(θ)−EXLSn(θ) be the stochastic component of
LSn(θ). Then, it is easy to see that

∇ζS(θ) = −2

n∑
i=1

wSi (θ)XiS , ∇EXLSn(θ) = −
n∑
i=1

{2PX(Yi ≤XT
iSθ)− 1}XiS , (45)

where wSi (θ) := I(Yi ≤ XT
iSθ) − PX(Yi ≤ XT

iSθ). In particular, we have ∇ζS(0) =
−
∑n

i=1{2I(εi ≤ 0) − 1}XiS . Recall that fε and Fε denote, respectively, the density
function and the cumulative distribution function of ε. By the second expression in (45),
∇EXLSn(θ) = −

∑n
i=1{2Fε(XT

iSθ)− 1}XiS and

HS(θ) := −∇2EXLSn(θ) = 2
n∑
i=1

fε(X
T
iSθ)XiSX

T
iS . (46)
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In line with (26), we have H∗S = HS(0) = 2nfε(0) Σ̂SS , which is the negative Hessian of
EXLSn(0). As in (27), define the normalized score

ξ̂S = H
∗−1/2
S ∇LSn(0) = {2nfε(0)}−1/2 Σ̂

−1/2
SS

n∑
i=1

{2I(εi ≤ 0)− 1}XiS . (47)

The following result is a non-asymptotic, conditional version of the Wilks theorem,
saying that with high probability, the square root of the excess maxθ LSn(θ) − LSn(0) and
the `2-norm of the normalized score ξ̂S are sufficiently close uniformly over all s-subsets
S ⊆ [p].

Lemma 14 Assume that Conditions 3.1 and 3.4 are satisfied. Then

max
S⊆[p]:|S|=s

∣∣∣[2{LSn(θ̂S)− LSn(0)}]1/2 − ‖ξ̂S‖2
∣∣∣

≤ C2{fε(0)}−1/2
[
λ
−1/2
min (s){s log(pn)}3/2n−1/2 + λ

−1/4
min (s)s log(pn)n−1/4

]
(48)

holds with probability greater than 1− c2n
1−κ− c3n

−1 whenever n ≥ C3 λ
−1
min(s){s log(pn)}2,

where C2 > 0 is a constant depending only on a2, A2 and A3, c2 is as in Lemma 13, c3 > 0
is an absolute constant and C3 > 0 is a constant depending only on a2 and A2.

Further, write ε̃i = 2I(εi ≤ 0) − 1 and X̃i = ε̃iXi. Note that ε̃1, . . . , ε̃n are i.i.d.

Rademacher random variables and thus X̃1, . . . , X̃n are sub-exponential random vectors.

In this notation, we have ξ̂S = {2nfε(0)}−1/2
∑n

i=1 Σ̂
−1/2
SS X̃iS . For each S ⊆ [p], define

ξS = {2nfε(0)}−1/2
n∑
i=1

Σ
−1/2
SS XiS .

Then, applying Lemma 11 with slight modification and the union bound we obtain that,
with probability at least 1− c4n

−1,

max
S⊆[p]:|S|=s

∣∣‖ξ̂S‖2 − ‖ξS‖2∣∣ ≤ C4{fε(0)}−1/2s log(pn)n−1/2 (49)

for all n ≥ C5 s log(pn), where c4 > 0 is an absolute constant and C4, C5 > 0 are constants
depending only on A0.

Observe that E(X̃i) = E[Xi{2P(εi ≤ 0|Xi)− 1}] = 0 and E(X̃iX̃
T
i ) = E(XiX

T
i ) = Σ.

Hence, it follows from Lemma 12 that there exists a random variable T0
d
= R0(s, p) such

that for any δ ∈ (0, 1],∣∣∣∣√2fε(0) max
S⊆[p]:|S|=s

‖ξS‖2 − T0

∣∣∣∣ ≤ C6

[
δ + {s log(γspn)}1/2n−1/2 + {s log(γspn)}2n−3/2

]
(50)

holds with probability at least 1 − C7

[
δ−3n−1/2{s log(γspn)}2 ∨ δ−4n−1{s log(γspn)}5

]
,

where C6, C7 > 0 are constants depending only on A0.
Finally, combining (48), (49), (50) and (42) proves (20).

21



Fan and Zhou

Acknowledgments

We would like to acknowledge support for this project from the National Science Foundation
Grants DMS-1206464 and DMS-1406266 and the National Institutes of Health Grant R01-
GM072611-10.

References

Dimitris Bertsimas, Angela King, and Rahul Mazumder. Best subset selection via a modern
optimization lens. The Annals of Statistics, 44(2):813–852, 2016.
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Appendix A. Appendix A.

In this appendix we prove the technical lemmas appeared in Section 6.

A.1 Proof of Lemma 9

Define the loss function `(y, z) = yz − b(z) for y, z ∈ R. For each s-subset S ⊆ [p] and
θ ∈ Rs, define ζS(θ) = LSn(θ) − EXLSn(θ) =

∑n
i=1 ζ

S
i (θ), where ζSi (θ) = `(Yi,X

T
iSθ) −

EX`(Yi,XT
iSθ). Note that ∇ζSi (θ)|θ=0 = εiXiS with εi = Yi − b′(0). Thus, we have

V2
0 := VarX{∇ζS(0)} = nφb′′(0) Σ̂SS .

