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Abstract

Local network community detection is the task of finding a single community of nodes
concentrated around few given seed nodes in a localized way. Conductance is a popular
objective function used in many algorithms for local community detection. This paper
studies a continuous relaxation of conductance. We show that continuous optimization of
this objective still leads to discrete communities. We investigate the relation of conduc-
tance with weighted kernel k-means for a single community, which leads to the introduction
of a new objective function, σ-conductance. Conductance is obtained by setting σ to 0.
Two algorithms, EMc and PGDc, are proposed to locally optimize σ-conductance and
automatically tune the parameter σ. They are based on expectation maximization and
projected gradient descent, respectively. We prove locality and give performance guar-
antees for EMc and PGDc for a class of dense and well separated communities centered
around the seeds. Experiments are conducted on networks with ground-truth communities,
comparing to state-of-the-art graph diffusion algorithms for conductance optimization. On
large graphs, results indicate that EMc and PGDc stay localized and produce communities
most similar to the ground, while graph diffusion algorithms generate large communities
of lower quality.1
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1. Introduction

Imagine that you are trying to find a community of nodes in a network around a given
set of nodes. A simple way to approach this problem is to consider this set as seed nodes,
and then keep adding nodes in a local neighborhood of the seeds as long as this makes
the community better in some sense. In contrast to global clustering, where the overall
community structure of a network has to be found, local community detection aims to find
only one community around the given seeds by relying on local computations involving
only nodes relatively close to the seed. Local community detection by seed expansion is
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especially beneficial in large networks, and is commonly used in real-life large scale network
analysis (Gargi et al., 2011; Leskovec et al., 2010; Wu et al., 2012).

Several algorithms for local community detection operate by seed expansion. These
methods have different expansion strategies, but what they have in common is their use
of conductance as the objective to be optimized. Intuitively, conductance measures how
strongly a set of nodes is connected to the rest of the graph; sets of nodes that are isolated
from the graph have low conductance and make good communities.

The problem of finding a set of minimum conductance in a graph is computationally
intractable (Chawla et al., 2005; Š́ıma and Schaeffer, 2006). As a consequence, many heuris-
tic and approximation algorithms for local community detection have been introduced (see
references in the related work section). In particular, effective algorithms for this task are
based on the local graph diffusion method. A graph diffusion vector f is an infinite series
f =

∑∞
i=0 αiP

is, with diffusion coefficients
∑∞

i=0 αi = 1, seed nodes s, and random walk
transition matrix P. Types of graph diffusion, such as personalized Page Rank (Ander-
sen and Lang, 2006) and Heat Kernel (Chung, 2007), are determined by the choice of the
diffusion coefficients. In the diffusion method an approximation of f is computed. After
dividing each vector component by the degree of the corresponding node, the nodes are
sorted in descending order by their values in this vector. Next, the conductance of each
prefix of the sorted list is computed and either the set of smallest conductance is selected,
e.g. in (Andersen and Lang, 2006) or a local optima of conductance along the prefix length
dimension (Yang and Leskovec, 2012) is considered.

These algorithms optimize conductance along a single dimension, representing the order
in which nodes are added by the algorithm. However this ordering is mainly related to the
seed, and not directly to the objective that is being optimized. Algorithms for the direct
optimization of conductance mainly operate in the discrete search space of communities, and
locally optimize conductance by adding and/or removing one node. This amounts to fixing
a specific neighborhood structure over communities where the neighbors of a community are
only those communities which differ by the membership of a single node. This is just one
possible choice of community neighbor. A natural way to avoid the problem of choosing a
specific neighborhood structure is to use continuous rather than discrete optimization. To do
this, we need a continuous relaxation of conductance, extending the notion of communities
to allow for fractional membership. This paper investigates such a continuous relaxation,
which leads to the following findings.

1.0.1 On Local Optima

Although local optima of a continuous relaxation of conductance might at first glance have
nodes with fractional memberships, somewhat surprisingly all strict local optima are dis-
crete. This means that continuous optimization can directly be used to find communities
without fractional memberships.

1.0.2 Relation with Weighted Kernel K-Means

We unravel the relation between conductance and weighted kernel k-means objectives using
the framework by Dhillon et al. (2007). Since the aim is to find only one community,
we consider a slight variation with one mean, that is, with k = 1. This relation leads
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to the introduction of a new objective function for local community detection, called σ-
conductance, which is the sum of conductance and a regularization term whose influence
is controlled by a parameter σ. Interestingly, the choice of σ has a direct effect on the
number of local optima of the function, where larger values of σ lead to more local optima.
In particular, we prove that for σ > 2 all discrete communities are local optima. As
a consequence, due to the seed expansion approach, local optimization of σ-conductance
favors smaller communities for larger values of σ.

1.0.3 Algorithms

Local optimization of σ-conductance can be easily performed using the projected gradient
descent method. We develop an algorithm based on this method, called PGDc. Motivated
by the relation between conductance and k-means clustering, we introduce an Expectation-
Maximization (EM) algorithm for σ-conductance optimization, called EMc. We show that
for σ = 0, this algorithm is almost identical to projected gradient descent with an infinite
step size in each iteration. We then propose a heuristic procedure for choosing σ automat-
ically in these algorithms.

1.0.4 Retrieving Communities

We give a theoretic characterization of a class of communities, called dense and isolated
communities, for which PGDc and EMc perform optimally. For this class of communities
the algorithms exactly recover a community from the seeds. We investigate the relation
between this class of communities and the notion of (α, β)-cluster proposed by (Mishra
et al., 2008) for social networks analysis. And we show that, while all maximal cliques in
a graph are (α, β)-clusters, they are not necessarily dense and isolated communities. We
give a simple condition on the degree of the nodes of a community which guarantees that a
dense and isolated community satisfying such condition is also an (α, β)-cluster.

1.0.5 Experimental Performance

We use publicly available artificial and real-life network data with labeled ground-truth
communities to assess the performance of PGDc and EMc. Results of the two methods
are very similar, with PGDc performing slightly better, while EMc is slightly faster. These
results are compared with those obtained by three state-of-the-art algorithms for conduc-
tance optimization based on the local graph diffusion: the popular Personalized Page Rank
(PPR) diffusion algorithm by Andersen and Lang (2006), a more recent variant by Yang
and Leskovec (2012) (here called YL), and the Heat Kernel (HK) diffusion algorithm by
Kloster and Gleich (2014). On large networks PGDc and EMc stay localized and produce
communities which are more faithful to the ground truth than those generated by the con-
sidered graph diffusion algorithms. PPR and HK produce much larger communities with
a low conductance, while the YL strategy outputs very small communities with a higher
conductance.
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1.1 Related Work

The enormous growth of network data from diverse disciplines such as social and infor-
mation science and biology has boosted research on network community detection (see for
instance the overviews by Schaeffer (2007) and Fortunato (2010)). Here we confine ourself
to literature we consider to be relevant to the present work, namely local community detec-
tion by seed expansion, and review related work on conductance as objective function and
its local optimization. We also briefly review research on other objectives functions, and on
properties of communities and of seeds.

