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Abstract

This paper is concerned with the problem of finding a sparse graph capturing the
conditional dependence between the entries of a Gaussian random vector, where the only
available information is a sample correlation matrix. A popular approach to address this
problem is the graphical lasso technique, which employs a sparsity-promoting regularization
term. This paper derives a simple condition under which the computationally-expensive
graphical lasso behaves the same as the simple heuristic method of thresholding. This con-
dition depends only on the solution of graphical lasso and makes no direct use of the sample
correlation matrix or the regularization coefficient. It is proved that this condition is always
satisfied if the solution of graphical lasso is close to its first-order Taylor approximation or
equivalently the regularization term is relatively large. This condition is tested on several
random problems, and it is shown that graphical lasso and the thresholding method lead
to highly similar results in the case where a sparse graph is sought. We also conduct two
case studies on brain connectivity networks of twenty subjects based on fMRI data and
the topology identification of electrical circuits to support the findings of this work on the
similarity of graphical lasso and thresholding.

Keywords: Graphical Lasso, Graphical Models, Sparse Graphs, Brain Connectivity
Networks, Electrical Circuits

1. Introduction

In recent years, there has been a growing interest in developing techniques for estimating
sparse undirected graphical models (Banerjee et al., 2008; Bruckstein et al., 2009; Chan-
drasekaran et al., 2010; Goldstein and Osher, 2009; Jalali et al., 2011; Schmidt et al., 2007).
Finding sparse solutions have become essential to many applications, including signal pro-
cessing, pattern recognition, and data mining. Many applications use L1-regularized models
such as the Lasso (Tibshirani, 1996). L1 regularization aims to find sparse solutions, which is
especially useful for high-dimensional problems with a large number of features (Bühlmann
and Van De Geer, 2011; Fan and Lv, 2010; Meinshausen and Yu, 2009; Richtárik and
Takáč, 2012; Wright et al., 2009; Zhang and Huang, 2008). Although Lasso-type algo-
rithms are shown to be effective in recovering sparse solutions, they are computationally
expensive for large-scale problems. In this work, we derive a simple condition under which
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the computationally-expensive graphical lasso behaves the same as the simple heuristic
method of thresholding.

Consider a random vector x = (x1, x2, ..., xn) with a multivariate normal distribution.
Let Σ∗ ∈ Sn+ denote the correlation matrix associated with the vector x. The inverse of
the correlation matrix can be used to determine the conditional independence between the
random variables x1, x2, ..., xn. In particular, if the (i, j)th entry of Σ−1

∗ is zero, then xi
and xj are conditionally independent. The graph G

(
Σ−1
∗
)

(i.e., the sparsity graph of Σ−1
∗ )

represents a graphical model capturing the conditional independence between the elements
of x. Assume that G

(
Σ−1
∗
)

is a sparse graph. Finding this graph is nontrivial in practice
because the exact correlation matrix Σ∗ is rarely known. More precisely, G

(
Σ−1
∗
)

should
be constructed from a given sample correlation matrix as opposed to Σ∗. Let Σ denote an
arbitrary n × n positive semidefinite matrix, which is provided as an estimate of Σ∗. In
this paper, we do not impose any assumption on the error ‖Σ− Σ∗‖. Consider the convex
optimization problem

minimize
S∈Sn+

− log det(S) + trace(ΣS) (1)

where Sn+ denotes the set of n × n positive semidefinite matrices. It is easy to verify that
the optimal solution of the above problem is Sopt = Σ−1. Hence, Sopt aims to estimate
Σ−1
∗ . On the other hand, although the inverse of Σ∗ is assumed to be a sparse graph,

a small perturbation of Σ∗ would make its inverse a dense graph. This implies that the
sparsity graph of Sopt, denoted as G(Sopt), may not resemble the graphical model G

(
Σ−1
∗
)

in general. Hence, the optimization problem (1) needs to be modified to indirectly enforce
some sparsity on its solution. To this end, consider the problem

minimize
S∈Sn+

− log det(S) + trace(ΣS) + λ‖S‖1 (2)

where λ ∈ R+ is a regularization parameter and ‖S‖1 is defined as
∑n

i=1

∑n
j=1 |Sij |. This

problem is referred to as graphical lasso (Banerjee et al., 2008; Friedman et al., 2008; Yuan
and Lin, 2007). Intuitively, the penalty term λ‖S‖1 with a large λ aims to decrease the
off-diagonal entries of S in magnitude and enforce most of them to be zero. Henceforth, the
notation Sopt is used to denote a solution of the graphical lasso instead of the unregularized
optimization problem (1). There is a large body of literature suggesting that G(Sopt) is a
good estimate of the graphical model G

(
Σ−1
∗
)

for a suitable choice of λ (Banerjee et al.,
2008; Danaher et al., 2014; Friedman et al., 2008; Krämer et al., 2009; Liu et al., 2010;
Witten et al., 2011; Yuan and Lin, 2007). Note that although graphical lasso is motivated
by multivariate normal random variables, its application is beyond this class of random
variables and it applies to all problems for which a sparse inverse correlation matrix is
sought.