For every u ∈ Rs \ {0} and u ∈ R,

EX exp

{
u
uT∇ζS(0)

‖V0u‖2

}
=

n∏
i=1

EX exp

(
u
uTXiS

‖V0u‖2
εi

)

=
n∏
i=1

EX exp

{
u√
n
× uTXiS

(uTΣ̂SSu)1/2
× εi

(Var εi)1/2

}

≤ exp

{
1

2
a0u

2 × 1

n

n∑
i=1

(uTXiS)2

uTΣ̂SSu

}
= exp(a0u

2/2).

This verifies condition (ED0) with ν2
0 = a0 in Theorem B.3 from the supplement of

Spokoiny and Zhilova (2015). Consequently, taking B2 = H
∗−1/2
S V2

0H
∗−1/2
S = φIs and

g = {Ctr(B2)}1/2 for some C ≥ 2 there, we have λmax(B2) = φ, tr(B2) = φs, tr(B4) = φ2s
and xc = 1

2(3
2C − 1 − log 3)s ≥ 3

4(C − 2)s. This implies that almost surely on the event

{Σ̂SS � 0}, with conditional probability at least 1− 2e−t − 8.4 e−xc ,

‖ξ̂S‖22 ≤ a0φ×

{
s+ (8ts)1/2, if 0 ≤ t ≤ 1

18(2s)1/2,

s+ 6t, if 1
18(2s)1/2 < t ≤ xc.

Finally, letting C →∞ proves (28).

A.2 Proof of Lemma 10

We prove this lemma by applying the conditional version of Theorem 2.3 in Spokoiny (2013).
To this end, we need to verify conditions (ED0), (ED2), (L0), (I) and (L). In line with
the notation used therein, we fix S ⊆ [p] and write

D2(θ) = −∇2EX{LSn(θ)} =
n∑
i=1

b′′(XT
iSθ)XiSX

T
iS , D2

0 = D2(0) = nb′′(0) Σ̂SS .

The validity of (ED0) is guaranteed from the proof of Lemma 9, and (ED2) is automat-
ically satisfied with ω ≡ 0 since ∇2ζS(θ) vanishes for all θ ∈ Rs. Turning to (L0), observe
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that ∥∥D−1
0 D2(θ)D−1

0 − Is
∥∥

=

∥∥∥∥D−1
0

n∑
i=1

{b′′(XT
iSθ)− b′′(0)}XiSX

T
iSD−1

0

∥∥∥∥
=

∥∥∥∥D−1
0

n∑
i=1

b′′′(ηi)X
T
iSθXiSX

T
iSD−1

0

∥∥∥∥, (51)

where ηi lies between 0 and XT
iSθ. For r > 0, define Θ0(r) = {θ ∈ Rs : ‖D0θ‖2 ≤ r}. On

the event E0(τ) for some τ > 0 and for θ ∈ Θ0(r),

|XT
iSθ| = |θTD0D

−1
0 XiS | ≤ ‖D−1

0 XiS‖2 ≤ {nb′′(0)}−1/2τ1/2r. (52)

This together with (51) implies that

∥∥D−1
0 D2(θ)D−1

0 − Is
∥∥ ≤ max|t|≤{nb′′(0)}−1/2τ1/2r |b′′′(t)|

{b′′(0)}3/2
τ1/2r

n1/2
:= δ(τ, r). (53)

Recalling that V2
0 = VarX{ζS(0)} = φD2

0, (I) is satisfied with a = φ1/2.
To verify (Lr), define g(t) = b′(0)t− b(t) so that g′(t) = b′(0)− b′(t) and g′′(t) = −b′′(t).

Then, for any θ ∈ Rs satisfying ‖D0θ‖2 = r > 0, it follows from the second-order Taylor
expansion that

− 2{EXLSn(θ)− EXLSn(0)} = −2
n∑
i=1

{g(XT
iSθ)− g(0)}

= −2
n∑
i=1

{
g′(0)XT

iSθ + 1
2g
′′(ηi)(X

T
iSθ)2

}
=

n∑
i=1

b′′(ηi)(X
T
iSθ)2, (54)

where ηi is a point lying between 0 and XT
iSθ. On the event E0(τ), the right-hand side of

(54) is further bounded from below by

r2{b′′(0)}−1 min
|t|≤{nb′′(0)}−1/2τ1/2r

b′′(t).

When ‖D0θ‖2 = r ≤ {nb′′(0)/τ}1/2, −2{EXLSn(θ)− EXLSn(0)} is bounded from below by
a1r

2 for a1 as in (15). Further, from the convexity of the function θ 7→ −EX{LSn(θ)−LSn(0)},
we see that −EX{LSn(θ) − LSn(0)} ≥ a1r{nb′′(0)/τ}1/2, for all θ satisfying ‖D0θ‖2 = r ≥
{nb′′(0)/τ}1/2. Define the function r 7→ b(r) as

b(r) =

{
a1 if 0 ≤ r ≤ {nb′′(0)/τ}1/2,
a1r
−1{nb′′(0)/τ}1/2 if r > {nb′′(0)/τ}1/2.

