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Abstract

Analyzing multi-layered graphical models provides insight into understanding the con-
ditional relationships among nodes within layers after adjusting for and quantifying the
effects of nodes from other layers. We obtain the penalized maximum likelihood estimator
for Gaussian multi-layered graphical models, based on a computational approach involving
screening of variables, iterative estimation of the directed edges between layers and undi-
rected edges within layers and a final refitting and stability selection step that provides
improved performance in finite sample settings. We establish the consistency of the es-
timator in a high-dimensional setting. To obtain this result, we develop a strategy that
leverages the biconvexity of the likelihood function to ensure convergence of the developed
iterative algorithm to a stationary point, as well as careful uniform error control of the esti-
mates over iterations. The performance of the maximum likelihood estimator is illustrated
on synthetic data.
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1. Introduction.

The estimation of directed and undirected graphs from high-dimensional data has received
a lot of attention in the machine learning and statistics literature (e.g., see Bühlmann and
Van De Geer, 2011, and references therein), due to their importance in diverse applications
including understanding of biological processes and disease mechanisms, financial systems
stability and social interactions, just to name a few (Sachs et al., 2005; Wang et al., 2007;
Sobel, 2000). In the case of undirected graphs, the edges capture conditional dependence
relationships between the nodes, while for directed graphs they are used to model causal
relationships (Bühlmann and Van De Geer, 2011).

However, in a number of applications the nodes can be naturally partitioned into sets
that exhibit interactions both between them and amongst them. As an example, consider
an experiment where one has collected data for both genes and metabolites for the same set
of patient specimens. In this case, we have three types of interactions between genes and
metabolites: regulatory interactions between the two of them and co-regulation within the
gene and within the metabolic compartments. The latter two types of relationships can be
expressed through undirected graphs within the sets of genes and metabolites, respectively,
while the regulation of metabolites by genes corresponds to directed edges. Note that
in principle there are feedback mechanisms from the metabolic compartment to the gene
one, but these are difficult to detect and adequately estimate in the absence of carefully
collected time course data. Another example comes from the area of financial economics,
where one collects data on returns of financial assets (e.g. stocks, bonds) and also on key
macroeconomic indicators (e.g. interest rate, prices indices, various measures of money
supply and various unemployment indices). Once again, over short time periods there
is influence from the economic variables to the returns (directed edges), while there are
co-dependence relationships between the asset returns and the macroeconomic variables,
respectively, that can be modeled as undirected edges.

Technically, such layered network structures correspond to multi-partite graphs that
possess undirected edges and exhibit a directed acyclic graph structure between the layers,
as depicted in Figure 1, where we use directed solid edges to denote the dependencies across
layers and dashed undirected edges to denote within-layer conditional dependencies.

Selected properties of such so-called chain graphs have been studied in the work of Drton
and Perlman (2008), with an emphasis on two alternative Markov properties including the
LWF Markov property (Lauritzen and Wermuth, 1989; Frydenberg, 1990) and the AMP
Markov property (Andersson et al., 2001).

While layered networks being interesting from a theoretical perspective and having sig-
nificant scope for applications, their estimation has received little attention in the literature.
Note that for a 2-layered structure, the directed edges can be obtained through a multivari-
ate regression procedure, while the undirected edges in both layers through existing proce-
dures for graphical models (for more technical details see Section 2.2). This is the strategy
leveraged in the work of Rothman et al. (2010), where for a 2-layered network structure
they proposed a multivariate regression with covariance estimation (MRCE) method for
estimating the undirected edges in the second layer and the directed edges between them.
A block coordinate descent algorithm was introduced to estimate the directed edges, while
the popular glasso estimator (Friedman et al., 2008) was used for the undirected edges.
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Layer 2Layer 1 Layer 3

Figure 1: Diagram for a three-layered network

However, this method does not scale well according to the simulation results presented and
no theoretical properties of the estimates were provided.

In follow-up work, Yin and Li (2011) used a cyclic block coordinate descent algorithm
and claimed convergence to a stationary point leveraging a result in Tseng (2001) (see
Proposition 2 in the Supplemental material). Unfortunately, a key assumption in Tseng
(2001) -namely, that a corresponding coordinate wise optimization problem that is given by
a high-dimensional lasso regression has unique minimum- fails and hence the convergence
result does not go through.

In related work, Lee and Liu (2012) proposed the Plug-in Joint Weighted Lasso (PWL)
and the Plug-in Joint Graphical Weighted Lasso (PWGL) estimator for estimating the
same 2-layered structure, where they use a weighted version of the algorithm in Rothman
et al. (2010) and also provide theoretical results for the low dimensional setting, where the
number of samples exceeds the number of potential directed and undirected edges to be
estimated. Finally, Cai et al. (2012) proposed a method for estimating the same 2-layered
structure and provided corresponding theoretical results in the high dimensional setting.
The Dantzig-type estimator (Candes and Tao, 2007) was used for the regression coefficients
and the corresponding residuals were used as surrogates, for obtaining the precision matrix
through the CLIME estimator (Cai et al., 2011). In another line of work (Sohn and Kim,
2012; Yuan and Zhang, 2014; McCarter and Kim, 2014), structured sparsity of directed
edges was considered and the edges were estimated with a different parametrization of the
objective function. We further elaborate on the connections of our work with these three
papers in Section 5.

The above work assumed a Gaussian distribution for the data, in more recent work
by Yang et al. (2014), the authors constructed the model under a general mixed graphical
model framework, which allows each node-conditional distribution to belong to a poten-
tially different univariate exponential family. In particular, with an underlying mixed MRF
graph structure, instead of maximizing the joint likelihood, the authors proposed to esti-
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mate the homogeneous and heterogeneous neighborhood for each node, by obtaining the `1
regularized M -estimator of the node-conditional distribution parameters, using traditional
approaches (e.g. Meinshausen and Bühlmann, 2006) for neighborhood estimation. How-
ever, rather than estimating directed edges directly, the directed edges are obtained from a
nonlinear transformation of the estimated homogeneous and heterogeneous neighborhood,
whose sparsity pattern gets compromised during the process.

In this work, we obtain the regularized maximum likelihood estimator under a spar-
sity assumption on both directed and undirected parameters for multi-layered Gaussian
graphical models and establish its consistency properties in a high-dimensional setting. As
discussed in Section 3, the problem is not jointly convex on the parameters, but convex on
selected subsets of them. Further, it turns out that the problem is biconvex if we consider a
recursive multi-stage estimation approach that at each stage involves only regression param-
eters (directed edges) from preceding layers and precision matrix parameters (undirected
edges) for the last layer considered in that stage. Hence, we decompose the multi-layer
network structure estimation into a sequence of 2-layer problems that allows us to estab-
lish the desired results. Leveraging the biconvexity of the 2-layer problem, we establish
the convergence of the iterates to the maximum-likelihood estimator, which under certain
regularity conditions is arbitrarily close to the true parameters. The theoretical guarantees
provided require a uniform control of the precision of the regression and precision matrix
parameters, which poses a number of theoretical challenges resolved in Section 3.

In summary, despite the lack of overall convexity, we are able to provide theoretical
guarantees for the MLE in a high dimensional setting. We believe that the proposed strategy
is generally applicable to other non-convex statistical estimation problems that can be
decomposed to two biconvex problems. Further, to enhance the numerical performance of
the MLE in finite (and small) sample settings, we introduce a screening step that selects
active nodes for the iterative algorithm used and that leverages recent developments in
the high-dimensional regression literature (e.g., Van de Geer et al., 2014; Javanmard and
Montanari, 2014; Zhang and Zhang, 2014). We also post-process the final MLE estimate
through a stability selection procedure. As mentioned above, the screening and stability
selection steps are beneficial to the performance of the MLE in finite samples and hence
recommended for similarly structured problems.

The remainder of the paper is organized as follows. In Section 2, we introduce the pro-
posed methodology, with an emphasis on how the multi-layered network estimation problem
is decomposed into a sequence of two-layered network estimation problem(s). In Section
3, we provide theoretical guarantees for the estimation procedure posited. In particular,
we show consistency of the estimates and convergence of the algorithm, under a number of
common assumptions in high-dimensional settings. In Section 4, we show the performance
of the proposed algorithm with simulation results under different simulation settings, and
introduce several acceleration techniques which speed up the convergence of the algorithm
and reduce the computing time in practical settings.
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2. Problem Formulation.

Consider an M -layered Gaussian graphical model. Suppose there are pm nodes in Layer m,
denoted by

Xm = (Xm
1 , · · · , Xm

pm)′, for m = 1, · · · ,M.

The structure of the model is given as follows:

– Layer 1. X1 = (X1
1 , · · · , X1

p1
)′ ∼ N (0,Σ1).

– Layer 2. For j = 1, · · · , p2: X2
j = (B12

j )′X1 + ε2j , with B12
j ∈ Rp1 , and ε2 =

(ε21, · · · , ε2p2
)′ ∼ N (0,Σ2).

...

– Layer M . For j = 1, 2, · · · , pM :

XM
j =

M−1∑
m=1

{(BmM
j )′Xm}+ εMj , where BmM

j ∈ Rpm for m = 1, · · · ,M − 1,

and εM = (εM1 , · · · , εMpM )′ ∼ N (0,ΣM ).

The parameters of interest are all directed edges that encode the dependencies across layers,
that is,

Bst :=
[
Bst

1 · · · Bst
pt

]
, for 1 ≤ s < t ≤M,

and all undirected edges that encode the conditional dependencies within layers after ad-
justing for the effects from directed edges, that is:

Θm := (Σm)−1, for m = 1, · · · ,M.

It is assumed that Bst and Θm are sparse for all 1, . . . ,M and 1 ≤ s < t ≤M .
Given centered data for all M layers, denoted by Xm = [Xm

1 , · · · , Xm
pm ] ∈ Rn×pm for all

m = 1, · · · ,M , we aim to obtain the MLE for all Bst, 1 ≤ s < t ≤ M and all Θm,m =
1, · · · ,M parameters. Henceforth, we use Xm to denote random vectors, and Xm

j to denote
the jth column in the data matrix Xm

n×pm whenever there is no ambiguity.

Through Markov factorization (Lauritzen, 1996), the full log-likelihood function can be
decomposed as

`(Xm;Bst,Θm, 1 ≤ s < t ≤M, 1 ≤ m ≤M) = `(XM |XM−1, · · · , X1;B1M , · · · , BM−1,M ,ΘM )

+ `(XM−1|XM−2, · · · , X1;B1M−1, · · · , BM−2,M−1,ΘM−1)

+ · · ·+ `(X2|X1;B12,Θ2) + `(X1; Θ1)

= `(X1; Θ1) +
∑M

m=2
`(Xm|X1, · · · , Xm−1;B1m, · · · , Bm−1,m,Θm).

Note that the summands share no common parameters, which enables us to maximize
the likelihood with respect to individual parameters in the M terms separately. More
importantly, by conditioning Layer m nodes on nodes in its previous (m− 1) layers, we can
treat Layer m nodes as the“response” layer, and all nodes in the previous (m − 1) layer
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combined as a super “parent” layer. If we ignore the structure within the bottom layer (X1)
for the moment, the M -layered network can be viewed as (M−1) two-layered networks, each
comprising a response layer and a parent layer. Thus, the network structure in Figure 1 can
be viewed as a 2 two-layered network: for the first network, Layer 3 is the response layer,
while Layers 1 and 2 combined form the “parent” layer; for the second network, Layer 2 is
the response layer, and Layer 1 is the “parent” layer. Therefore, the problem for estimating
all
(
M
2

)
coefficient matrices and M precision matrices can be translated into estimating

(M − 1) two-layered network structures with directed edges from the parent layer to the
response layer, and undirected edges within the response layer, and finally estimating the
undirected edges within the bottom layer separately.

Since all estimation problems boil down to estimating the structure of a 2-layered net-
work, we focus the technical discussion on introducing our proposed methodology for a
2-layered network setting,1. The theoretical results obtained extend in a straightforward
manner to an M -layered Gaussian graphical model.

Remark 1. For the M -layer network structure, we impose certain identifiability-type condi-
tion on the largest “parent” layer (encompassing M − 1 layers), so that the directed edges
of the entire network are estimable. The imposed condition translates into a minimum
eigenvalue-type condition on the population precision matrix within layers, and conditions
on the magnitude of dependencies across layers. Intuitively, consider a three-layered net-
work: if X1 and X2 are highly correlated, then the proposed (as well as any other) method
will exhibit difficulties in distinguishing the effect of X1 on X3 from that of X2 on X3.
The (group) identifiability-type condition is thus imposed to obviate such circumstances.
An in-depth discussion on this issue is provided in Section 3.4.

2.1 A Two-layered Network Setup.

Consider a two-layered Gaussian graphical model with p1 nodes in the first layer, denoted
by X = (X1, · · · , Xp1)′, and p2 nodes in the second layers, denoted by Y = (Y1, · · · , Yp2)′.
The model is defined as

– X = (X1, · · · , Xp1)′ ∼ N (0,ΣX).

– For j = 1, 2, · · · , p2: Yj = B′jX + εj , Bj ∈ Rp1 and ε = (ε1, · · · , εp2)> ∼ N (0,Σε).

The parameters of interest are: ΘX := Σ−1
X ,Θε := Σ−1

ε and B = [B1, · · · , Bp2 ]. As with
most estimation problems in the high dimensional setting, we assume these parameters to
be sparse.

Now given data X = [X1, · · · , Xp1 ] ∈ Rn×p1 and Y = [Y1, · · · , Yp2 ] ∈ Rn×p2 , both cen-
tered, we would like to use the penalized maximum likelihood approach to obtain estimates
for ΘX , Θε and B. Throughout this paper, we use X, Y and E to denote the size-n realiza-
tions of the random vectors X, Y and ε, respectively. Also, with a slight abuse of notation,
we use Xi, i = 1, 2, · · · , p1 and Yj , j = 1, 2, · · · , p2 to denote the columns of the data matrix
X and Y , respectively, whenever there is no ambiguity.

