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Abstract

We consider the problem of recovering an invertible n×nmatrix A and a sparse n×p random
matrix X based on the observation of Y = AX (up to a scaling and permutation of columns
of A and rows of X). Using only elementary tools from the theory of empirical processes
we show that a version of the Er-SpUD algorithm by Spielman, Wang and Wright with
high probability recovers A and X exactly, provided that p ≥ Cn log n, which is optimal
up to the constant C.

Keywords: sparse dictionaries, Er-SpUD algorithm, `1 minimization, exact recovery, sam-
ple complexity

1. Introduction

Recovery of sparsely-used dictionaries has recently attracted considerable attention in con-
nection to applications in machine learning, signal processing or computational neuro-
science. In particular, two important fields of applications are dictionary learning (Ol-
shausen and Field, 1996; Kreutz-Delgado et al., 2003; Bruckstein et al., 2009; Rubinstein
et al., 2010; Yang et al., 2010) and blind source separation (Zibulevsky and Pearlmutter,
2001; Georgiev et al., 2005). We do not discuss these applications and refer the Reader to
the aforesaid articles for details.

Among many approaches to this problem a particularly successful one has been presented
by Spielman, Wang, and Wright (2012a,b), who considered the noiseless-invertible case:

The main problem:

Consider an invertible n × n matrix A and a random n × p sparse matrix X. Denote
Y = AX. The objective is to reconstruct A and X (up to scaling and permutation of
columns of A and rows of X) based on the observable data Y .

Spielman, Wang, and Wright (2012a,b) provide an algorithm which with high probability
successfully recovers the matrices A and X up to rescaling and permutation of the columns
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of A and rows of X, provided that X is a sparse random matrix satisfying the following
probabilistic assumptions.

Probabilistic model specification

X = [Xij ]1≤i≤n,1≤j≤p,

where
Xij = χijRij

and

• χij , Rij are independent random variables,

• χij are Bernoulli distributed: P(χij = 1) = 1− P(χij = 0) = θ,

• Rij are i.i.d., with mean zero and satisfy

µ := E|Rij | ≥ 1/10,

∀t>0 P(|Rij | ≥ t) ≤ 2e−t
2/2.

Following Spielman, Wang, and Wright (2012a) we will say that matrices satisfying the
above assumptions follow the Bernoulli-Subgaussian model with parameter θ.

We remark that the constant 1/10 above is of no importance and has been chosen
following Spielman, Wang, and Wright (2012a) and Luh and Vu (2016).

The approach of Spielman, Wang and Wright consists of two steps. At the first step
(given by the Er-SpUD algorithm we describe below) one gathers p/2 candidates for the
rows of X. The second, greedy step (Greedy algorithm, also described below) selects from
the candidates the set of n sparsest vectors, which form a matrix of rank n.

The algorithms work as follows:

ER-SpUD(DC): Exact Recovery of Sparsely-Used Dictionaries using the sum
of two columns of Y as constraint vectors.

1. Randomly pair the columns of Y into p/2 groups gj = {Y ej1 , Y ej2}.

2. For j = 1, . . . , p/2
Let rj = Y ej1 + Y ej2, where gj = {Y ej1 , Y ej2}.
Solve minw ‖wTY ‖1 subject to rTj w = 1, and set sj = wTY .

Above we use the convention that if rj = 0 (which happens with nonzero probabil-
ity), and as a consequence the minimization problem has no solution, then we skip the
corresponding step of the algorithm.
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The second stage, described below, is run on the set S of vectors si returned at the first
stage (for notational simplicity we relabel them if rj = 0 for some j). We use the standard
notation that ‖x‖0 denotes the number of nonzero coordinates of a vector x.

Greedy: A Greedy Algorithm to Reconstruct X and A.

1. REQUIRE: S = {s1, . . . , sT } ⊆ Rp.

2. For i = 1, . . . , n
REPEAT

l← argmin sl∈S‖sl‖0, breaking ties arbitrarily

xi = sl, S = S \ {sl}
UNTIL rank([x1, . . . , xi]) = i

3. Set X = [x1, . . . , xn]T and A = Y Y T (XY T )−1.

Spielman, Wang, and Wright (2012a) have proved that there exist positive constants
C,α, such that if

2

n
≤ θ ≤ α√

n

and p ≥ Cn2 log2 n, then the ER-SpUD algorithm successfully recovers the matrices A,X
with probability at least 1 − 1

Cp10
. Note that the equation Y = A′X ′ still holds if we

set A′ = AΠΛ and X ′ = Λ−1ΠTX for some permutation matrix Π and a nonsingular
diagonal matrix Λ. Therefore, by recovery we mean that nonzero multiples of all the
rows of X are among the set {s1, . . . , sp/2} produced by the ER-SpUD(DC) algorithm.
In (Spielman, Wang, and Wright, 2012a) it is also proved that if P(Rij = 0) = 0, then
for p > Cn log n, with probability 1 − C ′n exp(−cθp) for any matrices A′, X ′ such that
Y = A′X ′ and maxi ‖eTi X ′‖0 ≤ maxi ‖eTi X‖0 there exists a permutation matrix Π and a
nonsingular diagonal matrix Λ such that A′ = AΠΛ, X ′ = Λ−1ΠTX. In fact, Spielman,
Wang, and Wright (2012a) prove that with the above probability any row of X is nonzero
and has at most (10/9)θp nonzero entries, whereas any linear combination of two or more
rows of X has at least (11/9)θp nonzero entries.