(55)

By definition, rb(r) is non-decreasing in r ≥ 0 and for θ ∈ Rs satisfying ‖D0θ‖2 = r,

−2EX{LSn(θ)− LSn(0)}
‖D0θ‖22

≥ b(r). (56)
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With the above preparations, we apply Theorem 2.3 in Spokoiny (2013) with slight
modification on the constant. In view of (29) and (55), set

r0 = 2(φa0)1/2a−1
1

[
s+ 6

(
s log ep

s + log n
)]1/2

, (57)

such that Condition 2.3 there is satisfied on E0(τ) whenever n ≥ {b′′(0)}−1r2
0τ . Hence, it

follows from Theorem 2.3 in Spokoiny (2013) and the union bound that, conditional on the
event E0(τ),

PX
(

max
S⊆[p]:|S|=s

∣∣[2{LSn(θ̂S)− LSn(0)}]1/2 − ‖ξ̂S‖2
∣∣ ≤ 5δ(τ, r0)r0

)
≤ 5n−1, (58)

where δ(τ, r) and r0 are as in (53) and (57), respectively. This proves (31) by properly
choosing C1 and C2.

A.3 Proof of Lemma 11

To begin with, note that for each s-subset S ⊆ [p], Z1S , . . . ,ZnS are i.i.d. s-dimensional
random vectors with mean zero and covariance matrix φΣSS . By (27) and (37),

‖ξ̂S‖22 − ‖ξS‖22 = ξT
S

(
Σ

1/2
SS Σ̂−1

SSΣ
1/2
SS − Is

)
ξS .

Write XS = (X1S , . . . ,XnS)T ∈ Rn×s, then XSΣ
−1/2
SS is an n × s matrix whose rows are

independent sub-Gaussian random vectors in Rs. Further, observe that XiS = PSXi

and ΣSS = PSΣPT
S , where PS ∈ Rs×p is a projection matrix. Under Condition 3.1,

‖uTΣ
−1/2
SS XiS‖ψ2 = ‖uTΣ

−1/2
SS PSΣ

1/2
SSU‖ψ2 ≤ A0‖Σ1/2

SS PT
SΣ
−1/2
SS u‖2 = A0 for u ∈ Ss−1.

Then, it follows from (32) that for all sufficient large n so that δ ≤ 1
2 , ‖Σ1/2

SS Σ̂−1
SSΣ

1/2
SS −Is‖ ≤

2δ and hence,

|‖ξ̂S‖2 − ‖ξS‖2| =
|‖ξ̂S‖22 − ‖ξS‖22|
‖ξ̂S‖2 + ‖ξS‖2

≤ ‖ξS‖−1
2 × |‖ξ̂S‖

2
2 − ‖ξS‖22| ≤ 2C3(s ∨ t)1/2n−1/2 × ‖ξS‖2. (59)

Next we upper bound the quadratic term ‖ξS‖2. First we show that Σ
−1/2
SS ZiS =

φ1/2 Σ
−1/2
SS ε̃iXi are sub-exponential random vectors, where ε̃i := εi/(Var εi)

1/2. In fact, for

every u ∈ Ss−1, ‖uTΣ
−1/2
SS ZiS‖ψ1 ≤ 2‖ε̃i‖ψ2‖uTΣ

−1/2
SS XiS‖ψ2 ≤ 2A′0A0, where A′0 > 0 is

a constant depending only on a0 in Condition 3.1. Following the proof of Lemma 5.15 in
Vershynin (2012), we derive that for every u ∈ Rs satisfying ‖u‖2 ≤ φ−1/2(4eA′0A0)−1√n,

logE exp(uTξS) =
n∑
i=1

logE exp(n−1/2uTΣ
−1/2
SS ZiS)

≤ 2e2‖u‖22 n−1
n∑
i=1

∥∥(u/‖u‖2)TΣ
−1/2
SS ZiS

∥∥2

ψ1

≤ (4eA′0A0)2φ
‖u‖22

2
.
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Consequently, applying Corollary 1.12 in the supplement of Spokoiny (2012) with g =
√
n,

B = Is and xc = 3
4n −

1
2(1 + log 3)s ≥ 3

4n −
3
2s to the random vector (4eA′0A0)−1φ−1/2ξS

yields that, for every 0 ≤ t ≤ xc,

P
[
‖ξS‖2 ≥ 4eA′0A0{φ∆(s, t)}1/2

]
≤ 2e−t + 8.4 e−xc . (60)

Finally, combining (59) and (60) completes the proof of (38).

