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Abstract

Rank aggregation based on pairwise comparisons over a set of items has a wide range of
applications. Although considerable research has been devoted to the development of rank
aggregation algorithms, one basic question is how to efficiently collect a large amount of
high-quality pairwise comparisons for the ranking purpose. Because of the advent of many
crowdsourcing services, a crowd of workers are often hired to conduct pairwise comparisons
with a small monetary reward for each pair they compare. Since different workers have
different levels of reliability and different pairs have different levels of ambiguity, it is
desirable to wisely allocate the limited budget for comparisons among the pairs of items and
workers so that the global ranking can be accurately inferred from the comparison results.
To this end, we model the active sampling problem in crowdsourced ranking as a Bayesian
Markov decision process, which dynamically selects item pairs and workers to improve the
ranking accuracy under a budget constraint. We further develop a computationally efficient
sampling policy based on knowledge gradient as well as a moment matching technique for
posterior approximation. Experimental evaluations on both synthetic and real data show
that the proposed policy achieves high ranking accuracy with a lower labeling cost.
Keywords: crowdsourced ranking, Bayesian, Markov decision process, dynamic program-
ming, knowledge gradient, moment matching

1. Introduction

Inferring the ranking over a set of items, such as documents, images, movies, or URL links,
is an important learning problem with many applications in areas like web search, recom-
mendation systems, online games, etc. An interesting problem related to rank inference is
estimating a score for each item based on a certain criterion that the items can be ranked,
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such as the score of relevance or the score of quality. Typically, both the ranking and
the scores of items can be inferred from a collection of high-quality labels on the items.
There are mainly two different types of labels. The label of the first type is associated with
each individual item in order to characterize the property of the item itself, for example,
a binary or an ordinal score (e.g., 5-point grade). The label of the second type is instead
associated with a subset of items that reveal their relative properties, for example, a partial
ranking that covers only this subset. Labels of both types can be obtained by soliciting
the knowledge of human workers, depending on whether the worker is employed to evaluate
a single item or to compare a subset of items according to a given criterion. In practice,
a binary score usually cannot fully distinguish all items and ordinal scores from different
workers are often inconsistent due to the difference in their understandings of the grades
in the ordinal scoring scheme. Therefore, the second type of labels has been more widely
adopted, which can effectively reduce the impact of misunderstanding among workers and
is more appropriate for ranking fine-grained items with a large number of graduations (e.g.,
in our real data experiment on accessing reading difficulty of an article into one of twelve
American grade levels). Moreover, empirical evidences show that the ranking accuracy of
a human worker typically decreases when he or she has to compare many items at a time.
For this reason, in this paper, we only consider the relative comparisons over pairs of items
and the label from a human worker indicates which item is preferred to the other.

The traditional approach of conducting pairwise comparisons by a small group of experts
is usually time consuming and expensive. It fails to meet the growing need of labeled data
for ranking tasks. Because of the advent of online crowdsourcing services (Howe, 2006) such
as Amazon Mechanical Turk, a more efficient and more economic approach has emerged:
a large amount of unlabeled pairs of items are posted to a crowdsourcing platform, where
a crowd of workers are hired to perform pairwise comparisons and provide labels of the
assigned pairs. Given the labels from crowd workers, we can infer a global ranking over all
items. We refer to the process of collecting pairwise labels and ranking items as crowdsourced
ranking.

Despite its availability and scalability, challenges remain in crowdsourced ranking. A
certain amount of monetary reward is paid to a worker for each pair of items he or she
compares while there is usually only a fixed amount of budget available, limiting the to-
tal number of pairwise labels we can collect. Hence, there is a need for a budget-efficient
decision process for allocating the budget over item pairs and workers. In particular, on
crowdsourcing platforms, there are unreliable workers who submit their answers quickly but
carelessly in order to obtain more monetary reward with less effort. Hence, the comparison
results provided by crowd workers often contain non-negligible noise. As a remedy, multiple
workers are hired to compare the same pair of items independently in the hope that the
correct ranking can be recovered, and that the unreliable workers can be identified by com-
paring their answers with the rest of workers. However, each pairwise comparison will incur
a pre-specified monetary cost. Without a careful control, such a repetitive labeling strategy
often results in too many labels on the same pair by different workers, leading to a high
cost. Furthermore, because of the diversity of their backgrounds and expertise, workers do
not always agree with each other in the results of pairwise comparisons, especially when
the two items in comparison are competitive to each other. We refer to such a competitive
pair as an ambiguous pair since the ordering of them is more difficult to be determined.
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Presumably, a greater budget should be spent on ambiguous pairs, but identifying ambigu-
ous pairs under the budget constraint itself is a challenging problem, which requires some
effective learning scheme. Given the trade-off between the labeling cost and the quality of
ranking results, there are two fundamental challenges in crowdsourced ranking;:

1. Given the inconsistent pairwise labels from crowd workers with different reliability,
how to aggregate these labels into a global ranking over items.

2. With both unreliable workers and ambiguous pairs initially unidentified, how to in-
corporate a learning scheme with an efficient sampling procedure (over both pairs
of items and workers) under the budget constraint to achieve the highest ranking
accuracy.

To address these challenges, we need to first model the reliability of workers and the
ambiguity of item pairs and analyze how they influence the pairwise label. To this end, we
adopt a combination of the Bradley-Terry-Luce ranking model (Bradley and Terry, 1952;
Luce, 1959) for modeling the comparison results and the Dawid-Skene model (Dawid and
Skene, 1979) for workers’ reliability. The reason why we adopt the Bradley-Terry-Luce
model is that learning such a model will not only provide a ranking over items but also
give a score to each item, which can be useful in many applications (e.g., providing player’s
rating in chess games). We measure the quality of the ranking inferred from the collected
labels using the Kendall’s tau rank correlation coefficient (Kendall’s tau for short) with
respect to the underlying true ranking.

Under such a model and a quality measure, we propose a dynamic sampling and ranking
procedure which addresses the aforementioned two challenges in a unified framework. In
particular, we first introduce the priors for items’ latent true scores and workers’ reliability
and formulate the crowdsourced ranking problem into a finite-horizon Bayesian Markov
decision problem (MDP), whose state variables correspond to the posterior distributions
given the observed labels. Here, the number of stages is determined by the total budget, i.e.,
the total number of pairs that can be requested for labeling. As the budget level increases,
the size of the state space grows at an exponential rate, which makes the exact solving
of such a MDP problem intractable. To address the computational difficulty, we propose
an efficient sampling strategy called approzimated knowledge gradient (AKG) policy based
on the popular knowledge gradient policy (Powell, 2010; Frazier, 2009; Frazier et al., 2008;
Ryzhov et al., 2012). The proposed policy dynamically chooses the next pair of items and
the worker that together lead to a maximum expected improvement in Kendall’s tau rank
correlation coefficient. Finally, to determine the global ranking that maximizes the expected
Kendall’s tau, one needs to solve a maximum linear ordering problem (Grotschel et al.,
1984), which is a NP-hard problem (and in fact, APX-hard (approximable-hard) (Mishra
and Sikdar, 2004)). To address this challenge, we propose a moment matching technique to
approximate the posteriors in parametric forms so that the linear ordering problem under
the approximated posterior can be easily solved by a simple sorting procedure.

The rest of the paper is organized as follows. In Section 2, we review the related
literature. In Section 3, we introduce the model and the proposed policy under the simplified
case where all workers are homogeneous and perfectly reliable. In Section 4, we extend our
policy to the case where the crowd workers have heterogeneous reliability. In Section 5, we
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present numerical results on both simulated and real datasets, followed by conclusions in
Section 6. The detailed proofs and derivations are provided in the appendix.

2. Related Work

The dataset of partial rankings over items can be generated from a variety of sources includ-
ing crowdsourcing services (Shah et al., 2016b), online competition games (e.g., Microsoft’s
TrueSkill system (Herbrich et al., 2007)), and online users’ activities such as browsing,
clicking and transactions that reveal certain preferences. Learning a global ranking of a
large set of items by aggregating a collection of partial rankings/preferences has been an
active research area for the past ten years (see, e.g., Gleich and Lim (2011); Negahban
et al. (2012); Yi et al. (2013); Shah et al. (2016a,b); Rajkumar and Agarwal (2014); Lu
and Boutilier (2014); Volkovs and Zemel (2014)). However, most work on rank aggregation
considers a static estimation problem — inferring a global ranking based on a pre-existing
dataset. The problem we consider here is related to but significantly different from these
works because we model crowdsourced ranking as a dynamic procedure where the inference
of ranking and collection of data proceed concurrently and influence each other.

The crowdsourced ranking problem we considered has a close connection with the dy-
namic sorting problem using noisy pairwise comparisons, which has been studied by several
authors (Ailon, 2012; Braverman and Mossel, 2008; Radinsky and Ailon, 2011; Wauthier
et al., 2013; Jamieson and Nowak, 2011). However, these papers assume the noise of pair-
wise comparison results has the same distribution for all pairs, which is not reasonable in
crowdsourced ranking because workers usually rank significantly different items more cor-
rectly than they do for similar items. The approaches proposed by Pfeiffer et al. (2012)
and Qian et al. (2015) assume that the labeling noise depends on the latent qualities or
features of the items. However, their approaches do not model the reliability of workers in
the decision process. In contrast, our approach allows a label’s noise to depend not only
on the items themselves, but also on the reliability of the worker who provides the label.
The ranking model adopted in this paper, which combines the Bradley-Terry-Luce model
and the Dawid-Skene model, was originally proposed in (Chen et al., 2013), which also con-
siders a similar problem of Bayesian statistical decision-making for crowdsourced ranking.
However, the sampling strategy developed in Chen et al. (2013), which prioritizes the pair
of items and the worker with the highest information gain, is a simple heuristic without a
well-defined objective function to be optimized. In contrast, our work chooses the expected
Kendall’s tau as the objective function to maximize, which guides the development of the
knowledge gradient policy.