Suppose that it is known a priori that the true graph G
(
Σ−1
∗
)

has k edges, for some given
number k. Assume that the nonzero entries of the upper triangular part of Σ (excluding
its diagonal) have different magnitudes (this assumption is satisfied both generically and
under an infinitesimal perturbation of the nonzero entries of Σ). Two heuristic methods for
finding an approximation of G

(
Σ−1
∗
)

are as follows:

• Graphical Lasso: We solve the optimization problem (2) repeatedly for different values
of λ until a solution Sopt with exactly 2k nonzero off-diagonal entries are found. Note
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that λ can be updated in the optimization problem using the bisection technique
(Theorem 3 in Fattahi and Lavaei (2016) guarantees the existence of an appropriate
interval for λ under generic conditions).

• Thresholding: Without solving any optimization problem, we simply identify those 2k
entries of Σ that have the largest magnitudes among all off-diagonal entries of Σ. We
then replace the remaining n2−n− 2k off-diagonal entries of Σ with zero and denote
the resulting matrix as Σk. Note that Σ and Σk have the same diagonal. Finally, we
consider the sparsity graph of Σk, namely G(Σk), as an estimate of G

(
Σ−1
∗
)
.

The connection between graphical lasso and the thresholding technique is not well un-
derstood and there are only a few studies on this subject. The work Mazumder and Hastie
(2012) has recently shown that if the sample covariance matrix is thresholded at λ and its
corresponding graph is decomposed into connected components, then the vertex-partition
induced by these components is equal to the one induced by the connected components of
the estimated graph obtained from graphical lasso for the same λ. The paper Guillot and
Rajaratnam (2011) obtains graph conditions that are required for preserving the positive
definiteness of the sample correlation matrix after thresholding.

This paper is focused on the investigation of the connection between graphical lasso and
thresholding. First, we derive a condition under which the heuristic thresholding method
performs very similarly to the computationally-heavy graphical lasso. We then argue that
this condition is satisfied as long as λ is large enough. Moreover, we demonstrate in nu-
merical examples that graphical lasso and thresholding lead to the same approximate graph
for G

(
Σ−1
∗
)
. Note that although the condition provided here depends on the solution of

graphical lasso, it can be systematically expressed in terms of the sample correlation matrix
Σ for certain types of graphs (see the technical report Sojoudi (2016) for the derivation of
such conditions for acyclic graphs).

Recently, there has been a significant interest in studying the human brain functional
connectivity networks using functional MRI (fMRI) data. Functional connectivity is mea-
sured as the temporal coherence or correlation between the activities of disjoint brain areas,
where the direct statistical dependence between every two brain regions in the functional
network can be obtained using partial correlation. In most fMRI studies, computing partial
correlations is a daunting challenge due to the limitation on the number samples available
from fMRI scans. Graphical lasso has become popular in the literature for the identifica-
tion of the direct correlations between the activities of different parts of the brain using a
small number of samples (Huang et al., 2010). In this work, we apply graphical lasso and
thresholding to the resting-state fMRI data collected from twenty subjects and observe a
high degree of similarity between the outcomes of these two techniques for each individ-
ual subject. Note that the matrix Σ is not invertible for the fMRI study conducted here.
More precisely, this work makes no assumption on the invertibility of the sample correlation
matrix Σ (although the true correlation matrix Σ∗ needs to be invertible).

In Sojoudi and Doyle (2014), we have developed a new method for generating synthetic
data based on sparse electrical circuit models, where certain nodes of each circuit are con-
nected to one another through resistors and capacitors that are subject to thermal noise
(to create stochasticity). The main property of this model is that the connectivity of the
circuit model can be obtained from the sparsity pattern of the inverse covariance matrix
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associated with the nodal voltages. In other words, the sparsity pattern of the inverse co-
variance matrix has the same structure as the adjacency matrix of the circuit network. In
this work, we use the above circuit model to verify the high similarity between graphical
lasso and the thresholding technique for electrical networks.

This paper is organized as follows. The main results are presented in Section 2. Simu-
lations on random systems are provided in Section 3. Two case studies on fMRI data and
electrical circuits are conducted in Sections 4 and 5, respectively. Some concluding remarks
are drawn in Section 6.

1.1 Notations and Definitions

Notations: R, Sn, and Sn+ denote the sets of real numbers, n×n (real) symmetric matrices,
and n×n positive semidefinite matrices, respectively. trace{M} and log det{M} denote the
trace and the logarithm of the determinant of a matrix M . The (i, j) entry of M is shown
as Mij . The notations |x| and ‖M‖1 represent the absolute value of a scalar x and the sum
of absolute values of a matrix M , respectively. The symbol sign(·) denotes the sign function
(note that sign(0) = 0). The standard basis vectors in Rn are shown as e1, e2, ..., en. The
optimal value of a matrix variable M is denoted as Mopt.

Definition 1 Given a symmetric matrix S ∈ Sn, the support (sparsity) graph of S is defined
as a graph with the vertex set V := {1, 2, ..., n} and the edge set E ⊆ V × V such that
(i, j) ∈ V if and only if Sij 6= 0, for every two different vertices i, j ∈ V. The support graph
of S captures the sparsity of the matrix S and is denoted as G(S).