1. In Appendix D we give a detail example on how our proposed method works under a 3-layered network
setting.
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The full log-likelihood can be written as

`(X,Y ;B,Θε,ΘX) = `(Y |X; Θε, B) + `(X; ΘX) (1)

Note that the first term only involves Θε and B, and the second term only involves ΘX .
Hence, (1) can be maximized by maximizing `(Y |X) w.r.t. (Θε, B), and maximizing `(X)
w.r.t. ΘX , respectively. Θ̂X can be obtained using traditional methods for estimating
undirected graphs, e.g., the Graphical Lasso (Friedman et al., 2008) or the Nodewise Re-
gression prcoedure (Meinshausen and Bühlmann, 2006). Therefore, the rest of this paper
will mainly focus on obtaining estimates for Θε and B. In the next subsection, we introduce
our estimation procedure for obtaining the MLE for Θε and B.

Remark 2. Our proposed method is targeted towards maximizing `(Y |X; Θε, B) (with
proper penalization) in (1) only, which gives the estimates for across-layers dependencies
between the response layer and the parent layer, as well as estimates for the conditional
dependencies within the response layer each time we solve a 2-layered network estimation
problem. For an M -layered estimation problem, the maximization regarding `(X; ΘX) oc-
curs only when we are estimating the within-layer conditional dependencies for the bottom
layer.

2.2 Estimation Algorithm.

The conditional likelihood for response Y given X can be written as

L(Y |X) = ( 1√
2π

)np2 |Σε ⊗ In|−1/2 exp
{
−1

2(Y − Xβ)>(Σε ⊗ In)−1(Y − Xβ)
}
,

where Y = vec(Y1, · · · , Yp2), X = Ip2 ⊗X and β = vec(B1, · · · , Bp2). After writing out the
Kronecker product, the log-likelihood can be written as

`(Y |X) = constant +
n

2
log det Θε −

1

2

p2∑
j=1

p2∑
i=1

σijε (Yi −XBi)>(Yj −XBj).

Here, σijε denotes the ij-th entry of Θε. With `1 penalization which induces sparsity, we
formulate the following optimization problem using penalized log-likelihood, which was
initially proposed in Rothman et al. (2010), and has also been examined in Lee and Liu
(2012):

min
B∈Rp1×p2
Θε∈S

p2×p2
++

 1

n

p2∑
j=1

p2∑
i=1

σijε (Yi −XBi)>(Yj −XBj)− log det Θε + λn

p2∑
j=1

‖Bj‖1 + ρn‖Θε‖1,off

 ,

(2)
and the first term in (2) can be equivalently written as

tr

 1
n

 (Y1 −XB1)>

...
(Yp2 −XBp2)>

 [(Y1 −XB1) · · · (Yp2 −XBp2)
]

Θε

 := tr(SΘε).
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where S is defined as the sample covariance matrix of E ≡ Y −XB. This gives rise to the
following optimization problem:

min
B∈Rp1×p2
Θε∈S

p2×p2
++

tr(SΘε)− log det Θε + λn

p2∑
j=1

‖Bj‖1 + ρn‖Θε‖1,off

 ≡ f(B,Θε), (3)

where ‖Θ‖1,off is the absulote sum of the off-diagonal entries in Θ, λn and ρn are both
positive tuning parameters.

Note that the objective function (3) is not jointly convex in (B,Θε), but only convex
in B for fixed Θε and in Θε for fixed B; hence, it is bi-convex, which in turn implies that
the proposed algorithm may fail to converge to the global optimum, especially in settings
where p1 > n, as pointed out by Lee and Liu (2012). As is the case with most non-convex
problems, good initial parameters are beneficial for fast convergence of the algorithm, a fact
supported by our numerical work on the present problem. Further, a good initialization is
critical in establishing convergence of the algorithm for this problem (see Section 3.1). To
that end, we introduce a screening step for obtaining a good initial estimate for B. The
theoretical justification for employing the screening step is provided in Section 3.3.

An outline of the computational procedure is presented in Algorithm 1, while the details
of each step involved are discussed next.

Screening. For each variable Yj , j = 1, · · · , p2 in the response layer, regress Yj on X
via the de-biased Lasso procedure proposed by Javanmard and Montanari (2014). The
output consists of the p-value(s) for each predictor in each regression, denoted by Pj , with
Pj ∈ [0, 1]p1 . To control the family-wise error rate of the estimates, we do a Bonferroni
correction at level α: define α? = α/p1p2 and set Bj,k = 0 if the p-value obtained for the
k’th predictor in the j’th regression Pj,k exceeds α?. Further, let

Bj = {Bj ∈ Rp1 : Bj,k = 0 if k ∈ Ŝcj} ⊆ Rp1 , (4)

where Ŝj is the collection of indices for those predictors deemed “active” for response Yj :

Ŝj = {k : Pj,k < α?}, for j = 1, · · · , p2.

Therefore, subsequent estimation of the elements of B will be restricted to B1 × · · · × Bp2 .

Alternating Search. In this step, we utilize the bi-convexity of the problem and estimate
B and Θε by minimizing in an iterative fashion the objective function with respect to (w.r.t.)
one set of parameters, while holding the other set fixed within each iteration.

As with most iterative algorithms, we need an initializer; for B̂(0) it corresponds to a
Lasso/Ridge regression estimate with a small penalty, while for Θ̂ε we use the Graphical
Lasso procedure applied to the residuals obtained from the first stage regression. That is,
for each j = 1, · · · , p2,

B̂
(0)
j = argmin

Bj∈Bj

{
‖Yj −XBj‖22 + λ0

n‖Bj‖1
}
, (5)
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Algorithm 1: Computational procedure for estimating B and Θε

Input : Data from the parent layer X and the response layer Y .

1 Screening:
2 for j = 1, · · · , p2 do

regress Yj on X using the de-biased Lasso procedure in Javanmard and Montanari
(2014) and obtain the corresponding vector of p-values Pj ;

end

obtain adjusted p-values P̃j by applying Bonferroni correction to vec(P1, · · · , Pj);
determine the support set Bj for each regression using (4).

3 Initialization:

4 Initialize column j = 1, · · · , p2 of B̂(0) by solving (5).

Initialize Θ̂
(0)
ε by solving (9) using the graphical lasso (Friedman et al., 2008).

5 while |f(B̂(k), Θ̂
(k)
ε )− f(B̂(k+1), Θ̂

(k+1)
ε )| ≥ ε do

6 update B̂ with (6);

7 update Θ̂ε with (8);

8 end

9 Refitting B and Θε:
for j = 1, · · · , p2 do

Obtain the refitted B̃j using (9);
end

re-estimate Θ̃ε using (10) with W coming from stability selection.

Output: Final Estimates B̃ and Θ̃ε.

where λ0
n is some small tuning parameter for initialization, and set Ê

(0)
j := Yj −XB̂(0)

j . An

initial estimate for Θ̂ε is then given by solving for the following optimization problem with
the graphical lasso (Friedman et al., 2008) procedure:

Θ̂(0)
ε = argmin

Θε∈S
p2×p2
++

{
log det Θε − tr(Ŝ(0)Θε) + ρn‖Θε‖1,off

}
,

where Ŝ(0) is the sample covariance matrix based on (Ê
(0)
1 , · · · , Ê(0)

p2 ).

Next, we use an alternating block coordinate descent algorithm with `1 penalization to
reach a stationary point of the objective function (3).

– Update B as

B̂(k+1) = argmin
B∈B1×···×Bp2

 1

n

p2∑
i=1

p2∑
j=1

(σ̂ijε )(k)(Yi −XBi)>(Yj −XBj) + λn

p2∑
j=1

‖Bj‖1

 ,

(6)
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which can be obtained by cyclic coordinate descent w.r.t each column Bj of B, that
is, update each column Bj by:

B̂
(t+1)
j = argmin

Bj∈Bj

{
(σ̂jjε )(k)

n ‖Yj + r
(t+1)
j −XBj‖22 + λn‖Bj‖1

}
, (7)

where

r
(t+1)
j =

1

(σ̂jjε )(k)

j−1∑
i=1

(σ̂ijε )(k)(Yi −XB̂(t+1)
i ) +

p2∑
i=j+1

(σ̂ijε )(k)(Yi −XB̂(t)
i )

 ,
and iterate over all columns until convergence. Here, we use k to index the outer
iteration while minimizing w.r.t. B or Θε, and use t to index the inner iteration while
cyclically minimizing w.r.t. each column of B.

– Update Θε as

Θ̂(k+1)
ε = argmin

Θε∈S
p2×p2
++

{
log det Θε − tr(Ŝ(k+1)Θε) + ρn‖Θε‖1,off

}
, (8)

where Ŝ(k+1) is the sample covariance matrix based on Ê
(k+1)
j = Yj − XB̂(k+1)

j , j =
1, · · · , p2.

Refitting and Stabilizing. As noted in the introduction, this step is beneficial in applica-
tions, especially when one deals with large scale multi-layer networks and relatively smaller
sample sizes. Denote the solution obtained by the above iterative procedure by B∞ and
Θ∞ε . For each j = 1, · · · , p2, set B̃j = {Bj : Bj,i = 0 if B∞j,i = 0, Bj ∈ Rp1} and the final
estimate for Bj is given by ordinary least squares:

B̃j = argmin
Bj∈B̃j

‖Yj −XBj‖2. (9)

For Θε, we obtain the final estimate by a combination of stability selection (Meinshausen and
Bühlmann, 2010) and graphical lasso (Friedman et al., 2008). That is, after obtaining the
refitted residuals Ẽj := Yj −XB̃j , j = 1, · · · , p2, based on the stability selection procedure
with the graphical lasso, we obtain the stability path, or probability matrix W for each edge,
which records the proportion of each edge being selected based on bootstrapped samples
of Ẽj ’s. Then, using this probability matrix W as a weight matrix, we obtain the final

estimate of Θ̃ε as follow:

Θ̃ε = argmin
Θε∈S

p2×p2
++

{
log det Θε − tr(S̃Θε) + ρ̃n‖(1−W ) ∗Θε‖1,off

}
, (10)

where we use ∗ to denote the element-wise product of two matrices, and S̃ is the sample
covariance matrix based on the refitted residuals Ẽ. Again, (10) can be solved by the
graphical lasso procedure (Friedman et al., 2008), with ρ̃n properly chosen.
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2.3 Tuning Parameter Selection.

To select the tuning parameters (λn, ρn), we use the Bayesian Information Criterion(BIC),
which is the summation of a goodness-of-fit term (log-likelihood) and a penalty term. The
explicit form of BIC (as a function of B and Θε) in our setting is given by

BIC(B,Θε) = − log det Θε + tr(SΘε) +
log n

n
(
‖Θε‖0 − p2

2
+ ‖B‖0)

where

S :=
1

n

 (Y1 −XB1)>

...
(Yp2 −XBp2)>

 [(Y1 −XB1) · · · (Yp2 −XBp2)
]
,

and ‖Θε‖0 is the total number of nonzero entries in Θε. Here we penalize the non-zero
elements in the upper-triangular part of Θε and the non-zero ones in B. We choose the
combination (λ∗n, ρ

∗
n) over a grid of (λ, ρ) values, and (λ∗n, ρ

∗
n) should minimize the BIC

evaluated at (B∞,Θ∞ε ).

3. Theoretical Results.

In this section, we establish a number of theoretical results for the proposed iterative al-
gorithm. We focus the presentation on the two-layer structure, since as explained in the
previous section the multi-layer estimation problem decomposes to a series of two-layer
ones. As mentioned in the introduction, one key challenge for establishing the theoretical
results comes from the fact that the objective function (3) is not jointly convex in B and
Θε. Consequently, if we simply used properties of block-coordinate descent algorithms, we
would not be able to provide the necessary theoretical guarantees for the estimates we ob-
tain. On the other hand, the biconvex nature of the objective function allows us to establish
convergence of the alternating algorithm to a stationary point, provided it is initialized from
a point close enough to the true parameters. This can be accomplished using a Lasso-based
initializer for B and Θε as previously discussed. The details of algorithmic convergence are
presented in Section 3.1.

Another technical challenge is that each update in the alternating search step relies
on estimated quantities—namely the regression and precision matrix parameters—rather
than the raw data, whose estimation precision needs to be controlled uniformly across all
iterations. The details of establishing consistency of the estimates for both fixed and random
realizations are given in Section 3.2.

Next, we outline the structure of this section. In Section 3.1 Theorem 1, we show that for
any fixed set of realization of X and E, 2 the iterative algorithm is guaranteed to converge
to a stationary point if estimates for all iterations lie in a compact ball around the true
value of the parameters. In Section 3.2, we show in Theorem 4 that for any random X
and E, with high probability, the estimates for all iterations lie in a compact ball around
the true value of the parameters. Then in Section 3.3, we show that asymptotically with

2. We actually observe X and Y , which is given by a corresponding set of realization in X and E based on
the model.

11
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log(p1p2)/n→ 0, while keeping the family-wise type I error under some pre-specified level,
the screening step correctly identifies the true support set for each of the regressions, based
upon which the iterative algorithm is provided with an initializer that is close to the true
value of the parameters. Finally in Section 3.4, we provide sufficient conditions for both
directed and undirected edges to be identifiable (estimable) for multi-layered network.

To aid the readability of the main results, we only present statements of theorems and
propositions, while all proofs are relegated to the Appendix (Section A and B).

Throughout this section, to distinguish the estimates from the true values, we use B∗

and Θ∗ε to denote the true values.

3.1 Convergence of the Iterative Algorithm.

In this subsection, we prove that the proposed block relaxation algorithm converges to a
stationary point for any fixed set of data, provided that the estimates for all iterations lie
in a compact ball around the true value of the parameters. This requirement is shown to
be satisfied with high probability in the next subsection 3.2.