In addition to crowdsourced ranking, the problem of crowdsourced categorical label-
ing/classification has been extensively studied in the past five years. Most work aims at
solving a static problem, which infers the categorical labels and workers’ reliability based
on a static problem (see, e.g., Dawid and Skene (1979); Raykar et al. (2010); Welinder
et al. (2010); Whitehill et al. (2009); Liu et al. (2012); Gao and Zhou (2013); Zhang et al.
(2014)). Recently, some research has been devoted to dynamic sampling in crowdsourced
classification (Karger et al., 2013b,a; Bachrach et al., 2012; Ertekin et al., 2012; Kamar
et al., 2012; Ho et al., 2013; Chen et al., 2015). In particular, both Kamar et al. (2012) and
Chen et al. (2015) utilized the Markov decision process to model the budget allocation (i.e.,
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sampling over items and workers) process. Since we also adopt a Bayesian Markov decision
process with a variant of knowledge gradient policy, the spirit of our method is similar to
that in Chen et al. (2015). However, since the statistical model for a ranking problem is
fundamentally different from that of a classification problem, the Markov decision process
in this paper is significantly different from the one introduced by Chen et al. (2015) in many
aspects such as the objective function, stage-wise rewards, transition probabilities, optimal
policy, etc. For example, the policy by Chen et al. (2015) is designed to maximize the ex-
pected classification accuracy while our policy aims at maximizing the expected Kendall’s
tau with respective to the true ranking. In fact, even for a static problem with a given set of
collected data, inferring the ranking with the maximum expected Kendall’s tau is equivalent
to a NP-hard maximum linear ordering problem while classifying items with a maximum
expected accuracy can be done in closed-form by Bayesian decision rule. In this paper, we
avoid this computational challenge by exploiting the structure of the expected Kendall’s
tau and approximating the posteriors using moment matching. We also note that, although
one can view the problem of ranking K items as a problem of classifying K (K —1)/2 pairs
(each pair is treated as an item in Chen et al. (2015)), such an approach increases the size
of the problem and ignores the dependency between pairwise labels.

In addition, it is worth to note that the problem we consider here is different from the
typical tasks in machine-learned ranking or learning to rank (Liu, 2009; Acharyya, 2013)
where some feature information is available for each item and training data is used to
calibrate some statistical models for ranking new items. In contrast to these problems,
the feature information is not necessary in our crowdsourced ranking problem. Moreover,
besides being applied to ranking items directly, our methods can be utilized to collect
training labels for learning to rank problems. According to the type of training data utilized,
statistical ranking methods can be classified into three categories (Liu, 2009; Acharyya,
2013): pointwise method, pairwise method and listwise method. The pointwise methods (Li
et al., 2008; Cooper et al., 1992; Crammer and Singer, 2001) learn a ranking model based
on the data of scores or ratings of items. The pairwise methods (Freund et al., 2003; Burges
et al., 2005; Zheng et al., 2008; Cao et al., 2006) and the listwise methods (Xu and Li,
2007; Cao et al., 2007; Taylor et al., 2008; Kuo et al., 2009) learn a ranking model using
pairwise comparison results or partial rankings over a subset of items. For the pairwise
or listwise methods, the crowdsourced ranking technique we proposed can be used as an
upstream procedure that provides high-quality pairwise/listwise comparison data which
helps increase the accuracy of the models in the aforementioned papers.

3. Crowdsourced Ranking by Homogeneous Workers

In this section, we first consider a simplified setting where workers are homogeneous (we will
clarify the meaning of “homogeneous workers” shortly). In Section 4, we further extend the
developed method for homogeneous workers to heterogeneous workers with different levels
of reliability.

3.1 Model Setup

We assume that there are K items (denoted by {1, ..., K}) to be ranked and each item ¢ has
an unknown latent score §; > 0 for i = 1,2,..., K. Let @ = (01,04,...,0k)T, where each
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latent score 6; models the intensity of preference to item i under some criterion. A rank-
ing over K items {1,2,..., K} is a permutation/one-to-one mapping = : {1,2,..., K} —
{1,2,..., K} and (%) is the rank of item i under m. We follow the convention that 6; > 6,
means item ¢ is preferred to item j and thus item ¢ should have a higher rank than item
j. Therefore, the underlying true ranking 7 over K items is determined by the ranking of
their latent scores, i.e.,

(i) > n*(j) if and only if 6; > 6;. (1)

We note that the latent scores naturally provide a characterization of ambiguity for a pair
of items: when the values of 6; and 0; are closer, the pair of item ¢ and j is more ambiguous
in the sense that the true ordering of them is less obvious.

The way we explore the ranking of ;’s is through the collection of workers’ preferences on
different pairs of items. Specifically, we will present only two items at a time to a worker,
who will be asked to compare these two items according to the given ranking criterion.
Each worker will not be asked to compare the same pair more than once. The results of
comparisons will be collected over time and become our historical data, based on which,
our task is to infer the true ranking 7*.

In this section, we consider a basic setup where the crowd workers are assumed to be
homogeneous, meaning that the probabilistic outcomes of their comparisons are only affected
by the ambiguities of pairs. More specifically, suppose a worker is randomly selected from
the crowd to compare a pair of items 7 and j with ¢ < j and the comparison result is denoted
by a random variable Yj;:

1 if item ¢ is preferred to item j by the randomly selected worker

Yij:{—l if item j is preferred to item i by the randomly selected worker. @)

j is preferred to item i by the randomly selected worker

The setting of homogeneous workers means the probability distribution of Y;; takes the
following form

9.
Pr(Y;; =1) = Py and Pr(Y;; =-1)= 0439‘
7 7 ? J

fori,j=1,2,..., K. (3)

The probabilistic model we used in (3) is the well-known Bradley-Terry-Luce (BTL)
model (Bradley and Terry, 1952; Luce, 1959). We choose this model for the distribution of
Y;; because it admits a simple structure and well fits our framework of dynamic sampling.
Furthermore, our method developed for the BTL model can be easily extended to the case
of heterogeneous workers which will be studied in Section 4.

It is worthwhile to mention that other comparison models can potentially be imple-
mented here. Considering a simplified version of the Thurstone model (Thurstone, 1927) in
which each object i has a score following N (6;,1), then we have

Pr(Y;; =1)=® (Qi\;;j> and Pr(Y;=-1)= <9j\éei) .

The problem can still be formulated using a Bayesian decision process framework. However,
there are several reasons why the BTL model is favored in this paper. First of all, moment
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matching under the Thurstone model does not have closed-form solutions and hence we must
rely on numerical scheme to compute the first and second moments of the posterior. Second,
using moment matching approach, because the posterior is an n-dimensional multivariate
Gaussian distribution, we need to update n(n + 1)/2 parameters (the number of mean
parameters plus the number of off-diagonal elements of the covariance matrix) during each
iteration of the algorithm whereas with Dirichlet posterior there are only n parameters. Last
but not least, with Thurstone model the ranking is no longer a simple sorting of parameters,
which is a feature of the BTL model as shown in Theorem 2.

Since each worker can compare the same pair at most once, we assume the size of
the crowd workers is large enough so that the distribution of Yj; stays the same after
sampling workers without replacement. Note that we can assume Zfi 1 0; = 1 without loss
of generality since the distribution of Y;; in (3) remains unchanged if we multiply each 6;
by the same positive constant. The probability eiﬁ-iej in (3) can also be interpreted as the
percentage of workers in the crowd who prefer item 7 to item j.

Since the probabilistic model (3) does not incorporate or reveal the quality of each
worker in the comparison result, in the subsequent study of this section, we only need to
focus on how to dynamically select pairs of items to compare. The worker will be selected
randomly from the crowd. A dynamic choice over workers will be incorporated into our
method in Section 4 where the performance of workers is modeled heterogeneously.

3.2 Bayesian Decision Process

In a typical crowdsourcing marketplace, a monetary cost must be paid to a worker every
time this worker completes a task such as comparing a pair of items. We assume the cost
for each comparison is one unit and the total budget available is T units so that at most
T pairs (repetition allowed) can be compared in total. Since comparing different pairs will
generate different historical data and reveal different information about the true ranking,
it is critical to dynamically determine the right sequence of pairs to compare in order to
maximize the final ranking accuracy, especially when the budget T is small.

In the traditional offline setting, one needs to determine 7" pairs at a time beforehand and
request the comparisons on those pairs in a batch. The potential problem of such a static
approach is that the budget T is not spent in an efficient way to discover the true ranking.
In fact, the distribution in (3) implies that, when two items have similar latent scores,
workers will provide highly inconsistent preferences and it is hard to reach an agreement
on such a pair. In this case, the comparison results will be very noisy and one needs to
spend more budget on this pair in order to rank them correctly. In contrast, when two
items have significantly different latent scores, workers will provide consistent answers so
that the additional information we can obtain is little from repeatedly comparing the same
two items. In this case, one might want to reduce the budget on such a pair. Unfortunately,
without any prior knowledge of the latent scores, it is impossible to decide how much budget
should be spent on each pair before observing some comparison results.

In order to efficiently allocate the limited total budget over all pairs, we consider a
dynamic crowdsourced ranking policy (Algorithm 1) where only one pair of items is selected
and presented to a worker at each time based on historical comparison results. This online
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method allows the budget to be adaptively shifted towards the ambiguous pairs so that the
final ranking accuracy can be improved.

In particular, given the total budget 7', the dynamic decision process consists of T’
stages and, in stage t = 0,1,...,7 — 1, a pair of items (i, j;) with i; < j; is presented to a
randomly selected worker and we receive the comparison result Y;,;, defined in (2) and (3).
The historical comparison results up to stage ¢ can be summarized by a K x K matrix M*
with its entry! ij equal to the number of times item i is preferred to item j up to stage
t. For each stage t where the pair (i, j;) is compared, we define A! to be a sparse K x K

matrix with only one non-zero element: A}, =1if Y;;, = 1 and AL, = 1if ¥j,5, = —1.
By its definition, M? can be updated iteratively as follows
M°=0, MFt=M'4A' fort=0,1,....,T—1, (4)

where 0 denotes the K x K all-zero matrix.

We denote an adaptive dynamic budget allocation/sampling policy by A = {(i¢, j¢) }t=0,1,... 71
where (i, ji) = (ig(M?), j;(M?)) depends on the previous comparison results through M?.
Our goal is to find the best A so that the inferred ranking based on all the historical
comparisons (represented by M7T) achieves the highest accuracy.

To measure the accuracy of an inferred ranking w, we adopt the popular evaluation
criterion — normalized Kendall’s tau rank correlation coefficient (Kendall, 1938) between
m and 7* (Kendall’s tau for short):

{(i,4) :i <j, (n(i) —7(j)) (7" (1) — 7*(j)) > O} (5)
K(K —1)/2

T(m,7*) =

2
KK -1 D Lrom)y o0,
i#j

where 1, denotes the indicator function. Here, the numerator counts the number of pairs
that m and 7* agree with each other and the denominator is the total number of pairs over
K items. Hence, 7(m,7*) € [0,1] and represents the percentage of agreements between 7
and 7*. The ranking accuracy of 7 is higher when 7(m, 7*) is closer to one and © = 7* if
and only if 7(m,7*) = 1.