A.4 Proof of Lemma 12

First, observe that

max
S⊆[p]:|S|=s

‖ξS‖2 = max
u∈F(s,p)

n−1/2
n∑
i=1

uTZi

(uTΣu)1/2
,

where F(s, p) = {x 7→ uTx : u ∈ Sp−1, ‖u‖0 ≤ s}. Recall that Z1, . . . ,Zn are i.i.d. p-
dimensional centered random vectors with covariance matrix E(ZiZ

T
i ) = φΣ. As in the

proof of Lemma 11, we have for any u ∈ Sp−1,

‖φ−1/2uTZi‖ψ1 ≤ 2‖εi/(Var εi)
1/2‖ψ2 ‖uTΣ1/2Ui‖ψ2 ≤ 2A′0A0(uTΣu)1/2.

Consequently, it follows from Lemma 7.5 in Fan, Shao and Zhou (2015) that there exists a

random variable T0
d
= R0(s, p) = maxu∈F(s,p)

uTG
(uTΣu)1/2

for G ∼ N(0,Σ) such that, for any

δ ∈ (0, 1],

P
{∣∣∣∣ max

S⊆[p]:|S|=s
‖φ−1/2ξS‖2 − T0

∣∣∣∣ ≥ C1A
′
0A0

(
δ +

γ
1/2
s,p,n√
n

+
γ2
s,p,n

n3/2

)}
≤ C2

[
{s log(γspn)}2

δ3
√
n

+
{s log(γspn)}5

δ4n

]
,

where γs,p,n = s log γsep
s + log n and C1, C2 > 0 are absolute constants. This proves (40).

A.5 Proof of Lemma 13

The proof employs techniques from empirical process theory which modify the arguments
used in Wang (2013). To begin with, note that

θ̂S = arg min
θ∈Rs

f(θ) := arg min
θ∈Rs

‖Y − XSθ‖1.

Under the null model, Y = Xβ∗ + ε = XSθ∗ + ε with θ∗ = 0. Then the sub-differential of
f(θ) at θ = 0 can be written as∇f(0) = −XT

S sgn(ε), where sgn(ε) = (sgn(ε1), . . . , sgn(εn))T

with sgn(u) := I(u > 0) − I(u < 0). Define z = (z1, . . . , zn)T = sgn(ε), and note that
z1, . . . , zn are i.i.d. random variables satisfying P(zi = 1) = P(zi = −1) = 1/2.

Since θ̂S minimizes ‖Y − XSθ‖1 over Rs, we have the following basic inequality

‖Y − XS θ̂S‖1 = ‖XS θ̂S − ε‖1 ≤ ‖ε‖1. (61)
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Further, define a random process {Q(θ)} indexed by θ ∈ Rs:

Q(θ) = n−1/2
n∑
i=1

(
|XT

iSθ − εi| − |εi|
)
. (62)

In what follows, we prove that with overwhelmingly high probability , Q(θ) is concentrated
around its expectation QX(θ) := EX{Q(θ)} uniformly over θ ∈ Rs via a straightforward
adaptation of the peeling argument.

For δ1 > 0 and ` = 1, 2, . . ., consider the following sequence of events

G(δ1) =
{
θ ∈ Rs : ‖Σ̂1/2

SS θ‖2 ≥ δ1

}
, G`(δ1) =

{
θ ∈ Rs : α`−1δ1 ≤ ‖Σ̂1/2

SS θ‖2 ≤ α
`δ1

}
,
(63)

where α =
√

2. Here, δ1 can be regarded as a tolerance parameter, and it is easy to see

that G(δ1) = ∪∞`=1G`(δ1). For R > 0, set V(R) = {θ ∈ G(δ1) : ‖Σ̂1/2
SS θ‖2 ≤ R} and let ∆(R)

be the maximum deviation over the elliptic vicinity V(R):

∆(R) = max
θ∈V(R)

|Q(θ)−QX(θ)|. (64)

For every θ ∈ Rs, define the rescaled vector θ̃ = Σ̂
1/2
SS θ such that

∆(R) = max
δ1≤‖θ̃‖2≤R

∣∣∣Q(Σ̂
−1/2
SS θ̃)−QX(Σ̂

−1/2
SS θ̃)

∣∣∣.
For every 0 < ε ≤ R, there exists an ε-net Nε of the Euclidean ball Bs2(R) with cardinality

bounded by
(
1 + 2R

ε

)s
. For θ̃1, θ̃2 ∈ Bs2(R) satisfying ‖θ̃1 − θ̃2‖2 ≤ ε, observe that

∣∣∣Q(Σ̂
−1/2
SS θ̃1)−Q(Σ̂

−1/2
SS θ̃2)

∣∣∣ ≤ n−1/2
n∑
i=1

∣∣∣XT
iSΣ̂

−1/2
SS (θ̃1 − θ̃2)

∣∣∣
≤
∥∥∥XSΣ̂

−1/2
SS (θ̃1 − θ̃2)

∥∥∥
2
≤ εn1/2.

Then, it is easy to see that

∆(R) ≤ max
θ̃∈Nε

∣∣∣Q(Σ̂
−1/2
SS θ̃)−QX(Σ̂

−1/2
SS θ̃)

∣∣∣+ 2εn1/2. (65)

For each θ̃ ∈ Bs2(R) fixed, Q(Σ̂
−1/2
SS θ̃) − QX(Σ̂

−1/2
SS θ̃) is a sum of independent random

variables with zero means and for i = 1, . . . , n, ||XT
iSΣ̂

−1/2
SS θ̃ − εi| − |εi|| ≤ |XT

iSΣ̂
−1/2
SS θ̃|.