Definition 2 Given two graphs G and G′ with the same vertex set, define G−G′ as a graph
obtained from G by removing the common edges of G and G′.

2. Main Results

In this section, we study the connection between thresholding and graphical lasso. To
simplify the presentation, we assume that the nonzero entries of the upper triangular part
of Σ (excluding its diagonal) have different magnitudes. Assume also that the number of
such nonzero entries is greater than or equal to k (in order to guarantee that the thresholding
method is able to obtain a graph with k edges). For notational convenience, we denote the
(i, j)th entry of the matrix (Sopt)−1 as (Sopt)−1

ij throughout this work.

2.1 Optimality Conditions

Consider the convex optimization problem (2) together with an optimal solution Sopt. First,
we aim to obtain necessary and sufficient optimality conditions for graphical lasso.
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Lemma 3 Sopt is an optimal solution of graphical lasso if and only if the conditions

(Sopt)−1
ij = Σij + λ if i = j (3a)

(Sopt)−1
ij = Σij + λ× sign(Sopt

ij ) if Sopt
ij 6= 0 (3b)

(Sopt)−1
ij ≤ Σij + λ if Sopt

ij = 0 (3c)

(Sopt)−1
ij ≥ Σij − λ if Sopt

ij = 0 (3d)

are satisfied for all indices i, j ∈ {1, ..., n}.

Proof Due to the convexity of graphical lasso, a locally optimal solution of this problem
is a global solution and, therefore, a local perturbation analysis can be used to prove the
lemma. To this end, notice that − log(0) = +∞, trace(ΣS) ≥ 0, and ‖S‖1 is finite only
when all entries of S are finite. It follows from these properties that Sopt has bounded
entries and a nonzero determinant, i.e., Sopt � 0 (note that a zero determinant for Sopt

makes the objective function of graphical lasso equal to +∞). This means that Sopt(ε; i, j)
defined as Sopt + ε(eie

T
j + eje

T
i ) is a feasible solution of the optimization problem (2) for

small values of ε (note that the matrix eie
T
j + eje

T
i is sign indefinite). On the other hand,

for every i, j ∈ {1, ..., n}, one can write:[
− log det(Sopt) + trace(ΣSopt) + λ‖Sopt‖1

]
−
[
− log det(Sopt(ε; i, j)) + trace(ΣSopt(ε; i, j)) + λ‖Sopt(ε; i, j)‖1

]
= 2

(
(Sopt)−1

ij − Σij

)
ε+ 2

(
|Sopt

ij | − |S
opt
ij + ε|

)
λ+ τε2 +O(ε3)

(4)

where τ is a positive number due to the strict convexity of the objective of the optimiza-
tion problem (2). The above equation is derived based on the Taylor series expansion of
log det(·) and the fact that the derivative of log det(S) with respect to S is equal to S−1.
Now, recall that Sopt is an optimal solution of (2), whereas Sopt + ε(eie

T
j + eje

T
i ) is only

a feasible solution. Hence, the left side of the equality (4) must always be non-positive for
all sufficiently small values of ε. A simple analysis of this equation leads to the conditions
provided in (3).

Lemma 3 offers a set of necessary and sufficient conditions for the matrix Sopt to be an
optimal solution of graphical lasso. These optimality conditions can be summarized as:

• The diagonal of (Sopt)−1 is obtained from that of Σ after a shift by the number λ.

• Each off-diagonal element (i, j) of the matrix (Sopt)−1 is in the interval [Σij−λ,Σij+λ],
and is located at one of the endpoints of this interval if (i, j) is an edge of the graphical
model G(Sopt).

2.2 First Condition for Equivalence

In this part, we derive a condition under which graphical lasso and thresholding result in
the same estimate graphical model for the random vector x.
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Definition 4 A symmetric matrix Ŝ is said to be equivalent to Sopt if Ŝ can be obtained
from Sopt through two operations: (i) permutation of its off-diagonal entries, and (ii) flip-
ping the sign of some of its off-diagonal entries. We use the notation Ŝ ∼ Sopt to show this
equivalence.

Theorem 5 Let k denote the number of edges of the graph G(Sopt). Consider the optimiza-
tion problems

minimize
S∈Sn

trace(ΣS) + λ‖S‖1 subject to S ∼ Sopt (5)

and

minimize
S∈Sn+

− log det(S) + trace(ΣS) + λ‖S‖1 subject to S ∼ Sopt (6)

If these two problems possess the same solution, then Sopt and Σk will have the same support
graph.

Proof Let Ŝopt denote an optimal solution of the optimization problem (5). Our first
goal is to show that G(Ŝopt) = G(Σk). To this end, notice that every feasible solution S
of (5) satisfies the equality ‖S‖1 = ‖Sopt‖1 due to Definition 4. This implies that the
additive term λ‖S‖1 can be eliminated from the objective function of the optimization
problem (5). On the other hand, the first part of the objective function can be expressed

as trace(ΣS) =
n∑

i,j=1
(ΣijSij). By investigating this sum, it is straightforward to show that

the optimization problem (5) has a unique solution Ŝopt that can be obtained as follows:

• First, we focus on the upper triangular part of Σ (excluding the diagonal) and identify
those k entries with the largest absolute values, which are denoted as Σi1j1 ,Σi2j2 , ...,
Σikjk such that

|Σi1j1 | > |Σi2j2 | > ... > |Σikjk | (7)

(note that the nonzero entries of the upper triangular part of Σ have different magni-
tudes, by assumption).