Decompose the optimization problem in (3) as follows:

min
B∈Rp1×p2
Θε∈S

p2×p2
++

f(B,Θε) ≡ f0(B,Θε) + f1(B) + f2(Θε),

where

f0(B,Θε) =
1

n

p2∑
j=1

p2∑
i=1

σijε (Yi −XBi)′(Yj −XBj)− log det Θε = tr(SΘε)− log det Θε,

f1(B) = λn‖B‖1, f2(Θε) = ρn‖Θε‖1,off.

and Sp2×p2
++ is the collection of p2× p2 symmetric positive definite matrices. Further, denote

the limit point (if there is any) of {B̂(k)} and {Θ̂(k)
ε } by B∞ = limk→∞ B̂

(k) and Θ∞ε =

limk→∞ Θ̂
(k)
ε , respectively.

Definition 1 (stationary point (Tseng, 2001) pp.479). Define z to be a stationary point of
f if z ∈ dom(f) and f ′(z; d) ≥ 0, ∀ direction d = (d1, · · · , dN ) where dt is the tth coordinate
block.

Definition 2 (Regularity (Tseng, 2001) pp.479). f is regular at z ∈ dom(f) if f ′(z; d) ≥ 0
for all d = (d1, · · · , dN ) such that

f ′(z; (0, · · · , dt, · · · , 0)) ≥ 0, t = 1, 2, · · · , N.

Definition 3 (Coordinate-wise minimum). Define (B∞,Θ∞ε ) to be a coordinate-wise min-
imum if

f(B∞,Θε) ≥ f(B∞,Θ∞ε ), ∀Θε ∈ Sp2×p2
++ ,

f(B,Θ∞ε ) ≥ f(B∞,Θ∞ε ), ∀B ∈ Rp1×p2 .

Note for our iterative algorithm, we only have two blocks, hence with the above notation,
N = 2.

12
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Remark 3. Tseng (2001) proved that if the level set {x : f(x) ≤ f(x0)} is compact and f
satisfies certain conditions (Tseng, 2001, see Theorem 4.1 (a), (b) and (c) for details), the
limit point given by the general block-coordinate descent algorithm (with N ≥ 2 blocks) is a
stationary point of f . However, the conditions given in Theorem 4.1 (a), (b) and (c) are not
satisfied for the objective function at hand. Hence, for the problem under consideration, a
different strategy is needed to prove convergence of the 2−block alternating algorithm to a
stationary point, and the resulting statements hold true for all problems that use a 2-block
coordinate descent algorithm.

Since dom(f0) is open and f0 is Gâteaux-differentiable on the dom(f0), by Tseng (2001)
Lemma 3.1, f is regular in the dom(f). From the discussion on Page 479 of (Tseng, 2001),
we then have:

Fact 1: Every coordinate-wise minimum is a stationary point of f .

The following theorem shows that any limit point (B∞,Θ∞ε ) of the iterative algorithm
described in Section 2.2 is a stationary point of f , as long as all the iterates are within a
closed ball around the truth.

Theorem 1 (Convergence for fixed design). Suppose for any fixed realization of X and E,

the estimates
{

(B̂(k), Θ̂
(k)
ε )
}∞
k=1

obtained by implemeting the alternating search step satisfy

the following bound for some R > 0 that only depends on p1, p2 and n:∥∥∥(B̂(k), Θ̂(k)
ε )− (B∗,Θ∗)

∥∥∥
F
≤ R(p1, p2, n), ∀k ≥ 1.

Then any limit point (B∞,Θ∞ε ) of the iterative algorithm is a stationary point of f .

Remark 4. Recall that in classical parametric statistics, MLE-type asymptotics are derived
after establishing that with probability tending to 1 as the sample size n goes to infinity,
the likelihood equation has a sequence of roots (hence stationary points of the likelihood
function) that converges in probability to the true value. Any such sequence of roots is
shown to be asymptotically normal and efficient. Note that such (a sequence of) roots
may not be global maximizers since parametric likelihoods are not globally log-concave
(see Chapter 6 Lehmann and Casella, 1998). Here we show that the (B∞,Θ∞ε ) obtained
by the iterative algorithm is a stationary point which satisfies the first-order condition for
being a maximizer of the penalized log-likelihood function (which is just the negative of the
penalized least-squares function). Moreover, if we let n go to infinity, (B∞,Θ∞ε ) converges
to the true value in probability (shown in Theorem 4), and therefore behaves the same
as the sequence of roots in the classical parametric problem alluded to above. Thus, while
(B∞,Θ∞ε ) may not be the global maximizer, it can, nevertheless, to all intents and purposes,
be deemed as the MLE.

Remark 5. The above convergence result is based upon solving the optimization problem
on the “entire” space, that is, we don’t restrict B to live in any subspace. However, when
actually implementing the proposed computational procedure, the optimization of the B
coordinate is restricted to B1 × · · · × Bp2 (as defined in eqn.4). It should be noted that the

13
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same convergence property still holds, since for all k ≥ 1, the following bound holds, for
some R′ > 0: ∥∥∥(B̂(k)

restricted, Θ̂
(k)
ε

)
− (B∗,Θ∗ε )

∥∥∥
F
≤ R′(p1, p2, n). (11)

Consequently, the rest of the derivation in Theorem 1 follows, leading to the convergence
property. The bound in eqn (11) will be shown at the end of Section 3.2.

3.2 Estimation Consistency.

In this subsection, we show that given a random realization of X and E, with high prob-

ability, the sequence
{

(B̂(k), Θ̂
(k)
ε )
}∞
k=1

lies in a non-expanding ball around (B∗,Θ∗ε ), thus

satisfying the condition of Theorem 1 for convergence of the alternating algorithm.
It should be noted that for the alternating search procedure, we restrict our estimation

on a subspace identified by the screening step. However, for the remaining of this subsection,
the main propositions and theorems are based on the procedure without such restriction,
i.e., we consider “generic” regressions on the entire space of dimension p1 × p2. Notwith-
standing, it can be easily shown that the theoretical results for the regression parameters
on a restricted domain follow easily from the generic case, as explained in Remark 9.

Before providing the details of the main theorem statements and proofs, we first in-
troduce additional notations. Let β = vec(B) be the vectorized version of the regression
coefficient matrix. Correspondingly, we have β̂(k) = vec(B̂(k)) and β∗ = vec(B∗). Moreover,
we drop the superscripts and use β̂ and Θ̂ε to denote the generic estimators given by (12)
and (13), as opposed to those obtained in any specific iteration:

β̂ ≡ argmin
β∈Rp1p2

{
−2β′γ̂ + β′Γ̂β + λn‖β‖1

}
, (12)

Θ̂ε ≡ argmin
Θε∈S

p2×p2
++

{
− log det Θε + tr

(
ŜΘε

)
+ ρn‖Θε‖1,off

}
, (13)

where

Γ̂ =

(
Θ̂ε ⊗

X ′X

n

)
, γ̂ =

(
Θ̂ε ⊗X ′

)
vec(Y )/n, Ŝ =

1

n

(
Y −XB̂

)′ (
Y −XB̂

)
.

Remark 6. As opposed to (12) and (13), if γ̂ and Γ̂ are replaced by plugging in the true
values of the parameters, the two problems in (12) and (13) become

β̄ ≡ argmin
β∈Rp1p2

{
−2β′γ̄ + β′Γ̄β + λn‖β‖1

}
, (14)

Θ̄ε ≡ argmin
Θε∈S

p2×p2
++

{− log det Θε + tr (SΘε) + ρn‖Θε‖1,off} , (15)

where

Γ̄ =

(
Θ∗ε ⊗

X ′X

n

)
, γ̄ =

(
Θ∗ε ⊗X ′

)
vec(Y )/n, S =

1

n
(Y −XB∗)′ (Y −XB∗) ≡ Σ̂ε.

In (14), we obtain β using a penalized maximum likelihood regression estimate, and (15)
corresponds to the generic setting for using the graphical Lasso. A key difference between
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the estimation problems in (12) and (13) versus those in (14) and (15) is that to obtain
β̂ and Θ̂ε we use estimated quantities rather than the raw data. This is exactly how we
implement our iterative algorithm, namely, we obtain β̂(k) using Ŝ(k−1) as a surrogate for

the sample covariance of the true error (which is unavailable), then estimate Θ̂
(k)
ε using

the information in β̂(k). This adds complication for establishing the consistency results.
Original consistency results for the estimation problem in (14) and (15) are available in
Basu and Michailidis (2015) and Ravikumar et al. (2011), respectively. Here we borrow
ideas from corresponding theorems in those two papers, but need to tackle concentration
bounds of relevant quantities with additional care. This part of the result and its proof are
shown in Theorem 4.

As a road map toward our desired result established in Theorem 4, we first show in
Theorem 2 that for any fixed realization of X and E, under a number of conditions on
(or related to) X and E, when ‖Θ̂ε − Θ∗ε‖∞ is small (up to a certain order), the error
of β̂ is well-bounded. We then verify in Proposition 1 and 2 that for random X and E,
the above-mentioned conditions hold with high probability. Similarly in Theorem 3, we
show that for fixed realizations in X and E, under certain conditions (verified for random
X and E in Proposition 3), the error of Θ̂ε is also well-bounded, given ‖β̂ − β∗‖1 being
small. Finally in Theorem 4, we show that for random X and E, with high probability, the

iterative algorithm gives {(β̂(k),Θ
(k)
ε )} that lies in a small ball centered at (β∗,Θ∗ε ), whose

radius depends on p1, p2, n and the sparsity levels.
Next, for establishing the main propositions and theorems, we introduce some additional

notations.

– Sparsity level of β∗: s∗∗ := ‖β∗‖0 =
∑p2

j=1 ‖B∗j ‖0 =
∑p2

j=1 s
∗
j . As a reminder of the

previous notation, we have s∗ = max
j=1,··· ,p2

s∗j .

– True edge set of Θ∗ε : S
∗
ε , and let s∗ε := |S∗ε | be its cardinality.

– Hessian of the log-determinant barrier log det Θ evaluated at Θ∗ε :

H∗ :=
d2

dΘ2
log Θ

∣∣
Θ∗ε

= Θ∗−1
ε ⊗Θ∗−1

ε .

– Matrix infinity norm of the true error covariance matrix Σ∗ε :

κΣ∗ε := |||Σ∗ε |||∞ = max
i=1,2,··· ,p2

p2∑
j=1

|Σ∗ε,ij |.

– Matrix infinity norm of the Hessian restricted to the true edge set:

κH∗ :=
∣∣∣∣∣∣∣∣∣(H∗S∗ε S∗ε )

∣∣∣∣∣∣∣∣∣
∞

= max
i=1,2,··· ,p2

p2∑
j=1

∣∣∣H∗S∗ε S∗ε ,ij∣∣∣ .
– Maximum degree of Θ∗ε : d := max

i=1,2,··· ,p2

‖Θ∗ε,i·‖0.

– We write A & B if there exists some absolute constant c that is independent of the
model parameters such that A ≥ cB.
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Definition 4 (Incoherence condition (Ravikumar et al., 2011)). Θ∗ε satisfies the incoherence
condition if:

max
e∈(S∗ε )c

‖H∗eS∗ε (H∗S∗ε S∗ε )−1‖1 ≤ 1− ξ, for some ξ ∈ (0, 1).

Definition 5 (Restricted eigenvalue (RE) condition (Loh and Wainwright, 2012)). A sym-
metric matrix A ∈ Rm×m satisfies the RE condition with curvature ϕ > 0 and tolerance
φ > 0, denoted by A ∼ RE(ϕ, φ) if

θ′Aθ ≥ ϕ‖θ‖2 − φ‖θ‖21, ∀θ ∈ Rm.

Definition 6 (Diagonal dominance). A matrix A ∈ Rm×m is strictly diagonally dominant
if

|aii| >
∑
j 6=i
|aij |, ∀i = 1, · · · ,m.

Based on the model in Section 2.1, since we are assuming X = (X1, · · · , Xp1)′ and
ε = (ε1, · · · , εp2) come from zero-mean Gaussian distributions, it follows that X and ε are
zero-mean sub-Gaussian random vectors with parameters (ΣX , σ

2
x) and (Σ∗ε , σ

2
ε ), respec-

tively. Moreover, throughout this section, all results are based on the assumption that Θ∗ε
is diagonally dominant.

Remark 7. Before moving on to the main statements of Theorem 2, we would like to
point out that with a slight abuse of notation, for Theorem 2 and its related propositions
and corollaries, the statements and analyses are based on equation (12) only, with any
deterministic symmetric matrix Θ̂ε within a small ball around Θ∗ε . Similarly in Theorem 3,
Proposition 3 and Corollary 2, the analyses are based on equation (13) only, for any given
deterministic β̂ within a small ball around β∗. The randomness of β̂ and Θ̂ε during the
iterative procedure will be taken into consideration comprehensively in Theorem 4.

Theorem 2 (Error bound for β̂ with fixed realizations of X and E). Consider β̂ given by
(12). For any fixed pair of realizations of X and E , assume the following:

A1. Θ̂ε is a deterministic matrix satisfying the bound ‖Θ̂ε − Θ∗ε‖∞ ≤ νΘ where

νΘ = ηΘ

(√
log p2

n

)
and ηΘ is some constant depending only on Θ∗ε ;

A2. Γ̂ ∼ RE(ϕ, φ), with s∗∗φ ≤ ϕ/32;

A3. (Γ̂, γ̂) satisfies the deviation bound

‖γ̂ − Γ̂β∗‖∞ ≤ Q(νΘ)

√
log(p1p2)

n
,

where Q(νΘ) is some quantity depending on νΘ.

Then, for any λn ≥ 4Q(νΘ)

√
log(p1p2)

n , the following bound holds:

‖β̂ − β∗‖1 ≤ 64s∗∗λn/ϕ.
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The following two propositions verify the RE condition for Γ̂ and deviation bound for
(Γ̂, γ̂) hold with high probability for a random pair (X,E), given any symmetric, matrix Θ̂ε

satisfying (A1).