Therefore, it follows from Hoeffding’s inequality that for every t > 0,

PX
{∣∣∣Q(Σ̂

−1/2
SS θ̃)−QX(Σ̂

−1/2
SS θ̃)

∣∣∣ ≥ t}
≤ 2 exp

{
− nt2

2
∑n

i=1(XT
iSΣ̂

−1/2
SS θ̃)2

}
= 2 exp

(
− t2

2‖θ̃‖22

)
.
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In other words, for every θ̃ ∈ Bs2(R) and δ > 0,∣∣∣Q(Σ̂
−1/2
SS θ̃)−QX(Σ̂

−1/2
SS θ̃)

∣∣∣ ≤ (2δ)1/2‖θ̃‖2 ≤ (2δ)1/2R

holds with probability at least 1− 2e−δ. This, together with the union bound yields

PX
{

max
θ̃∈Nε

∣∣∣Q(Σ̂
−1/2
SS θ̃)−QX(Σ̂

−1/2
SS θ̃)

∣∣∣ ≥ (2δ)1/2R

}
≤ exp

{
s log

(
1 + 2R

ε

)
− δ
}
. (66)

In particular, by taking ε = Rn−1 in (65) and δ = s log(1 + 2R
ε ) + t ≤ 2s log n+ t in (66) we

conclude that

PX
{

∆(R) ≥ R(2t)1/2 + 2R(s log n)1/2 + 2Rn−1/2
}
≤ 2e−t (67)

holds almost surely on the event E0(τ) for any τ > 0.
In particular, by taking t = cnR2 in (67) for some c > 0 to be specified below (72) and

the union bound, we have

PX
[
∃θ ∈ G(δ1), s.t. |Q(θ)−QX(θ)| ≥ 23/2‖θ̃‖2

{
‖θ̃‖2(cn)1/2 + (s log n)1/2 + n−1/2

}]
≤
∞∑
`=1

PX
[
∃θ ∈ G`(δ1), s.t. |Q(θ)−QX(θ)| ≥ (α`δ1)2(2cn)1/2 + 2α`δ1

{
(s log n)1/2 + n−1/2

}]
≤
∞∑
`=1

PX
[
∆(α`δ1) ≥ (α`δ1)2(2cn)1/2 + 2α`δ1

{
(s log n)1/2 + n−1/2

}]
≤ 2

∞∑
`=1

exp{−cn(α`δ1)2} ≤ 2
∞∑
`=1

exp{−2c` log(α)nδ2
1} ≤

2 exp(−c0nδ
2
1)

1− exp(−c0nδ2
1)
,

where c0 = c log 2. This implies that with probability at least 1− 4 exp(−c0nδ
2
1),

|Q(θ)−QX(θ)| ≤ 23/2√c ‖Σ̂1/2
SS θ‖

2
2 + 23/2‖Σ̂1/2

SS θ‖2
{

(s log n)1/2 + n−1/2
}

(68)

holds for all θ ∈ G(δ1) whenever n ≥ c−1δ−2
1 .

For the (conditional) expectation

QX(θ) = n−1/2
n∑
i=1

EX
(
|XT

iSθ − εi| − |εi|
)

= n−1/2
(
EX‖XSθ − ε‖1 − E‖ε‖1

)
,

applying Lemmas 5 and 6 in Wang (2013) with slight modifications gives

QX(θ) ≥

{
1

4
√
n
‖XSθ‖1 =

√
n

4 ‖n
−1XSθ‖1 if ‖XSθ‖1 ≥ 2n

a2
,

a2
8
√
n
‖XSθ‖22 = a2

√
n

8 ‖Σ̂
1/2
SS θ‖22 if ‖XSθ‖1 < 2n

a2
,

(69)

where a2 is as in Condition 3.4. For the sequence of LAD estimators {θ̂S : S ⊆ [p], |S| = s},
from (61) it can be seen that ‖XS θ̂S‖1 ≤ ‖XS θ̂S − ε‖1 + ‖ε‖1 ≤ 2‖ε‖1, and hence

max
S⊆[p]:|S|=s

‖n−1XS θ̂S‖1 ≤ 2

{
E|ε|+ n−1

n∑
i=1

(|εi| − E|εi|)
}
.
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For every t > 0 and 1 < κ ≤ 2, by Markov’s inequality we have

P
{ n∑
i=1

(|εi| − E|εi|) ≥ t
}
≤ t−κ E

∣∣∣∣ n∑
i=1

(|εi| − E|εi|)
∣∣∣∣κ ≤ 42−κt−κnE|ε|κ,

where we used the inequality |1 + x|κ ≤ 1 + κx + 22−κ|x|κ for 1 < κ ≤ 2 and x ∈ R. The
last two displays together imply that, with probability at least 1− δ2,

max
S⊆[p]:|S|=s

‖n−1XS θ̂S‖1 ≤ 2E|ε|
{

1 + 4(2−κ)/κ(E|ε|)−1(E|ε|κ)1/κδ
−1/κ
2 n−1+1/κ

}
.