• Second, we repeat the above procedure on the matrix Sopt and identify those k entries
with the greatest absolute values, which are denoted as (p1, q1), ..., (pk, qk) such that

|Sopt
p1q1 | ≥ |S

opt
p2q2 | ≥ ... ≥ |S

opt
pkqk
| (8)

• For every l ∈ {1, ..., k}, the (il, jl)
th entry of Ŝopt is equal to -sign(Σiljl)|S

opt
plql |.

Now, it is easy to verify that

G(Ŝopt) = G(Σk) (9)

On the other hand, since the objective of the optimization problem (2) is strictly convex,
Sopt is a unique solution of this problem. Hence, due to the fact the feasible set of the prob-
lem (6) is contained in that of (2), the optimization problem (6) has the unique solution
Sopt. Therefore, the two solutions Ŝopt and Sopt of the problem (6) are identical. Now, the
proof follows from the relation (9).
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As verified by the author, the condition given in Theorem 5 is satisfied for many nu-
merical examples, leading to the equivalence of thresholding and graphical lasso. The main
intuition behind the satisfaction of the above condition is as follows:

• Consider a small number k (or a large number λ) for which the matrix Sopt is highly
sparse.

• Due to Lemma 3, the diagonal entries of Sopt would be relatively much larger than
the nonzero off-diagonal entries of Sopt.

• Hence, the permutation of the (small) off-diagonal entries of the positive semidefinite
Sopt would not make the matrix sign indefinite and also has a negligible effect on the
log det of the matrix.

• Under such circumstances, the condition derived in Theorem 5 would be satisfied
(note that (5) is obtained from (6) by dropping the sign-definite condition and the
log det term).

To strengthen the above argument, an easy-to-check condition will be provided next to
guarantee the equivalence of thresholding and graphical lasso.

2.3 Second Condition for Equivalence

Consider the solution Sopt. The objective of this part is to derive a condition of equivalence
that depends only on the entries of Sopt, without using λ or Σ explicitly. Recall that this
equivalence does not requite that the matrices Sopt and Σk be identical (which is unlikely
to occur in practice), and is only concerned with the sparsity patterns of these matrices.

Theorem 6 Let k denote the number of edges of the graph G(Sopt). Assume that the
inequalities

sign
(
Sopt
ij

)
× sign

(
(Sopt)−1

ij

)
≤ 0 (10a)

|(Sopt)−1
ij | ≥ |(S

opt)−1
pq | (10b)

hold for every two pairs (i, j) and (p, q) satisfying

(i, j) ∈ G(Sopt) (11a)

(p, q) ∈ G((Sopt)−1)− G(Sopt) (11b)

Then, graphical lasso and thresholding produce the same graph, i.e., G(Sopt) = G(Σk).

Proof Consider two arbitrary pairs (i, j) and (p, q) satisfying (11). It follows from (10)
and Lemma 3 that

|Σij | ≥ λ (12)

and that
|Σij | − λ ≥ |(Sopt)−1

pq | (13)

7



Somayeh Sojoudi

Similar to the proof of Theorem 5, let the entries of the upper triangular part of Σk be
ordered as

|Σi1j1 | > ... > |Σikjk | > |Σik+1jk+1
| ≥ · · · ≥ |Σimjm | (14)

where m = n2−n
2 . To prove the theorem by contradiction, assume that G(Sopt) 6= G(Σk).

Recall that G(Σk) is a graph with n vertices and the edges (i1, j1), (i2, j2), ..., (ik, jk). Since
G(Sopt) has exactly k edges, the above assumption implies that there exist two numbers s
and r such that

s ∈ {1, ..., k} and (is, js) 6∈ G(Sopt) (15a)

r ∈ {s+ 1, ...,m} and (ir, jr) ∈ G(Sopt) (15b)

Therefore, it follows from (13) that

|(Sopt)−1
isjs
| ≤ |Σirjr | − λ < |Σisjs | − λ (16)

However, the inequality
|(Sopt)−1

isjs
| < |Σisjs | − λ (17)

is in contradiction with the relation

(Sopt)−1
isjs
∈ [Σisjs − λ,Σi2js + λ] (18)

that is given in (3). This completes the proof.

Theorem 6 states that graphical lasso and thresholding are equivalent if two conditions
are satisfied:

• Condition 1: The sign of every nonzero off-diagonal entry of Sopt is different from
that of its corresponding entry in the inverse of Sopt.

• Condition 2: If a zero off-diagonal entry of Sopt takes a nonzero value in the inverse of
Sopt, then its magnitude is not larger than the magnitude of any off-diagonal element
of (Sopt)−1 corresponding to a nonzero entry of Sopt.