However, we cannot infer a ranking based on the collected data by directly maximizing
7(m, ) because 7* and @ are unknown. To address this challenge, we adopt a Bayesian
framework by proposing a prior distribution on @ and infer a ranking 7 that maximizes the
posterior expectation of 7(m, 7). Recall that the vector of latent scores 0 is assumed to lie
in the simplex

K
Az{eeRkZGi:1,0i>0}. (6)

i=1
It is natural to assume that 0 is drawn from a Dirichlet prior distribution parameterized
by a® = (af,...,a%)T with a? > 0 for all i (note that Dirichlet distribution of order K is

supported on A). Namely,

1 K
6 ~ Dir(a’) = gros [1677
=1

1. In this paper, the notation A;; represents the entry in the i-th row and j-th column of matrix A.

oo
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K :
where B(a) = I}_(LZjIIE(C:)) and I'(z) = [;° A" le™*dA is the gamma function. Given the
=17

comparison data M" up to stage ¢ and the probability distribution of each comparison result
in (3), the density function of the posterior distribution of 8 takes the following form,

t Bi+al—1
1 0; M 001 1 [1E, 67
ponrta®) = o T (0 ) T = L S
woran Uos) I = moma o v e
where B = (B%,5L,...,8%)T with gt = Dk ij, i.e., the number of times item 47 is
preferred to another item up to stage ¢, and
K Hﬂf+a§—1
H(M!, o) = =15 e,
A Loy 6 + ) M55

is the normalization constant.

With this posterior distribution in place and with M* at any stage ¢, we can infer a
ranking 7; to maximize the posterior expected ranking accuracy measured by its Kendall’s
tau with respect to %, namely, to find

7 € argmaxE [r(m,7%)| M, a?], (8)
™
where the expectation is taken with respect to the posterior distribution p(@|M?, &) in (7).

We denote the corresponding maximum posterior expected accuracy by h(M?), i.e.,
h(M") = maxE [r(r,7*)|M", a"], 9)
™
where the dependence of h on the prior a is suppressed for notational simplicity. We
are interested in finding a dynamic budget allocation policy A = {(it, ji) }+=01,..,7—1 that
maximizes h(M7T), i.e., the final expected ranking accuracy when the budget is exhausted.
This problem can be stated as

mijA [R(MT)]a"], (10)

where E4 represents the expectation over the sample paths (i.e., the sampled pairs and
outcomes) generated by the policy A.

The maximization problem in (10) can be formulated as a T-stage Bayesian Markov
decision process (MDP), where the state variable is the posterior distribution in (7) or
simply the matrix M?. The state space at each stage t denoted by S? takes the form of

St= {Mt e ZK K 3 MYy = t}, (11)
i7j

where Z>o denotes the set of non-negative integers. The state variable makes a transition
according to (4) given the observed comparison result Yj,;,, where the sampled pair (i, ji)
is determined by the policy A. The expected transition probabilities take the form of,

0.
0 2 0
E [Pr(Y;; =1)|M',a’] = E |:01' +0j|Mt,a ] (12)
9.
0 0
E [Pr(Vi; = -1)|M',a’] = E {Hijelet,a] (13)
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for 1 <i < j < K and the expectation is taken over the posterior of 8 in (7). To complete
the definition of our Bayesian MDP for crowdsourced ranking, we still need to define the
stage-wise reward. To this end, we rewrite h(M7) in (10) as a telescopic sum,

h’(MT> = Z R(Mt7it7jt7mtjt); R<Mtait7jt7Y%tjt) = h(MH_l) - h(Mt)v (14)
t=0,1,...T—1

and note that R(M?, iz, jt, Yi,5,) = h(M'™1) — h(M?) only depends on M, iy, ji, Vi, j,. Given
(14), the maximization problem (10) is equivalent to

T-1
h(MO) + Z R(Mt,it,jt7yitjt)
t=0
T—1
E [R(Mtvihjta Yitjt)‘Mt7 a0j|
0

a0] (15)

ao] |

From (15), it is clear that R(M* i, ji,Yi,;,) is the stage-wise reward, which can be inter-
preted as the improvement of the expected ranking accuracy after receiving the comparison
result Y, ;, at stage t for t =0,1,...,7 — 1.

Given the Bayesian MDP in place, we can apply the dynamic programming (DP) al-
gorithm (a.k.a. backward induction) (Puterman, 2005) to compute the optimal policy.
Although DP finds the optimal policy, its computation is intractable because:

max EA
A

= h(M°% + mjoEA

t

1. The sophisticated form of the posterior distribution in (7) makes it difficult to evaluate
the posterior expected ranking accuracy E [ (7, 7*)|M*, ] in (9) and the expected
transition probabilities in (12) and (13).

2. The maximization problem (9) for solving the optimal posterior expected ranking
accuracy is essentially a linear ordering problem (Grotschel et al., 1984), which is
NP-hard in general (see Section 3.3 for more details).

3. The size of the state space S! grows exponentially in ¢ according to (11), which is
known as the curse of dimensionality that prevents us from solving (15) exactly with
the standard techniques such value iteration, policy iteration and linear programming.

To address these challenges, we propose an approximated knowledge gradient policy (AKG)
in the next Section.

3.3 Approximated Knowledge Gradient Policy

In this section, we describe an approximated policy to solve (10), which is computationally
efficient and still provides an inferred ranking with high quality. The proposed approxima-
tion policy belongs to the family of knowledge gradient (KG) policies (Gupta and Miescke,
1996; Frazier et al., 2008; Powell, 2010; Ryzhov et al., 2012), which is essentially a single-
step look-ahead policy. In our problem, the KG policy will sample the next pair of items
with the highest expected stage-wise reward in each stage, i.e., choosing the pair (i, j;)
such that

10



CosT-EFFICIENT DYNAMIC CROWDSOURCED RANKING

(it,jt) € argmax;.; E [R(M", iy, ji, Yij, )| MY, ao] (16)
= arg max,; E [Pr(Yij = 1)|Mt,a0] R(Mt,it,jt, 1)
+E [Pr(Vi; = —1)|M", &°] R(M", iy, ji, —1).
Despite its simplicity and wide applicability, the implementation of the KG policy for our
problem in (16) is still computationally intractable since we have to evaluate the expected
stage-wise reward E [R(M", i, j;, Y;,5,)|M*, "], where two main challenges will arise.

First, we have to evaluate the transition probabilities (12) and (13) as well as the ranking
accuracy (9), which can be written as

h(MY) = maxJE[7(7r,7r*)|Mt,a0]

. 23 4B [1{7r (iy>m()y 110,50, M" ]

- K(K 1)
2y Pr (6; > 0;|M*, o)
_ i La(i)>m(j)
- K(K —1) ' (17)

However, due to the complicated structure of the posterior distribution p(8|M?, a) in (7),

the expected transition probabilities (12) and (13) and the posterior probability Pr (6; > 6;|M*, a°

n (17) do not admit a closed form so that one needs to use multidimensional numerical inte-

gral or sampling techniques to compute their values. Note that for each stage ¢, we need to
evaluate (12), (13) and Pr (6; > 6;|M*, &) for all K (K —1)/2 pairs. When these quantities
cannot be easily computed, the overall computational cost will be extremely expensive.

Second, even if the posterior probabilities Pr (Gi > 0;|M t,ao) for all pairs are given,
the maximization problem (17) with respect to a global ranking 7 is still very challenging.
In fact, this problem is equivalent to the maximum linear ordering problem (MAX-LOP)
described as follows. Let G = (V, E,w) be a completed directed graph defined on a set V'
of K nodes, where the edge set E contains the directed arcs between all pairs of nodes and
w(i, j) refers to the weight associated with the arc from node ¢ to node j. A tournament
D is a sub-graph of G such that, for any pair of nodes ¢ and j, D contains either the arc
from i to j or the arc from j to ¢ but not both. The MAX-LOP aims to find an acyclic
tournament D with a maximum total weight on its arcs. If we interpret the arc from
node ¢ and node j as the preference of node i to node j under a ranking criterion, each
acyclic tournament in G corresponds one-to-one to a global ranking of the nodes. Hence,
MAX-LOP is equivalent to finding a ranking 7 such that the total weight Err(i)>7r(j) w(i, 7)
is maximized. In problem (17), the nodes correspond to the K items and the weight
w(i, j) = Pr(6; > 6;|M*, a’). Unfortunately, the MAX-LOP is known to be a NP-hard
problem and in fact, APX (approximable)-complete and thus no PTAS (Polynomial Time
Approximation Scheme) under P # NP (Mishra and Sikdar, 2004).

Given these two challenges, evaluating E [R(M", i, ji, Y;,j, )‘M !, a’] and solving (16)
repeatedly at each stage are computationally intractable. To address this problem, we pro-
pose an approximated knowledge gradient (AKG) policy, which first replaces the stage-wise
reward (14) by an approximated but computable reward and then chooses the pair that

11
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maximizes this approximated reward. Our approximation scheme starts with approximat-
ing the posterior distribution p(@|M?, o) in (7) recursively using a sequence of Dirichlet
distributions Dir(at!) for t = 1,2,...,T based on moment matching. One key benefit of
such an approximation is that, at each stage ¢, the approximated posterior distribution of 8
is still a Dirichlet distribution so that the NP-hard MAX-LOP problem in (17) will admit
a simple solution via a sorting procedure (see Theorem 2).

Although there exist other methods for posterior approximation, these methods cannot
be implemented as efficiently as moment matching in our application. For example, some
methods such as variational inference (e.g., Beal, 2003; Paisley et al., 2012) minimize the
KL-divergence between the exact posterior and the variational posterior, which requires an
iterative optimization algorithm as a subroutine. Other methods like Gibbs sampler are
computationally expensive in our case because the full conditional distribution does not
have a closed form to allow easy sampling. In contrast, the proposed (algorithmic) moment
matching admits a closed-form solution for approximating the posterior, which is compu-
tationally very efficient, and further provides a Dirichlet distribution as the approximated
posterior, which facilitates solving the MAX-LOP. We note that the close-form update is
critical for online crowdsourcing applications to reduce the computation time between two
stages. In practice, since the crowd workers want to maximize their return in a short period
of time, they may quit the current task if we let them wait for too long before we deter-
mine the next pair. Finally, we note that, although providing the theoretical guarantee for
such an iterative approximation is hard in the Bayesian setup, we empirically show that
the resulting AKG policy will generate a final ranking of a high accuracy with the limited
budget.

Now we formally introduce the posterior approximation and AKG policy. Suppose
0 ~ Dir(a) for some parameters a € R¥. We consider a basic case where only one
comparison result Yj; for a pair (é,j) with ¢ < j has been observed. In this case, we
approximate the posterior p(6|Y;;, &) by another Dirichlet distribution Dir(a) such that

E [6|60 ~ Dir(a)] = E[@k\lﬁj,a] fork=1,2,...,K (18)
K
>0~ Dil)| = 2 [y i
k=1

This system of equations has the following explicit characterization.