1.1.1 Conductance and Its Local Optimization

Conductance has been largely used for network community detection. For instance Leskovec
et al. (2008) introduced the notion of network community profile plot to measure the quality
of a ‘best’ community as a function of community size in a network. They used conductance
to measure the quality of a community and analyze a large number of communities of
different size scales in real-world social and information networks.

Direct conductance optimization was shown to favor communities which are quasi-cliques
(Kang and Faloutsos, 2011) or communities of large size which include irrelevant subgraphs
(Andersen and Lang, 2006; Whang et al., 2013).

Popular algorithms for local community detection employ the local graph diffusion
method to find a community with small conductance.

Starting from the seminal work by Spielman and Teng (2004) various algorithms for
local community detection by seed expansion based on this approach have been proposed
(Andersen et al., 2006; Avron and Horesh, 2015; Chung, 2007; Kloster and Gleich, 2014;
Zhu et al., 2013a). The theoretical analysis in these works is largely based on a mixing
result which shows that a cut with small conductance can be found by simulating a random
walk starting from a single node for sufficiently many steps (Lovász and Simonovits, 1990).
This result is used to prove that if the seed is near to a set with small conductance then
the result of the procedure is a community with a related conductance, which is returned
in time proportional to the volume of the community (up to a logarithmic factor).

Mahoney et al. (2012) performed local community detection by modifying the spectral
program used in standard global spectral clustering. Specifically the authors incorporated a
bias towards a target region of seed nodes in the form of a constraint to force the solution to
be well connected with or to lie near the seeds. The degree of connectedness was specified by
setting a so-called correlation parameter. The authors showed that the optimal solution of
the resulting constrained optimization problem is a generalization of Personalized PageRank
(Andersen and Lang, 2006).

1.1.2 Other Objectives

Conductance is not the only objective function used in local community detection algo-
rithms. Various other objective functions have been considered in the literature. For in-
stance, Chen et al. (2009) proposed to use the ratio of the average internal and external
degree of nodes in a community as objective function. Clauset (2005) proposed a local vari-
ant of modularity. Wu et al. (2015) modified the classical density objective, equal to the
sum of edges in the community divided by its size, by replacing the denominator with the
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sum of weights of the community nodes, where the weight of a node quantifies its proximity
to the seeds and is computed using a graph diffusion method.

A comparative experimental analysis of objective functions with respect to their exper-
imental and theoretical properties was performed e.g. in (Yang and Leskovec, 2012) and
(Wu et al., 2015), respectively.

1.1.3 Properties of Communities

Instead of focusing on objective functions and methods for local community detection, other
researchers investigated properties of communities. Mishra et al. (2008) focused on inter-
esting classes of communities and algorithms for their exact retrieval. They defined the
so called (α, β)-communities and developed algorithms capable of retrieving this type of
communities starting from a seed connected to a large fraction of the members of the com-
munity. Zhu et al. (2013b) considered the class of well-connected communities, which have
a better internal connectivity than conductance. Internal connectivity of a community is
defined as the inverse of the mixing time for a random walk on the subgraph induced by
the community. They showed that for well-connected communities, it is possible to provide
an improved performance guarantee, in terms of conductance of the output, for local com-
munity detection algorithms based on the diffusion method. Gleich and Seshadhri (2012)
investigated the utility of neighbors of the seed; in particular they showed empirically that
such neighbors form a ‘good’ local community around the seed. Yang and Leskovec (2012)
investigated properties of ground truth communities in social, information and technological
networks.

Lancichinetti et al. (2011) addressed the problem of finding a significant local com-
munity from an initial group of nodes. They proposed a method which locally optimizes
the statistical significance of a community, defined with respect to a global null model, by
iteratively adding external significant nodes and removing internal nodes that are not sta-
tistically relevant. The resulting community is not guaranteed to contain the nodes of the
initial community.

1.1.4 Properties of Seeds

Properties of seeds in relation to the performance of algorithms were investigated by e.g.
Kloumann and Kleinberg (2014). They considered different types of algorithms, in partic-
ular a greedy seed expansion algorithm which at each step adds the node that yields the
most negative change in conductance (Mislove et al., 2010). Whang et al. (2013) investi-
gated various methods for choosing the seeds for a PageRank based algorithm for community
detection. Chen et al. (2013) introduced the notion of local degree central node, whose de-
gree is greater than or equal to the degree of its neighbor nodes. A new local community
detection method is introduced based on the local degree central node. In this method, the
local community is not discovered from the given starting node, but from the local degree
central node that is associated with the given starting node.

1.2 Notation

We start by introducing the notation used in the rest of this paper. We denote by V the
set of nodes in a network or graph G. A community, also called a cluster, C ⊆ V will be a
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subset of nodes, and its complement C = V \ C consists of all nodes not in C. Note that
we consider any subset of nodes to be a community, and the goal of community detection
is to find a good community.

Let A be the adjacency matrix of G, where aij denotes the weight of an edge between
nodes i and j. In unweighted graphs aij is either 0 or 1, and in undirected graphs aij = aji.
In this paper we work only with unweighted undirected graphs. We can generalize this
notation to sets of nodes, and write axy =

∑
i∈x
∑

j∈y aij . With this notation in hand we
can write conductance as

φ(C) =
aCC
aCV

= 1− aCC
aCV

.

A common alternative definition is

φalt(C) =
aCC

min(aCV , aCV )
,

which considers the community to be the smallest of C and C. For instance Kloster and
Gleich (2014) and Andersen and Lang (2006) use this alternative definition, while Yang and
Leskovec (2012) use φ.

Note that φ has a trivial optimum when all nodes belong to the community, while
φalt will usually have a global optimum with roughly half of the nodes belonging to the
community. Neither of these optima are desirable for finding a single small community.

With a set X we associate an indicator vector [X] of length |V |, such that [X]i = 1 if
i ∈ X and [X]i = 0 otherwise. We will usually call this vector x.

2. Continuous Relaxation of Conductance

If we want to talk about directly optimizing conductance, then we need to define what
(local) optima are. The notion of local optima depends on the topology of the input space,
that is to say, on what communities we consider to be neighbors of other communities. We
could, for instance, define the neighbors of a community to be all communities that can be
created by adding or removing a single node. But this is an arbitrary choice, and we could
equally well define the neighbors to be all communities reached by adding or removing up
to two nodes. An alternative is to move to the continuous world, where we can use our
knowledge of calculus to give us a notion of local optima.

To turn community finding into a continuous problem, instead of a set C we need to see
the community as a vector c of real numbers between 0 and 1, where ci denotes the degree
to which node i is a member of the community. Given a discrete community C, we have
c = [C], but the inverse is not always possible, so the vectorial setting is more general.

The edge weight between sets of nodes can be easily generalized to the edge weight of
membership vectors,

axy = xTAy =
∑
i∈V

∑
j∈V

xiaijyj .