Proposition 1 (Verification of RE condition for randomX and E). Consider any determin-
istic matrix Θ̂ε satisfying (A1). Let the sample size satisfy n % max{s∗∗ log p1, d

2 log p2}.
With probability at least 1− 2 exp(−c3n) for some constant c3 > 0, Γ̂ satisfies the following
RE condition:

Γ̂ ≡ Θ̂ε ⊗ (X ′X/n) ∼ RE
(
ϕ∗(min

i
ψi − dνΘ), φ∗max

i
(ψi + dνΘ)

)
,

where ϕ∗ =
Λmin(Σ∗X)

2 , φ∗ = (ϕ∗ log p1)/n, and ψi is defined as:

ψi := σiiε −
p2∑
j 6=i

σijε ,

where σijε ’s denote the entries in Θ∗ε hence ψi is the gap between its diagonal entry and the
sum of off-diagonal entries for row i.

Proposition 2 (Deviation bound for (Γ̂, γ̂) for random X and E). Consider any determin-
istic matrix Θ̂ε satisfying (A1). Let sample size n satisfy n % log(p1p2). With probability
at least

1− 12c1 exp[−(c2
2 − 1) log(p1p2)] for some c1 > 0, c2 > 1,

the following bound holds:

‖γ̂ − Γ̂β∗‖∞ =
1

n

∥∥∥X ′EΘ̂ε

∥∥∥
∞
≤ Q(νΘ)

√
log(p1p2)

n
,

where

Q(νΘ) = c2

{
dνΘ [Λmax(Σ∗X)Λmax(Σ∗ε )]

1/2 +

[
Λmax(Σ∗X)

Λmin(Σ∗ε )

]1/2
}
. (16)

Remark 8. In Proposition 1, the quantity d2 log p2 that shows up in the sample size require-
ment is a result of νΘ = O(

√
log p2/n), which is the common order of error in a generic

graphical Lasso problem. Hence here we explicitly list it for the purpose of showing results
for the generic graphical Lasso estimation problem. In our iterative algorithm, the order of

ν
(k)
Θ depends on the relative order of p1 and p2, which may potentially make the sample size

requirement more stringent. This will be discussed in more detail in the proof of Theorem 4.

Given the results in Theorem 2, Proposition 1 and Proposition 2, next we provide
Corollary 1, which gives the error bound for β̂ for random realizations of X and E.

Corollary 1 (Error Bound for β̂ for random X and E). Consider any determinisitic Θ̂ε

satisfying the following element-wise `∞-bound:

‖Θ̂ε −Θ∗ε‖∞ ≤ νΘ,
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with νΘ = ηΘ

√
log p2

n . Then for sample size n % log(p1p2) and for any regularization

parameter λn ≥ 4Q(νΘ)

√
log(p1p2)

n with the expression of Q(·) given in (16), there exists
c1 > 0 and c2 > 1 such that with probability at least:

1− 12c1 exp[−(c2
2 − 1) log(p1p2)]− 2 exp(−c3n),

the following bound holds:

‖β̂ − β∗‖1 ≤ 64s∗∗λn/ϕ, (17)

where ϕ = 1
2Λmin(Σ∗ε )(min

i
ψi − dνΘ).

Next, we move onto analyzing the error bound of the other component, for a fixed given
β̂.

Theorem 3 (Error bound for Θ̂ε for fixed realizations of X and E). Consider Θ̂ε given by
(13). For any fixed pair of realization (X,E), assume the following:

B1. β̂ is a deterministic vector satisfying ‖β̂−β∗‖1 ≤ νβ, where νβ = ηβ

(√
log(p1p2)

n

)
,

withηβ being some constant depending only on β∗;

B2. ‖Ŝ − Σ∗ε‖∞ ≤ g(νβ) where

Ŝ =
1

n
(Y −XB̂)′(Y −XB̂),

and g(νβ) is some quantity depending on νβ;

B3. Incoherence condition holds for Θ∗ε .

Then, for ρn = (8/ξ)g(νβ) and sample size n satisfying n % log(p1p2), the following error

bound for Θ̂ε holds:

‖Θ̂ε −Θ∗ε‖∞ ≤ {2(1 + 8ξ−1)κH∗}g(νβ), (18)

where ξ is the incoherence parameter as defined in Definition 4.

Proposition 3 gives an explicit expression for g(νβ) under condition (B1). Specifically,

it shows how well Ŝ concentrates around Σ∗ε for random X and E, given some B̂ exhibiting
a small error from its true value (or β̂, equivalently),

Proposition 3. Consider any determinisitc β̂ satisfying (B1). Then for sample size n
satisfying n % log(p1p2), with probability at least

1− 1/pτ1−2
1 − 1/pτ2−2

2 − 6c1 exp[−(c2
2 − 1) log(p1p2)], for some c1 > 0, c2 > 1, τ1, τ2 > 2,

the following bound holds:

‖Ŝ − Σ∗ε‖∞ ≤ g(νβ), (19)
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where

g(νβ) =

√
log 4 + τ2 log p2

c∗εn
+ ν2

β

(√
log 4 + τ1 log p1

c∗Xn
+ max

i
(Σ∗X,ii)

)

+ 2c2νβ [Λmax(Σ∗X)Λmax(Σ∗ε )]
1/2

√
log(p1p2)

n
,

(20)

c∗ε and c∗X are population quantities given in (57) and (62), respectively.

Given Theorem 3 and Proposition 3, we provide Corollary 2, which gives the error bound
for Θ̂ε for random realizations of X and E:

Corollary 2 (Error bound for Θ̂ for random X and E). Consider any deterministic β̂
satisfying the following bound

‖β̂ − β∗‖1 ≤ νβ,

with νβ = ηβ

√
log(p1p2)

n . Also suppose the incoherence condition (B3) is satisfied. Then, for

sample size n % log(p1p2) and regularization parameter ρn = (8/ξ)g(νβ) with g(νβ) given
in (20), with probability at least

1− 1/pτ1−2
1 − 1/pτ2−2

2 − 6c1 exp[−(c2
2 − 1) log(p1p2)], for some c1 > 0, c2 > 1, τ1, τ2 > 2,

the following bound holds:

‖Θ̂ε −Θ∗ε‖∞ ≤ {2(1 + 8ξ−1)κH∗}g(νβ).

After providing the error bound for (12) and (13), in Theorem 4 we establish that with
high probability, the error of the sequence of estimates obtained in the alternating search
step of the algorithm described in Section 2.2 is uniformly bounded; that is, the sequence
of estimates lie in a non-expanding ball around the true value of the parameters uniformly
with a radius that does not depend on the iteration number k.

Theorem 4 (Error bound for {β̂(k)} and {Θ̂(k)
ε }). Consider the iterative algorithm given

in Section 2.2 that gives rise to sequences of {β̂(k)} and {Θ̂(k)
ε } alternately. For random

realization of X and E, we assume the following:

C1. The incoherence condition holds for Θ∗ε .

C2. Θ∗ε is diagonally dominant.

C3. The maximum sparsity level for all p2 regression s∗ satisfies s∗ = o(n/ log p1).

(I) For sample size satisfying n % log(p1p2), there exist constants c1 > 0, c2 > 1, c3 > 0
such that for any

λ0
n ≥ 4c2 [Λmax(Σ∗X)Λmax(Σ∗ε )]

1/2

√
log(p1p2)

n
,

with probability at least 1 − 2 exp(−c3n) − 6c1 exp[−(c2
2 − 1) log(p1p2)], the initial estimate

β̂(0) ≡ vec(B̂(0)) satisfies the following bound

‖β̂(0) − β∗‖1 ≤ 64s∗∗λ0
n/ϕ

∗ ≡ ν(0)
β , (21)
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where ϕ∗ = Λmin(Σ∗X)/2. Moreover, by choosing ρ0
n = (8

ξ )g(ν
(0)
β ) where the expression for

g(·) is given in (20), with probability at least

1− 1/pτ1−2
1 − 1/pτ2−2

2 − 2 exp(−c3n)− 6c1 exp[−(c2
2 − 1) log(p1p2)], for some τ1, τ2 > 2,

the following bound holds:

‖Θ̂(0)
ε −Θ∗ε‖∞ ≤ {2(1 + 8ξ−1)κH∗}g(ν

(0)
β ) ≡ ν(0)

Θ . (22)

(II) For sample size satisfying n % d2 log(p1p2), for any iteration k ≥ 1, with probability at
least

1− 1/pτ1−2
1 − 1/pτ2−2

2 − 12c1 exp[−(c2
2 − 1) log(p1p2)]− 2 exp[−c3n],

the following bounds hold for all β̂(k) and Θ̂
(k)
ε :

‖β̂(k) − β∗‖1 ≤ Cβ

(
s∗∗
√

log(p1p2)

n

)
,

‖Θ̂(k)
ε −Θ∗ε‖∞ ≤ CΘ

(√
log(p1p2)

n

)
.

where s∗∗ is the sparsity of β∗, Cβ and CΘ are constants depending only on β∗ and Θ∗ε ,
respectively.

As a direct result of Proposition 1 in Basu and Michailidis (2015) and Corollary 3 in
Ravikumar et al. (2011), the following bound also holds:

Corollary 3. Under the same set of conditions C1, C2 and C3 in Theorem 4, there exists
τ1, τ2 > 2, c1 > 0, c2 > 1, c3 > 0 and constants C ′β and C ′Θ such that for all iterations k, the
following bound holds:

‖β̂(k) − β∗‖F ≤ C ′β

(√
s∗∗ log(p1p2)

n

)
,

‖Θ̂(k)
ε −Θ∗ε‖F ≤ C ′Θ

√
(s∗ε + p2) log(p1p2)

n
,

with probability at least

1− 1/pτ1−2
1 − 1/pτ2−2

2 − 12c1 exp[−(c2
2 − 1) log(p1p2)]− 2 exp[−c3n],

where s∗∗ and s∗ε are the sparsity for β∗ and Θ∗ε , respectively.

Remark 9. As mentioned earlier in this subsection, the actual implementation of the alter-
nating search step is restricted to a subspace of Rp1×p2 . Next, we outline the corresponding
theoretical results for this specific scenario in which for each regression j, some fixed superset
of the indices of true covariates is given, and the regressions are restricted to these supersets,
respectively. Note that we need to make sure that the restricted subspace contains all the
true covariates for the results below to be valid.
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Let Sj denote the given fixed superset for each regression j, and we consider regressing

the response on XSj . We use β̂
(k)
R to denote the corresponding vectorized estimator of

iteration k, that is,

β̂
(k)
R = (B̂

(k)′

1,Restricted, · · · , B̂
(k)′

p2,Restricted)′,

where B̂
(k)′

j,Restricted is obtained by doing the regression in (7), however with the indices of

covariates restricted to Sj . Also, we let β∗R be the corresponding true value of β̂
(k)
R . Note

that always holds that

‖β̂(k)
R − β∗R‖ = ‖β̂(k) − β∗‖.

Now let
S̄ =

⋃
j∈{1,··· ,p2}

Sj ,

and let s̄ be its cardinality. It can be shown that the best achievable error bound for β̂
(k)
R is

identical to β̂
(k)

S̄
, where β̂

(k)

S̄
is obtained by considering covariates XS̄ for all p2 regressions,

instead of the entire X. For this specific reason, formally, we state the theoretical results
for the case where we consider regressing on XS̄ , which is almost identical to the generic
case.

Suppose conditions C1, C2 and C3 in Theorem 4 hold, then there exists constants
c1 > 0, c2 > 1, c3 > 0, τ1 > 2, τ2 > 2 such that: (I) for sample size satisfying n % log(s̄p2),
w.p. at least 1− 2 exp(−c3n)− 6c1 exp[−(c2

2 − 1) log(s̄p2)], for any

λ0
n ≥ 4c2

[
Λmax(Σ∗XS̄ )Λmax(Σ∗ε )

]1/2
√

log(s̄p2)

n
,

the initial estimate β̂
(0)

S̄
satisfies the following bound:

‖β̂(0)

S̄
− β∗S̄‖1 ≤ 64s∗∗λ0

n/ϕ
∗
S̄ ≡ ν

(0)
βS̄
,

where ϕ∗
S̄

= Λmin(Σ∗XS̄
)/2. Moreover, by choosing ρ0

n = (8
ξ )g(ν

(0)
βS̄

) where the expression for

g(·) is given in (20), with probability at least

1− 1/s̄τ1−2 − 1/pτ2−2
2 − 2 exp(−c3n)− 6c1 exp[−(c2

2 − 1) log(s̄p2)],

the following bound holds:

‖Θ̂(0)
ε −Θ∗ε‖∞ ≤ {2(1 + 8ξ−1)κH∗}g(ν

(0)
βS̄

) ≡ ν(0)
Θ .

(II) For sample size satisfying n % d2 log(s̄p2), for any iteration k ≥ 1, with probability at
least

1− 1/s̄τ1−2 − 1/pτ2−2
2 − 12c1 exp[−(c2

2 > 1) log(s̄p2)]− 2 exp[−c3n],

the following bound hold for all β̂
(k)

S̄
and Θ̂

(k)
ε :

‖β̂(k)

S̄
− β∗‖1 ≤ Cβ

(
s∗∗
√

log(s̄p2)
n

)
, ‖β̂(k)

S̄
− β∗‖F ≤ C ′β

(√
s∗∗ log(s̄p2)

n

)
,

‖Θ̂(k)
ε −Θ∗ε‖∞ ≤ CΘ

(√
log(s̄p2)

n

)
, ‖Θ̂(k)

ε −Θ∗ε‖F ≤ C ′Θ

√
(s∗ε + p2) log(s̄p2)

n
,
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where s∗∗ is the sparsity of β∗, Cβ, C ′β, CΘ and C ′θ are all constants that do not depend on

n, S̄, p2.

3.3 Family-wise Error Rate Control of the Screening Step.

As mentioned in the Introduction, for the iterative algorithm to work effectively, it is crucial
to initialize from points that are close to the true parameters. Our screening step provides
such guarantees asymptotically. Based on the screening step described in Section 2.2, initial
estimates for each column of the regression matrix are obtained by Lasso or Ridge regression
with the support set restricted to the one identified by the screening step. It is desirable
for the screening step to correctly identify the true support set. In particular, we would
like to retain as many true positive predictor variables as possible without discovering too
many false positive ones. The following theorem states that as long as log(p1p2)/n = o(1)
and the sparsity is not beyond a specified level, the screening step will be able to recover
all true positive predictors, while keeping the family-wise type I error under control.