(19)

Proposition 1 Suppose 8 ~ Dir(a) and Yj; is the only comparison result for i < j. Let
oy = Zk Lo and of) = Zk 1 0. The equations (18) and (19) can be represented as

( (a5 ) (aitay)
oo (oi+a+1)
(aJ-‘,—l ;”)(a,—l—a])
ao(oi+a;+1)
for k#1i,j (20)
1+Y )( +2”)(ai+aj)
ao(a0+1)(az+a]+2)

~Y; 32Y;
+ ( ” 5 J ) (ocj—i—i)(az-‘rocj Z ag Oék:+1)
. ap(ao+1)(ai+a;+2) k#i,j ag(ao+1)

OQ\‘?S\OQ\LQ\ :SE \LQ\

[y

a
o
K oo+ (

T

—

Q
SN
—

Q
N
T

—
|z
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The proof of Proposition 1 is provided in the Appendix. We denote any o’ that satisfies
(18) and (19), and thus (20), by

o/ = MM(av,i, j, Yi)- (21)

Note that, given o, 4, j and Yj;, the right-hand sides of (20) are all constants so that we can
solve o = MM(a, 1, 7,Y;;) in a closed form. In fact, we denote the constants on the right
hand sides of (20) as C;, Cj, Cy (for k # 4, j) and D, respectively. It is easy to show that
Zszl Cy = 1. The first three equalities in (20) imply that o) = Crag for k =1,2,..., K
so that the fourth equality in (20) can be represented as Y, Cp(Cray + 1) = D(cy + 1).

Solving o, from this equation leads to a closed-form for o' = MM(a, 1, j, Y;;) as follows

/ D—1 / /
=g 5 = and ap=Crapfork=12... K (22)
Zk:l Ck B

Although the above approximation scheme is established for only one comparison result,
it produces a Dirichlet distribution Dir(e) which has the same type as the prior distribution
Dir(a). Therefore, as more comparison results are generated sequentially, we can apply this
approximation scheme iteratively after each comparison result. In particular, given a policy
A = {(it, Ji) }+=0,1,....7—1 With 4, < j; and the comparison results {Y;,j, }+=0.1,... 7—1, we define

a! recursively as

1= MM(atyityjta}/itjt) (23)

for t = 1,2,...,T. By doing so, we approximate the posterior distribution p(8|M*, a®) by
the Dirichlet distribution Dir(a!) for t =1,2,...,T.

With p(@|M?, a’) approximated by Dir(a'), we can mitigate the two challenges men-
tioned at the beginning of this subsection. First, we can approximate (12) and (13) as

0; . o
E [Pr(Yy = 1)|M', 0] ~ E [Gi 7,10~ Dlr(at)} ~ al+al -
t
ot
B[Pr( = | o] < B [0~ Dirad)] = o )

and approximate Pr (6; > 6;|M*, a) in (7) as

1
Pr (6; > 0;|M", ") ~ Pr (6; > 0|6 ~ Dir(a)) = / L1 — )Nt =1, (a},af), (26)
1 2
2
B(z; a,b) . ‘ ‘ ‘ .
where I,(a,b) = W is known as the regularized incomplete beta function with
a?

(z; a,b) = [3 A1 (1 = A)*~1dA and B(a,b) fo A*1(1 — NP1 d\. Note that the ap-
prox1mated quantltles in (24), (25) and (26) are much easier to compute than the original
ones.

More importantly, the approximation (26) simplifies the NP-hard MAX-LOP in (17):

max E [7(r, 7)|M", a"] ~ maxE [r(r,7*)|6 ~ Dir(a')] .

™
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The right-hand side is still a MAX-LOP but has a special structure so that it can be solved
easily by a simple sorting procedure. In particular, the following theorem shows that when
0 ~ Dir(a), the optimal ranking in (16) can be obtained by sorting the components of a.

Theorem 2 Suppose 6 ~ Dir(a). We have

IIo = {n|m is a ranking of {1,2,..., K} such that w(i) > 7(j) only if a; > o for all 4,5}
= argmaxE[r(m,7")|0 ~ Dir(a)] (27)

Proof We first show that arg max, E [r (7w, 7%)|@ ~ Dir(a)] C Il,. Suppose 7 is the optimal
solution of (27) where 7(j) > 7 (i) for a pair ¢ and j with oy > «;. We put all items in a
row with their ranks given by 7 decreasing from the left to the right and obtain a pattern
like
X XjX--XiX X,
S
where X represents some item different from ¢ and j and S represents the set of items
ranked between i and j. We will show that the objective value of (27) can be increased by
switching the ranks of ¢ and j.
Recall that the expected accuracy of 7 can be represented as

2

A7
2
T KE-1) [I;(ai, ;) + SEZSI;(OCS,O@‘) + SEZSI%(%%) +C|,

where C'is the summation of the remaining terms like 1 1 (a7, ajr) which have either at least
one of i and j' not in S U {4, j} or both i’ and j’ in S.

Note that switching the ranks of ¢ and j does not change the values of the terms in C.
In fact, after such a switch, we obtain a new ranking 7’ whose objective value in (27) is

2
E [r(#,7)|0 ~ Dir(a)] = KE=1) [I;(aj,ai) + ZI%(O@',O&S) + Zlé(as,ai) +C
seS seS

Using the fact that [1(a,b) is monotonically decreasing in a and monotonically increasing
2
in b and noticing that a; > «;, we have

I%(aj,ozi) +Zfé(aj,as) +Z—T%(Oés,0£i) > I%(ozi,aj) +Zlé(as,aj) +Z%(ai,%),
s€S seS seS s€S

which implies E [7(7/,7%)|0 ~ Dir(a)] > E|[r(7,7*)|0 ~ Dir(e)], contradicting with the
optimality of 7. Hence, we can have 7 (i) > 7(j) only if oy > «;, meaning that 7 € Il,.

We then show arg max, E [7(7, 7*)|@ ~ Dir(a)] = I14 by showing that E [7 (7, 7%)|@ ~ Dir(a)]
has the same value for any 7 € II,. Suppose 7 and 7’ both belong to I14 and there exists
a pair ¢ and j with ¢ # j such that 7(i) > #(j) and #’(j) > 7'(i). By the definition of Il,,
we have a; = «; so that

Pr(6; > 0;]0 ~ Dir(a)) =1

(Oéj,Oéi) = % =1 (Oéi,Otj) =Pr (9] > 91’0 ~ Dir(a)) .

1 1
2 2
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This means

1ﬁ(i)>,}(j)Pr (01 > (9]‘9 ~ Dir(a)) + 17}(j)>ﬁ.(i)Pr (93 > 01‘9 ~ Dir(a))
= 1ﬁ/(i)>ﬁ/(j)Pr (91 > 91’0 ~ Dir(a)) =+ 1ﬁ/(j)>7}/(i)Pr (9] > 02|0 ~ Dir(a))

for any pair ¢ and j so that E [7(&,7*)|@ ~ Dir(a)] = E [7(7/,7%)|0 ~ Dir(a)] by the for-
mulation (28), which completes the proof. [ |

Given a parameter vector o, we denote any ranking in Il, by m,. Using moment
matching and Theorem 2, we can approximate the stage-wise reward R(M?, i, j, Yi;) by
R(M',i,5.Y;j) = h(M'™") = h(M")

= maxE [r(m,7%)| M, a’] — maxE [r(r, 7*)|M", o]
s s

~ maxE[r(r,7*)| ~ Dir(&)] — maxE [r (7, 7*)|0 ~ Dir(a)]
s K

= E[r(7mg,7")|0 ~ Dir(&)] — E [T(Wd,w*)w ~ Dir(at)}

’ Yir, O t ot

5" ma (i) >ma (57) 5" s e (1) > (57)

where & = MM(a, i, j, Y;;), the third equality is from Theorem 2 and the fourth equality
is due to (26). Putting (16), (24), (25), and (29) together, we can approximate the expected
stage-wise reward E [R(Mt, iy 7, Yij)‘Mt, ao] as

E[R(M',i,j,Y;;)|M", 0]
= E[Pr(Y;; = 1)|M", a’] R(a,4,j,1) + E [Pr(Y;; = —1)|M", "] R(M",4,,-1)

¢ ¢

@ YA 7 S0t .
~ R 1 R ~1). 30
ol +af (1,4, )+a§+a§. (a,i,7,—1) (30)

The proposed AKG policy will choose the pair (i;,j;) that maximizes the approximated
expected stage-wise reward in (30). As a summary, we describe the AKG policy as Algo-
rithm 1.

It is noteworthy that it is easy to implement a batch version of Algorithm 1. In fact,
the AKG policy in Algorithm 1 is known as an index policy where the right-hand side of
(31), which calculates the marginal improvement on the ranking accuracy, can be treated
as the index for each pair of items. The AKG policy selects the pair with the highest index
at each stage. In the batch version, instead of selecting only one pair, one heuristics is to
select the top B pairs and distribute to workers simultaneously, where B is a pre-defined
batch size. Such a batch implementation can reduce the waiting time of crowd workers and
thus accelerate the ranking procedure. Moreover, the AKG policy can be combined with
some other batch optimization techniques (Wu and Frazier, 2016) to determine the optimal
set of pairs to evaluate next.
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Algorithm 1 Approximated Knowledge Gradient Policy with Homogeneous Workers

Initialization: Choose a for the prior distribution. Let M° be a K x K all-zero matrix.
For t=0,...,7—1do
1: For each pair (i,7) with i < j, compute R(at,i,7,1) and R(at,i,j,—1) according to
(29).
2: Select (i, j¢) such that

R(al,i,j,—1) (31)

i+, J¢+) € arg max i _R(al,i,j,1) + U
(i2, 5¢) ng af + o ( 3»1) af + af

and present item 7; and item j; to a randomly selected worker and receive the comparison
result Y;,j,.
3: According to (21) and (22), compute

at+1 = MM(aty ita jt7 }/Z'tjt) (32)

End For
Return: The aggregated ranking 7,z obtained by sorting the components of .