Now we can reinterpret the previous definition of conductance as a function of real vectors,
which we could expand as

φ(c) = 1−
∑

i,j∈V ciaijcj∑
i,j∈V ciaij

.
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With this definition we can apply the vast literature on constrained optimization of differ-
entiable functions. In particular, we can look for local optima of the conductance, subject
to the constraint that 0 ≤ ci ≤ 1. These local optima will satisfy the Karush-Kuhn-Tucker
conditions, which in this case amounts to, for all i ∈ V ,

0 ≤ ci ≤ 1

∇φ(c)i ≥ 0 if ci = 0

∇φ(c)i = 0 if 0 < ci < 1,

∇φ(c)i ≤ 0 if ci = 1.

To use the above optimization problem for finding communities from seeds, we add one
additional constraint. Given a set S of seeds we require that ci ≥ si; in other words, that
the seed nodes are members of the community. This is the only way in which the seeds are
used, and the only way in which we can use the seeds without making extra assumptions.

2.1 A Look at the Local Optima

By allowing community memberships that are real numbers, uncountably many more com-
munities are possible. One might expect that it is overwhelmingly likely that optima of the
continuous relaxation of conductance are communities with fractional memberships. But
this turns out not to be the case. In fact, the strict local optima will all represent discrete
communities.

To see why this is the case, consider the objective in terms of the membership coefficient
ci for some node i. This takes the form of a quadratic rational function,

φ(ci) =
α1 + α2ci + α3c

2
i

α4 + α5ci
.

The coefficients in the denominator are positive, which means that the denominator is also
positive for ci > 0. At an interior local minimum we must have φ′(ci) = 0, which implies
that φ′′(ci) = 2α3/(α4 + α5ci)

3. But α3 ≤ 0, since it comes from the ciaiici term in the
numerator of the conductance, so φ′′(ci) ≤ 0, and hence there are only local maxima or
saddle points, not strict local minima.

It is still possible for there to be plateaus in the objective functions, where φ(c) is
optimal regardless of the value of ci for a certain node i.

2.2 The Relation to Weighted Kernel K-Means Clustering

Another view on conductance is by the connection to weighted kernel k-means clustering.
The connection between weighted kernel k-means and objectives for graph partitioning has
been thoroughly investigated in Dhillon et al. (2007). Here we extend that connection to
the single cluster case.

Start with weighted k-means clustering, which, given a dataset {xi}Ni=1 and weights
{wi}, minimizes the following objective

N∑
i=1

k∑
j=1

wicij‖xi − µj‖22

7



van Laarhoven and Marchiori

with respect to µj and cij , where cij indicates if point i belongs to cluster j, subject to the
constraint that exactly one cij is 1 for every i.

Since our goal is to find a single cluster, a first guess would be to take k = 2, and
to try to separate a foreground cluster from the background. But when using 2-means,
there is no distinction between foreground and background, and so solutions will naturally
have two clusters of roughly equal size. Instead, we can consider a one-cluster variant that
distinguishes between points in a cluster and background points, which we call 1-mean
clustering. This can be formulated as the minimization of∑

i

wi
(
ci‖xi − µ‖22 + (1− ci)λi

)
with respect to a single µ and cluster membership indicators ci (between 0 and 1). Here λi
is a cost for node i being a member of the background.

We allow different λi for different nodes, as there is no reason to demand a single value.
The condition for a node i to be part of the community is ‖xi − µ‖22 < λi. So different
values for λi might be useful for two reasons. The first would be to allow incorporating
prior knowledge, the second reason would be if the scale (of the clusters) is different, that is,
nodes (in different clusters) have different distances from the mean. By adding a diagonal
matrix to the kernel, the squared distance from all points to all other points is increased by
that same amount. It makes sense to compensate for this in the condition for community
membership. And since the diagonal terms we add to the kernel vary per node, the amount
that these nodes move away from other points also varies, which is why we use different λi
per node.

The minimizer for µ is the centroid of the points inside the cluster,

µ =

∑
iwicixi∑
iwici

;

while the minimizer for ci is 1 if and only if ‖xi − µ‖2 < λi, and 0 otherwise.
The k-means and 1-mean objectives can be kernelized by writing distances in terms of

inner products, and using a kernel K(i, j) = 〈xi, xj〉. The cluster mean is then a linear
combination of points, µ =

∑
i µixi, giving

‖xi − µ‖22 = K(i, i)− 2
∑
j

µjK(i, j) +
∑
j,k

µjK(j, k)µk.

By filling in the optimal µ given above, the 1-mean objective then becomes

φW,K,λ(c) =
∑
i

wici(K(i, i)− λi) +
∑
i

wiλi

−
∑

i,j wiciwjcjK(i, j)∑
iwici

.

The second term is constant, so we can drop it for the purposes of optimization.
We pick λi = K(i, i). With this choice, the condition for a node i to be a member of

the community is ‖xi − µ‖22 < ‖xi − 0‖22. This can be seen as a 2-means cluster assignment
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where the background cluster has the origin as the fixed mean. With this choice the first
term also drops out.

By converting the graph into a kernel with

K = W−1AW−1,

where W is a diagonal matrix with the weights wi on the diagonal, we can obtain objectives
like conductance and association ratio. However this K is not a legal kernel, because a
kernel has to be positive definite. Without a positive definite kernel the distances ‖xi − µ‖
from the original optimization problem can become negative. To make the kernel positive
definite, we follow the same route as Dhillon et al., and add a diagonal matrix, obtaining

K = σW−1 +W−1AW−1.

Since we are interested in conductance, we take as weights wi = aiV , the degree of node
i, and we take λi = K(i, i). This results (up to an additive constant) in the following
objective which we call σ-conductance,

φσ(c) = 1−
∑

i,j cicjaij∑
i ciaiV

− σ
∑

i c
2
i aiV∑

i ciaiV
.

Observe that if c is a discrete community, then c2i = ci, and the last term is constant.
In that case optimization of this objective is exactly equivalent to optimizing conductance.

For the purposes of continuous optimization however, increasing the σ parameter has
the effect of increasing the objective value of non-discrete communities. So different commu-
nities become more separated, and in the extreme case, every discrete community becomes
a local optimum.

Theorem 1 When σ > 2, all discrete communities c are local minima of φσ(c) constrained
to 0 ≤ ci ≤ 1.

Proof The gradient of φσ is

∇φσ(c)i = aiV
acc
a2cV
− 2

aic
acV

+ σ
(
aiV

∑
j c

2
jajV

a2cV
− 2ci

aiV
acV

)
.

When c is discrete, then
∑

j c
2
jajV = acV , so the gradient simplifies to

∇φσ(c)i =
aiV
acV

( acc
acV

+ (1− 2ci)σ − 2
aic
aiV

)
.

Because aic ≤ aiV and acc ≤ acV we can bound this by

aiV
acV

(
(1− 2ci)σ − 2

)
≤ ∇φσ(c)i ≤

aiV
acV

(
(1− 2ci)σ + 1

)
.