Theorem 5. Let S∗j denote the true support set of the jth regression and s∗j be its cardinality.
Suppose that log(p1p2)/n→ 0 and the following condition for sparsity holds:

max{s∗j , j = 1, · · · , p2} = o(
√
n/ log p1).

Then, the screening step described in Section 2.2 will correctly recover S∗j for all j =
1, · · · , p2 with probability approaching to 1, while keeping the family-wise type I error rate
under the prespecified level α.

Remark 10. The specified level for sparsity is necessary for the de-biased Lasso procedure
in Javanmard and Montanari (2014) to produce unbiased estimates for the regression coef-
ficients. In terms of support recovery for the screening step, with log(p1p2)/n = o(1), we
only require s∗ = o(p1), which is much weaker and easily satisfied.

The following corollary connects the screening step with the alternating search step,
under the discussed asymptotic regime :

Corollary 4. Consider the model set-up given in Section 2.1. Let s∗ denote the maximum
sparsity for all B∗j , j = 2, · · · , p2, and d denote the maximum degree of Θ∗ε . Also, let s∗∗

denote the sparsity for β∗ and s∗ε denote the sparsity for Θ∗ε . Assume there exist positive
constants cs∗ , cs∗∗ , cd, cs̄, cp2 satisfying

0 < cs∗ + cs̄ < 1/2; 0 < cs∗∗ + cs̄ < 1; 0 < 2cd + cs̄ < 1; 0 < max{cs∗ε , cp2}+ cs̄ < 1

such that

s∗ = O(ncs); s∗∗ = O(ncs∗∗ ); s∗ε = O(ncs∗ε ); d = O(ncd); s̄ = O(en
cp1 ); p2 = O(ncp2 ).

As n→∞,

P ({The screening step correctly recovers the true support set for all Bj , j = 1, · · · , p})→ 1,

and for all iterations k:

max
k≥1

∥∥∥(β̂R, Θ̂
(k)
ε )− (β∗R,Θ

∗
ε )
∥∥∥ p→ 0.

The proof of this corollary follows along the same lines as Theorem 4, and we leave the
details to the reader.
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3.4 Estimation Error and Identifiability.

In this subsection, we discuss in detail the conditions needed for the parameters in our
multi-layered network to be identifiable (estimable). We focus the presentation for ease of
exposition on a three-layer network and then discuss the general M -layer case.

Consider a 3-layer graphical model. Let X̃ = [(X1)′, (X2)′]′ be the (p1 +p2) dimensional
random variable, which represents the “super”-layer on which we regress X3 to estimate
B13, B23 and Σ3. As shown in Theorem 2, the estimation error for β̂ takes the following
form:

‖β̂ − β∗‖1 ≤ 64s∗∗λn/ϕ,

where ϕ is the curvature parameter for RE condition that scales with Λmin(Σ
X̃

) (see Propo-
sition 1). Therefore, the error of estimating these regression parameters is higher when
Λmin(ΣX̃) is smaller. In this section, we derive a lower bound on this quantity to demon-
strate how the estimation error depends on the underlying structure of the graph.

For the undirected subgraph within a layer k, we denote its maximum node capacity
by v(Θk) := max1≤i≤pk

∑pk
j=1 |Θij |. For the directed bipartite subgraph consisting of Layer

s→ t edges (s < t), we similarly define the maximum incoming and outgoing node capacities
by vin(Bst) := max1≤j≤pt

∑ps
i=1 |Bst

ij | and vout(B
st) := max1≤i≤ps

∑pt
j=1 |Bst

ij |. The following
proposition establishes the lower bound in terms of these node capacities

Proposition 4.

Λmin(Σ
X̃

) ≥ v(Θ1)−1v(Θ2)−1
[
1 +

(
vin(B12) + vout(B

12)
)
/2
]−2

The three components in the lower bound demonstrate how the structure of Layers 1
and 2 impact the accurate estimation of directed edges to Layer 3. Essentially, the bound
suggests that accurate estimation is possible when the total effect (incoming and outgoing
edges) at every node of each of the three subgraphs is not very large.

This is inherently related to the identifiability of the multi-layered graphical models and
our ability to distinguish between the parents from different layers. For instance, if a node
in Layer 2 has high partial correlation with nodes of Layer 1, i.e., a node in Layer 2 has
parents from many nodes in Layer 1 and yields a large vin(B12); or similarly, a node in
Layer 1 is the parent of many nodes in Layer 2, yielding a large vout(B

12). In either case,
we end up with some large lower bound for Λmin(Σ

X̃
) and it can be hard to distinguish

Layer 1→ 3 edges from Layer 2→ 3 edges.
For a general M -layer network, the argument in the proof of Proposition 4 (see Section B

for details) can be generalized in a straightforward manner. In the 2-layer network setting,
with the notation defined in Section 2, by setting ε1 = X1, we have[

ε1

ε2

]
= P

[
X1

X2

]
, where P =

[
I 0

−(B12)′ I

]
.

For an M -layer network, a modified P is given in the following form:

P =


I 0 . . . 0

−(B12)′ I . . . 0
...

...
... 0

−(B1,M−1)′ −(B2,M−1)′ . . . I


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and combines node capacities for different layers. The conclusion is qualitatively similar,
i.e., the estimation error of an M -layer graphical model is small as long as the maximum
node capacities of different inter-layer and intra-layer subgraphs are not too large.

4. Performance Evaluation and Implementation Issues.

In this section, we present selected simulation results for our proposed method, in two-layer
and three-layer network settings. Further, we introduce some acceleration techniques that
can speed up the algorithm and reduce computing time.

4.1 Simulation Results.

For the 2-layer network, as mentioned in Section 2.1, since the main target of our proposed
algorithm is to provide estimates for B∗ and Θ∗ε (since ΘX can be estimated separately),
we only present evaluation results for B∗ and Θ∗ε estimates. Similarly, for the three-layer
network, we only present evaluation results involving Layer 3, using the notation in Section
3.4, that is, B∗XZ , B

∗
Y Z and Θ∗ε,Z estimates, which is sufficient to show how our proposed

algorithm works in the presence of a “super” - layer, taking advantage of the separability
of the log-likelihood.

2-layered Network. To compare the proposed method with the most recent method-
ology that also provides estimates for the regression parameters and the precision matrix
(CAPME, Cai et al. (2012)), we use the exact same model settings that have been used in
that paper. Specifically, we consider the following two models:

• Model A: Each entry in B∗ is nonzero with probability 5/p1, and off-diagonal entries
for Θ∗ε are nonzero with probability 5/p2.

• Model B: Each entry in B∗ is nonzero with probability 30/p1, and off-diagonal entries
for Θ∗ε are nonzero with probability 5/p2.

As in Cai et al. (2012), for both models, nonzero entries of B∗ and Θ∗ε are generated from
Unif [(−1,−0.5) ∪ (0.5, 1)], and diagonals of Θ∗ε are set identical such that the condition
number of Θ∗ε is p2.

(p1, p2, n)

Model A p1 = 30, p2 = 60, n = 100
p1 = 60, p2 = 30, n = 100
p1 = 200, p2 = 200, n = 150
p1 = 300, p2 = 300, n = 150

Model B p1 = 200, p2 = 200, n = 100
p1 = 200, p2 = 200, n = 200

Table 1: Model Dimensions for Model A and B

To evaluate the selection performance of the algorithm, we use sensitivity (SEN), speci-
ficity (SPE) and Mathews Correlation Coefficient (MCC) as criteria:

SEN =
TN

TN + FP
, SPE =

TP

TP + FN
, MCC =

TP× TN− FP× FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

.
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Further, to evaluate the accuracy of the magnitude of the estimates, we use the relative
error in Frobenius norm:

rel-Fnorm =
‖B̃ −B∗‖F
‖B∗‖F

or
‖Θ̃ε −Θ∗ε‖F
‖Θ∗ε‖F

.

Tables 2 and 3 show the results for both the regression matrix and the precision matrix.
For the precision matrix estimation, we compare our result with those available in Cai et al.
(2012), denoted as CAPME.

(p1, p2, n) SEN SPE MCC rel-Fnorm

Model A (30,60,100) 0.96(0.018) 0.99(0.004) 0.93(0.014) 0.22(0.029)

(60,30,100) 0.99(0.009) 0.99(0.003) 0.93(0.017) 0.18(0.021)

(200,200,150) 0.99(0.001) 0.99(0.001) 0.88(0.009) 0.18(.007)

(300,300,150) 1.00(0.001) 0.99(0.001) 0.84(0.010) 0.21(0.007)

Model B (200,200,200) 0.970(0.004) 0.982(0.001) 0.927(0.002) 0.194 (0.009)

(200,200,100) 0.32(0.010) 0.99(0.001) 0.49(0.009) 0.85(0.006)

Table 2: Performance evalution for the estimated regression matrix, over 50 replications

(p1, p2, n) SEN SPE MCC rel-Fnorm

Model A (30,60,100) 0.77(0.031) 0.92(0.007) 0.56(0.030) 0.51(0.017)

CAPME 0.58(0.03) 0.89(0.01) 0.45(0.03)

(60,30,100) 0.76(0.041) 0.89(0.015) 0.59(0.039) 0.49(0.014)

(200,200,150) 0.78(0.019) 0.97(0.001) 0.55(0.012) 0.60(0.007)

(300,300,150) 0.71(0.017) 0.98(0.001) 0.51(0.011) 0.59(0.005)

Model B (200,200,200) 0.73(0.023) 0.94(0.003) 0.39(0.017) 0.62(0.011)

CAPME 0.36(0.02) 0.97(0.00) 0.35(0.01)

(200,200,100) 0.57(0.027) 0.44(0.007) 0.04(0.008) 0.84(0.002)

CAPME 0.19(0.01) 0.87(0.00) 0.04(0.01)

Table 3: Performance evaluation for estimated precision matrix, over 50 replications

As it can be seen from Tables 2 and 3, the sample size is a key factor that affects the
performance. Our proposed algorithm performs extremely well in its selection properties
on B and strikes a good balance between sensitivity and specificity in estimating Θε.

3 For
most settings, it provides substantial improvements over the CAPME estimator.

3-layer Network. For a 3-layer network, we consider the following data generation
mechanism: for all three models A, B and C, each entry in BXY is nonzero with probability

3. In practice, for the debias Lasso procedure, we use the default choice of tuning parameters suggested in
the implementation of the code provided in Javanmard and Montanari (2014); for FWER, we suggest
using α = 0.1 as the thresholding level; for tuning parameter selection, we suggest doing a grid search
for (λn, ρn) on [0, 0.5

√
log p1/n]× [0, 0.5

√
log p2/n] with BIC.
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5/p1, each entry in BXZ and BY Z is nonzero with probability 5/(p1 + p2), and off-diagonal
entries in Θε,Z are nonzero with probability 5/p3. Similar to the 2-layered set-up, the
nonzero entries in Θε,Z are generated from Unif[(−1,−0.5) ∪ (0.5, 1)] with its diagnals set
identical such that its condition number is p3. For the regression matrices in the three
models, nonzeros in BXY are generated from Unif[(−1,−0.5) ∪ (0.5, 1)], and nonzeros in
BXZ and BY Z are generated from {Unif[(−1,−0.5) ∪ (0.5, 1)] ∗ Signal.Strength}, where the
signal strength in the three models are given by 1, 1.5 and 2, respectively. More specifically,
for Model A, B and C, nonzeros in BXZ or BY Z are generated from Unif[(−1,−0.5)∪(0.5, 1)],
Unif[(−1.5,−0.75) ∪ (0.75, 1.5)] and Unif[(−2,−1) ∪ (1, 2)], respectively.

Layer 3 Signal.Strength (p1, p2, p3, n)

Model A 1 (50,50,50,200)

Model B 1.5 (50,50,50,200)

Model C 2 (50,50,50,200)

(20,80,50,200)

(80,20,50,200)

(100,100,100,200)

Table 4: Model Dimensions and Signal Strength for Model A, B and C

As mentioned in the beginning of this subsection, we only evaluate the algorithm’s
performance on BXZ , BY Z and Θε,Z .

Based on the results shown in Tables 5, 6 and 7, the signal strength across layers
affects the accuracy of the estimation, which is in accordance with what has been discussed
regarding identifiability. Overall, the MLE estimator performs satisfactorily across a fairly
wide range of settings and in many cases achieving very high values for the MCC criterion.

4.1.1 Simulation Results for non-Gaussian data

In many applications, the data may not be exactly Gaussian, but approximately Gaussian.
Next, we present selected simulation results when the data comes from some distribution
that deviates from Gaussian. Specifically, we consider two types of deviations based on
the following transformations: (i) a truncated empirical cumulative distribution function
and (ii) a shrunken empirical cumulative distribution functions as discussed in Zhao et al.
(2015). In both simulation settings, we consider Model A with (p1, p2, n) = (30, 60, 100)
under the two-layer setting, and the transformation is applied to errors in Layer 2. Table 8
shows the simulation results for these two scenarios over 50 replications.

Based on the results in Table 8, relatively small deviations from the Gaussian distribu-
tion do not affect the performance of the MLE estimates under the examined settings that
are comparable to those obtained with Gaussian distributed data.