4. Crowdsourced Ranking by Heterogeneous Workers

In the previous section, we considered the setting of homogeneous workers, where the com-
parison results are determined only by the intrinsic latent scores of items but not by the
characteristics of workers. However, on crowdsourcing platforms, the quality of the workers
varies a lot. Some workers are less reliable or lack of the domain knowledge; some workers
are spammers, who either do not actually take a look at the assigned pairs or are robots
pretending to be human workers, and thus provide random comparison results in order to
quickly receive payment; some workers may be poorly informed (or even malicious), misun-
derstand the ranking criteria and thus always flip the comparison results. To identify the
reliability of a worker, one can assign the same pair of items to multiple workers and hope to
identify the unreliable ones whose labels are often different from the majority. However, the
abuse of this strategy will result in hiring too many workers and lead to a quick growth of
the monetary cost. In order to maximize the accuracy of the final ranking under the limited
amount of budget, it is critical to balance the budget spent on estimating the reliability
of the workers and learning the true ranking of the items. To formalize such trade-off, we
incorporate the reliability of each worker to our previous Bayesian MDP and generalize the
AKG policy to the heterogeneity of workers.

4.1 Model Setup

Similar to the previous setting, we assume that each item i has an unknown latent score
0; >0 for i = 1,2,..., K which determines its true ranking 7* (see (1)) and 6 ~ Dir(a?).
In the setting of heterogeneous workers, we assume that there are M crowd workers in total,
denoted by w =1,2,..., M. If a pair of items ¢ and j with ¢ < j is presented to the worker
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w, we denote the returned comparison result by a random variable YZ;" such that

v 1 if item i is preferred to item j by worker w (33)
Y ] —1 ifitem j is preferred to item i by worker w.
To model the reliability for workers, we introduce M latent parameters p = (p1, p2, ..., pam) L

of reliability with p,, € [0,1] for worker w and assume Y;%" has the following distribution

0 0,
Pr(Y¥=1) = py— 1 — puw) 2 34
(=1 = gt gy (34)
9.
Pr(Y¥ =—-1) = py—2 1 — py)——
for 1 <i< j< Kandw=1,2,...,M. This model can be viewed as a combination of

Dawid-Skene model for categorical labeling tasks (Dawid and Skene, 1979; Raykar et al.,
2010; Karger et al., 2013a) and Bradley-Terry-Luce (BTL) model, which was first introduced
in Chen et al. (2013). Such a mixture of BTL model is flexible and capable of modeling
various types of workers. When p,, = 1, the distribution in (34) and (35) reduces to (3), and
we refer to worker w with p,, = 1 as a “fully reliable” worker?. Therefore, the reliability
parameter p,, can be interpreted as the probability that worker w behaves as a random
fully reliable workers in the previous section, namely, the one whose preference over a pair
i and j follows a distribution in accordance with the BTL model (3). The worker with p,,
closer to 1 is considered to be more reliable while a worker with p,, closer to 0 tends to
be a poorly informed (or malicious) one who intentionally gives answers oppositive to the
majority (truth). Also, a worker is known as a spammer if the associated p,, is near 0.5
since this worker prefers ¢ or j in any pair ¢ and j with an equal probability regardless of
their latent scores.

The reliability of each worker is unknown for the ranking task, which needs to be grad-
ually identified during the comparison process. In the Bayesian framework, since the relia-
bility parameter p,, is supported on [0, 1], it can be naturally modeled to follow a Beta prior
distribution, i.e., py, ~ Beta(ul,, ), for w=1,2,..., M, where pu® = (9,49, ...,1%,) and

V0 = (19,19, ...,19,) are positive parameters.

4.2 Bayesian Decision Process

In this section, we model the sequential decision problem with a finite budget of T" in the
setting of heterogeneous workers. Since the workers now have different levels of reliability,
we can no longer randomly select a worker from the crowd in each stage. Instead, we need
to adaptively determine not only which pair of items to be compared but also who should
perform this comparison task according to the historical results so that the budget can be
gradually shifted towards more reliable workers.

2. We note that the full reliability does not imply that the worker is capable of identifying the latent
scores of items and always give the correct comparison result, i.e., preferring the item with a higher
latent score. Instead, being fully reliable only means the worker tries her best to provide the preference
after a careful consideration, and the inconsistency of comparisons among workers is mainly because the
intrinsic ambiguity of the pair of items.
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Suppose a pair of items (i, j;) with ¢4 < j; is compared by a worker w; in stage t and
the comparison result is Ylﬁ;’; defined in (33). The historical comparison results up to stage
t can be summarized by a K x K x M tensor M!, which is updated iteratively as follows.
In particular, at each stage t, we define A’ to be a sparse K x K x M tensor with only

non-zero element: if Y =1, Al =1andif V"t = -1, A}, =1. Let
M?=0, MT=M4+A' fort=0,1,...,7—1, (36)

where 0 is a K x K x M all-zero tensor. In contrast to the matrix M! in (4), each element
in the tensor M! takes the value either zero or one because each worker is not allowed to
compare the same pair more than once. The dynamic budget allocation policy is denoted
by A = {(it, jr, we) }=0,1,..7—1 where (it jy, we) = (ir(M"), je(M"), w;(M")) depends on the
previous comparison results through M'. The posterior distributions of @ and p in stage ¢
are denoted by p(8|M?, a®, u® 1) and p(p|M?, a®, u®, v0), respectively.

Similar to the homogeneous worker setup, we adopt the Kendall’s tau (5) to measure
the ranking accuracy. At each stage t, we denote the maximum posterior expected ranking
accuracy by (with a slight abuse of notation)

h(MY) = maxE[T(W,ﬂ*)]Mt,aO,uo,l/O] (37)
_ maXZZ#] <) Pr (0; > 0;|M*,a, u0,10)
B K(K —1) '

The maximizer in (37) is the optimal ranking inferred from the historical comparison results
up to the stage . Our goal is to search for the optimal policy A that maximizes the final
expected ranking accuracy h(M7), i.e.,

mEXIEA [R(MT) |, pu®, 0] . (38)

This maximization problem can be further reformulated in a telescopic sum

T-1
h(MO +maXE E |: Mtaitajhwta Zt]t ‘Mt 7“07V0:| ao,HO,VO ) (39)
t=0
where
R(M ity Jt, We, Ymt) = h(MHl) - h(Mt)> (40)

is the stage-wise reward depending on MY ,i;,j;:,w; and Yzi‘;tf It can be interpreted as the
improvement of the expected ranking accuracy after receiving the comparison result at stage
t. The state variable of the MDP (38) or (39) is the tensor M! which evolves according to
(36) and the state space at each t is

St = {M € {0, 1JFIOM L N N, = t}.

2,J,w
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The expected transition probabilities of MDP (38) are

0
E [Pr(Yy = 1)|M", a”, u°, %] =E : 1- M al w00 (41
[I“( iJ )| ,Q,H,V] pw9z+93+( pw)91+9j’ , o, o,V ( )
0; 0;
E [Pr(Y¥ = —1)|M', a% u®, 0% = E | pp—2— + (1 — M el w0 (42
[ I‘( i )| O, 7’/] pw9z+9]+( pw)91+9j’ , o, o,V ( )

fori,j=1,2,...,K and w = 1,2,..., M. So far, we have modeled the sequential budget
allocation in the heterogeneous worker setting as a Bayesian MDP. Due to the similar reasons
that have been explained in Section 3.2, although the dynamic programming can be directly
applied to solve the Bayesian MDP and obtain the optimal policy, it is computationally
intractable. In fact, the Bayesian MDP (39) is even more challenging to solve than that
for the homogeneous worker setting due to a much larger state space after introducing the
reliability of workers. In the next subsection, we will propose a computationally efficient
approximated knowledge gradient policy for (39).

4.3 Approximated Knowledge Gradient Policy

To solve the Bayesian MDP (39), we still consider the family of knowledge gradient (KG)
policies. In our problem, the KG policy will select the pair of items and the worker that
together give the highest expected stage-wise reward. In particular, at the t-stage, the KG
policy for (39) will choose the pair (i, j:) and the worker w; such that

(it7jt7wt) € argmaXE [R(Mt7i7j7w7}/;'1jy)|Mtaaovﬂoayo] (43)
1<7,w

= argmax {E [Pr(YZJ" = 1)|Mt,a0,p,0,1/0} R(M,i,j,w,1)
1<J,w

L [Pr(Y = ~DIM o, 0] ROV 1)

To implement the KG policy (43), we encounter the same difficulties as when we
implemented (16). Specifically, since the posterior distributions p(@|M', a®, u°, %) and
p(pIM?, P, 1, 1Y) are sophisticated and the MAX-LOP problem (37) is NP-hard, we can-
not efficiently evaluate the stage-wise reward (40) and the transition probabilities (41) and
(42). To obtain a computationally efficient policy, we follow the techniques in Section
3.3 to approximate the posterior distributions p(@|M?, o, u°, %) and p(p,|M?, a, u?, v0)
recursively using a sequence of Dirichlet distributions Dir(a!) and a sequence of beta distri-
butions Beta(u,, V), respectively, for w = 1,2,..., M and t = 1,2,...,T. The parameters
al(ad,ah, ... o), pt = (Wb, uh, ... phy,) and v = (Wi, 0k, ... V4,) will be chosen recur-
sively based on moment matching.

Suppose 8 ~ Dir(a) for some parameter vector o € R¥ and p,, ~ Beta(py,, v4,) for each
w with p = (1, po, ..., upr) and v = (v1,v9,...,var). We consider a basic scenario where
only one comparison result Y;J” from worker w for a pair (i,j) has been observed. We can
approximate p(OIYZ-;“, a, p,v) by a Dirichlet distribution Dir(a’) and p(pw\Y;;p, a, p,v) by
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a Beta distribution Beta(ul,,v},) such that

E [0k|6 ~ Dir(e)] = E[6]Y}y,c, p,v] for k=1,2,..., K (44)

K K
£ |y 60 ~ Dir(a’)] = BRIV (45)

k=1 k=1
E [pwlpw ~ Beta(py, v,,)] E [pu|V, o, p, v] (46)
E [p%u =+ (1 - pw)2|pw ~ Beta(uim Vilv)] = E [p%u + (1 - pw)2|Y;;f’, o, W, V] . (47)

Note that we do not need to approximate p(pu/|Y;y, @, p, v) for w’ # w since the worker w’
has not performed any comparison so that p(pw/\}/;g’, o, p,v) is still the prior distribution
Beta(pty, V). This system of equations has the following explicit characterization.