So if ci = 0, we get that ∇φσ(c)i > 0 when σ > 2. And if ci = 1, we get that ∇φσ(c)i < 0
when σ > 1.
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Figure 1: A simple subnetwork consisting of a clique with tails connecting it to the rest of
the network. The clique (shaded nodes) is not a local optimum of conductance,
but it is a local optimum of σ-conductance when σ > 0.131.

This means that when σ > 2 all discrete communities satisfy the KKT conditions, and
from the sign of the gradient we can see that they are not local maxima. Furthermore,
φσ(c) is a concave function, so it has no saddle points (see the proof of Theorem 2). This
means that all discrete communities are local minima of φσ.

Conversely, the result from Section 2.1 generalizes to σ-conductance,

Theorem 2 When σ ≥ 0, all strict local minima c of φσ(c) constrained to 0 ≤ ci ≤ 1 are
discrete. Furthermore, if σ > 0 then all local minima are discrete.

Proof By the argument from Section 2.1. When σ > 0 it is always the case that α3 < 0,
so there are no saddle points or plateaus, and all local minima are discrete.

As an example application of σ-conductance, consider the network in Figure 1. In
this network, the clique is not a local optimum of regular conductance. This is because
the gradient for the adjacent nodes with degree 2 is always negative, regardless of the
conductance of the community. However, for σ-conductance this gradient becomes positive
when σ > φσ(c), in this case when σ > 0.131. In other words, with higher σ, adjacent nodes
with low degree are no longer considered part of otherwise tightly connected communities
such as cliques.

3. Algorithms

We now introduce two simple algorithms for the local optimization of conductance and
σ-conductance, analyze their computational complexity and provide an exact performance
guarantee for a class of communities. Then we look at a procedure for the automatic
selection of a value for σ.

3.1 Projected Gradient Descent

Perhaps the simplest possible method for constrained continuous optimization problems is
projected gradient descent. This is an iterative algorithm, where in each step the solution
is moved in the direction of the negative gradient, and then this solution is projected so as
to satisfy the constraints.
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In our case, we start from an initial community containing only the seeds,

c(0) = s,

where s = [S] is a sparse vector indicating the seed node(s). Then in each subsequent
iteration we get

c(t+1) = p(c(t) − γ(t)∇φ(c(t))).

This process is iterated until convergence. The step size γ(t) can be found with line search.
The gradient ∇φ is given by

∇φ(c)i =
aiV acc
a2cV

− 2
aic
acV

.

And the projection p onto the set of valid communities is defined by

p(c) = argmin
c′, s.t. 0≤c′i≤1,si≤c′i

‖c− c′‖22,

which simply amounts to

p(c) = max(s,min(1, c)).

This function clips values above 1 to 1, and values below si to si. Since si ≥ 0 this also
enforces that ci ≥ 0.

The complete algorithm is given in Algorithm 1. If a discrete community is desired,
as a final step, we might threshold the vector c. But as shown in Theorem 2 the found
community is usually already discrete.

3.2 Expectation-Maximization

The connection to k-means clustering suggests that it might be possible to optimize con-
ductance using an Expectation-Maximization algorithm similar to Lloyd’s algorithm for
k-means clustering. Intuitively, the algorithm would work as follows:

• E step assign each node i to the community if and only if its squared distance to the
mean is less than λi.
• M step set the community mean to the weighted centroid of all nodes in the com-

munity.

These steps are alternated until convergence. Since both these steps do not increase the
objective value, the algorithm is guaranteed to converge.

If the community after some iterations is C, then, as in the previous section, we can
fill in the optimal mean into the E step, to obtain that a node i should be part of the
community if

K(i, i) +
aCC/aCV + σ

aCV
− 2

aiC/aiV + σci
aCV

< λi.

When λi = K(i, i), this condition is equivalent to

∇φσ(C) < 0.
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Algorithm 1 Projected Gradient Descent conductance optimization (PGDc)

Input: A set S of seeds of seeds, a graph G, a constant σ ≥ 0.

1: s← [S]
2: c(0) ← s
3: t← 0
4: repeat
5: γ(t) ← LineSearch(c(t))
6: c(t+1) = p(c(t) − γ(t)∇φσ(c(t)))
7: t← t+ 1
8: until c(t−1) = c(t)

9: C ← {i ∈ V | c(t)i ≥ 1/2}

function LineSearch(c)

1: γ∗ ← 0, φ∗ ← φσ(c)
2: g← ∇φσ(c)
3: γ ← 1/max(|g|)
4: repeat
5: c′ ← p(c− γg)
6: if φσ(c′) < φ∗ then
7: γ∗ ← γ, φ∗ ← φσ(c′)
8: end if
9: γ ← 2γ

10: until c′i ∈ {0, 1} for all i with gi 6= 0
11: return γ∗

Algorithm 2 EM conductance optimization (EMc)

Input: A set S of seeds, a graph G, a constant σ ≥ 0.

1: C(0) ← S
2: t← 0
3: repeat
4: C(t+1) = {i | ∇φσ(C(t))i < 0} ∪ S
5: t← t+ 1
6: while C(t) < C(t−1)
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This leads us to the EM community finding algorithm, Algorithm 2.

By taking σ = 0 we get that nodes are assigned to the community exactly if the gradient
∇φ(C)i is negative. So, this EM algorithm is very similar to projected gradient descent with
an infinite step size in each iteration. The only difference is for nodes with ∇φ(C)i = 0,
which in the EMc algorithm are always assigned to the background, while in PGD their
membership of the community is left unchanged compared to the previous iteration.

Of course, we have previously established that σ = 0 does not lead to a valid kernel
(this doesn’t preclude us from still using the EM algorithm). In the case that σ > 0 there
is an extra barrier for adding nodes not currently in the community, and an extra barrier
for removing nodes that are in the community. This is similar to the effect that increasing
σ has on the gradient of φσ.

3.3 Computational Complexity

Both methods require the computation of the gradient in each iteration. This computation
can be done efficiently. The only nodes for which the gradient of the conductance is negative
are the neighbors of nodes in the current community, and the only nodes for which a positive
gradient can have an effect are those in the community. So the gradient doesn’t need to
be computed for other nodes. For the other nodes the gradient depends on the number of
edges to the community, and on the node’s degree. Assuming that the node degree can be
queried in constant time, the total time per iteration is proportional to the size of the one-
step-neighborhood of the community, which is of the order of the volume of the community.
If the node degrees are not known, then the complexity increases to be proportional to the
volume of the one-step-neighborhood of the community, though this is a one-time cost, not
a per iteration cost.

As seen in Section 3.5, for dense and isolated communities, the number of iterations
is bounded by the diameter of the community. In general we can not guarantee such a
bound, but in practice the number of iterations is always on the order of the diameter of
the recovered community.

For very large datasets, the computation of the gradient can still be expensive, even
though it is a local operation. Therefore, we restrict the search to a set of 1000 nodes
near the seed. This set N is formed by starting with the seed, and repeatedly adding all
neighbors of nodes in N , until the set would contain more than 1000 nodes. In this last
step we only add the nodes with the highest aiN/aiV so that the final set contains exactly
1000 nodes.