Note that the above conditions only depend on Sopt and are not directly related to Σ. To
better understand these conditions, we decompose Sopt as

Sopt = Dopt +Oopt (19)

where Dopt is a diagonal matrix and Oopt has a zero diagonal. If the norm of (Dopt)−1Oopt

is less than 1, one can write

(Sopt)−1 =

( ∞∑
t=0

(
− (Dopt)−1Oopt

)t
)

(Dopt)−1 (20)

In general, we have

(Sopt)−1 = (Dopt)−1 − (Dopt)−1Oopt(Dopt)−1 + h.o.t. (21)
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where h.o.t stands for higher order terms in the Taylor series expansion if the norm of
(Dopt)−1Oopt is less than 1, and otherwise is equal to (Sopt)−1Oopt(Dopt)−1Oopt(Dopt)−1

(as a general formula). We refer to

Eopt := (Dopt)−1 − (Dopt)−1Oopt(Dopt)−1 (22)

as the first-order approximation of (Sopt)−1. Note that if λ is relatively large, it is expected
that Oopt will be small compared to Dopt, which will lead to small higher order terms.

Theorem 7 The condition (10) given in Theorem 6 to guarantee the equivalence of graph-
ical lasso and thresholding is satisfied if (Sopt)−1 is replaced by its first-order approximation
Eopt in the condition.

Proof Equation (22) yields that

Eopt
ij =


(Dopt)−1

ii if i = j

−(Dopt)−1
ii O

opt
ij (Dopt)−1

jj if (i, j) ∈ G(Sopt)

0 otherwise

(23)

for every i, j ∈ {1, ..., n}. Note that Dopt > 0 due to the positive definiteness of Sopt. Hence,
given a pair (i, j) ∈ G(Sopt), one can write:

sign
(
Sopt
ij

)
sign

(
Eopt

ij

)
= −sign

(
Oopt

ij

)2
(Dopt)−1

ii (Dopt)−1
jj ≤ 0 (24)

Moreover, given arbitrary pairs (i, j) and (p, q) satisfying (11), it follows from (23) that
Eopt

pq = 0. Therefore,
|Eopt

ij | ≥ |E
opt
pq | (25)

The proof is completed by combining (24) and (25).

Before further simplifying the conditions of Theorem 6 based on Theorem 7, it is de-
sirable to offer a more general condition measuring the “similarity” of graphical lasso and
thresholding (as opposed to their “equivalence”).

Definition 8 Define Ik as the set of indices (locations) of those k entries of the upper
triangular part of (Sopt)−1 that have the largest magnitudes.

Note that if multiple entries of (Sopt)−1 have the same value, then Ik may not be uniquely
defined. In that case, Ik can be considered as any of the sets satisfying the properties given
in Definition 8.

Theorem 9 Let k denote the number of edges of the graph G(Sopt), and h be the number
of indices (i, j)’s in the set Ik for which the relation

sign
(
Sopt
ij

)
× sign

(
(Sopt)−1

ij

)
< 0 (26)

holds. Then, the graphs G(Σk) and G(Sopt) have at least h edges in common. In particular,
graphical lasso and thresholding are equivalent if h = k.
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Proof The proof of Theorem 6 can be adopted to prove this theorem. The details are
omitted for brevity.

Theorem 9 states that the graph G(Sopt) (obtained using graphical lasso) and the graph
G(Σk) (obtained using thresholding) share at least h edges. Hence, this theorem provides a
simple mechanism to check the similarity between graphical lasso and thresholding through
a simple test on Sopt. This mechanism will be further studied below.

Definition 10 Given a matrix H ∈ Sn and a positive integer t ∈ {1, 2, ..., k}, define f(H, t)
as the magnitude of the tth largest entry (in magnitude) of the upper triangular part of H
(excluding its diagonal). For example, f(H, 1) is equal to the absolute value of an off-
diagonal entry of H with the largest magnitude.

We define ∆Eopt as the difference between the matrix (Sopt)−1 and its first-order ap-
proximation Eopt.

Theorem 11 Given a positive integer t ∈ {1, 2, ..., k}, the graphs G(Σk) and G(Sopt) have
at least t edges in common if

2 f(∆Eopt, 1) < f(Eopt, t) (27)

In particular, graphical lasso and thresholding lead to the same approximate graph if the
above inequality is satisfied for t = k.

Proof The proof follows from Theorems 7 and 9. The main idea will be sketched for t = k
below. Consider arbitrary pairs (i, j) and (p, q) satisfying (11). It follows from (27) that

|Eopt
ij | ≥ f(Eopt, k) ≥ 2f(∆Eopt, 1) ≥ 2|∆Eopt

ij | (28)

Similarly,

|Eopt
ij | ≥ f(Eopt, k) ≥ 2f(∆Eopt, 1) ≥ 2|∆Eopt

pq | (29)

On the other hand, (Sopt)−1
ij = Eopt

ij + ∆Eopt
ij and sign(Sopt

ij ) = sign(Oopt
ij ) = −sign(Eopt

ij ).
The above relations together with (23) imply the condition (10). This completes the proof.

Roughly speaking, f(∆Eopt, 1) is small for a relatively large number λ, and f(Eopt, t)
would stay away from zero due to Lemma 3. Theorem 11 explains that the relationship
between Eopt and ∆Eopt determines the degree of similarity between graphical lasso and
thresholding. Note that Theorem 11 is more conservative than Theorem 9, but its condition
is more insightful.