Proposition 3 Suppose 6 ~ Dir(a) and py, ~ Beta(pw, i) for worker w and Y is the
only comparison result. Let ag = S0 oy, and afy = Y1 o). The equations (44), (45),
(46) and (47) can be represented as

a; - (ait)(onitoy) .y _ailaitay)

o = v agara D) T (1T Miw) Soarta; 1)
a aj(ai+aj) (aj+1)(avitaj)
P = Mijwaglacta, i T (1 Mw) G e, 11y

-~ Sk for k 75 i,j
@A) (et (a2 aitay) ai(ai+1)(ai+ay)
K ap(ap+1 (o i i+oy B (o ity
Ek:l W = MNijw ap(ap+1) (o400 +2) + (1 - nzjw)ao(oc()—i-l)(ai—&-aj—i—Z)
s aj(aj+1)(aitoy) (1= )(Otj+1)(04j+2)(ai+aj)
nzﬂwag(ag—i—(l)(ai—i)-aj—&-@ Mijw)~ao(ao+1) (i +a;+2)
ag(ap+1
+2 ki aglaotD) (48)
P pot (Y52 p+(1=Y;2) /2
T = Moot~ T (= Mijw) = m
why (phy,+1) 40, (v, +1) (e +(1+Y)/2) (1w +(34Y77) /2)
W) iy 0,70~ 0 T (i 1) (1 1 2)
Ly et Y /) (ko (3-Y0)/2)
+( 772_]’11)) S/—Lw+l’w+1)(ﬂw+1/w+2)
s (vw+(1-Y%)/2) (vw+(3-Y7)/2)
Mijw (B +1w+1) (pw+vw+2)
1 B (Vw+(1+§/i1]l'))/2)(V'W+(3+Yi?))/2)
+( - Thjw) (Hw+VU)+1)(l‘w+Vw+2)

(Y2t (1Y) v o
(Y i+ (LY waJai H Y vt (Y ] -

where 1;j =

The proof of Proposition 3 is given in Appendix. We denote any o/, u!, and v/, that
satisfy (44), (45), (46) and (47), and thus (48), by
o = MM, (e, i, j,w,Y;7) and (L, Vsy) = MM, (¢, 4, §, w, Y5 (49)
Although the equations in Proposition 3 are more complicated than those in Proposition 1,
the right-hand sides of (48) are still constants for any given i, j, w, Y7, &, o and vy so
that both o' = MM (e, 4, j,w, YY) and (i, v,) = MM (e, i, j,w, YY) can be solved in
a closed form. In fact, we denote the constants on the right-hand sides of (20) as C;, Cj,
Cy (for k # i,7), D, E and F, respectively. It is easy to see that Zle Cr = 1. By the
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same derivation for (22), we obtain the following closed form for @’ = MM, (e, 1, j, w, YZ;“)

D-1
/ / /
o= ————— and «ap =Croqfork=1,2,... K, (50)
i1 CF =D

which takes the same form as (22) but with the constants Cj for k = 1,2,..., K defined
differently (which involve the information of worker w, i.e., fi,, and v,,). Similarly, solving
wh, and v, from the last two equations in (48), we obtain the following closed form for
(:U’;m V{u) = MMMV(av ivjv w, }/quu)
o (FenE L (Fo)-B)
wTE2{(1-E2-F WS L (1-ER - F

(51)

Although the approximate scheme above is derived when there is only one comparison re-
sult, it generates a Dirichlet distribution Dir(e) for 8 and a Beta distribution Beta(u!,, v.,)
for p,, and does not change the Beta distribution Beta(g,, v4,) for w’ # w. The fact that the
approximated posteriors take the same form as the priors suggests that we can apply this ap-
proximation scheme iteratively to approximate p(@|M?, o, u° %) and p(p|M?, a®, u®, )
for any given policy A = {(it, j¢, wi) }i=0.1...7—1. In particular, let af, p! and v! be the

sdyeeny

sequences of parameters generated recursively as follows

at+1 = MMa(at; ita jt7 Wt, }/Z:L;i) (52)
t - . w . .
( qu» VZ}-&-I) MthIu;/(C\‘ y s Jty W, Yitft) }f W = wy (53)
(s Vi) if w # wy

for t = 1,2,...,T. The posterior distributions p(@|M?, o, u°,1°) and p(p|M?, a®, u°, v°)
can be approximated by Dir(a!) and II,,—  aBeta(ul,, V%), respectively.

Following the same strategy as in (24) and (25), we can approximate (41) and (42) as

E [Pr(Y¥ = 1)|M!, o, p, 0] (54)
X .
~ E|pu— 1 — puw)=—2—|0 ~ Dir(a?), pu ~ Beta(u,, v/,
pugg + (1= Pu)g-10 ~ Dir(e), pu ~ Beta(ia, 1)
P 04 v, 9

t t 1 t t t ot t
,uw—l—l/wozi—f—ozj Mw+ywai+aj

and
E [Pr(Y¥ = —1)|M', a0, 0, 1) (55)
, 0. ‘
~ E pw@Tjej +(1- pw)m‘e ~ Dir(a), p,, ~ Beta(ul,, v})
t ¢ t

t .
Hay a] Vw Q;

Miv—l—l/,ﬁ,oz;?—i—a; ufv—f—yfuag—l—a;-
and approximate Pr (6; > 6;|M*, a”, u° 1) in (37) as
Pr (0, > 0;M", ", u°, %) ~ Pr (6; > 0;|0 ~ Dir(a')) = I, (o}, al). (56)

1 )
3 J
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The approximation (56) helps to simplify the NP-hard MAX-LOP in (37) as

max E [7(7, 7*)|M", &°, u°, 1°] ~ maxE [7(7,7*)|@ ~ Dir(a)],
™ ™

where the right-hand side can be solved easily by sorting of the components of a! according
to Theorem 2.

Similar to (29), the stage-wise reward is approximated as

RM',i,5,w,Y¥) = maxE [T(TI‘, )M Q) P, 1/0] — maxE [T(W,W*)\Mt, a’, u?, 1/0]

i s

Q

mﬁxE [7(m,7*)|@ ~ Dir(&)] — mj}xE [7(m,7*)|6 ~ Dir(a")]

2 A tot
= m Z I%(Oéj/,ai/)— Z I%(O&j/,ai/)
Tt (1) > ot (37

Ta (i) >7a(5') )

R(a,i,j,w,Y}¥) (57)

where & = MM, (at, i, j, w, Y¥). Putting (54), (55), (56) and (57) together, we can ap-

I 1,]
proximate the expected stage-wise reward E [R(Mt, i, J,w, Y;}")|Mt, o,y 10 as
E [R(Mt7 i?j? w, }/'LEU) |Mt7 a07 “07 VO]
= E[Pr(Y}y =1)|M", o’ u®v°] R( i, j,w, 1)
+E [Pr(ij“ = —1)‘Mt, o, u?, VO] R(a,i,7,w,—1)
t t t

t
" of v af N\ oo
(Mt —il-vl/t a’?+zozt. +Nt j—vvt af:—l—Jat.>R(at’Z’J’w’1>
w w T 7 w w g j

t t t t

:u’ a] v a; > t - -

" (Mt -ﬁvt al +at - % j-uvt al —i—za’f-) Rle,i,j,w, =1). (58)
w w 7 7 w w 7 7

Q

When the workers have various levels of reliability, our AKG policy will choose the pair
(it,j:) and present it to worker wy so that (58) is maximized. The AKG policy for the
setting of heterogeneous workers is formally presented as Algorithm 2. Note that when
pw = 1 for all w, we do not need to solve (46) and (47) anymore and thus the rest of the
problem reduces to the homogeneous setting.

5. Experiment

In this section, we conduct empirical studies using both simulated and real data. We com-
pare the proposed AKG algorithms to some existing methods in terms of ranking accuracy
versus different levels of budget as well as computation time. We also show some interesting
properties of the proposed AKG policies, e.g., how budget will be allocated over pairs of
items with different levels of ambiguity and workers with different levels of reliability. The
ranking accuracy is evaluated using the Kendall’s tau as defined in (5).
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Algorithm 2 Approximated Knowledge Gradient Policy with Heterogeneous Workers

Initialization: Choose o, u° and v for the prior distributions.
For t=0,...,7—1do
1: For each pair (4, ) with i < j, compute R(al,4,j,w,1) and R(at, i, j,w, —1) according
to (57).
2: Select (iy, ji, wy) such that

t t t

t ¢ o ~
(i,j0) € argmax[( Po 2% 4 P . )R(at,z‘vj,w,n (59)

] T z t z
i<j, w Wy + v, a; +a; Wy + v, a; +a;

t at. Vt Oéi? ~
+ < Hu I_ 4 w Zat> R(at,i,j,w,n]
J

t t t t t t At
uw+ywai+aj Mw+ywai+

and present item ¢; and item j; to worker w; and receive the comparison result Yz’?}‘i'
3: According to (49), (50) and (51), compute

att = MM, (i, i, w, Vi) (60)

MM, (at, iz, je, we, Y00 )  ifw=w

t+1  t+1 _ % y bty Jty Wiy L4, 4, t
R IR v it w £ w (61)

End For
Return: The aggregated ranking 7, r obtained by sorting the components of o

5.1 Simulated Study under the Homogeneous Workers Setting

In this section, we assume that all workers are fully reliable and investigate the performance
of the AKG policy (Algorithm 1). Two scenarios are designed: 10 items with a total budget
of 100, and 100 items with a total budget of 1000. Each scenario consists of 100 independent
trials and the average ranking accuracy is reported. For each trial, the latent item scores
is sampled uniformly from the simplex in (6), which determines the true ranking 7*. Given
0, the comparison results are generated according to the Bradley-Terry-Luce model (3).
We compare several different methods, including the proposed AKG, random sampling
(uniformly random sampling), distance-based sampling, adaptive polling (Pfeiffer et al.,
2012) and rank centrality with uniform sampling or knowledge gradient sampling (Negahban
et al., 2012). The details of the methods are provided as follows.

1. AKG (see Algorithm 1): We set the prior of 8 to be the uniform distribution on the
simplex (i.e., @ is set to be an all-one vector).

2. Random Sampling: The random sampling algorithm is similar to Algorithm 1 in
terms of the posterior approximation (by moment matching) and rank inference (by
sorting the approximated posterior parameters a!) after receiving each label. The
only difference is that this algorithm replaces Step 2 of Algorithm 1 by a random
sampling policy, which selects (i, j;) randomly at each stage. We also choose the
uniform distribution on the simplex as the prior.
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3. Distance-Based Sampling: This algorithm is also the same as Algorithm 1 in terms
of the posterior approximation. However, in the sampling phase, this algorithm simply
selects the pair of items (it,j¢) with the closest posterior parameters a! and oz;. We
choose the uniform distribution on the simplex as the prior.

4. Adaptive Polling: This is a greedy policy proposed by Pfeiffer et al. (2012), which
chooses the pair of items to maximize the KL-divergence between the posterior and
prior. The initial K x K matrix M used in adaptive polling is set to 0 on the diagonal
and 0.15 everywhere else.