3.4 Choosing σ

In Section 2.2 we introduced the σ parameter, and we have shown that larger values of σ
lead to more local optima. This leaves the question of choosing the value of σ.

One obvious choice is σ = 0, which means that φσ is exactly the classical conductance.

Another choice would be to pick the smallest σ that leads to a positive definite kernel.
But this is a global property of the network, that is furthermore very expensive to compute.

Instead, we try several different values of σ for each seed, and then pick the community
with the highest density, that is, the community C with the largest aCC/|C|2.
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3.5 Exactly Recoverable Communities

We now take a brief look at which kinds of communities can be exactly recovered with gra-
dient descent and expectation-maximization. Suppose that we wish to recover a community
C∗ from a seeds set S, and assume that this community is connected. Denote by d(i) the
shortest path distance from a node i ∈ C∗ to any seed node, in the subnetwork induced by
C∗.

First of all, since both algorithms grow the community from the seeds, we need to look
at subcommunities C ⊆ C∗ centered around the seeds, by which we mean that d(i) ≤ d(j)
for all nodes i ∈ C and j ∈ C∗ \ C.

Secondly, we need the community to be sufficiently densely connected to be considered
a community in the first place; but at the same time the community needs to be separated
from the rest of the network. Again, because the communities are grown, we require that
this holds also for subcommunities that are grown from the seeds,

Definition 3 A community C∗ is dense and isolated with threshold σ if for all subsets
C ⊆ C∗ centered around the seeds S:

• 2aiC/aiV > aCC/aCV − σ for all nodes i ∈ C, and

• 2aiC/aiV ≤ aCC/aCV − σ for all nodes i /∈ C∗.

Some examples of communities that satisfy this property are cliques and quasi-cliques that
are only connected to nodes of high degree.

Now denote by Dn the set of nodes i in C∗ with d(i) ≤ n. Clearly D0 = S, and because
the community is connected there is some n∗ such that Dn∗ = C∗.

We first look at the expectation-maximization algorithm.

Theorem 4 If C∗ is dense and isolated, then the iterates of the EMc algorithm satisfy
C(t) = Dt.

Proof The proof proceeds by induction. For t = 0, the only nodes i with d(i) = 0 are the
seeds, and C(0) = S by definition.

Now suppose that C(t) = Dt. Then for any node i there are three possibilities.

• i ∈ Dt+1; then because C∗ is dense and Dt is centered around the seeds, 2aiC(t)/aiV >
1− φσ(C(t)). This implies that ∇φσ(C(t))i < 0.

• i ∈ C∗ \ Dt+1; then there are no edges from Dt to i, since otherwise the shortest
path distance from i to a seed would be t + 1. So aic(t) = 0, which implies that
∇φσ(C(t))i ≥ 0.

• i /∈ C∗; then because C∗ is isolated, 2aiC(t)/aiV ≤ 1 − φσ(C(t)), which implies that
∇φσ(c(t))i ≥ 0.

hence ∇φσ(C(t))i < 0 if i ∈ Dt+1, and ∇φσ(C(t))i ≥ 0 otherwise. This means that
C(t+1) = Dt+1.

For the projected gradient descent algorithm from Section 3.1 we have an analogous
theorem,
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Theorem 5 If C∗ is dense and isolated, then the iterates of PGDc satisfy c(t) = [Dt].

Proof The proof proceeds by induction, and is analogous to the proof of Theorem 4. For
t = 0, the only nodes i with d(i) = 0 are the seeds, and c(0) = s = [S] by definition.

Now suppose that c(t) = [Dt]. We have already shown that ∇φσ(C(t))i < 0 if and only
if i ∈ Dt+1. This means that after projecting onto the set of valid communities, only the
membership of nodes in Dt+1 can increase. Since nodes in Dt already have membership 1,
and nodes not in Dt+1 already have membership 0, they are not affected.

Let γmax = maxi∈Dt+1 −1/∇φσ(c(t))i. Clearly if γ(t) ≥ γmax, then c
(t)
i −γ(t)∇φσ(c(t))i >

1 for all nodes i ∈ Dt+1, and hence p(c(t) − γ(t)∇φσ(c(t))) = [Dt+1]. So to complete the
proof, we only need to show that the optimal step size found with line search is indeed (at
least) γmax.

Suppose that γ(t) < γmax leads to the optimal conductance. Then there is a node

i ∈ Dt+1 with fractional membership, 0 < c
(t+1)
i < 1. By repeated application of Theorem 2

we know that there is a discrete community C ′ with φσ(C ′) = φσ(c(t+1)), and furthermore
φσ(C ′ \ {i}) = φσ(C ′ ∪ {i}). The latter can only be the case if ∇φσ(C ′)i = 0. Because
the only nodes whose membership has changed compared to c(t) are those in Dt+1 \ Dt,
it follows that C ′ contains all nodes with distance at most t to the seeds, as well as some
nodes with distance t + 1 to the seeds. This means that C ′ is centered around the seeds,
and so ∇φσ(C ′)i > 0. This is a contradiction, which means that γ(t) ≥ γmax must be the
optimum.

As a corollary, since Dn∗+1 = Dn∗ , both the EMc and the PGDc algorithm will halt,
and exactly recover C∗.

The notion of dense and isolated community is weakly related to that of (α, β)-cluster
(Mishra et al., 2008) (without the technical assumption that each node has a self-loop): C
is an (α, β)-cluster, with 0 ≤ α < β ≤ 1 if aiC ≥ β|C| for i in C, aiC ≤ α|C| for i outside C.

The definition of dense and isolated community depends on the degree of the nodes
while that of (α, β)-cluster does not. As a consequence, not all maximal cliques of a graph
are in general dense and isolated communities while they are (α, β)-clusters. For instance, a
maximal clique linked to an external isolated node, that is, a node of degree 1, is not dense
and isolated.

In general one can easily show that if C is dense and isolated and

min
i∈C

aiV > max
i 6∈C,aiC>0

aiV

then C is an (α, β)-cluster with

β =
1− φ(C)

2|C|
min
i∈C

aiV

and

α =
1− φ(C)

2|C|
max

i 6∈C,aiC>0
aiV .
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Dataset #node #edge clus.c. #comm |C| φ(C)

LFR (om=1) 5000 25125 0.039 101 49.5 0.302
LFR (om=2) 5000 25123 0.021 146 51.4 0.534
LFR (om=3) 5000 25126 0.016 191 52.4 0.647
LFR (om=4) 5000 25117 0.015 234 53.4 0.717
Karate 34 78 0.103 2 17.0 0.141
Football 115 613 0.186 12 9.6 0.402
Pol.Blogs 1490 16715 0.089 2 745.0 0.094
Pol.Books 105 441 0.151 3 35.0 0.322
Flickr 35313 3017530 0.030 171 4336.1 0.682
Amazon 334863 925872 0.079 151037 19.4 0.554
DBLP 317080 1049866 0.128 13477 53.4 0.622
Youtube 1134890 2987624 0.002 8385 13.5 0.916
LiveJournal 3997962 34681189 0.045 287512 22.3 0.937
Orkut 3072441 117185083 0.014 6288363 14.2 0.977
CYC/Gavin 2006 6230 6531 0.121 408 4.7 0.793
CYC/Krogan 2006 6230 7075 0.075 408 4.7 0.733
CYC/Collins 2007 6230 14401 0.083 408 4.7 0.997
CYC/Costanzo 2010 6230 57772 0.022 408 4.7 0.996
CYC/Hoppins 2011 6230 10093 0.030 408 4.7 0.999
CYC/all 6230 80506 0.017 408 4.7 0.905

Table 1: Overview of the datasets used in the experiments. For each dataset we consider
three different sets of communities.