In particular it follows that the Greedy algorithm will extract from the set {s1, . . . , sT }
multiples of all n rows of X (note that all sj ’s are in the row space of Y and thus also in
the row space of X). Since X is with high probability of rank n, one easily shows that one
can recover A by the formula used in the 3rd step of the algorithm. We remark that Luh
and Vu (2016) obtained the same results concerning sparsity of linear combinations of rows
of X without the assumptions about the symmetry of the variables Rij .

Note also that for θ of the order n−1, p = Cn log n is necessary for uniqueness of the
solution in the sense described above, otherwise with significant probability some of the
rows of X may be zero, which means that some columns of A do not influence the matrix
Y .
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In (Spielman, Wang, and Wright, 2012a) it is also proved that if p > Cn log n, θ >

C ′
√

logn
n , then with high probability the ER-SpUD algorithm does not recover any of the

rows of X.

Spielman, Wang and Wright have conjectured that their algorithm works with high
probability provided that p > Cn log n (which, as mentioned above is required for well-
posedness of the problem).

In this note we will consider a modified version of the algorithm with a slightly different
first stage. Namely, instead of using only p/2 pairs of columns of Y , we will use all

(
p
2

)
pairs. For fixed p it clearly increases the time complexity of the algorithm (which however
remains polynomial), but the advantage of this modification is the possibility of proving
that it requires only p = Cn log n to recover X and A with high probability, which as
explained above is optimal. More specifically, we will consider the following algorithm.

Modified ER-SpUD(DC): Exact Recovery of Sparsely-Used Dictionaries us-
ing the sum of two columns of Y as constraint vectors.

For i = 1, . . . , p− 1
For j = i+ 1, . . . , p
Let rij = Y ei + Y ej
Solve minw ‖wTY ‖1 subject to rTijw = 1, and set sij = wTY .

The final step of the recovery algorithm is again a greedy selection of the sparsest
vectors among the candidates collected at the first step. As before, under the assumption
P(Rij = 0) = 0, the greedy procedure successfully recovers X and A, provided that multiples
of all the rows of X are present among the input set S.

The main result of this note is

Theorem 1 There exist absolute constants C,α ∈ (0,∞) such that if

2

n
≤ θ ≤ α√

n

and X follows the Bernoulli-Subgaussian model with parameter θ, then for p ≥ Cn log n,
with probability at least 1− 1/p the modified ER-SpUD(DC) algorithm successfully recovers
all the rows of X, i.e., multiples of all the rows of X are present among the vectors sij
returned by the algorithm.

Remark on the single column algorithm Spielman, Wang, and Wright (2012a,b) proposed
also a version of the Er-SpUD algorithm, which instead of sums of two columns of Y as
the vectors rj in the constraints rTj w = 1 of the optimization problem, chooses simply
consecutive columns of Y . They prove that such a version of the algorithm performs well
under the assumption that the random variables Xij are i.i.d. standard Gaussian variables,
2/n ≤ θ ≤ α/

√
n log n and p > Cn2 log2 n (α,C are again universal constants). We remark

that by using our approach in combination with the original arguments of Spielman, Wang,
and Wright (2012a) one can prove that this algorithm works for p > Cn log3 n. To this end
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one needs to prove a counterpart of our Lemma 3 (see below) with the vectors bij replaced
just by the columns of the matrix X and combine it with Lemma 12 of Spielman, Wang, and
Wright (2012a) (Lemma 6 below) in exactly the same way as in Section B.3. of (Spielman,
Wang, and Wright, 2012a) (with γ ' 1/ log n). The needed counterpart of Lemma 3 can be
obtained just by formal changes from the proof we present below. The factor log3 n (instead
of log n) is related to the use of Lemma 12 and is a consequence of the fact that one takes
γ depending on n).

Remarks on recent developments Very recently Sun, Qing, and Wright (2015) proposed an
algorithm with polynomial sample complexity, which recovers well conditioned dictionaries
under the assumption that the variables Rij are i.i.d. standard Gaussian and θ ≤ 1/2, thus
allowing for the first time for a linear number of nonzero entries per column of the matrix
X. Their novel approach is based on non-convex optimization. The sample complexity of
the algorithms in (Sun, Qing, and Wright, 2015) is however higher then for the Er-SpUD
algorithm; as mentioned by the Authors, numerical simulations suggest that it is at least
p = Ω(n2 log n) even in the case of orthogonal matrix A. Sun, Qing, and Wright (2015)
conjecture that algorithms with sample complexity p = O(n log n) should be possible also
for large θ.