Note that the definition of graphical lasso in (2) is based on the regularization term
λ‖S‖1. Consider a second version of graphical lasso where only the off-diagonal entries of S
are penalized in the regularization term. This is realized by replacing the term ‖S‖1 with
2
∑n

i=1

∑n
j=i+1 |Sij |. The optimality conditions given in Lemma 3 for graphical lasso are

valid for the second version of graphical lasso after dropping λ from the right side of (3a).
As a result, the original and second version of graphical lasso are very similar, and the only
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Σ =



1 0.5448 0.4980 0.2045 −0.2818 −0.1452
0.5448 1 −0.1327 −0.0604 −0.6860 −0.0457
0.4980 −0.1327 1 0.1283 −0.1859 −0.5174
0.2045 −0.0604 0.1283 1 0.4019 0.6238
−0.2818 −0.6860 −0.1859 0.4019 1 0.5139
−0.1452 −0.0457 −0.5174 0.6238 0.5139 1

 (30)

Sopt =



0.6934 −0.0453 −0.0229 0 0 0
−0.0453 0.7114 0 0 0.1153 0
−0.0229 0 0.6919 0 0 0.0321

0 0 0 0.6997 0 −0.0839
0 0.1153 0 0 0.7098 −0.0305
0 0 0.0321 −0.0839 −0.0305 0.7025

 (31)

(Sopt)−1 =



1.4500 0.0949 0.0480 −0.0003 −0.0155 −0.0029
0.0949 1.4500 0.0036 −0.0013 −0.2360 −0.0106
0.0480 0.0036 1.4500 −0.0081 −0.0035 −0.0674
−0.0003 −0.0013 −0.0081 1.4500 0.0077 0.1738
−0.0155 −0.2360 −0.0035 0.0077 1.4500 0.0640
−0.0029 −0.0106 −0.0674 0.1738 0.0640 1.4500

 (32)

difference is in the diagonal of (Sopt)−1. It is easy to verify that the theorems developed in
this work are all valid for the second version of graphical lasso as well. However, note that
in order to obtain a graph with k edges, the value of the regularization term λ may not be
the same for the original and the second version of graphical lasso.

3. Numerical Examples

Example 1: Consider Σ as the randomly generated matrix given in (30). The solution Sopt

of graphical lasso with λ = 0.45 is provided in (31) (this value of λ guarantees that G(Sopt)
will have n edges). It can be deduced from this solution that the graph G(Sopt) consists of the
vertex set V := {1, 2, ..., 6} and the edge set E := {(1, 2), (1, 3), (2, 5), (3, 6), (4, 6), (5, 6)}. On
the other hand, it follows from a simple inspection of the matrix Σ that E coincides with the
index set of the 6 largest absolute values of the upper triangular part of Σ. Hence, graphical
lasso and thresholding are equivalent in this example, meaning that G(Sopt) = G(Σ6).

It is desirable to find out whether the simple conditions proposed in Theorem 9 can
be used to detect this equivalence. Recall that these conditions are expressed in terms of
the matrix Sopt, without using λ and Σ explicitly. To check these conditions, the matrix
(Sopt)−1 can be obtained as the one given in (32). Since the upper triangular part of Sopt

has 6 nonzero entries, the index set I6 needs to be found. After the identification of the
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Σ =



1 0.9342 0.8156 0.8609 0.6994 0.8457
0.9342 1 0.7110 0.7736 0.7283 0.8532
0.8156 0.7110 1 0.8593 0.8905 0.7958
0.8609 0.7736 0.8593 1 0.7876 0.7793
0.6994 0.7283 0.8905 0.7876 1 0.7040
0.8457 0.8532 0.7958 0.7793 0.7040 1

 (35)

Σ5 =



1 0.9342 0 0.8609 0 0
0.9342 1 0 0 0 0.8532

0 0 1 0.8593 0.8905 0
0.8609 0 0.8593 1 0 0

0 0 0.8905 0 1 0
0 0.8532 0 0 0 1

 (36)

Sopt =



0.5417 −0.0247 0 −0.0032 0 0
−0.0247 0.5417 0 0 0 −0.0009

0 0 0.5408 −0.0027 −0.0118 0
−0.0032 0 −0.0027 0.5406 0 0

0 0 −0.0118 0 0.5408 0
0 −0.0009 0 0 0 0.5405

 (37)

(Sopt)−1 =



1.8500 0.0842 0.0001 0.0109 0.0000 0.0002
0.0842 1.8500 0.0000 0.0005 0.0000 0.0032
0.0001 0.0000 1.8500 0.0093 0.0405 0.0000
0.0109 0.0005 0.0093 1.8500 0.0002 0.0000
0.0000 0.0000 0.0405 0.0002 1.8500 0.0000
0.0002 0.0032 0.0000 0.0000 0.0000 1.8500

 (38)

largest absolute values of the matrix (Sopt)−1, it turns out that

I6 = {(1, 2), (1, 3), (2, 5), (3, 6), (4, 6), (5, 6)} (33)

In addition, the relation

sign
(
Sopt
ij

)
× sign

(
(Sopt)−1

ij

)
< 0, ∀(i, j) ∈ I6 (34)

holds. Therefore, it follows from Theorem 9 that graphical lasso and thresholding lead to
the same result.