4. Experiments

To test the proposed algorithms, we assess their performance on various networks. We also
perform experiments on recent state-of-the-art algorithms based on the diffusion method
which also optimize conductance.

4.1 Algorithms

Specifically, we perform a comparative empirical analysis of the following algorithms.

1. PGDc. The projected gradient descent algorithm for optimizing σ-conductance given
in Algorithm 1. We show the results for two variants: PGDc-0 with σ = 0 and PGDc-
d where σ is chosen to maximize the community’s density as described in Section 3.4.

2. EMc. The Expectation Maximization algorithm for optimizing σ-conductance de-
scribed in Section 2. We consider the variants EMc-0 with σ = 0 and EMc-d where
σ is chosen automatically.

3. YL. The algorithm by Yang and Leskovec (2012) (with conductance as scoring func-
tion), based on the diffusion method. It computes an approximation of the person-
alized Page Rank graph diffusion vector (Andersen et al., 2006). The values in this
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vector are divided by the degree of the corresponding nodes, and the nodes are sorted
in descending order by their values. The ranking induces a one dimensional search
space of communities Ck, called a sweep, defined by the sequence of prefixes of the
sorted list, that is, the k top ranked nodes, for k = 1, . . . , |V |. The smallest k whose
Ck is a ‘local optimum’ of conductance is computed and Ck is extracted. Local op-
tima of conductance over the one dimensional space C1, C2, . . . , C|V | are computed
using a heuristic. For increasing k = 1, 2, . . . φ(Ck) is measured. When φ(Ck) stops
decreasing at k∗ this is a ‘candidate point’ for a local minimum. It becomes a selected
local minimum if φ(Ck) keeps increasing after k∗ and eventually becomes higher than
αφ(Ck), otherwise it is discarded. α = 1.2 is shown to give good results and is also
used in our experiments. Yang and Leskovec (2012) show that finding the local op-
tima of the sweep curve instead of the global optimum gives a large improvement
over previous local spectral clustering methods by Andersen and Lang (2006) and by
Spielman and Teng (2004).

4. HK. The algorithm by Kloster and Gleich (2014), also based on the diffusion method.
Here, instead of using the Personalized PageRank score, nodes are ranked based on a
Heat Kernel diffusion score (Chung, 2007). We use the implementation made available
by Kloster and Gleich (2014), which tries different values of the algorithm’s parameters
t and ε, and picks the community with the highest conductance among them. The
details are in section 6.2 of (Kloster and Gleich, 2014). Code is available at https:

//www.cs.purdue.edu/homes/dgleich/codes/hkgrow.

5. PPR. The pprpush algorithm by Andersen and Lang (2006) based on the personalized
Page Rank graph diffusion. Compared to YL instead of finding a local optimum
of the sweep, the method looks for a global optimum, and hence often finds larger
communities. We use the implementation included with the HK method.

4.2 Datasets

4.2.1 Artificial Datasets

The first set of experiments we performed is on artificially generated networks with a known
community structure. We use the LFR benchmark (Lancichinetti et al., 2008). We used the
parameter settings N=5000 mu=0.3 k=10 maxk=50 t1=2 t2=1 minc=20 maxc=100 on=2500,
which means that the graph has 5000 nodes, and between 20 and 100 communities, each
with between 10 and 50 nodes. Half of the nodes, 2500 are a member of multiple communi-
ties. We vary the overlap parameter (om), which determines how many communities these
nodes are in. More overlap makes the problem harder.

4.2.2 Social and Information Network Datasets with Ground Truth

We use five social and information network datasets with ground-truth from the SNAP
collection (Leskovec and Krevl, 2014). These datasets are summarized in Table 1. For each
dataset we list the number of nodes, number of edges and the clustering coefficient. We
consider all available ground truth communities with at least 3 nodes.

Yang and Leskovec (2012) also defined a set of top 5000 communities for each dataset.
These are communities with a high combined score for several community goodness metrics,
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among which is conductance. We therefore believe that communities in this set are biased
to be more easy to recover by optimizing conductance, and therefore do not consider them
here. Results with these top 5000 ground truth communities are available in tables 1–3 in
the supplementary material 2.

In addition to the SNAP datasets we also include the Flickr social network dataset
(Wang et al., 2012).

4.2.3 Protein Interaction Network Datasets

We have also run experiments on protein interaction networks of yeast from the BioGRID
database (Stark et al., 2006). This database curates networks from several different studies.
We have constructed networks for Gavin et al. (2006), Krogan et al. (2006), Collins et al.
(2007), Costanzo et al. (2010), Hoppins et al. (2011), as well as a network that is the union
of all interaction networks confirmed by physical experiments.

As ground truth communities we take the CYC2008 catalog of protein complexes for
each of the networks (Pu et al., 2009).

4.2.4 Other Datasets

Additionally we used some classical datasets with known communities: Zachary’s karate
club Zachary (1977); Football: A network of American college football games (Girvan and
Newman, 2002); Political books: A network of books about US politics (Krebs, 2004); and
Political blogs: Hyperlinks between weblogs on US politics (Adamic and Glance, 2005).
These datasets might not be very well suited for this problem, since they have very few
communities.

4.3 Results

In all our experiments we use a single seed node, drawn uniformly at random from the
community. We have also performed experiments with multiple seeds; the results of those
experiments can be found in the supplementary material.

To keep the computation time manageable we have performed all experiments on a
random sample of 1000 ground-truth communities. For datasets with fewer than 1000
communities, we include the same community multiple times with different seeds.

Since the datasets here considered have information about ground truth communities,
a natural external validation criterion to assess the performance of algorithms on these
datasets is to compare the community produced by an algorithm with the ground truth
one. In general, that is, when ground truth information is not available, this task is more
subtle, because it is not clear what is a good external validation metric to evaluate a
community (Yang and Leskovec, 2015).