As for the complexity of the Er-SpUD algorithm (in its original version), the recent
article (Luh and Vu, 2016) contains a claim that it works for p > Cn log4 n, which differs
from the number of samples conjectured by Spielman, Wang, and Wright (2012a) just by
a polylogarithmic factor. However, as pointed out very recently (after the submission of
the first version of this article) by B lasiok and Nelson (2016), the argument of Luh and Vu
(2016) contains certain inaccuracies. Moreover, B lasiok and Nelson have proved that if the
variables Rij are Rademachers, than for the original version of the Er-SpUD algorithm to
work one needs p ≥ n1.99, which shows that the result of Luh and Vu (2016) and in fact
the original conjecture do not hold. B lasiok and Nelson also propose a modified version of
the algorithm (in the same spirit as in this article) and prove that it works with probability
1 − ε for p > Cn log(Cn/ε), thus obtaining an independent proof of our main result. We
remark that while certain aspects of the analysis are common for (B lasiok and Nelson,
2016) and the present article, the main technical ingredient (i.e., bounding the empirical
process involved in the estimates) is approached differently. While Proposition 2 below is
based on the contraction principle, B lasiok and Nelson (2016) rely on the generic chaining
(majorizing measure) method, see (Talagrand, 2014). Let us also remark that it seems that
by combining the inequality for empirical processes obtained by Luh and Vu (2016) with
the approach of this paper or of (B lasiok and Nelson, 2016) one can prove a weaker result,
namely that the modified version of the algorithm works for p > Cn log4 n.

2. Proof of Theorem 1

We will follow the general approach proposed by Spielman, Wang, and Wright (2012a). The
main new part of the argument is an improved bound on the sample complexity for empirical
approximation of first moments of arbitrary marginals of the columns of the matrix X, given
in Proposition 2 below. So as not to reproduce technical and lengthy parts of the original
proof, we organize this section as follows. First, we present the crucial Proposition 2 and
provide a brief discussion of its mathematical content. Next, we present an overview of the
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main steps in the proof scheme of Spielman, Wang, and Wright (2012a). For parts of the
proof not related to Proposition 2 or to the modification of the algorithm considered here,
we only indicate the relevant statements from (Spielman, Wang, and Wright, 2012a), while
for parts involving the use of Proposition 2 and for the conclusion of the proof we provide
the full argument. Proposition 2 is proved in Section 3.

Below by e1, . . . , eN we will denote the standard basis in RN for various choices of N
(in particular for N = n and N = p). The value of N will be clear from the context and so
this should not lead to ambiguity.

By Bn
1 we will denote the unit ball in the space `n1 , i.e., Bn

1 = {x ∈ Rn : ‖x‖1 ≤ 1},
where for x = (x(1), . . . , x(n)), ‖x‖1 =

∑n
i=1 |x(i)|. The coordinates of a vector x will be

denoted by x(i) or if it does not interfere with other notation (e.g., for indexed families of
vectors) simply by xi. Again, the meaning of the notation will be clear from the context.
If Y is a random variable and q > 0, we denote ‖Y ‖q = (E|Y |q)1/q.

Proposition 2 Let U1, U2, . . . , Up, χ1, . . . , χp be independent random vectors in Rn. As-
sume that for some constant M and all 1 ≤ i ≤ p, 1 ≤ j ≤ n,

Ee|Ui(j)|/M ≤ 2 (1)

and

P(χi(j) = 1) = 1− P(χi(j) = 0) = θ.

Define the random vectors Z1, . . . , Zp with the equality Zi(j) = Ui(j)χi(j) for 1 ≤ i ≤ p,
1 ≤ j ≤ n and consider the random variable

W := sup
x∈Bn1

∣∣∣1
p

p∑
i=1

(|xTZi| − E|xTZi|)
∣∣∣. (2)

Then, for some universal constant C and every q ≥ max(2, log n),

‖W‖q ≤
C

p
(
√
pθq + q)M (3)

and as a consequence

P
(
W ≥ Ce

p
(
√
pθq + q)M

)
≤ e−q. (4)

The above proposition can be considered a quantitative version of the uniform law of
large numbers for linear functionals xTZ indexed by the unit sphere in the space `n1 . As such
it is a classical object of study in the theory of empirical processes. The proof we give uses
only Bernstein’s inequality, see e.g., (van der Vaart and Wellner, 1996), and Talagrand’s
contraction principle (Ledoux and Talagrand, 1991), which in a somewhat similar context
was applied e.g., by Mendelson (2008); Adamczak et al. (2010).

Let us also remark that in the above proposition we do not require independence between
components of the random vectors Ui or χi for fixed i, but just independence between the
random vectors Ui, χi, i = 1, . . . , p.
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2.1 Main Steps of the Proof of Theorem 1

As announced, we will now present an outline of the proof of Theorem 1, indicating which
steps differ from the original argument in (Spielman, Wang, and Wright, 2012a).

Step 1. A change of variables.

Recall that rij are sums of two columns of the matrix Y . At the first step of the proof,
instead of looking at the original optimization problem

minimize ‖wTY ‖1 subject to rTijw = 1 (5)

one performs a change of variables z = ATw, bij = A−1rij , arriving at the optimization
problem

minimize ‖zTX‖1 subject to bTijz = 1. (6)

Note that one cannot solve (6) since it involves the unknown matrices X and A. The
goal of the subsequent steps is to prove that with probability sufficiently separated from
zero the solution z∗ of (6) is a multiple of one of the basis vectors e1, . . . , en, say z∗ = λek.
This means that wT∗ Y = zT∗ X = λeTkX, i.e., (5) recovers the k-th row of X up to scaling.
In combination with a coupon collector phenomenon this will allow to conclude that if p is
sufficiently large, then all the rows will be recovered (this is the content of Step 4).

Step 2. If 0 < |(suppXei)∪(suppXej)| < 1/(8θ), then supp (z∗) ⊆ (suppXei)∪(suppXej).