By Condition 3.4, we have a2E|ε| < 1. Therefore, as long as the sample size n satisfies

n ≥
{

42−qaκ2 E|ε|κ

(1− a2 E|ε|)κ

}1/(κ−1)

δ
−1/(κ−1)
2 , (70)

the event

E1 :=

{
max

S⊆[p]:|S|=s
‖n−1XS θ̂S‖1 ≤ 2a−1

2

}
(71)

occurs with probability at least 1− δ2.
Now, by (61), we have Q(θ̂S) ≤ 0 and thus −{Q(θ̂S) − QX(θ̂S)} ≥ QX(θ̂S) holds for

every s-subset S ⊆ [p]. Together with (68)–(71) and the union bound, this implies that on
the event E0(τ) ∩ E1 for any τ > 0,

max
S⊆[p]:|S|=s

‖Σ̂1/2
SS θ̂S‖2 ≤ min

[
δ1, 32

√
2 a−1

2

{(
s log n

n

)1/2

+
1

n

}]
(72)

holds with (conditional) probability 1 − 4
(
p
s

)
exp(−c0nδ

2
1) − δ2, provided that the sample

size n satisfies n ≥ 2 · 322(a2δ1)−2 and (70).
Finally, taking

δ1 =
32

a2

√
2

log(2)

(
s log ep

s + log n

n

)1/2

and δ2 =
42−qaκ2 E|ε|κ

(1− a2 E|ε|)κ
1

nκ−1

in (72) proves (44).

A.6 Proof of Lemma 14

We prove this lemma by employing the arguments similar to those used in Spokoiny (2013),
where the likelihood function L(θ) is assumed to be twice differentiable with respect to θ. It
is worth noticing that both Conditions (L) and (ED2) in Spokoiny (2013) are not satisfied
in the current situation. We provide here a self-contained proof in which Lemma 13 also
plays an important role.

Step 1: Local linear approximation of ∇LSn(θ). Let χS1 (θ) be the normalized residual
of the local linear approximation of ∇LSn(θ) given by

χS1 (θ) = D−1
0 {∇L

S
n(θ)−∇LSn(0) + D2

0θ}
= D−1

0 {U(θ) +∇EXLSn(θ)−∇EXLSn(0) + D2
0θ}, (73)
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where U(θ) = ∇ζS(θ)−∇ζS(0) and D2
0 = −∇2EX{LSn(0)} = 2fε(0)

∑n
i=1XiSX

T
iS . Then

it follows from the mean value theorem that

EX{χS1 (θ)} = {Is −D−1
0 D2(θ̃)D−1

0 }D0θ, (74)

where D2(θ) = −∇2EX{LSn(θ)} = 2
∑n

i=1 fε(X
T
iSθ)XiSX

T
iS and θ̃ = λθ for some 0 ≤ λ ≤

1. As before, for every r ≥ 0, define the local elliptic neighborhood of 0 as

Θ0(r) = {θ ∈ Rs : ‖D0θ‖2 ≤ r}.

On the event E0(τ) for some τ > 0,

|XT
iSθ| ≤ ‖D0θ‖2‖D−1

0 XiS‖2 ≤ {2nfε(0)}−1/2τ1/2r (75)

for all θ ∈ Θ0(r). Thus it follows from the Taylor expansion that for r ≤ {2nfε(0)/τ}1/2,∥∥Is −D−1
0 D2(θ̃)D−1

0

∥∥
= 2

∥∥∥∥D−1
0

n∑
i=1

{fε(XT
iS θ̃)− fε(0)}XiSX

T
iSD−1

0

∥∥∥∥ ≤ A3√
2f

3/2
ε (0)

τ1/2r

n1/2
:= δ(τ, r). (76)

Together, (74) and (76) imply that under the same constraint for (76),

‖EX{χS1 (θ)}‖2 ≤ δ(τ, r)r. (77)

Turning to the stochastic component D−1
0 U(θ) = χS1 (θ)−EX{χS1 (θ)}, we aim to bound

maxθ∈Θ0(r) ‖D−1
0 U(θ)‖2, which can be written as

max
θ∈Θ0(r),‖u‖2≤1

uTD−1
0 U(θ) = r−1 max

u,θ∈Θ0(r)
vTU(θ). (78)

Note that {vTU(θ) : v,θ ∈ Rs} is a bivariate process indexed by (vT,θT)T ∈ R2s. Define

θ̄ = (vT,θT)T ∈ R2s, D̄0 =

(
D0 0
0 D0

)
∈ R(2s)×(2s),

Ū(θ̄) = vTU(θ), Θ̄0(r) = {θ̄ ∈ R2s : ‖D̄0θ̄‖2 ≤ r}.