5. Rank Centrality: This is a static rank aggregation algorithm recently proposed by
Negahban et al. (2012). We combine it with both the random sampling policy and the
knowledge gradient policy. Specifically, for Centrality + RS, we randomly select
a pair of items at each stage and infer the true ranking using rank centrality. For
Centrality + KG, we select the next pair of items using AKG policy, but estimate
the ranking using rank centrality.

It is worthwhile to point out that we are able to compute the optimal policy exactly
only up to the 4-item case, which is not interesting from the ranking perspective and thus
is left out from the experiment.

As we can see from Figure 1, the AKG policy has higher accuracy than other methods
at all budget levels. Note that the average accuracy of AKG surpasses the level of 70% with
only 20 pairs in the case of 10 items. In general, random sampling has similar performance
as AKG at the beginning, but eventually AKG will outperform random sampling as it will
spend more budget on the ambiguous pairs. This will be verified in the next experiment.
Meanwhile, if we combine rank centrality with knowledge gradient sampling, the perfor-
mance of the algorithm can be boosted significantly. Furthermore, the curves of ranking
accuracy of AKG are in general monotonically increasing and have fewer “bumps” than
other algorithms. This implies that the sequence of posterior parameters o' is quite stable
when the budget level becomes larger. We also note that due to the high computational
cost of adaptive polling, it takes extremely long time when the number of items is 100 and
thus we omit its performance in Figure 1b.

It is worthwhile to note that AKG runs significantly faster than the adaptive polling
method. It enjoys the advantage of closed-form updating rule during each iteration/stage
without using a numerical algorithm as a subroutine, which is a good feature for online
applications. In contrast, adaptive polling is much slower because it requires inverting a
K x K matrix for all O(K?) possible pairs and all possible comparison results in each
iteration. Table 1 gives the computation time of a single iteration for both AKG and
adaptive polling. Note that in the 25-item case, the computation time for adaptive polling
of a single iteration has already exceeded 40 minutes. Therefore, we omit to present the
computation time of adaptive polling when the number of items is 100 in Table 1 since each
iteration/stage would take hours to run.

Next, we study the allocation of labeling budget over pairs of items with different levels of
ambiguity when using the AKG policy. Again, we consider two scenarios: K = 10,7 = 100
and K = 100,7 = 1000, each with 100 independent trials. We report the averaged labeling
frequency of each pair. The results are presented in Figure 2 in the form of heat maps.
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Figure 1: Performance comparison under the homogeneous workers setting. The z-axis is
the budget level and y-axis is the averaged ranking accuracy.

Table 1: Comparison in computation time under the homogeneous workers setting.

No. of Items AKG Adaptive Polling
10 0.023 sec 20 sec
25 0.75 sec 42 min
100 22 sec -

In Figure 2, each small block represents a pair of items. Items are sorted based on their
true latent scores, from lowest to highest along both y-axis and z-axis, so that the item
pairs along the back-diagonal are more ambiguous than those around the corner. Figure
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Figure 2: Heat map of labeling frequency for item pairs with different levels of ambiguity

2 presents the normalized number of comparisons over different pairs in total T' stages.
It can be seen from Figure 2 that the back-diagonal pairs in general have higher labeling
frequency than other pairs. Some adjacent pairs are labeled 10 times more frequently than
the distant pairs. To further demonstrate this property, we design a scenario in which out of
10 items, the two worst items and the two best items have very close true scores respectively.
Although the main goal of the algorithm is to achieve higher ranking accuracy, we are still
curious to see whether our policy can spend the budget on these two pairs. As we can see
from Figure 3, it is clear that the algorithm concentrates on the 1-2 pair and the 9-10 pair.
This implies that our policy can identify and explore more ambiguous pairs to improve the
learning of the true ranks.
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Figure 3: Heat map of labeling frequency for pairs with very close scores
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5.2 Simulated Study under the Heterogeneous Workers Setting

In this section we bring worker quality p,, into consideration, which is assumed to be drawn
from the Beta(4,1) distribution. We choose the Beta(4,1) to generate p,, since the average
reliability measure of workers in this case is 4/5 = 80%. This assumption is in line with the
practice in that there are usually more reliable workers than unreliable ones. Similar to the
homogeneous worker setting, we consider two scenarios: 10 items with 10 heterogeneous
workers (K = 10, M = 10); 100 items with 50 heterogeneous workers (K = 100, M = 50)
and we note that each worker is allowed to label any pair at most once. We compare the
following three methods.

1. AKG (see Algorithm 2): We set the prior of 8 to be the uniform distribution on the
simplex (i.e., a is set to be an all-one vector) and choose ud = 4,09 = 1 for each
worker w =1,2,..., M.

2. Random Sampling: It is implemented simply by replacing Step 2 of Algorithm 2 by
a random sampling policy, which selects a triplet {item i, item j, worker w} uniformly
randomly at each stage. The choices of priors are the same as in AKG. Like the AKG
method, the random sampling algorithm also maintains a Dirichlet distribution for
the scores of items and a beta distribution for the reliability parameter of each worker
using moment matching.

3. Crowd-BT: This is an adaptive algorithm recently proposed by Chen et al. (2013),
which chooses the triplet {item 4, item j, worker w} at each iteration to maximize the
information gain. This can be viewed as an extension of the adaptive polling (Pfeiffer
et al., 2012) by incorporating the workers’ reliability. Unlike adaptive polling which
computes the relative entropy for each pair exactly, Crowd-BT uses moment matching
to approximate the posterior and hence runs significantly faster than adaptive polling.
The parameter -, which balances the exploitation-exploration trade-off in Chen et al.
(2013), is set to 1 in this experiment.
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Figure 4: Performance comparison under the heterogeneous workers setting. The z-axis is
the budget level and y-axis is the averaged ranking accuracy.

The comparison results are presented in Figure 4, where AKG outperforms the other
two methods, especially when the budget level is low. The performance of random sampling
is comparable to AKG at the beginning. As we gather more information, AKG can learn
the reliability of workers so that the budget will be gradually shifted towards those reliable
workers (as shown later in Figure 7). In fact, it can be seen from Figure 4 that the ranking
accuracy of AKG increases more quickly than that of other methods. In this experiment,
even if there is a small amount of budget (e.g. T = K), the AKG policy is still able to
achieve reasonably good performance. We notice that in the 100-item case Crowd-BT is
beaten by random sampling. The main reason is that when the reliability of workers varies
and the pool is large, it is difficult to balance exploration and exploitation for Crowd-BT,
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Figure 5: Density plots of different Beta distributions for generating p,,
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Figure 6: Comparisons between AKG using Beta(4,1) prior and AKG using the true gen-
erating distribution as prior.

Table 2: Computation time under the heterogeneous workers setting.

No. of Items | No. of Workers AKG
10 10 0.038 sec
25 20 0.82 sec
100 50 41 sec

which has already been acknowledged in Chen et al. (2013). Similar to the previous setting,
we also give the table of the computation time of a single iteration for AKG in Table 2. As
we can see from the table, even with another dimension of uncertainty — the reliability of
workers, AKG is still quite fast, and thus is suitable for online implementation.

In order to investigate how sensitive the prior for workers’ reliability p,, is, we gener-
ate the workers’ true reliability parameters from three different distributions, Beta(10, 1),
Beta(2,1), and Beta(5,2), and compare the performances of AKG between using the true
generating distribution as the prior and using the generic Beta(4, 1) as the prior. The results
are plotted in Figure 6. As one can see from Figure 6, using the true generating distribution
and generic Beta(4,1) prior lead to very similar performance in all three cases. Although
there are some small differences between the two groups of curves, they are not significant
as to the overall performance of the algorithm. This result shows that when there is no
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Figure 7: Averaged number of comparisons (a.k.a., labeling frequency) made by workers
with different levels of reliability p,,.

exact information on the quality of all workers, Beta(4, 1) is a reasonable prior for workers’
reliability and the proposed AKG policy is quite robust to the prior distribution in use.
Finally, we investigate whether good workers are indeed assigned more comparison tasks
by our AKG policy in the setting of heterogeneous workers. In particular, we consider
K =10 items and M = 15 workers with the workers’ true reliability parameters p,,, w =
1,2,..., M ranging from 0.4 to 1 with an equal space in between. This crowd of workers
is fixed and the total budget in each trial T" = 250. We report the averaged number of
pairs assigned to workers with different levels of reliability in Figure 7. As one can see from
Figure 7, there is a clear trend that more reliable workers receive more pairs on average.

5.3 Real Data Study

We now apply the proposed AKG policy (Algorithm 2) to a real dataset on reading diffi-
culty levels (Collins-Thompson and Callan, 2004). The dataset comprises K = 491 differ-
ent paragraphs, each assigned an integer-valued true reading difficulty score ranging from
1,2,...,12. Here, a higher score means the paragraph is more difficult to read. A total
number of M = 217 different workers from Canada and the United States performed the
comparison tasks on an online crowdsourcing platform called CrowdFlower?. Each worker
was presented a pair of paragraphs every time and the worker identified which paragraph
is more difficult to read. To overcome the issue of an imbalanced judgemental pool, each
worker was allowed to compare at most 40 different pairs. There are 7,898 pairwise com-
parison results available in this dataset. Using these pairwise labels, we apply the AKG
policy to recover the ranking by difficulty of these 491 paragraphs. We note that since the
underlying truth is given as a difficulty level (1-12) for each paragraph (denoted by s; for

i=1,...,K) instead of a global ranking, we measure the accuracy of a ranking = as
2
m Z Lin(iy>m(i)y Lsi>s;}-
i#j

3. http://www.crowdflower.com/
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Figure 8: Performance comparison on the real dataset

In the above definition of ranking accuracy, when two paragraphs have the same reading
difficulty level, any ranking between this pair will be treated as correct. It is also worth
noting that, in the knowledge gradient step in (59), it is possible that the selected triplet
(i¢, ji, wy) does not exist in the dataset (i.e., the worker w; did not compare i; and j; in
this data). Hence, in our implementation of AKG, we select the triplet in the dataset that
maximizes the right-hand side of (59). We set the prior of 8 to be the uniform distribution
on the simplex. This dataset also comes with a rating for each worker which measures
the long-run performance of this worker on CrowdFlower. A higher rating implies a higher
reliability of the worker. This dataset shows the averaged workers’ rating is above 0.75.
Thus, we still use Beta(4,1) as the prior on workers’ reliability.
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We run experiments in two different settings. The first one assumes that all workers
are homogeneous and fully reliable. In this setting, we only need to select the next pair of
paragraphs to compare but can randomly choose a worker to perform the comparison task.
In this case, four algorithms are implemented (AKG policy (Algorithm 1), random sampling,
rank centrality with the random sampling policy, and rank centrality with the knowledge
gradient policy) and we report the averaged accuracy over 100 independent trials in Figure
8a to minimize the sampling effect of randomly selecting the next worker. The second
experiment incorporates the heterogeneous reliability of workers so that the algorithms
have to select both the pair to compare and the worker to perform the comparison task. In
this case, three algorithms, AKG policy (Algorithm 2), random sampling and Crowd-BT,
are implemented and the result is shown in Figure 8b. As one can see from these two
plots, AKG outperforms the other methods in both settings, especially when the amount of
budget is relatively low. As the budget level increases, the performance of Crowd-BT and
rank centrality will eventually improve and achieve a similar accuracy as AKG.