At this step we prove the following lemma, which is a counterpart of Lemma 11 in
(Spielman et al., 2012a). It is weaker in that we do not consider arbitrary vectors bij , but
only sums of two distinct columns of X (which is enough for the application in the proof of
Theorem 1). On the other hand it works already for p > Cn log n and not for p > Cn2 log n
as the original lemma from (Spielman, Wang, and Wright, 2012a).

Lemma 3 For 1 ≤ i < j ≤ p, define bij = Xei + Xej, Iij = (suppXei) ∪ (suppXej).
There exist numerical constants C,α > 0 such that if 2/n ≤ θ ≤ α/

√
n and p > Cn log n,

then with probability at least 1− p−2 the random matrix X has the following property:

(P1) For every 1 ≤ i < j ≤ p, if 0 < |Iij | ≤ 1/(8θ) then every solution z∗ to the
optimization problem (6) satisfies supp z∗ ⊆ Iij.

Before we pass to the presentation of auxiliary facts needed in the proof of the above
lemma, let us indicate briefly the two main observations behind the lemma, not present in
(Spielman, Wang, and Wright, 2012a). The first one is Proposition 2, which allows to prove
the technical Lemma 5 below. The second one is the fact that due to independence of the
entries of the matrix we do not need to use the union bound over all possible locations of
nonzero coefficients of Xei and Xej , instead we can condition on the disjoint events that
(suppXei)∪(suppXej) = I (where I ranges over nonempty subsets of [n] with |I| ≤ 1/(8θ)),
estimate appropriate conditional probabilities and integrate the result over I.

To prove Lemma 3, one first shows a counterpart of Lemma 16 in (Spielman, Wang, and
Wright, 2012a).
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Lemma 4 For any 1 ≤ j ≤ p, if Z = (χ1jR1j , . . . , χnjRnj), then for all v ∈ Rn,

E|vTZ| ≥ µ

8

√
θ

n
‖v‖1.

Proof Let ε1, . . . , εn be a sequence of i.i.d. Rademacher variables, independent of {χij , Rij}.
By standard symmetrization inequalities, see e.g., Lemma 6.3. in (Ledoux and Talagrand,
1991),

E|vTR| = E
∣∣∣ n∑
i=1

viχijRij

∣∣∣ ≥ 1

2
E
∣∣∣ n∑
i=1

viεiχijRij

∣∣∣.
The random variables εiRji are symmetric and E|εiRij | = µ, so by Lemma 16 from (Spiel-
man, Wang, and Wright, 2012a), the right-hand side above is bounded from below by
µ
8

√
θ
n‖v‖1.

The next lemma is an improvement of Lemma 17 in (Spielman, Wang, and Wright,
2012a), which is crucial for obtaining Lemma 3.

Lemma 5 There exists an absolute constant C, such that the following holds for p >
Cn log n. Let J ⊆ {1, . . . , p} be a fixed subset of size |J | ≤ p

4 . Let XJ be the subma-
trix of X, obtained by a restriction of X to the columns indexed by J . With probability at
least 1− p−8, for any v ∈ Rn,

‖vTX‖1 − 2‖vTXJ‖1 >
pµ

32

√
θ

n
‖v‖1.

Proof Note first that by increasing the set J , we increase ‖vTXJ‖1, so without loss
of generality we can assume that |J | = bp/4c. Apply Proposition 2 with the vectors
Uj = (R1j , . . . , Rnj) and χj = (χ1j , . . . , χnj) and q = 8 log p. Note that our integrabil-
ity assumptions on Rij imply (1) with M being a universal constant. Therefore, for some
absolute constant C and p ≥ Cn log n, with probability at least 1− p−8 we have

sup
v∈Bn1

∣∣∣‖vTX‖1 − E‖vTX‖1
∣∣∣ ≤ C(

√
pθ log p+ log p) ≤ 2C

√
pθ log p,

sup
v∈Bn1

∣∣∣‖vTXJ‖1 − E‖vTXJ‖1
∣∣∣ ≤ 2C

√
pθ log p,

where we used that for C sufficiently large, p/ log p ≥ n ≥ 1/θ.
Thus, by homogeneity, with probability at least 1− p−8, for all v ∈ Rn,∣∣∣‖vTX‖1 − E‖vTX‖1

∣∣∣ ≤ 2C
√
θp log p‖v‖1,∣∣∣‖vTXJ‖1 − E‖vTXJ‖1

∣∣∣ ≤ 2C
√
θp log p‖v‖1.

In particular this means that (using the notation of Proposition 2)

‖vTX‖1 ≥ E‖vTX‖1 − 2C
√
θp log p‖v‖1 = pE|vTZ1| − 2C

√
θp log p‖v‖1,

2‖vTXJ‖1 ≤ 2E‖vTXJ‖1 + 4C
√
θp log p‖v‖1 = 2|J |E|vTZ1|+ 4C

√
θp log p‖v‖1,
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and so

‖vTX‖1 − 2‖vTXJ‖1 ≥ (p− 2|J |)E|vTZ1| − 6C
√
θp log p‖v‖1.

Now, by Lemma 4 and the assumed bound on the cardinality of J , we get

‖vTX‖1 − 2‖vTXJ‖1 ≥
(pµ

16

√
θ

n
− 6C

√
θp log p

)
‖v‖1 >

pµ

32

√
θ

n
‖v‖1

for p > C ′n log n, where C ′ is another absolute constant.

We are now in position to prove Lemma 3.