4.2 A comparison with the two-step estimator in Cai et al. (2012)

Next, we present a comparison between the MLE estimator and the two-step estimator
of Cai et al. (2012). Specifically, we use the CAPME estimate as an initializer for the
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(p1, p2, p3, n) SEN SPE MCC rel-Fnorm

Model A (50,50,50,200) 0.51(0.065) 0.99(0.001) 0.69(0.049) 0.68(0.050)

Model B (50,50,50,200) 0.85(0.043) 0.99(0.001) 0.898(0.025) 0.36(0.056)

Model C (50,50,50,200) 0.97(0.018) 0.99(0.002) 0.96(0.016) 0.16(0.040)

(20,80,50,200) 0.55(0.078) 0.99(0.001) 0.72(0.059) 0.63(0.066)

(80,20,50,200) 0.99(0.006) 0.99(0.002) 0.94(0.017) 0.076(0.032)

(100,100,100,200) 1.00(0.001) 0.99(0.001) 0.87(0.016) 0.07(0.007)

Table 5: Performance evaluation for estimated regression matrix BXZ over 50 replications

(p1, p2, p3, n) SEN SPE MCC rel-Fnorm

Model A (50,50,50,200) 0.53(0.051) 1.00(0.000) 0.72(0.036) 0.65(0.041)

Model B (50,50,50,200) 0.90(0.033) 1.00(0.000) 0.95(0.019) 0.25(0.049)

Model C (50,50,50,200) 0.98(0.013) 1.00(0.000) 0.99(0.007) 0.12(0.042)

(20,80,50,200) 0.95(0.013) 1.00(0.000) 0.98(0.007) 0.19(0.030)

(80,20,50,200) 0.96(0.027) 0.99(0.001) 0.97(0.022) 0.14(0.063)

(100,100,100,200) 1.00(0.000) 1.00(0.000) 0.99(0.002) 0.025(0.002)

Table 6: Performance evaluation for estimated regression matrix BY Z over 50 replications

(p1, p2, p3, n) SEN SPE MCC rel-Fnorm

Model A (50,50,50,200) 0.69(0.044) 0.638(0.032) 0.20(0.036) 0.82(0.017)

Model B (50,50,50,200) 0.77(0.050) 0.82(0.036) 0.42(0.071) 0.68(0.040)

Model C (50,50,50,200) 0.88(0.041) 0.91(0.019) 0.63(0.059) 0.56(0.034)

(20,80,50,200) 0.72(0.041) 0.80(0.028) 0.36(0.050) 0.72(0.021)

(80,20,50,200) 0.90(0.028) 0.92(0.011) 0.68(0.039) 0.58(0.018)

(100,100,100,200) 0.96(0.014) 0.96(0.003) 0.68(0.016) 0.049(0.010)

Table 7: Performance evaluation for estimated precision matrix Θε,Z over 50 replications

Setting Parameter SEN SPE MCC rel-Fnorm

Model A (30, 60, 100) B 0.96(0.017) 0.99(0.003) 0.94(0.012) 0.20(0.028)
shrunken Θε 0.76(0.031) 0.91(0.008) 0.55(0.030) 0.51(0.019)

Model A (30, 60, 100) B 0.96(0.021) 0.98(0.004) 0.93(0.015) 0.21(0.034)
truncation Θε 0.76(0.033) 0.92(0.008) 0.56(0.035) 0.52(0.023)

Table 8: Simulation results for B and Θε over 50 replications under npn transformation

MLE procedure and examine its evolution over successive iterations. We evaluate the
value of the objective function at each iteration, and also compare it to the value of the
objective function evaluated at our initializer (screening + Lasso/Ridge) and the estimates
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afterward. For illustration purposes, we only show the results for a single realization under
Model A with p1 = 30, p2 = 60, n = 100, although similar results were obtained in other
simulation settings. Figure 2 shows the value of the objective function as a function of the
iteration under both initialization procedures, while Table 9 shows how the cardinality of
the estimates changes over iterations for both initializers. It can be seen that the iterative
MLE algorithm significantly improves the value of the objective function over the CAPME
initialization and also that the set of directed and undirected edges stabilizes after a couple
iterations.

Figure 2: Comparison between Cai’s estimate and our estimate

0 1 2 3 4 5 6 refit

Our initializer B̂(k) 275 275 275 275 275 275 275 275

Θ̂
(k)
ε 282 255 247 247 248 248 248 260

CAPME initializer B̂(k) 433 275 275 275 275 275 275 275

Θ̂
(k)
ε 979 267 250 249 249 248 248 260

Table 9: Change in cardinality over iterations for B and Θε

Based on Figure 2 and Table 9, we notice that Cai et. al’s two-step estimator yields
larger value of the objective function compared with our initializer that is obtained through
screening followed by Lasso. However, over subsequent iterations, both initializers yield
the same value in the objective function, which keeps decreasing according to the nature of
block-coordinate descent.
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4.3 Implementation issues

Next, we introduce some acceleration techniques for the MLE algorithm aiming to reduce
computing time, yet maintaining estimation accuracy over iterations.

(p2 + 1)-block update. In Section 2, we update B and Θε by (6) and (8), respectively,
and within each iteration, the updated B is obtained by an application of cyclic p2-block
coordinate descent with respect to each of its columns until convergence. As shown in
Section 3.1, the outer 2-block update guarantees the MLE iterative algorithm to converge
to a stationary point. However in practice, we can speed up the algorithm by updating B
without waiting for it to reach the minimizer for every iteration other than the first one.
More precisely, for the alternating search step, we take the following steps when actually

implementing the proposed algorithm with initializer B̂(0) and Θ̂
(0)
ε :

– Iteration 1: update B and Θε as follows, respectively:

B̂(1) = argmin
B∈B1×···×Bp2

 1

n

p2∑
i=1

p2∑
j=1

(σijε )(0)(Yi −XBi)>(Yj −XBj) + λn

p2∑
j=1

‖Bj‖1

 ,

and

Θ̂(1)
ε = argmin

Θε∈S
p2×p2
++

{
log det Θε − tr(Ŝ(1)Θε) + ρn‖Θε‖1,off

}
,

where Ŝ(1) is the sample covariance matrix of Ê(1) ≡ Y −XB̂(1).

– For iteration k ≥ 2, while not converged:

· For j = 1, · · · , p2, update Bj once by

B̂
(k)
j = argmin

Bj∈Bj

{
(σjjε )(k−1)

n
‖Yj + r

(k)
j −XBj‖

2
2 + λn‖Bj‖1

}
,

where

r
(k)
j =

1

(σjjε )(k−1)

j−1∑
i=1

(σijε )(k−1)(Yi −XB̂(k)
i ) +

p2∑
i=j+1

(σijε )(k−1)(Yi −XB̂(k−1)
i )

 .
(23)

· Update Θε by

Θ̂(k)
ε = argmin

Θε∈S
p2×p2
++

{
log det Θε − tr(Ŝ(k)Θε) + ρn‖Θε‖1,off

}
,

where Ŝ(k) is defined similarly.

Intuitively, for the first iteration, we wait for the algorithm to complete the whole cyclic
p2 block-coordinate descent step, as the first iteration usually achieves a big improvement
in the value of the objective function compared to the initialization values, as depicted in
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Figure 2. However, in subsequent iterations, the changes in the objective function become
relatively small, so we do (p2 + 1) successive block-updates in every iteration, and start to
update Θε once a full p2 block update in B is completed, instead of waiting for the update
in B proceeds cyclically until convergence. In practice, this way of updating B and Θε

leads to faster convergence in terms of total computing time, yet yields the same estimates
compared with the exact 2-block update shown in Section 2.

Parallelization. A number of steps of the MLE algorithm is parallelizable. In the
screening step, when applying the de-biased Lasso procedure (Javanmard and Montanari,
2014) to obtain the p-values, we need to implement p2 separate regressions, which can be
distributed to different compute nodes and carried out in parallel. So does the refitting
step, in which we refit each column in B in parallel.

Moreover, according to Bradley et al. (2011); Richtárik and Takáč (2012); Scherrer et al.
(2012) and a series of similar studies, though the block update in the alternating search
step is supposed to be carried out sequentially, we can implement the update in parallel to
speed up convergence, yet empirically yield identical estimates. This parallelization can be
applied to either the minimization with respect to B within the 2-block update method, or
the minimization with respect to each column of B for the (p2 + 1)-block update method.

Either way, r
(k)
j in (23) is substituted by

r
(k)
j,parallel =

1

(σjjε )(k−1)

p2∑
i 6=j

(σijε )(k−1)(Yi −XB̂(k−1)
i ),

which is not updated until we have updated Bj ’s once for all j = 1, · · · , p2 in parallel.

Table 10 shows the elapsed time for carrying out our proposed algorithm using 2-
block/(p2 + 1) -block update with/without parallelization, under the simulation setting
where we have p1 = p2 = 200, n = 150. The screening step and refitting step are both
carried out in parallel for all four different implementations. 4

2-block (p2 + 1)-block 2-block in parallel (p2 + 1)-block in parallel

elapsed time (sec) 5074 2556 848 763

Table 10: Computing time with different update methods

As shown in the table, using (p2 + 1)-block update and parallelization both can speed
up convergence and reduce computing time, which takes only 1/7 of the computing time
compared with using 2-block update without parallelization.

Remark 11. The total computing time depends largely on the number of bootstrapped
samples we choose for the stability selection step. For the above displayed results, we used
50 bootstrapped samples to obtain the weight matrix. Nevertheless, one can select the
number of bootstrap samples judiciously and reduce them if performance would not be
seriously impacted.

4. For parallelization, we distribute the computation on 8 cores.
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5. Discussion.

In this paper, we examined multi-layered Gaussian networks, proposed a provably converg-
ing algorithm for obtaining the estimates of the key model parameters and established their
theoretical properties in high-dimensional settings. Note that we focused on `1 penalties for
both the directed and undirected edges, since it was assumed that the multi-layer network
was sparse both between layers and within layers. In many scientific applications, external
information may require imposing group penalties, primarily on the directed edge parame-
ters (B). For example, in a gene-protein 2-layer network, genes can be grouped according
to their function in pathways and one may be interested in assessing the pathway’s impact
on proteins. In that case, a group lasso penalty can be imposed. In general, the proposed
framework can easily accommodate other types of penalties in accordance to the under-
lying data generating procedure. The exact form of the error bounds established would
be different, depending on the exact choice of penalty selected. Nevertheless, as long as
the penalty is convex, all arguments regarding bi-convexity and convergence follow, and we
can use similar strategies to bound the statistical error of the estimators, obtained via the
iterative algorithm.

Next, we discuss connections of this work to that in Sohn and Kim (2012); Yuan and
Zhang (2014); McCarter and Kim (2014). In these papapers, an alternative parameter-
ization of the 2-layer network is adopted. Specifically, all nodes in layersd 1 and 2 are
considered jointly and assumed to be drawn from the following Gaussian distribution:(

X
Y

)
∼ N

(
0,

(
ΩX ΩXY

ΩY X ΩY

)−1
)
,

and by conditioning Y on X, one obtains

Y |X ∼ N
(
−Ω−1

Y Ω′XYX,Ω−1
Y

)
. (24)

Compare (24) with our model set-up in Section 2.1, the following correspondence holds:

B = −ΩXY Ω−1
Y , ΩY = Θε. (25)

Note that the correspondence in (25) is only guaranteed to hold in selective settings. Specif-
ically, at the population level, the correspondence between (ΩXY ,ΩY ) and (B,Θε) holds
in the absence of any sparsity penalization. Further, in a low-dimensional data setting
without penalty terms in the objective function, the estimates from the two parameteriza-
tions would be similar provided that the problem is well-conditioned and the sample size
reasonably large.

However, the situation is different in high-dimensional settings and in the presence of
sparsity penalties. Specifically, given data X and Y , instead of parametrizing the model in
terms of (B,Θε), the authors in Sohn and Kim (2012); Yuan and Zhang (2014); McCarter
and Kim (2014) consider the following optimization problem, parametrized in (ΩXY ,ΩY ):

min
ΩXY ,ΩY

g(ΩXY ,ΩY ) ≡ g0(ΩXY ,ΩY ),+R(ΩXY ,ΩY ) (26)

where g0(ΩXY ,ΩY ) = − log det ΩY + 1
ntr
[
(Y + ΩXY Ω−1

Y X)′ΩY (Y + ΩXY Ω−1
Y X)

]
is jointly

convex in (ΩXY ,ΩY ), and R(ΩXY ,ΩY ) is some regularization term. In particular, the
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element-wise `1 norm on ΩY , and the element-wise `1 or column-wise `1 norm (matrix 2, 1
norm) on ΩXY are the main penalties under consideration in those papers.

Despite the convex formulation in (26), we would like to point out that in general, the
sparsity pattern in B and ΩXY are not transferable through the regularization term, which
underlies a major difference between the formulation in (26) and the one presented in this
paper. Given the correspondence in (25), there are two cases where B and ΩXY share the
same sparsity pattern: 1) ΩY (or Θε, equivalently) is diagonal, or 2) both the ith row in
B and ΩXY are identically zero, for an arbitrary i = 1, · · · , p1. However, both settings are
fairly restrictive and unlike to occur in many applications.

Note that the linear model represents a natural modeling tool for a number of prob-
lems and the regression coefficients have a specific scientific interpretation. This is easily
accomplished through the (B,Θε)-parametrization, by adding proper regularization to B
(e.g., penalty which enforces element-wise sparsity or group-Lasso type of sparsity, etc) if
necessary. However, with the (ΩXY ,ΩY )-parametrization, the underlying sparsity in the
true data generating procedure, encoded by B, will not be easily incorporated, and to add
a regularization term on ΩXY may lose the scientific interpretability, and may also lead to
an estimated B whose sparsity pattern is completely mis-specified, obtained from (25) with
Ω̂XY , Ω̂Y plugged in.