We measure quality performance with the F1 score, which for community finding can
be defined as

F1(C,C
∗) = 2

|C ∩ C∗|
|C|+ |C∗|

,

2. The supplementary material is available from http://cs.ru.nl/~tvanlaarhoven/conductance2016
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Dataset PGDc-0 PGDc-d EMc-0 EMc-d YL HK PPR

LFR (om=1) 0.967 0.185 0.868 0.187 0.203 0.040 0.041
LFR (om=2) 0.483 0.095 0.293 0.092 0.122 0.039 0.041
LFR (om=3) 0.275 0.085 0.158 0.083 0.110 0.037 0.039
LFR (om=4) 0.178 0.074 0.100 0.072 0.092 0.032 0.034
Karate 0.831 0.472 0.816 0.467 0.600 0.811 0.914
Football 0.792 0.816 0.766 0.805 0.816 0.471 0.283
Pol.Blogs 0.646 0.141 0.661 0.149 0.017 0.661 0.535
Pol.Books 0.596 0.187 0.622 0.197 0.225 0.641 0.663
Flickr 0.098 0.027 0.097 0.027 0.013 0.054 0.118
Amazon 0.470 0.522 0.425 0.522 0.493 0.245 0.130
DBLP 0.356 0.369 0.317 0.371 0.341 0.214 0.210
Youtube 0.089 0.251 0.073 0.248 0.228 0.037 0.071
LiveJournal 0.067 0.262 0.059 0.259 0.183 0.035 0.049
Orkut 0.042 0.231 0.033 0.231 0.171 0.057 0.033
CYC/Gavin 2006 0.474 0.543 0.455 0.543 0.526 0.336 0.294
CYC/Krogan 2006 0.410 0.513 0.364 0.511 0.504 0.229 0.169
CYC/Collins 2007 0.346 0.429 0.345 0.429 0.416 0.345 0.345
CYC/Costanzo 2010 0.174 0.355 0.172 0.351 0.314 0.170 0.170
CYC/Hoppins 2011 0.368 0.405 0.368 0.405 0.424 0.368 0.368
CYC/all 0.044 0.459 0.017 0.459 0.425 0.016 0.002

Table 2: Average F1 score between recovered communities and ground-truth. The best
result for each dataset is indicated in bold, as are the results not significantly
worse according to a paired T-test (at significance level 0.01).

where C is the recovered community and C∗ is the ground truth one. A higher F1 score is
better, with 1 indicating a perfect correspondence between the two communities.

Note that a seed node might be in multiple ground truth communities. In this case we
only compare the recovered community to the true community that we started with. If a
method finds another ground truth community this is not detected, and so it results in a
low F1 score.

We also analyze the output of these algorithms with respect to the conductance of
produced communities and their size. Results on the run time of the algorithms are reported
in the supplementary material (Table 4).

Figure 2 shows the F1 scores as a function of the parameter σ. Table 2 shows the F1

scores comparing the results of the methods to the true communities. Table 3 shows the
mean size of the found communities, and Table 4 their conductance.

In general, results of these experiments indicate that on real-life networks, our methods
based on continuous relaxation of conductance, PPR and HK produce communities with
good conductance, but all are less faithful to the ground truth when the network contains
many small communities. In PGDc, EMc the automatic choice of σ helps to achieve results
closer to the ground truth, and the built-in tendency of YL to favor small communities helps
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Dataset PGDc-0 PGDc-d EMc-0 EMc-d YL HK PPR

LFR (om=1) 52.3 6.2 71.8 6.3 5.9 2410.0 2366.2
LFR (om=2) 93.2 5.6 292.8 6.4 4.9 2404.4 2311.6
LFR (om=3) 104.7 5.6 451.5 6.4 5.0 2399.4 2283.7
LFR (om=4) 108.9 4.9 530.2 5.7 4.9 2389.1 2262.0
Karate 20.0 8.0 24.1 8.0 8.8 16.7 17.1
Football 14.7 9.5 16.2 9.4 8.8 40.5 56.5
Pol.Blogs 515.6 110.1 538.9 118.1 7.2 492.7 1051.1
Pol.Books 37.8 5.2 43.1 5.7 6.7 49.3 53.4
Flickr 639.9 73.0 644.6 73.5 12.9 174.2 1158.1
Amazon 25.2 5.6 45.6 5.7 6.4 88.8 20819.9
DBLP 61.9 5.4 83.5 6.1 6.0 55.0 24495.0
Youtube 340.6 19.4 474.2 21.3 9.3 147.9 20955.5
LiveJournal 243.7 5.5 309.3 5.9 10.8 153.2 3428.7
Orkut 245.1 17.9 344.7 19.1 11.1 212.0 1634.0
CYC/Gavin 2006 19.7 3.4 34.3 3.5 3.1 236.7 621.9
CYC/Krogan 2006 48.4 7.0 138.8 9.4 3.7 723.8 1756.3
CYC/Collins 2007 202.9 19.5 207.2 19.5 2.6 192.0 189.4
CYC/Costanzo 2010 540.2 58.1 564.2 66.5 5.9 1058.8 942.9
CYC/Hoppins 2011 229.9 110.1 235.5 110.4 4.3 295.2 295.2
CYC/all 657.5 16.0 841.9 17.0 9.6 2795.2 5786.0

Table 3: Average size of the recovered communities.

as well. On the other hand, on networks with large communities our methods, PPR and
HK work best. On the artificial LFR data continuous relaxation of conductance seems to
work best. This result indicates that the LFR model of ‘what is a community’ is somehow in
agreement with the notion of local community as local optimum of the continuous relaxation
of conductance. However, as observed in recent works like (Jeub et al., 2015), the LFR model
does not seem to represent the diverse characteristics of real-life communities.

We have included tables of the standard deviation in the supplementary material. Over-
all, the standard deviation in cluster size is of the same order of magnitude as the mean.
The standard deviation of the conductance is around 0.1 for LFR datasets, 0.2 for the SNAP
datasets and 0.3 for the CYC datasets. It is not surprising that the variance is this high,
because the communities vary a lot in size and density.

Results on these datasets can be summarized as follows.

4.3.1 Artificial LFR Datasets

On these datasets, HK and PPR tend to find communities that are much too large, with
small conductance but also with low F1 scores. This happens because the LFR networks
are small, and the methods are therefore able to consider a large part of the nodes in the
network.

On the other hand, YL always starts its search at small communities, and it stops early,
so the communities it finds are smaller than the ground truth ones on these networks.
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Dataset PGDc-0 PGDc-d EMc-0 EMc-d YL HK PPR

LFR (om=1) 0.301 0.750 0.304 0.749 0.755 0.250 0.273
LFR (om=2) 0.532 0.786 0.541 0.787 0.780 0.315 0.338
LFR (om=3) 0.589 0.793 0.587 0.793 0.781 0.333 0.354
LFR (om=4) 0.604 0.791 0.595 0.792 0.775 0.341 0.359
Karate 0.129 0.460 0.081 0.475 0.327 0.222 0.136
Football 0.277 0.356 0.274 0.362 0.385 0.244 0.155
Pol.Blogs 0.228 0.743 0.212 0.737 0.867 0.229 0.137
Pol.Books 0.140 0.622 0.107 0.611 0.571 0.127 0.065
Flickr 0.777 0.937 0.777 0.937 0.951 0.864 0.762
Amazon 0.181 0.464 0.180 0.463 0.402 0.081 0.053
DBLP 0.246 0.571 0.257 0.565 0.498 0.133 0.147
Youtube 0.601 0.765 0.711 0.759 0.700 0.201 0.341
LiveJournal 0.563 0.875 0.589 0.874 0.774 0.336 0.489
Orkut 0.718 0.916 0.731 0.917 0.928 0.750 0.711
CYC/Gavin 2006 0.614 0.734 0.611 0.732 0.735 0.532 0.500
CYC/Krogan 2006 0.466 0.626 0.469 0.620 0.617 0.325 0.265
CYC/Collins 2007 0.716 0.953 0.712 0.953 0.972 0.720 0.730
CYC/Costanzo 2010 0.759 0.931 0.755 0.929 0.934 0.672 0.646
CYC/Hoppins 2011 0.788 0.883 0.785 0.882 0.970 0.763 0.763
CYC/all 0.674 0.872 0.742 0.874 0.840 0.363 0.026

Table 4: Average conductance of the recovered communities.