Proof of Lemma 3 We will show that for each 1 ≤ i < j ≤ p the probability that
0 < |Iij | ≤ 1/(8θ) and there exists a solution to (6) not supported on Iij is bounded from
above by 1/p4. This will imply the lemma, since by the union bound over all i < j,

P(Property P1 does not hold) (7)

≤
∑

1≤i<j≤p
P(0 < |Iij | ≤ 1/(8θ) & there exists a solution z∗ to (6) not supported on Iij).

Let us thus fix i, j and let

S = {l ∈ [p] : ∃k∈IijXkl 6= 0}.

Moreover, for any set I ⊆ [n], define the event

AI = {Iij = I}.

By independence of the random variables Rij , χij , for each k /∈ {i, j}, if 0 < |I| ≤ 1/(8θ),
then

P(k ∈ S|AI) ≤ 1− (1− θ)|I| ≤ 1− e−2θ|I| ≤ 1− e−
1
4 <

1

4
,

where the second inequality holds if α is sufficiently small.

Thus, by independence of columns of X and Hoeffding’s inequality, if 0 < |I| ≤ 1/(8θ),
then

P
(
|S \ {i, j}| ≤ p− 2

4

∣∣∣AI) ≥ 1− 2e−cp (8)

for some universal constant c > 0.

Let z∗ be any solution of (6) and denote by z0 its orthogonal projection on RIij = {x ∈
Rn : xk = 0 for k /∈ Iij}. Set also z1 = z∗ − z0 and let XS , XSc be the matrices obtained
from X by selecting the columns labeled by S and Sc = [p] \S respectively. By the triangle
inequality, and the fact that zT0 XSc = 0 , we get

‖zT∗ X‖1 = ‖(zT0 + zT1 )XS‖1 + ‖(zT0 + zT1 )XSc‖1
≥ ‖zT0 XS‖1 − ‖zT1 XS‖1 + ‖zT1 X‖1 − ‖zT1 XS‖1
= ‖zT0 X‖1 + (‖zT1 X‖1 − 2‖zT1 XS‖1). (9)
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For J ⊆ [p] \ {i, j} define the events

SJ = {S \ {i, j} = J}.

For the moment let us restrict our attention to the event AI ∩ SJ , for a fixed (but
arbitrary) I ⊆ [n], satisfying 0 < |I| ≤ 1/(8θ) and J ⊆ [p]\{i, j}, satisfying |J | ≤ (p−2)/4.

Denote by X ′ the |Ic| × (p − 2) matrix obtained by restricting X to the rows from Ic

and columns from [p] \ {i, j}. If, slightly abusing the notation, we identify z1 with a vector
from R|Ic|, on the event AI ∩ SJ we have

‖zT1 X‖1 − 2‖zT1 XS‖1 = ‖zT1 X ′‖1 − 2‖zT1 X ′S\{i,j}‖1 = ‖zT1 X ′‖1 − 2‖zT1 X ′J‖1, (10)

where in the we first equality we used used the fact that zT1 Xei = zT1 Xej = 0 and the
second one follows from the definition of the event SJ .

Due to independence and identical distribution of the entries of X, conditionally on the
event AI ∩ SJ the matrix X ′ still follows the Bernoulli-Subgaussian model with parameter
θ. This matrix is of size |Ic| × (p − 2), therefore if the constant C ′ is large enough and
p > C ′n log n, it satisfies the assumptions of Lemma 5 (with p − 2 instead of p and |Ic|
instead of n). Since |J | ≤ (p− 2)/4, a conditional application of Lemma 5 gives

P
(

for all v ∈ R|I
c| : ‖vTX ′‖1 − 2‖vTX ′J‖1 ≥

(p− 2)µ

32

√
θ

|Ic|
‖v‖1

∣∣∣AI ∩ SJ) (11)

≥ 1− (p− 2)−8 ≥ 1− 2p−8,

where the last inequality holds for p > C ′ and C ′ sufficiently large.
Note that by the definition of z0, we have bTijz0 = bTijz∗ = 1, therefore z0 is a feasible

candidate for the solution of the optimization problem (6). Thus, by (9) and (10), we have
‖zT1 X ′‖1 − 2‖zT1 X ′J‖1 ≤ 0 and as a consequence, if z1 6= 0 then the event of inequality (11)
does not hold. Thus, for 0 < |I| ≤ 1/(8θ) and |J | ≤ (p− 2)/4, we get

P(for some solution z∗ to (6), z1 6= 0|AI ∩ SJ) ≤ 2p−8. (12)

We are now ready to finish the proof. To shorten the notation, let us denote

B = {for some solution z∗ to (6), z1 6= 0 and 0 < |Iij | ≤ 1/(8θ)}.

By (8) we get

P
(
B ∩ {|S \ {i, j}| > (p− 2)/4}

)
=

∑
I⊆[n] : 0<|I|≤1/(8θ)

P(B ∩ AI ∩ {|S′| > (p− 2)/4})

≤
∑

I⊆[n] : 0<|I|≤1/(8θ)

P(AI ∩ {|S′| > (p− 2)/4})

=
∑

I⊆[n] : 0<|I|≤1/(8θ)

P(|S′| > (p− 2)/4|AI)P(AI)

≤ 2e−cp
∑

I⊆[n] : 0<|I|≤1/(8θ)

P(AI) ≤ 2e−cp,
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where the second to last inequality follows from (8) and the last one from the pairwise
disjointness of the events AI .