In this notation, from (78) and the identity D̄0θ̄ = D0v + D0θ, it is easy to see that

max
θ∈Θ0(r)

‖D−1
0 U(θ)‖2 ≤ r−1 max

θ̄∈Θ̄0(2r)
Ū(θ̄). (79)

Recall that∇ζS(θ)−∇ζS(0) = −2
∑n

i=1{I(Yi ≤XT
iSθ)−I(Yi ≤ 0)+1/2−Fε(XT

iSθ)}XiS ,
where for i = 1, . . . , n, I(Yi ≤XT

iSθ)− I(Yi ≤ 0) + 1/2− Fε(XT
iSθ) is equal to{

I(0 < Yi ≤XT
iSθ)− PX(0 < Yi ≤XT

iSθ) if XT
iSθ ≥ 0,

−I(XT
iSθ < Yi ≤ 0) + PX(XT

iSθ < Yi ≤ 0) if XT
iSθ < 0.

For θ ∈ Rs, define random variables εi,θ = I(0 < Yi ≤XT
iSθ)− I(XT

iSθ < Yi ≤ 0) satisfying
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(i) conditional on XT
iSθ ≥ 0, εi,θ = 1 with probability Pi,θ − 1/2 and εi,θ = 0 with

probability 3/2− Pi,θ;

(ii) conditional on XT
iSθ < 0, εi,θ = −1 with probability 1/2 − Pi,θ and εi,θ = 0 with

probability 1/2 + Pi,θ,

where Pi,θ = Fε(X
T
iSθ). In this notation, ∇ζS(θ) −∇ζS(0) = −2

∑n
i=1(Id − EX)εi,θXiS .

For every λ ∈ R and u ∈ Rs, we have

EX exp[λuT{∇ζS(θ)−∇ζS(0)}]

=
n∏
i=1

[
EX{e−2λuTXiS(I−EX)εi,θ}I(XT

iSθ ≥ 0) + EX{e−2λuTXiS(I−EX)εi,θ}I(XT
iSθ < 0)

]
=

n∏
i=1

[{
e−2λuTXiS(3/2−Pi,θ)(Pi,θ − 1/2) + e2λuTXiS(Pi,θ−1/2)(3/2− Pi,θ)

}
I(XT

iSθ ≥ 0)

+
{
e2λuTXiS(1/2+Pi,θ)(1/2− Pi,θ) + e2λuTXiS(Pi,θ−1/2)(1/2 + Pi,θ)

}
I(XT

iSθ < 0)
]
.

Further, using the inequalities |eu − 1 − u| ≤ 1
2u

2eu∨0 and 1 + u ≤ eu which hold for all
u ∈ R, the last term above can be bounded by

n∏
i=1

[{
1 + 2λ2(uTXiS)2(Pi,θ − 1/2)(3/2− Pi,θ)e2λ|uTXiS |

}
I(XT

iSθ ≥ 0)

+
{

1 + 2λ2(uTXiS)2(1/2− Pi,θ)(1/2 + Pi,θ)e2λ|uTXiS |
}
I(XT

iSθ < 0)
]

≤
n∏
i=1

{
1 + 2λ2(uTXiS)2|Pi,θ − 1/2|e2λ|uTXiS |

}
≤

n∏
i=1

exp
{

2λ2(uTXiS)2|Pi,θ − 1/2|e2λ|uTXiS |
}
.

Consequently, for every θ̄ = (vT,θT)T ∈ Θ̄0(2r),

logEX exp

{
λ
Ū(θ̄)− Ū(0)

‖D̄0θ̄‖2

}
= logEX exp

{
λ
vT{ζS(θ)− ζS(0)}

‖D̄0θ̄‖2

}
≤ 2λ2

‖D0v‖22 + ‖D0θ‖22

n∑
i=1

(vTXiS)2|Pi,θ − 1/2| exp

(
2λ|vTXiS |
‖D̄0θ̄‖2

)
. (80)

On the event E0(τ) for some τ > 0, we have |Pi,θ − 1/2| ≤ 2A2{2nfε(0)}−1/2τ1/2r and
|vTXiS | ≤ ‖D0v‖2‖D−1

0 XiS‖2 ≤ ‖D0v‖2{2nfε(0)}−1/2τ1/2. Together with (80), this yields
that for all |λ| ≤ {2nfε(0)/τ}1/2,

logEX exp

{
λ
Ū(θ̄)− Ū(0)

‖D̄0θ̄‖2

}
≤ λ2

2

4e2A2 r

fε(0)

√
τ

2nfε(0)
. (81)
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In view of (81), define

w0(τ) = 2e

√
A2 r0

fε(0)

{
τ

2nfε(0)

}1/4

(82)

for some r0 > 0 to be specified (see (88) below), such that for any θ̄ = (vT,θT)T ∈ Θ̄0(2r)
with 0 ≤ r ≤ r0,

EX exp

{
λ

w0(τ)

Ū(θ̄)− Ū(0)

‖D̄0θ̄‖2

}
≤ exp(λ2/2) (83)

holds almost surely on E0(τ) for all

|λ| ≤ 2e

√
A2 r0

fε(0)

{
2nfε(0)

τ

}1/4

:= g0(τ). (84)