Another difference we would like to point out is that once we add penalty terms to the
objective function in the low dimensional setting, or switch to the high dimensional setting
(as considered in Sohn and Kim (2012) and Yuan and Zhang (2014)), the correspondence
between the optimizer(s) of (1) and the optimizer(s) of (26) become difficult to connect
analytically.
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Appendix A. Proofs for Main Theorems

Proof of Theorem 1. We initialize the algorithm at (B̂(0), Θ̂
(0)
ε ) ∈ dom(f). Then for all

k ≥ 1,

B̂(k) = argmin
B

f(B, Θ̂(k−1)
ε ), (27)

Θ̂(k)
ε = argmin

Θε

f(B̂k,Θε). (28)

Now, consider a limit point (B∞,Θ∞ε ) of the sequence {(B̂(k), Θ̂
(k)
ε )}k≥1. Note that such

limit point exists by Bolzano-Weierstrass theorem since the sequence {(B̂(k), Θ̂
(k)
ε )}k≥1 is

bounded. Consider a subsequence K ⊆ {1, 2, · · · } such that (B̂(k), Θ̂
(k)
ε )k∈K converges to

(B∞,Θ∞ε ). Now for the bounded sequence {(B̂(k+1), Θ̂
(k)
ε )}k∈K, without loss of generality,5

we can say that

{(B̂(k+1), Θ̂(k)
ε )}k∈K → (B̃∞, Θ̃∞ε ), for some (B̃∞, Θ̃∞ε ) ∈ dom(f).

By (27) it follows immediately that Θ̃∞ε = Θ∞ε . Also, the following inequality holds:

f(B̂(k+1), Θ̂(k+1)
ε ) ≤ f(B̂(k+1), Θ̂(k)

ε ) ≤ f(B̂(k), Θ̂(k)
ε ).

Thus, by letting k →∞ over K, we have

f(B∞,Θ∞ε ) ≤ f(B̃∞,Θ∞ε ) ≤ f(B∞,Θ∞ε ),

since f is continuous. This implies that

f(B̃∞,Θ∞ε ) = f(B∞,Θ∞ε ). (29)

Next, since f(B̂(k+1), Θ̂
(k)
ε ) ≤ f(B, Θ̂

(k)
ε ), for all B ∈ Rp1×p2 , let k grow along K, and we

obtain the following:

f(B̃∞,Θ∞ε ) ≤ f(B,Θ∞ε ), ∀B ∈ Rp1×p2 .

It then follows from (29) that

f(B∞,Θ∞ε ) ≤ f(B,Θ∞ε ), ∀B ∈ Rp1×p2 . (30)

Finally, note that f(B̂(k), Θ̂
(k)
ε ) ≤ f(B̂(k),Θε), for all Θ ∈ Sp2×p2

++ . As before, let k grow
along K and with the continuity of f , we obtain:

f(B∞,Θ∞ε ) ≤ f(B∞,Θε), ∀Θε ∈ Sp2×p2
++ . (31)

Now, (30) and (31) together imply that (B∞,Θ∞ε ) is a coordinate-wise minimum of f and
by Fact 1, also a stationary point of f .

5. switching to some further subsequence of K if necessary.
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Proof of Theorem 2. The statement of Theorem 2 is a variation of Proposition 4.1 in
Basu and Michailidis (2015), and its proof follows directly from the proof of the proposition
in Basu and Michailidis (2015, Appendix B). We only outline how the statement differs. In
the original statement of Proposition 4.1 in Basu and Michailidis (2015), the authors provide
the error bound for β̄, obtained as per (14) whose dimension is qp2 with q denoting the
true lag of the vector-autoregressive process, under an RE condition for Γ̄ and a deviation
bound for (γ̄, Γ̄). For our problem, we impose a similar RE condition on Γ̂ and deviation
bound on (γ̂, Γ̂), so as to yield a bound on β̂ that lies in a p1p2-dimensional space.

Proof of Theorem 3. The statement of this theorem is a variation of Theorem 1 in
Ravikumar et al. (2011), so here, instead of providing a complete proof of the theorem,
we only outline how the estimation problem differs in our setting, as well as the required
changes in its proof.

In Ravikumar et al. (2011), the authors consider the optimization problem in (15), and
show that for a random realization, with certain sample size requirement and choice of the
regularization parameter, the following bound for Θ̄ε holds with probability at least 1−1/pτ2
for some τ > 2:

‖Θ̄ε −Θ∗ε‖∞ ≤ {2(1 + 8ξ−1)κH∗}δ̄f (pτ2 , n), (32)

where δ̄(r, n) is defined as

δ̄(r, n) := 8(1 + 4σ2) max
i

(Σ∗ε,ii)

√
2 log(4r)

n
. (33)

The quantity δ̄(pτ2 , n) that shows up in expression (32) is the bound for ‖S − Σ∗ε‖∞ ≡
‖Σ̂ε − Σ∗ε‖∞. In particular, in Lemma 8 (Ravikumar et al., 2011), they show that with
probability at least 1− 1/pτ2 , τ > 2, the following bound holds:

‖S − Σ∗ε‖∞ ≤ δ̄(pτ2 , n).

In our optimization problem (13), we are using Ŝ instead of S, hence a bound for ‖Ŝ−Σ∗ε‖∞
is necessary, and the remaining argument in the proof of Theorem 1 (Ravikumar et al., 2011)
will follow through.

Therefore in our theorem statement, we use g(νβ) as a bound for ‖Ŝ −Σ∗ε‖∞ then yield

the bound for ‖Θ̂ε − Θ∗ε‖∞, since we are using the surrogate error Ê = Y − XB̂ in the
estimation, instead of the true error E.

Proof of Theorem 4. We first consider part (I) of the theorem. Note that by (5), β̂(0)

can be equivalently written as

β̂(0) ≡ argmin
β∈Rp1×p2

{
−2β′γ0 + β′Γ0β + λ0

n‖β‖1
}
, (34)

where

Γ(0) = I⊗ X ′X

n
, γ(0) = (I⊗X ′)vecY/n.

Consider the following events:

E1.
{
X′X
n ∼ RE(ϕ∗, φ∗)

}
,
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E2.

{
1
n ‖X

′E‖∞ ≤ c2 [Λmax(Σ∗X)Λmax(Σ∗ε )]
1/2
√

log(p1p2)
n

}
.

Note that E1 ∩ E2 implies the following events:

Γ(0) ≡ I⊗ X ′X

n
∼ RE(ϕ∗, φ∗), where ϕ∗ = Λmin(Σ∗X)/2.

and

‖γ(0) − Γ(0)β∗‖∞ =
1

n

∥∥X ′E∥∥∞ ≤ c2 [Λmax(Σ∗X)Λmax(Σ∗ε )]
1/2

√
log(p1p2)

n
. (35)

Hence, by Proposition 4.1 of Basu and Michailidis (2015), the bound (21) holds on E1 ∩
E2.

By Lemmas 1 and 2, P(E1) is at least 1 − 2 exp(−c3n), for some c3 > 0. By Lemma 3,
P(E2) is at least 1 − 6c1 exp[−(c2

2 − 1) log(p1p2)] for some c1 > 0, c2 > 1. Hence, with
probability at least

P (E1 ∩E2) ≥ 1− P (E1c)− P (E2c) ,

the bound in (21) holds, which proves the first part of (I). In particular, we have ‖β̂0−β∗‖1 ≤
ν

(0)
β ∼ O(

√
log(p1p2)/n) on E1 ∩E2.

To prove the second part of (I), note that by Theorem 3 the bound in (22) holds when
B1-B3 are satisfied. Now, from the argument above, B1 holds on the event E1 ∩ E2. Also,
from the proof of Proposition 3, B2 is satisfied, i.e.,∥∥∥Ŝ(0) − Σ∗ε

∥∥∥
∞
≤ g(ν

(0)
β ), where Ŝ(0) =

1

n
(Y −XB̂(0))′(Y −XB̂(0)), (36)

on E1 ∩ E2 ∩ E3 ∩ E4, where the events E3 and E4 are given by:

E3.
{∥∥∥E′En − Σ∗ε

∥∥∥
∞
≤
√

log 4+τ2 log p2

c∗εn

}
for some τ2 > 2 and c∗ε > 0 that depends on Σ∗ε ,

E4.
{∥∥∥X′Xn − Σ∗X

∥∥∥
∞
≤
√

log 4+τ1 log p1

c∗Xn

}
for some τ1 > 2 and cX∗ > 0 that depends on Σ∗X .

Therefore, the probability of the bound for Θ̂
(0)
ε in (22) to hold is at least

P (E1 ∩E2 ∩E3 ∩E4) , (37)

By Lemma 2, Lemma 3 and the proof of Proposition 3, the probability in (37) is lower
bounded by:

1− 2 exp(−c3n)− 6c1 exp[−(c2
2 − 1) log(p1p2)]− 1/pτ1−2

1 − 1/pτ2−2
2 .

Consider the following two cases where the relative order of p1 and p2 differ. Case 1:

p1 ≺ p2, then ν
(0)
Θ ∼ O(

√
log p2/n); case 2: p1 % p2, then ν

(0)
Θ ∼ O (log(p1p2)/n). In

either case, since we are assuming log(p1p2)/n to be a small quantity and it follows that√
log(p1p2)/n % log(p1p2)/n, the following bound always holds:

ν
(0)
Θ ≤ CΘ

√
log(p1p2)

n
≡MΘ,
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where CΘ is some large fixed constant that bounds the constant terms in front of
√

log(p1p2)/n.

Now we consider part (II) of the theorem. Note that for each k ≥ 1, β̂(k) and Θ̂
(k)
ε are

obtained via solving the following two optimizations:

β̂(k) = argmin
β∈Rp1×p2

{
−2β′γ̂(k−1) + β′Γ̂(k−1)β + λn‖β‖1

}
, (38)

Θ̂(k)
ε = argmin

Θε∈S
p2×p2
++

{
log det Θε − tr(Ŝ(k)Θε) + ρn‖Θε‖1,off

}
, (39)

where

γ̂(k) = Θ̂(k) ⊗ X ′Y

n
, Γ̂(k) = Θ̂(k) ⊗ X ′X

n
, Ŝ(k) =

1

n
(Y −XB̂(k))′(Y −XB̂(k)).

Consider the bound on β̂(k) for k = 1. The argument is similar to that of β̂(0), with
appropriate modifications to account for the fact that the objective function now involves
log likelihood instead of least squares. Formally, we consider the event E1 ∩ E2 ∩ E3 ∩
E4 ∩ E5, where

E5.

{
1
n ‖X

′EΘ∗ε‖∞ ≤ c2

[
Λmax(Σ∗X)

Λmin(Σ∗ε )

]1/2
√

log(p1p2)
n

}
.

Note that {‖Θ̂(0)
ε − Θ∗ε‖∞ ≤ ν

(0)
Θ } holds on this event. By Lemma 3, P(E5) ≥ 1 −

6c1 exp[−(c2
2 − 1) log(p1p2)]. Combining this with the lower bound on (37) and the sam-

ple size requirement (note this sample size requirement can be relaxed to n % log(p1p2) if
p1 ≺ p2), we obtain that with probability at least

1− 1/pτ1−2
1 − 1/pτ2−2

2 − 12c1 exp[−(c2
2 − 1) log(p1p2)]− 2 exp[−c3n],

the following three events hold simultaneously:

A1’ ‖Θ̂(0)
ε −Θ∗ε‖∞ ≤ ν

(0)
Θ - O(

√
log(p1p2)/n);

A2’ Γ̂(0) ∼ RE(ϕ(0), φ(0)) where

ϕ(0) ≥
Λmin(Σ∗X)

2
(min

i
ψi − dMΘ) and φ(0) ≤ log p1

n

Λmin(Σ∗X)

2
(max

j
ψj + dMΘ);

A3’ ‖γ̂(0) − Γ̂(0)β∗‖∞ ≤ Q(ν
(0)
Θ )

√
log(p1p2)

n with the expression for Q(·) given in (16).

By Theorem 2, by choosing λn ≥ 4Q(MΘ)

√
log(p1p2)

n , the following bound holds:

‖β̂(1) − β∗‖1 ≤ 64s∗∗λn/ϕ
(0). (40)

The error bound for Θ̂
(1)
ε can now be established using the same argument for Θ̂

(0)
ε , with

the only difference that now we consider the event E1 ∩ . . . ∩ E5 instead of E1 ∩ . . . ∩ E4
and use (40) instead of (21).
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Note that an upper bound for the leading term of the right hand side of (40) is at most
of the order O(

√
log(p1p2)/n), and can be written as

Cβ

(
s∗∗
√

log(p1p2)

n

)
≡Mβ,

with Cβ being some potentially large number that bounds the constant term. Notice that

Mβ is of the same order as ν
(0)
β ; thus, for Θ̂

(1)
ε , we can also achieve the following bound:

‖Θ̂(1)
ε −Θ∗ε‖∞ ≤MΘ,

with high probability since we are assuming CΘ to be some potentially large number.
Note that the events E1, . . . ,E5 rely only on the parameters and not on the estimated

quantities, and on their intersection we have uniform upper bounds on the errors of β̂(k)

and Θ̂k
ε for k = 0, 1. Hence the error bounds for k = 1 can be used to invoke Theorems

2 and 3 inductively on realizations X and E from the set E1 ∩ . . . ∩ E5 to provide high
probability error bounds for all subsequent iterates as well. This leads to the uniform error
bounds of part (II) with the desired probability.

Proof of Theorem 5. First, we note that with a Bonferroni correction, the family-wise
type I error will be automatically controlled at level α. Hence, we will focus on the power
of the screening step. Also, from Theorem 7 of Javanmard and Montanari (2014), it is easy
to see that all the arguments below hold for a large set of random realizations of X, whose
probability approaches 1 under the specified asymptotic regime when the eigenvalues of ΣX

are bounded away from 0 and infinity.
Let B∗ =

[
B∗1 · · · B∗p2

]
denote the true value of the regression coefficients and B̌j , j =

1, · · · , p2 denote the estimates given by the de-biased Lasso procedure in Javanmard and
Montanari (2014). With the given level for sparsity, by Theorem 8 in Javanmard and
Montanari (2014), each B̌j satisfies the following:

√
n(B̌j −B∗j ) = Z + ∆,

where Z ∼ N
(

0, σ2MjΣ̂XM
′
j

)
and ∆ vanishes asymptically. Here Σ̂X is the sample covari-

ance matrix of the predictors X, σ is the population noise level of the error term εj , and Mj

is the matrix corresponding to the jth regression, produced by the procedure described in
Javanmard and Montanari (2014)6. Let B̌j,i denote the ith coordinate of the jth regression
coefficient vector B̌j and Σ̌j be the covariance matrix of the estimator B̌j , then

Σ̌j =
σ2

n
MjΣ̂XM

′
j ,

and in particular, the variance of B̌j,i is Σ̌j,ii := σ̌jii. Using these notations, for a prespecified

level α, the test statistics for testing Hji
0 : B∗j,i = 0 vs. Hji

A : B∗j,i 6= 0, for all i =

6. Details of the procedure is described in p.2871 in Javanmard and Montanari (2014), with M being an
intermediate quantity obtained by solving an optimization problem.
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1, · · · , p1; j = 1, · · · , p2 can be equivalently written as

T̂j,i =

{
1 if |B̌j,i|/σ̌jii > zα/(2p1p2),

0 otherwise.

where zα denotes the upper α quantiles of N (0, 1).