Similarly,

P(B∩{|S \ {i, j}| ≤ (p− 2)/4}) =
∑
I⊆[n] :

0<|I|≤1/(8θ)

∑
J⊆[p]\{i,j} :
|J|≤(p−2)/4

P(B ∩ AI ∩ SJ)

≤
∑
I⊆[n] :

0<|I|≤1/(8θ)

∑
J⊆[p]\{i,j} :
|J|≤(p−2)/4

P(B|AI ∩ SJ)P(AI ∩ SJ)

≤ 2p−8
∑
I⊆[n] :

0<|I|≤1/(8θ)

∑
J⊆[p]\{i,j} :
|J|≤(p−2)/4

P(AI ∩ SJ) ≤ 2p−8,

where we used (12) and disjointness of the events AI ∩SJ . Combining the two last inequal-
ities, we get

P(B) ≤ 2e−cp + 2p−8 ≤ p−4

for p > Cn log n with a sufficiently large absolute constant C. By (7) this ends the proof of
the lemma.

Step 3. If (suppXei) ∪ (suppXej) is small, then z∗ = λek where k = argmax1≤l≤n|bij(l)|.

At this step one proves the following lemma (Lemma 12 in Spielman, Wang, and Wright
2012a). Since no changes with respect to the original argument are required (we do not
use Proposition 2 here), we do not reproduce the proof and refer the Reader to (Spielman,
Wang, and Wright, 2012a) for details. We remark that although the lemma is formulated
therein for symmetric variables, the symmetry assumption is not used in its proof.

Below, by |b|↓1 ≥ |b|
↓
2 ≥ . . . ≥ |b|↓n, we denote the nonincreasing rearrangement of the

sequence |b1|, . . . , |bn|, while for J ⊆ [n], XJ denotes the matrix obtained fromX by selecting
the rows indexed by the set J .

Lemma 6 There exist two positive constants c1, c2 such that the following holds. For any
γ > 0 and s ∈ Z+, such that θs < γ/8 and p such that

p ≥ max
{c1s log n

θγ2
, n
}
, and

p

log p
≥ c2

θγ2
,

with probability at least 1− 4p−10, the random matrix X has the following property:

(P2) For every J ⊆ [n] with |J | = s and every b ∈ Rs, satisfying
|b|↓2
|b|↓1
≤ 1 − γ, the

solution to the restricted problem

minimize ‖zTXJ‖1 subject to bT z = 1, (13)

is unique, 1-sparse, and is supported on the index of the largest entry of b.

11
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Step 4. Conclusion of the proof.

Set s = 12θn+ 1. Our first goal is to prove that with probability at least 1− 1/p2, for
all k ∈ [n], there exist i, j ∈ [p], i 6= j such that the vector b = Xei + Xej satisfies the

assumptions of Lemma 6, |b|↓1 = |bk| and Iij := (suppXei)∪ (suppXej) satisfies 0 < |Iij | ≤
1/(8θ), which will allow us to take advantage of Lemma 3. This will already imply that the
solution to the problem (6) for such i, j produces a multiple of the k-th row of X.

Note that we have

ER2
ij ≤ 4

∫ ∞
0

te−t
2/2dt = 4.

Since E|Rij | = µ ≥ 1
10 , by the Paley-Zygmund inequality, see e.g., Corollary 3.3.2. in (de la

Peña and Giné, 1999), we have

P(|Rij | ≥
1

20
) ≥ 3

4

(E|Rij |)2

ER2
ij

≥ c0

for some universal constant c0 > 0. In particular P(|Rij | = 0) < 1 − c0
2 . Let q be any

(1− c0/(2s))-quantile of |Rij |, i.e., P(|Rij | ≤ q) ≥ (1− c0/(2s)) and P(|Rij | ≥ q) ≥ c0/(2s).
In particular, since s ≥ 1, we get q > 0. We have P(Rij ≥ q) ≥ c0/(4s) or P(Rij ≤ −q) ≥
c0/(4s). Let us assume that P(Rij ≥ q) ≥ c0/(4s), the other case is analogous.

Before we proceed with the formal proof, which due to many events under consideration
may appear technical, let us provide its informal description. Let us focus on a single value
of k (at the end of the argument we will take a union bound over all k ≤ n). We will first
prove that among the first p/2 columns of the matrix X there is one (say Xei) which has few
nonzero entries, the k-th entry exceeds the quantile q and all the other entries are smaller
then q in the absolute value. This corresponds to the events Eki and Ak considered below.
Once we establish that this holds with high probability (equation (14)), we will fix a single
column with this property (say with the smallest index) and will prove that conditionally
on this event among the p/2 last columns of X we can find a column (say Xej) with the
same properties and such that the only entry which is nonzero in both Xei and Xej is the
k-th one (which corresponds to the event Bk below and is the content of equation (17)).
This will imply that

• the set Iij satisfies the premises of the implication of Lemma 3 (it is nonempty and
not too large),

• the k-th entry of bij = Xei + Xej exceeds 2q while all the other entries are smaller
than q in absolute value, which allows to use Lemma 6 with γ = 1/2.

Combining the two lemmas will allow us to conclude that the solution to (6) produces a
nonzero multiple of ek, i.e., the solution to (5) produces a nonzero multiple of the k-th row
of X.