By (83), it follows from Corollary 2.2 in the supplement of Spokoiny (2012) and (79) that,
for any τ > 0, 0 ≤ r ≤ r0 and 0 < t ≤ 1

2g
2
0(τ)− 2s,

PX
{

max
θ∈Θ0(r)

‖D−1
0 U(θ)‖2 ≥ 6w0(τ)(2t+ 4s)1/2

}
≤ e−t (85)

holds almost surely on E0(τ), where g0 is given at (84).
Combining (74) and (85) we obtain that for any τ > 0, 0 ≤ r ≤ r0 ≤ {2nfε(0)/τ}1/2

and 0 < t ≤ 1
2g

2
0(τ)− 2s,

PX
{

max
θ∈Θ0(r)

‖χS1 (θ)‖2 ≥ δ(τ, r)r + 6w0(τ)(2t+ 4s)1/2

}
≤ e−t (86)

almost surely on E0(τ). For a given triplet (τ, r, t), define the event

ΩS
0 (τ, r, t) =

{
max
θ∈Θ0(r)

‖χS1 (θ)‖2 ≤ δ(τ, r)r + 6w0(τ)(2t+ 4s)1/2

}
. (87)

Step 2: Fisher approximation. By Lemma 13,

max
S⊆[p]:|S|=s

‖D0θ̂S‖2

= {2nfε(0)}1/2 max
S⊆[p]:|S|=s

‖Σ̂1/2
SS θ̂S‖2 ≤ C1 a

−1
2 {2fε(0)s log(pn)}1/2 := r0 (88)

holds with probability at least 1 − c1n
−1 − c2n

1−κ. Moreover, since θ̂S maximizes LSn(θ)
over θ ∈ Rs for each s-subset S ⊆ [p], we have ∇LSn(θ̂S) = 0 and χS1 (θ̂) = D0θ̂S− ξ̂S . This,

together with (87) implies that on the event {θ̂S ∈ Θ0(r0)} ∩ ΩS
0 (τ, r0, t),

‖D0θ̂S − ξ̂S‖2 ≤ δ(τ, r0)r0 + 6w0(τ)(2t+ 4s)1/2 (89)

whenever n ≥ {2fε(0)}−1τr2
0.

33



Fan and Zhou

Step 3: Wilks approximation. For θ1,θ2 ∈ Θ0(r), define

χS2 (θ1,θ2) = LSn(θ)− LSn(θ2)− (θ1 − θ2)T∇LSn(θ2) +
1

2
‖D0(θ1 − θ2)‖22. (90)

Noting that ∇θ1χS2 (θ1,θ2) = ∇LSn(θ1)−∇LSn(θ2) + D2
0(θ1 − θ2) = D0{χS1 (θ1)− χS1 (θ2)},

we have

|χS2 (θ1,θ2)| = |χS2 (θ1,θ2)− χS2 (θ2,θ2)| ≤ 2‖D0(θ1 − θ2)‖2 max
u∈Θ0(r)

‖χS1 (u)‖2, (91)

where θ̃ = λθ for some 0 ≤ λ ≤ 1. Let r0 > 0 be as in (88). Then, it follows from (91) that
on ΩS

0 (τ, r0, t) with n ≥ {2fε(0)}−1τr2
0,

max
θ1,θ2∈Θ0(r0)

|χS2 (θ1,θ2)|
‖D0(θ1 − θ2)‖2

≤ 2δ(τ, r0)r0 + 12w0(τ)(2t+ 4s)1/2.

In view of (90), LSn(θ̂S) − LSn(0) − 1
2‖D0θ̂S‖22 = −χS2 (0, θ̂S). Therefore, on the event

{θ̂S ∈ Θ0(r0)} ∩ ΩS
0 (τ, r0, t) we have∣∣∣[2{LSn(θ̂S)− LSn(0)}]1/2 − ‖D0θ̂S‖2

∣∣∣
≤ |2{L

S
n(θ̂S)− LSn(0)} − ‖D0θ̂S‖22|

‖D0θ̂S‖2
≤ 2|χS2 (0, θ̂S)|
‖D0θ̂S‖2

≤ 4
{
δ(τ, r0)r0 + 6w0(τ)(2t+ 4s)1/2

}
,

provided that n ≥ {2fε(0)}−1τr2
0. Together with (89), this implies that conditional on the

event ∩S⊆[p]:|S|=s{θ̂S ∈ Θ0(r0)} ∩ ΩS
0 (τ, r0, t),

max
S⊆[p]:|S|=s

∣∣∣[2{LSn(θ̂S)− LSn(0)}]1/2 − ‖ξ̂S‖2
∣∣∣ ≤ 5

{
δ(τ, r0)r0 + 6w0(τ)(2t+ 4s)1/2

}
(92)

whenever n ≥ {2fε(0)}−1r2
0τ , where δ(τ, r), r0 and w0(τ) are as in (76), (88) and (82).

Finally, taking τ = τ0 � λ−1
min(s)s log(pn) as in (36) and setting t = s log ep

s + log n in
the concentration bound (86) prove (48) using Boole’s inequality.
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