Example 2: Consider the randomly generated matrix in (35). Thresholding this matrix at
the level of k = 5 yields the solution given in (36). On the other hand, solving the graphical
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lasso for λ = 0.85 leads to the solution Sopt provided in (37), with the inverse given in (38)
(this value of λ guarantees that G(Sopt) will have n−1 edges). By analyzing the matrix Sopt

and its inverse, it can be verified that the conditions provided in Theorem 9 are satisfied.
Hence, thresholding and graphical lasso are equivalent. An interesting observation is that
the matrix Σ has two close entries 0.8457 and 0.8532 such that only one of them is removed
through thresholding, but graphical lasso recognizes this fact and selects the entry with a
slightly higher value. In other words, even in the case where the matrix Σ have entries
with similar values (which makes it hard to decide what entries should be included in the
graphical model), graphical lasso may still behave the same as thresholding.

Example 3: We construct a matrix NNT , where the entries of N ∈ R30×30 are chosen at
random according to some probably distribution. Define Σ as a matrix obtained from NNT

through a normalization to make its diagonal entries all equal to 1. We order the entries

of Σ according to (14) and consider λ as
|Σi30j30 |+|Σi29j29 |

2 (i.e., the average of the 29th and
30th largest absolute values of the upper triangular part of Σ). Two experiments will be
concluded below.

Experiment I: By choosing every entry of the matrix N from a normal probability distribu-
tion, we generated 100 random matrices Σ’s. In Figure 1(a), the number of edges of G(Sopt)
is shown for each of the 100 trials (the trials are reordered to make the curve increasing). In
Figure 1(b), the number of edges of the difference graph G(Sopt)−G(Σk) is depicted, where
k is considered as the number of edges of G(Sopt). It can be seen that graphical lasso and
thresholding are equivalent in more than 75 trials and are different by at most 2 edges in the
remaining trials (note that the orderings of the trials for Figures 1(a) and 1(b) are different
to ensure that each curve changes smoothly). This supports the claim of the paper that
graphical lasso and thresholding would behave highly similarly. As opposed to computing
the graph G(Sopt)−G(Σk) directly, Theorem 9 offers a simple insightful condition to find a
subset of the common edges of G(Sopt) and G(Σk). This simple condition is tested on the
100 trials and the results are summarized in Figure 1(c). This figure shows the percentage
of the common edges of G(Sopt) and G(Σk) that are detected by Theorem 9. It can be
observed that the condition provided in the paper is able to detect a similarity degree on
the order of 80% for more than 90% of the trials.

Experiment II: This study is the same as the previous experiment with the only difference
that every entry of the matrix N was chosen from the interval [0, 1] with a uniform proba-
bility distribution. The results are shown in Figures 1(d), (e) and (f). It can be seen that
graphical lasso and thresholding are similar with the probability of at least 95%.

4. Case Study on Brain Networks

Brain functional connectivity is defined as the statistical dependencies between the activities
of disjoint brain regions. A brain functional network can be represented by a set of nodes
and edges, where each node corresponds to a brain region and each edge shows the presence
of correlated activities (namely, a nonzero partial correlation) between two disjoint regions.
We apply graphical lasso and thresholding techniques to the fMRI data collected from
twenty subjects to obtain their associated brain functional networks. These fMRI data
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Figure 1: Figures (a), (b) and (c) show the number of edges of G(Sopt), the number of
edges of G(Sopt)−G(Σk), and the similarity degree of thresholding and graphical
lasso detected via Theorem 9 for Experiment I. Figures (d), (e) and (f) show the
number of edges of G(Sopt), the number of edges of G(Sopt) − G(Σk), and the
similarity degree of thresholding and graphical lasso detected via Theorem 9 for
Experiment II.

sets are borrowed form Vértes et al. (2012). Each data set includes 134 samples of the
low frequency oscillations, taken at 140 cortical brain regions in the right hemisphere. The
goal is to find the brain functional connectivity network of each subject that specifies the
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direct interactions (or conditional dependence/independence) between the activities of these
cortical regions.

Using the aforementioned time series data, a 140 × 140 sample correlation matrix can
be computed for each subject. Note that the number of samples is smaller than the number
of variables and, therefore, the sample correlation matrix is not invertible. As a result, it
is not possible to take the inverse of the sample correlation matrix for estimating a partial
correlation matrix. The brain network being sought has n = 140 nodes (brain regions).
In an effort to find a subgraph of this network as closely as possible to a spanning tree,
we choose the regularization parameter λ in the graphical lasso algorithm and the level
of thresholding in such a way that they both lead to graphs with n − 1 = 139 edges. As
illustrated in Figure 2, the similarity degree between the outcomes of these two techniques
is above 90% for all twenty subjects. The outcomes of graphical lasso and thresholding
obtained for 4 of these subjects are given in Figure 3 for illustration. Note that these graphs
are not spanning trees as indented, which imply that graphical lasso and thresholding are
able to obtain graphs with n− 1 edges but they inevitably have cycles.
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Figure 2: The similarity degree of thresholding and graphical lasso for obtaining brain net-
works of 20 subjects.