Establishing the aforesaid properties is not difficult and relies just on the independence
of entries. In essence it can be reduced to saying that in a sequence of Bernoulli trials
with probability of success equal to ρ, it is highly unlikely that we will have to wait much
longer than 1/ρ for the first success. Specifically, if ρ > c/n, then under our assumptions
on p, the probability that no success occurs in p/2 steps is smaller than 1/p4 (see e.g.,

12
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equation (16) below). In the proof the trials correspond to columns of X and success to
the conjunction of the properties stated above. Both parts of the proof rely on estimating
the probability of success from below (in the second part it is the conditional probability,
since the event in question depends on the first part). The main reason behind technical
(notational) difficulties is that one needs to explore independence of the variables χij and
Rij in the right order to be able to take advantage of the already established bounds in
consecutive steps.

Define thus the event Eki as

Eki =
{
χki = 1, |{r ∈ [n] \ {k} : χri = 1}| ≤ (s− 1)/2, Rki ≥ q, ∀r 6=k χri = 1 =⇒ |Rri| ≤ q

}
(see the description above for the motivation of this and subsequent definitions).

We will assume that p ≥ 2Cn log n for some numerical constant C to be fixed later on.
For k ∈ [n], consider the events

Ak =
⋃

1≤i≤bp/2c

Eki

and

Bk =
⋃

1≤i≤bp/2c

⋃
bp/2c<j≤p

(
Eki ∩ Ekj ∩

{
{l ∈ [n] : χli = χlj = 1} = {k}

})
.

We will first show that for all k ∈ [n],

P(Ak) ≥ 1− 1

p4
, (14)

which we will use to prove that

P(Bk) ≥ 1− 1

p3
. (15)

Let us start with the proof of (14). Set Bki = {|{r ∈ [n] \ {k} : χrk = 1}| ≤ (s− 1)/2}. By
independence we have

P(Eki) = P(χki = 1)P(Rki ≥ q)P(Bki)P(∀r 6=k χri = 1 =⇒ |Rri| ≤ q|Bki)

≥ θ c0

4s

(
1− 2θ(n− 1)

s− 1

)(
1− c0

2s

)(s−1)/2
,

where to estimate P(Bki) we used Markov’s inequality. The last factor comes from the
definition of q as the (1 − c0/(2s))-quantile of Rij . The right hand side above is bounded
from below by c1/n for some universal constant c1. Therefore if the constant C is large
enough, we obtain

P
( ⋂

1≤i≤bp/2c

Ecki
)
≤
(

1− c1

n

)bp/2c
≤ exp(−c1p/(4n)) ≤ exp(−4 log p) =

1

p4
, (16)

where we used the inequality p/ log p ≥ 16c−1
1 n for p ≥ Cn log n. We have thus established

(14).

13
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Let us now pass to (15). Denote by F1 the σ-field generated by χki, Rki, k ∈ [n], 1 ≤ i ≤
bp/2c. Note that Ak ∈ F1.

For ω ∈ Ak define imin(ω) = min{1 ≤ i ≤ bp/2c : ω ∈ Eki}. Note that on Ak,

P(Bk|F1) ≥ P
( ⋃
bp/2c<j≤p

(
Ekj ∩

{
{l ∈ [n] : χlimin

= χlj = 1} = {k}
})∣∣∣F1

)
Define

Ckj = {|{r ∈ [n] \ {k} : χrj = 1}| ≤ (s− 1)/2} ∩
{
{l ∈ [n] : χlimin

= χlj = 1} = {k}
}
.

Similarly as in the argument leading to (14), for fixed j, using the independence of the
variables χlm, Rlm and properties of the conditional probability, we obtain on the event Ak,

P
(
Ekj ∩

{
{l ∈ [n] : χlimin

= χlj = 1} = {k}
}∣∣∣F1

)
= P(Rkj ≥ q)E

(
1CkjP(∀r 6=k χrj = 1 =⇒ |Rrj | ≤ q|Ckj ,F1)|F1

)
≥ P(Rkj ≥ q)E

(
1Ckj

(
1− c0

2s

) s−1
2
∣∣∣F1

)
= P(Rkj ≥ q)

(
1− c0

2s

) s−1
2 P(Ckj |F1)

≥ c0

4s

(
1− c0

2s

) s−1
2 ×(

P
(
{l ∈ [n] : χlimin

= χlj = 1} = {k}
∣∣∣F1

)
− P

(
χkj = 1, |{r ∈ [n] \ {k} : χrj = 1}| > s− 1

2

∣∣∣F1

))
≥ c0

4s

(
1− c0

4s

) s−1
2
(
θ(1− θ)(s−1)/2 − θ2θ(n− 1)

s− 1

)
,

where in the last line we again used Markov’s inequality.

Now recall that θ ≤ α√
n

for some universal constant α. If α is small enough then

1− θ ≥ e−2θ and

(1− θ)(s−1)/2 ≥ e−θ(s−1) = e−12θ2n ≥ e−12α2 ≥ 1

3
.