The best F1 results are achieved by PGDc with σ = 0, that is, when the continuous
relaxation of conductance is used as the objective function. This method employs a more
powerful optimizer than YL, so it is able to find a large community with a better conduc-
tance, but it still stops at the first local optimum. In the LFR datasets these optima are
very clear, and correspond closely to the ground truth communities.

In all cases EMc shows similar or slightly worse performance compared to PGDc, so
the gradient descend algorithm should be preferred.

The automatic choice of σ leads to communities which are of relatively small size. We
believe that this happens because the nodes in LFR datasets all have exactly the same
fraction of within community edges. Increasing σ suddenly makes the gradient for most
of these nodes positive. In real networks there are often hubs that are more central to a
community, with more connections to the community’s nodes and to the seed. These hubs
still can be found at higher values of σ.

4.3.2 Small Real-Life Social Networks with Few Communities (Karate,
Football, Blogs, Books)

Our methods based on continuous relaxation of conductance yield the best F1 results on
the Football and Blog networks, while PPR performs best on the other two networks and
achieves best overall conductance.
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Figure 2: Average F1 score as a function of the σ parameter on the SNAP datasets with
the PGDc method.

4.3.3 Large Social Network with Big Communities (Flickr)

On this network, PPR achieves the best results both in terms of F1 score as well as con-
ductance. However the the produced communities are about four time smaller than the
ground truth communities, which have more than 4000 nodes. PGDc and EMc with
σ = 0 yield communities of conductance similar to that of PPR communities, but their size
is smaller (about 650 nodes). This happens because the algorithms are restricted to 1000
nodes around the seed, without this restriction larger communities would be found. Some-
what surprisingly HK produces communities of relatively small size (about 175 nodes). The
automatic choice of σ yields to even smaller communities (about 64 nodes). The smallest
size communities are produced by YL (about 13 nodes).

4.3.4 Large Real-Life SNAP Networks with Many Small Communities

On these networks the automatic choice of σ gives best results, consistently outperforming
the other algorithms. In Figure 2, the F1 score of PGDc and EMc as a function of σ is
plotted. For some datasets a small value of σ works well, while for others a larger value of σ
is better. Our procedure to choose σ produces results that are close to, but slightly below,
the best a posteriori choice of σ. So on these networks the proposed procedure positively
affects the performance of our algorithms. YL favors communities of small size less faithful
to the ground truth. PGDc-0, EMc-0, PPR and HK ‘explode’, and produce very large
communities. For our methods this ‘explosion’ is limited only because we limit the search
to 1000 nodes near the seed. The ground-truth communities of these datasets have rather
high conductance, and the networks have a very low clustering coefficient. In such a case,
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communities have many links to nodes outside, hence conductance alone is clearly not suited
to finding these type of local communities.

4.3.5 Real-Life Protein Interaction Networks with Very Small
Communities (CYC)

Also on these networks the automatic choice of σ gives best results. As expected, due to
the very small size of the ground truth communities, YL also achieves very good results.
The other algorithms tend to produce less realistic, large communities which have better
conductance.

4.3.6 Running Time

The best performing algorithm with respect to running time is HK. PGDc and EMc are
about four times slower with a fixed value of σ, and ten to twenty times slower when auto-
matically determining σ. The running times are included in Table 4 of the supplementary
material. All experiments were run on a 2.4GHz Intel XEON E7-4870 machine. Note that
the different methods are implemented in different languages (our implementation is written
in Octave, while HK and PPR are implemented in C++), so the running times only give
an indication of the overall trend, and can not be compared directly.

4.3.7 Top 5000 Communities

Results with only the top 5000 ground truth communities available at the SNAP dataset
collection are similar to the results with all communities. As expected, the F1 score is much
higher and the conductance of the recovered community is better. Because these ground
truth communities have a better conductance, it is better to optimize conductance, that
is to take σ = 0. As a consequence the performance of PGDc-0 and EMc-0 is better
than that of PGDc-d and EMc-d for these communities. The full results are available in
Tables 1–3 in the supplementary material.

5. Discussion

This paper investigated conductance as an objective function for local community detection
from a set of seeds. By making a continuous relaxation of conductance we show how
standard techniques such as projected gradient descent can be used to optimize it. Even
though this is a continuous optimization problem, we show that the local optima are almost
always discrete communities. We further showed how linking conductance with kernel
weighted k-means clustering leads to the new σ-conductance objective function and to
simple yet effective algorithms for local community detection by seed expansion.

We provided a formalization of a class of good local communities around a set of seeds
and showed that the proposed algorithms can find them. We suspect that these communi-
ties can also be exactly retrieved using local community algorithms based on the diffusion
method, but do not yet have a proof. The condition that such communities should be cen-
tered around the seeds raises the question of how to find such seeds. Although various works
have studied seed selection for diffusion based algorithms, such as Kloumann and Kleinberg
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(2014), this problem remains to be investigated in the context of local community detection
by σ-conductance optimization using PGDc and EMc.

Our experimental results indicate the effectiveness of direct optimization of a continuous
relaxation of σ-conductance using gradient descent and expectation maximization. In our
algorithms we used community density as a criterion to choose σ. This resulted to be a good
choice for the performance of our algorithms on the SNAP networks. It would be interesting
to investigate also other criteria to choose σ. Conversely, the fact that maximum density
is a good criterion for selecting σ implies that it might also be directly optimized as an
objective for finding communities.

On some datasets, when optimizing normal conductance, that is, with σ = 0, our meth-
ods sometimes find very large communities. These communities will have a very good
conductance, but they do not correspond well to the ground truth. In some sense the
optimizer is ‘too good’, and conductance is not the best criterion to describe these commu-
nities. A better objective would perhaps take into account the size of the community more
explicitly, but this needs to be investigated further.

In this paper we have used gradient descent, a first order optimization method which
utilizes only the objective function’s gradient. More advanced optimization methods also
use second derivatives or approximations of those. We believe that such methods will
not bring a large advantage compared to gradient descent, because during the optimization
many coordinates are at the boundary value 0 or 1, and second derivatives would not help to
locate these boundary points. Other constrained optimizers such as interior point methods
have the problem that they need to inspect a much larger part of the network, potentially
all of it, because intermediate steps have nonzero membership for all nodes.
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