6. Conclusion

In this paper, we address the dynamic budget allocation problem in crowdsourced ranking.
Using the Kendall’s tau with respect to the true ranking as the measure of ranking accuracy,
we formulate the problem of maximizing expected Kendall’s tau by sequential comparisons
into a Bayesian Markov decision process. To further address the computational challenges
(especially, solving the NP-hard MAX-LOP) involved in the decision process, we propose
an approximated knowledge gradient policy, which is not only computationally efficient but
also achieves good performance as shown in the experimental sections.

We note that although this paper focuses on the Bradley-Terry-Luce model (Bradley
and Terry, 1952; Luce, 1959), it will be interesting to study the dynamic sampling in crowd-
sourced ranking for other ranking models such as permutation-based models (e.g., Mallows
(Mallows, 1957) and CPS (Qin et al., 2010) models) or stochastically transitive models
(Fishburn, 1973; Shah et al., 2016b)). Meanwhile, theoretical bounds on posterior approxi-
mation errors are difficult to obtain and error propagation does exist during each iteration
of the algorithm. In our future analysis we would like to quantify this error. Another
interesting future direction is to incorporate the feature information of each item into the
probabilistic model of the pairwise comparison results and develop a dynamic sampling
policy that can further improve the ranking accuracy via modeling the feature information.
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Appendix

In this section, we provide detailed proofs of some propositions in the paper.

Proof (of Proposition 1)
We will only show that (18) and (19) can be represented as (20) when Y;; = 1. The
proof for Y;; = —1 is similar.

. . ! . 1 (o +1
It is known that E [0;|@ ~ Dir(a’)] = z—g and E [07]6 ~ Dir(a’)] = Z’ggzlgil)) for k =
1,2,..., K, which characterize the left-hand sides of (18) and (19).
With elementary calculus, we can show

N

91‘ 1 (67
Pr(Y;; = 1|la) = 62+ "de = 62
(v = 1le) = [ 121 S (62)
so that
p(0,Y; =1la) ait+a; 0 ar—1
0V =1,a) = == 0o~ 63
POy @) Pr(Y;; = 1l|a) a;  0;+0; B H (63)

Let 8= (51,...,0K) with 8; = a; + 1 and By = ay for k # i. Then, we can show that

/ 7 1 ﬁe%‘ldo

k=1

/ 0: 1 ﬁeﬁklde
A 0i +6;B(B) F

k=1
_ o; +1 o+ o (64)
oy a; + Q; + 1’

a; + o

Oéi—|—Oéj

where the first and the third equalities are due to (62) and (63) and the second equality
is by the definition of 8 and the property I'(x 4+ 1) = 2T'(z) of Gamma function. Using a
similar argument, we can show that

oyt

E[f|Vi; =1,0] = % for k # i, j (66)
0
itlai+2 o j

E[Q?|Yijzl,a} _a +1a; + a; + (67)

ag oo+ 1la;+a;+2

aja;+1 o +aj
E [0?|Y;; = 1, = 213 L 68
[]‘ K 04] 0400404-104@‘4-04]‘4—2 ( )

2 ap ag + 1 .
E[6;]Yi; =1,a] = a0 a0 1 for k # i, j. (69)

Note that, when Y;; = 1, the right-hand sides of (18) and (19) can be represented as the
right-hand side of (20) using (64)~(69) [ |
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Proof (of Proposition 3)
We will only show the conclusion when Y;7’ = 1. The proof for Y;7 = —1 is similar.

When V¥ = 1, we have 7, = —i2=—. We will first show (44) and (45) can

ij Haw O+t

be represented as the first four equations in (48). Since E [0x|0 ~ Dir(a/)] = % and

o
E [9,%|0 ~ Dir(a’)] = % for k = 1,2,..., K, the left-hand sides of the first four
equations in (48) and those of (44) and (45) are identical.

With (62) and some basic properties of the Beta distribution, we can show

) 0.
& 0i +0; o pw)gi +0; ‘ ir(e), pu eta(fiw, V)

T tmetn e (70
Nw+Vwai+aj /Lw+VwOZ1;+Oéj

Pr(Yy = l]e, puw, Vi)

so that

p(e,ﬂw|yfj‘u = 1aaaﬂwayw) (71)
0; 9 K 1 pu—1 o
<Pw 0:+0; —+ (1 - pw)@.ﬁ@) B(a)B(luw,uw) Hk:1 9?’“ Pluu (1 — puw)’ !
Hw (873 Vy aj :
Pwt+Vw ai+aj PwFVw ity

The equations (70) and (71), together with (64), imply

E[GZD/ZEU - 17 &, [y, Vw}

1 07 0,0 1 K 1 w1 o
Jo I (Pwm +(- pw)(’ii@j) B(o)B(pw,w) L 1k=1 0t p (1= pw)~ dOdpy

Hw Q Vw aj
Hwt+Vw ai+ag HwtVw ai+aj
6? 0,0; K -1
Hw 7 Vw J7 1 Qp
a (uw—i-l/w 040, Tttt 9i+9j> B(a) [ Lk=1 6" d0
- Hw a; Uy [
PwtVw ai+aj PwFVw @ity
Pw oy o+l Vy  Q Qy
. MtV o aitag+1 + pw+vw o aita;+1
- Hw Qg Vy o] Hw (o3 Vy a5

Pw+Vw oitaj PwtVw it Pw+Vw ajtag Pw+Vw oitaj
(ai + 1)(ai + o) ai(a; + aj)

— . 1 — ;s ]
Mg ag(a; + o + 1) +( n”w)ao(ai+aj+1)
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Using a similar argument, we can show that

aj(a; + o) (aj + 1)( + o)

E[0;]Y;;) =1 ws Yw| = Thijw 1 — Mijw 7
031¥55" = 1> 00 o o] = i ao(ai+aj+1)+( "hij )ao(ai+aj+1) (73)
E[0lY:Y = 1, 0, s, v = -5 for k #i,j (74)
o
E [021Y = 1, 0, s v] = Mijw(ci + V(i +2)(ei + aj) (1= nijw)ailai +1)(ei + o)
J ao(ao—l—l)(ai—l—aj—i—Q) ao(ao—i—l)(ai—f—aj-i-Q)
(75)
E [9]2’}/;7;; _ L%MwWw] _ Nijwa(aj + (i +a;5) (1= nijw)(ay +1)(a + 2) (i + o)
ao(a0+1)(ai+aj+2) ao(a0+1)(ai+aj+2)
(76)
ag o + 1 .
E[62]YvY =1 wy V| = — fi . J.
[9k| 1J y O [y, U ] o ap + 1 OI'k‘?éZj (77)

In the next, we will show (46) and (47) can be represented as the last two equations in
(48). When Yy = 1, the last two equations in (48) become

MZU _ .. pw+1 .. Hw
IR S ) (1+2> i)t () (1 +1)
Nw p’w V’w Vw N .. Hw Hw _ .. Hw ) Hw
G Gl D) = Tk Gt o D et T (LT 05K G Ty it (78

.. V) (Vw1 —n.. (vw+1) (vw+2)
TNik Gy v+ 1) (ot 72) T (L= i) (Hw+vw+1) (o +rw+2)

. Py (P +1)

It is known that E [py,|pw ~ Beta(ul,, v.,)] = AT E [p2|pw ~ Beta(p,, v,,)] = ALY
and E [(1 —pw)2|pw ~ Beta(lufw’yiu)] = o +Z}”§(V;”,+i3/, ) indicating that the left-hand
sides of (46) and (47) match those of (78).

To characterize the right-hand sides of (46) and (47), we first derive from (71) that

E [pw‘y;'?)? «, [, V]
1 0; 0; 1 K -1 pw—1 Vo —
fO Ja (p%” 710 pu(l— pw)eﬁzej) B(a)B(ftw,w) [Teet 025 Pl (1 = pu) ldedp,,

- Haw a; Vi 7]
Pwt+Vw i+ PwtVw @ity

1 . , o -
Jo (“i(ﬁ%‘ P+ 5 da; pu(l = pw}) B P (L= pw)™~dpy

Hw [e73 Vw o]
PwFVw aitay Pw+Vw i+
Hw Hw+1 a; Hw Vy aj
_ Pw+Vw paw+rw+1 a;tag + PwFVw pw+rw+1 it
- Hw oy Vi o Haw a; Vi Qj
Hwt+Vw ity PwtVw ai+aj PwFVw ity Hw+Vw ity
pw + 1 Hw
= Niju———— + (1= Nijw) —————— (79)
7 o + 1w + 1 T oy 4 v + 1
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Following a similar procedure, we can show

E[p2 + (1 — puw)?|0i =w 0,0 ~ Dir(a), py ~ Beta(fup, vi)]

Pw pw+1 Pw+2 a; Pw pw+1 vy aj
P +Vw Vw1 pp+Vw+2 aitoy PtV i F+Vw+1 o+ +2 o tag
= Hw a; Vay aj + Pw a; 2% aj
PwFVw ity Pwt+Vw ity Hwt+Vw ity Pwt+Vw ai+aj
Vw vy +1 Hw (87 Vw Vy+1 Va+2 aj
How+Vw PwtVw+] pw+rw+2 aito; Hw+Vw pw+Vwt] pw+vw+2 aito;
+ Hw (o7} Va a; + Hw (o7} Va aj
Pwt+Vw it PwFrw aitay Hwtrw oitag Hw+Vw it
+1 + 2 +1
(tw + v + 1) (py + v + 2) (tw + v + 1) (pay + v + 2)
V) (U + 1 U + 1) (v + 2
+Mijw () + 1) + (1 — Nijw) (v + 1) +2) )
(tw + v + 1) (py + i + 2) (i + v + 1) (py + v + 2)
Putting (79) and (80) together, we have shown that the right-hand sides of (78) are exactly
the right-hand sides of (70) and (71), which completes the proof. [ |
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