Since 2θ(n−1)
s−1 ≤ 1

6 , this implies that

P
(
Ekj ∩

{
{l ∈ [n] : χljmin

= χlj = 1} = {k}
}∣∣∣F1

)
≥ c2

n

for some positive universal constant c2. Since the events Ekj ∩
{
{l ∈ [n] : χljmin

= χlk =

1} = {k}
}

, bp/2c < k ≤ p are conditionally independent, given F1, we obtain that on Ak,

P(Bck|F1) ≤
(

1− c2

n

)bp/2c
≤ 1

p4
, (17)

14
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provided C is a sufficiently large universal constant. Now, using (14), we get

P(Bk) ≥ E1AkP(Bk|F1) ≥ P(Ak)
(

1− 1

p4

)
≥
(

1− 1

p4

)2
≥ 1− 1

p3
,

proving (15).
Taking the union bound over k ∈ [n], we get

P(
⋂

1≤k≤n
Bk) ≥ 1− 1

p2
.

Set γ = 1/2 and observe that if C is large enough and α small enough, then the
assumptions of Lemma 3 and Lemma 6 are satisfied. In particular s = 12θn+ 1 ≤ γ

8θ ≤
1
8θ .

Recall the properties P1 and P2 considered in the said lemmas. Consider the event A =⋂
1≤k≤n Bk ∩{properties P1 and P2 hold} and note that P(A) ≥ 1− 1

p . On the event A, for
every k, there exist 1 ≤ i < j ≤ p, such that

• 1 ≤ |Iij | ≤ s ≤ γ
8θ ≤

1
8θ ,

• the largest entry of bij (in absolute value) equals bij(k) ≥ 2q > 0 whereas the remaining
entries do not exceed q,

In particular, by property P1 we obtain that any solution z∗ to the problem (6) satisfies
supp z∗ ⊆ Iij . Therefore for some (any) J ⊇ Iij with |J | = bsc, we obtain (identifying
vectors supported on J with their restrictions to J), that z∗ is in fact a solution to the
restricted problem (13) with b = bij , which by property P2 implies that z∗ = λek for some
λ 6= 0.

According to the discussion at the beginning of Step 1, this means that the solution w∗
to (5) satisfies wT∗ Y = λeTkX, i.e., the algorithm, when analyzing the vector bij , will add a
multiple of the k-th row of X to the collection S.

This ends the proof of Theorem 1.

3. Proof of Proposition 2

The first tool we will need is the classical Bernstein’s inequality, see e.g., Lemma 2.2.11 in
(van der Vaart and Wellner, 1996).

Lemma 7 (Bernstein’s inequality) Let Y1, . . . , Yp be independent mean zero random
variables such that for some constants M,v and every integer k ≥ 2, E|Yi|k ≤ k!Mk−2v/2.
Then, for every t > 0,

P
(∣∣∣ p∑

i=1

Yi

∣∣∣ ≥ t) ≤ 2 exp
(
− t2

2(pv +Mt)

)
.

As a consequence, for every q ≥ 2,∥∥∥ p∑
i=1

Yi

∥∥∥
q
≤ C(

√
qpv + qM), (18)

where C is a universal constant.
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Another (also quite standard) tool we will rely on is the contraction principle for em-
pirical processes due to Talagrand, see Theorem 4.12. in (Ledoux and Talagrand, 1991).

Lemma 8 (Talagrand’s contraction principle) Let F : R+ → R+ be convex and in-
creasing. Let further ϕ : R → R be a 1-Lipschitz function such that ϕ(0) = 0. For every
bounded subset T of Rn, if ε1, . . . , εn are i.i.d. Rademacher variables, then

EF
(

sup
t∈T

1

2

∣∣∣ n∑
i=1

ϕ(ti)εi

∣∣∣) ≤ EF
(

sup
t∈T

∣∣∣ n∑
i=1

tiεi

∣∣∣)
We can now present the proof of Proposition 2.

Proof of Proposition 2 Let ε1, . . . , εp be i.i.d. Rademacher variables, independent of the
sequences (Ui), (χi). By the symmetrization inequality, see e.g., (Ledoux and Talagrand,
1991, Lemma 6.3.) or (van der Vaart and Wellner, 1996, Lemma 2.31), we have

EW q ≤ 2qE sup
x∈Bn1

∣∣∣1
p

p∑
i=1

εi|xTZi|
∣∣∣q.

Now, since the function t 7→ |t| is a contraction, an application of Lemma 8 with F (x) = |x|q,
conditionally on Zi, gives

EW q ≤ 22qE sup
x∈Bn1

∣∣∣1
p

p∑
i=1

εix
TZi

∣∣∣q =
22q

pq
E sup
x∈Bn1

∣∣∣xT p∑
i=1

εiZi

∣∣∣q
=

22q

pq
E
∥∥∥ p∑
i=1

εiZi

∥∥∥q
∞

=
22q

pq
E max

1≤j≤n

∣∣∣ p∑
i=1

εiZi(j)
∣∣∣q

≤ 22q

pq

n∑
j=1

E
∣∣∣ p∑
i=1

εiZi(j)
∣∣∣q. (19)

Now, for every i, j and every integer k ≥ 2 we have

E|Zi(j)|k = θE|Ui(j)|k ≤ θMkk!Ee|Ui(j)|/M ≤ 2k!θMk = k!vMk−2/2

with v = 4θM2. Thus by the moment version (18) of Bernstein’s inequality for some
universal constant C we get

E
∣∣∣ p∑
i=1

εiXi(j)
∣∣∣q ≤ Cq(√qpθM + qM

)q
,

which, when combined with (19), yields for q ≥ log n,

‖W‖q ≤
4Ce

p
(
√
pθq + q)M.

The first part of the proposition follows by adjusting the constant C. The tail bound is
a direct consequence of the Chebyshev inequality for the q-th moment.
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