5. Case Study on Electrical Circuits

Consider an arbitrary resistor-capacitor (RC) circuit with n nodes, where certain nodes
are connected to each other or the ground via resistor-capacitor elements. Figure 4(a)
illustrates an RC circuit. The connectivity of each circuit can be represented by a graph, as
demonstrated in Figure 4(b). Assume that the physical structure of the circuit is unknown
and only the nodal voltages are available for measurement. It is desirable to find the
structural connectivity of the circuit from the measured signals. Given a time instance t,
let V (t) denote the vector of the voltages for nodes 1, ..., n at time t. Assume that the
circuit elements are subject to white thermal noise, namely Johnson-Nyquist noise, and
that the conductance and capacitance in each resistor-capacitor element are identical. Let

15



Somayeh Sojoudi

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3: Figures (a) and (b) show the brain networks of one subject obtained from graph-
ical lasso and thresholding, respectively. Similarly, figures (c)-(d), (e)-(f) and
(g)-(h) show the networks obtained from graphical lasso and thresholding for
three other subjects. The size of each node in these networks reflects its degree.
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Σ∗ denote the “steady-state” covariance of the voltage measurements. It can be shown that
Σ∗ = C−1, where C is the n × n capacitance matrix of the circuit (Sojoudi and Doyle,
2014). Note that the sparsity pattern of C is consistent with the topology of the circuit.
Therefore, the inverse covariance matrix Σ−1

∗ and the partial correlation matrix both have
the same sparsity structure as the circuit. In other words, the partial correlation matrix
unveils the physical connectivity of the circuit. Assuming that the circuit under study has
a sparse structure, it can be concluded that

• Σ∗ is generically a dense matrix, due to being the inverse of the sparse matrix C.

• Σ−1
∗ is sparse and its sparsity pattern conforms with the circuit topology.

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

(a)

(b)

Figure 4: a) An RC network with node 1 connected to the ground via a resistor and a
capacitor, b) a graph representation of the RC network connectivity.

The above physical model illustrates the fact that the topology of a system may have
been encoded in the partial correlation matrix. To recover the circuit topology from the
voltage vector V (t), one can sample the vector V (t) at different times t1, t2, ..., tr and con-
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struct a sample covariance matrix as

Σ =
1

r

r∑
i=1

Vi(ti)Vi(ti)
T (39)

where r denotes the number of samples. Note that Σ converges to the population covariance
Σ∗ as r →∞. When r is finite, two possible scenarios arise: i) Σ is invertible but the inverse
matrix needs to be thresholded to some level due to the error Σ∗−Σ, ii) Σ is not invertible
and therefore alternative methods are needed to estimate the inverse matrix.

The above circuit model can be used to study the relationship between the thresholding
and graphical lasso techniques. As an example, consider a mesh circuit with n = 100
nodes that are connected to one another through 180 links. The graphical model of this
grid circuit is depicted in Figure 5(a). With no loss of generality, assume that Cij = −1
for all (i, j) ∈ E . Furthermore, suppose that nodes 2, 9, 22, 61 and 70 of the circuit
are connected to the ground through parallel RC circuits with values equal to 0.1. For
r = 99 and 10 different trials, we have calculated the sample covariance matrices and
applied the thresholding technique and graphical lasso to these matrices in order to recover
networks with 180 edges. Note that since the number of samples is less than the number of
variables, the sample partial correlations cannot be obtained through matrix inversion. The
degree of similarity between graphical lasso and thresholding for these 10 trials are given
in Figure 5(b). Figures 5(c) and 5(d) show the networks obtained from thresholding and
graphical lasso for one of the trials. False positives are marked in red and false negatives
are colored in blue. These two graphs have 178 edges in common (out of 180 edges), which
indicates a high degree of similarity between the outcomes of the two techniques under
study (to observe some of the few differences, one can inspect the existence of the edges
(64, 75) and (55, 56) in these two graphs). We have repeated the above experiment on many
circuit models beyond mesh networks and observed a very similar result.

6. Conclusions

The objective of this paper is to study the problem of finding a sparse conditional de-
pendence graph associated with a multivariate random vector, where the only available
information is a sample correlation matrix. A commonly used technique for this problem is
a convex program, named graphical lasso, where the objective function of this optimization
problem has a sparsity-promoting penalty term. In this work, a simple condition is derived
under which the graph obtained from graphical lasso coincides with the one obtained by
simply thresholding the sample correlation matrix. This condition depends only on the
solution of graphical lasso, and makes no use of the regularization coefficient or the sample
correlation matrix. The focus of the paper is on the case where the regularization term
is high enough to search for a sparse graph. A theoretical result is developed to support
that graphical lasso and thresholding behave similarly in this regime, and this statement
is verified in several random simulations as well as two case studies on brain connectivity
networks and electrical circuits.
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Figure 5: a) The mesh RC circuit studied in Section 5, b) the similarity degree of thresh-
olding and graphical lasso for the mesh network over 10 trails, c) the network
obtained from thresholding the sample correlation matrix for one trial, d) the
network obtained from graphical lasso for the same trial used for Figure (c).
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