Define the “family-wise” power as follows:

P (all true alternatives are detected) = P

 ⋂
1≤j≤p2

⋂
k∈S∗j

{T̂j,k = 1}


= 1− P

 ⋃
1≤j≤p2

⋃
k∈S∗j

{T̂j,k = 0}

 .

Correspondingly, the family-wise type II error can be written as

P

 ⋃
1≤j≤p2

⋃
k∈S∗j

{T̂j,k = 0}

 ≤ p2∑
j=1

∑
k∈S∗j

P
(
T̂j,k = 0

)
. (41)

By Theorem 16 in Javanmard and Montanari (2014), asymptotically, ∀k ∈ Sj , j = 1, · · · , p2,

P
(
T̂j,k = 0

)
≤ 1−G

(
α

p1p2
,

√
nγ

σ[Σ−1
k,k]

1/2

)
; 0 < γ ≤ min |B∗j,k|, ∀k ∈ Sj , j = 1, · · · , p2.

(42)

Here

G(α, u) ≡ 2− P(Φ < zα/2 + u)− P(Φ < zα/2 − u),

where we use Φ to denote the random variable following a standard Gaussian distribution
and the choice of n in (42) doesn’t depend on k. Hence, (42) can be rewritten as

P
(
T̂j,k = 0

)
≤ 1−G

(
α

p1p2
,

√
nγ

σ[Σ−1
k,k]

1/2

)

= P

(
Φ < zα/(2p1p2) −

√
nγ

σ[Σ−1
k,k]

1/2

)
− P

(
Φ > zα/(2p1p2) +

√
nγ

σ[Σ−1
k,k]

1/2

)

≤ P

(
Φ >

√
nγ

σ[Σ−1
k,k]

1/2
− zα/(2p1p2)

)
,

(43)

where we use Φ to denote the random variable following a standard Gaussian distribution.

Note that the following inequality holds for standard Normal percentiles:

2e−t
2 ≤ P(|Φ| > t) ≤ e−t2/2,
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and by taking the inverse function, the following inequality holds:√
− log

y

2
≤ zy/2 ≤

√
−2 log y.

Letting y = α
p1p2

, it follows that

(
− log

α

2p1p2

)1/2

≤ zα/(2p1p2) ≤
(
−2 log

α

p1p2

)1/2

,

hence

P

(
Φ >

√
nγ

σ[Σ−1
k,k]

1/2
− zα/(2p1p2)

)
≤ P

(
Φ >

√
nγ

σ[Σ−1
k,k]

1/2
−
√
−2 log

α

p1p2

)
.

Now given
log(p1p2)

n
→ 0,

it follows that √
2 log

(p1p2

α

)
√
n/σ[Σ−1

k,k]
1/2
→ 0,

indicating that for sufficiently large n, the following lower bound holds for some constant
c0 > 0: ( √

nγ

σ[Σ−1
k,k]

1/2
−
√
−2 log

α

p1p2

)
≥ c0

√
n.

Note that c0 is univeral for all choices of k, since this lower bound can be achieved by
substituting Σ−1

k,k by (1/Λmin(ΣX)), which is assumed to be bounded away from infinity.

Combined with the fact that P(Φ > t) ≤ e−t
2/2, the last expression in (43) can thus be

bounded by

P

(
Φ >

√
nγ

σ[Σ−1
k,k]

1/2
− zα/(2p1p2)

)
≤ exp

−1

2

( √
nγ

σ[Σ−1
k,k]

1/2
−
√
−2 log

α

p1p2

)2
 ≤ e−c1n,

(44)
for some universal constant c1 > 0, and the bound in (44) holds uniformly for all k ∈ Sj ,∀j.
Combine (41), (42) and (44), it follows that

P

 ⋃
1≤j≤p2

⋃
k∈S∗j

{T̂j,k = 0}

 ≤ s∗p2 exp(−c1n). (45)

Now with log(p1p2)/n = o(1) and the given sparsity level, that is, s∗ = o(
√
n/ log p1), it

follows that

s∗p2 exp(−c1n) = o(1),
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and by (45), we have:

P (family-wise type II error)→ 0, ⇔ P (family-wise power)→ 1.

This is equivalent to establishing that, given log(p1p2)/n → 0, the screening step recovers
the true support sets S∗j for all j = 1, 2, · · · , p2 with high probability, while keeping the
family-wise type I error rate under control.

Appendix B. Proofs for Propositions and Auxillary Lemmas

In this subsection, we provide proofs for the propositions presented in Section 3, which
requires several auxillary lemmas, whose proofs are presented along the context.

To prove Proposition 1, we need the following two lemmas. Lemma 1 was originally
provided as Lemma B.1 in Basu and Michailidis (2015), which states that if the sample
covariance matrix of X satisfies the RE condition and Θ is diagonally dominant, then
(X ′X/n) ⊗ Θ also satisfies the RE condition. Here we omit its proof and only state the
main result. Lemma 2 verifies that with high probability, the sample covariance matrix of
the design matrix X satisfies the RE condition.

Lemma 1. If X ′X/n ∼ RE(ϕ∗, φ∗), and Θ is diagonally dominant, that is, ψi := σii −∑
j 6=i σ

ij > 0 for all i = 1, 2, · · · , p2, where σij is the ijth entry in Θ, then

Θ⊗X ′X/n ∼ RE
(
ϕ∗min

i
ψi, φ∗max

i
ψi
)
.

Lemma 2. With probability at least 1−2 exp(−c3n), for a zero-mean sub-Gaussian random
design matrix X ∈ Rn×p1, its sample covariance matrix Σ̂X satisfies the RE condition with
parameter ϕ∗ and φ∗, i.e.,

Σ̂X ∼ RE(ϕ∗, φ∗), (46)

where Σ̂X = X ′X/n, ϕ∗ = Λmin(Σ∗X)/2, φ∗ = ϕ∗ log p1/n.

Proof. To prove this lemma, we first use Lemma 15 in Loh and Wainwright (2012), which
states that if X ∈ Rn×p is zero-mean sub-Gaussian with parameter (Σ, σ2), then there exists
a universal constant c > 0 such that

P

(
sup

v∈K(2s)

∣∣∣∣‖Xv‖22n
− E

[
‖Xv‖22
n

]∣∣∣∣ ≥ t
)
≤ 2 exp

(
−cnmin(

t2

σ4
,
t

σ2
) + 2s log p

)
, (47)

where K(2s) is a set of 2s sparse vectors, defined as

K(2s) := {v ∈ Rp : ‖v‖ ≤ 1, ‖v‖0 ≤ 2s}.

By taking t =
Λmin(Σ∗X)

54 , with probability at least 1−2 exp (−c′n+ 2s log p1) for some c′ > 0,
the following bound holds:

|v′(Σ̂X − Σ∗X)v| ≤
Λmin(Σ∗X)

54
, ∀v ∈ K(2s). (48)
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Then applying supplementary Lemma 13 in Loh and Wainwright (2012), for an estimator
Σ̂X of Σ∗X satisfying the deviation condition in (48), the following RE condition holds:

v′Sxv ≥
Λmin(Σ∗X)

2
‖v‖22 −

Λmin(Σ∗X)

2s
‖v‖21.

Finally, set s = c′′n/4 log p1, then with probability at least 1 − 2 exp(−c3n) (c3 > 0),
Σ̂X ∼ RE(ϕ∗, φ∗) with ϕ∗ = Λmin(Σ∗X)/2, φ∗ = ϕ∗ log p1/n.

With the above two lemmas, we are ready to prove Proposition 1.

Proof of Proposition 1. We first show that if Θ∗ε is diagonally dominant, then Θ̂ε is also
diagonally dominant provided that the error of Θ̂ε is of the given order and n is sufficiently
large. Define

ψ̂i = σ̂iiε −
∑
j 6=i

σ̂ijε ,

where σ̂ijε is the ijth entry of Θ̂ε, then ψ̂i is the gap between the diagonal entry and the
off-diagonal entries of row i in matrix Θ̂ε. We can decompose ψ̂i into the following:

ψ̂i =

σiiε −∑
j 6=i

σijε

+

(σ̂iiε − σiiε ) +
∑
j 6=i

(σijε − σ̂ijε )

 .
Recall that we define ψi as ψi = σiiε −

∑p2

j 6=i σ
ij
ε . Hence

min ψ̂i ≥ min
i
ψi −

∣∣∣∣∣∣∣∣∣Θ̂ε −Θ∗ε

∣∣∣∣∣∣∣∣∣
∞
≥ min

i
(σiiε −

∑
j 6=i

σijε )− dνΘ = minψi − dνΘ,

max ψ̂i ≤ max
i
ψi +

∣∣∣∣∣∣∣∣∣Θ̂ε −Θ∗ε

∣∣∣∣∣∣∣∣∣
∞
≤ max

i
(σiiε −

∑
j 6=i

σijε ) + dνΘ = maxψi + dνΘ.
(49)

Now given νΘ = ηΘ
log p2

n = O(
√

log p2/n), with n % d2 log p2, dνΘ = o(1), and it follows
that

min
i
ψi − dνΘ ≥ 0.

Now by Lemma 2, X ′X/n ∼ RE(ϕ∗, φ∗) with high probability. Combine with Lemma 1
and inequality (49), with probability at least 1 − 2 exp(−c3n) for some c3 > 0, Γ̂ satisfies
the following RE condition:

Γ̂ = Θ̂ε ⊗ (X ′X/n) ∼ RE
(
ϕ∗(min

i
ψi − dνΘ), φ∗max

i
(ψi + dνΘ)

)
, (50)

where ϕ∗ = Λmin(Σ∗X)/2, φ∗ = ϕ∗ log p1/n.

To prove Proposition 2, we first prove Lemma 3.
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Lemma 3. Let X ∈ Rn×p be a zero-mean sub-Gaussian matrix with parameter (ΣX , σ
2
X)

and E ∈ Rn×p2 be a zero-mean sub-Gaussian matrix with parameters (Σε, σ
2
ε ). Moreover, X

and E are independent. Let Θε := Σ−1
ε , then if n % log(p1p2), the following two expressions

hold with probability at least 1 − 6c1 exp[−(c2
2 − 1) log(p1p2)] for some c1 > 0, c2 > 1,

respectively:

1

n

∥∥X ′E∥∥∞ ≤ c2 [Λmax(ΣX)Λmax(Σε)]
1/2

√
log(p1p2)

n
, (51)

and
1

n

∥∥X ′EΘε

∥∥
∞ ≤ c2

[
Λmax(ΣX)

Λmin(Σε)

]1/2
√

log(p1p2)

n
. (52)

Proof. The proof of this lemma uses Lemma 14 in Loh and Wainwright (2012), in which
they show that if X ∈ Rn×p1 is a zero-mean sub-Gaussian matrix with parameters (Σx, σ

2
x)

and Y ∈ Rn×p2 is a zero-mean sub-Gaussian matrix with parameters (Σy, σ
2
y), then if

n % log(p1p2),

P
(∥∥∥∥Y ′Xn − cov(yi, xi)

∥∥∥∥
∞
≥ t
)
≤ 6p1p2 exp

(
−cnmin

{
t2

(σxσy)2
,

t

σxσy

})
,

where Xi and Yi are the ith row of X and Y , respectively.
Here, we replace Y by E, and since E and X are independent, cov(Xi, Ei) = 0. Let

t = c2σXσε
√

log(p1p2)/n, c2 > 1 we get

P

(∥∥∥∥X ′En
∥∥∥∥
∞
≥ c2σXσε

√
log(p1p2)

n

)
≤ 6c1(p1p2)1−c22 = 6c1 exp

[
−(c2

2 − 2) log(p1p2)
]
.

Note that the sub-Gaussian parameter satisfies σ2
X ≤ maxi(ΣX,ii) ≤ Λmax(ΣX). This

directly gives the bound in (51).
To obtain the bound in (52), we note that if E is sub-Gaussian with parameters (Σε, σ

2
ε ),

then EΘ is sub-Gaussian with parameter (Θ, θ2
ε ), where

θ2
ε ≤ max

i
(Θε,ii) ≤ Λmax(Θε) =

1

Λmin(Σε)
.

Then we replace Y by EΘ and yield the bound in (52).

As a remark, here we note that the event in (51) and (52) may not be independent. How-
ever, the two events hold simultaneously with probability at least 1−2c2 exp[−c2 log(p1p2)],
with this crude bound for probability hold for sure.

Now we are ready to prove Proposition 2.

Proof of Proposition 2. First we note that

X ′EΘ̂ε = X ′EΘε +X ′E(Θ̂ε −Θ∗ε ),

which directly gives the following inequality:

‖γ̂ − Γ̂β∗‖∞ =
1

n

∥∥∥X ′EΘ̂ε

∥∥∥
∞
≤ 1

n

∥∥X ′EΘ∗ε
∥∥
∞ +

1

n

∥∥∥X ′E(Θ̂ε −Θ∗ε )
∥∥∥
∞
. (53)
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Now we would like to bound the two terms separately.

The first term can be bounded by (52) in Lemma 3, that is,

1

n

∥∥X ′EΘ∗ε
∥∥
∞ ≤ c2

[
Λmax(ΣX)

Λmin(Σ∗ε )

]1/2
√

log(p1p2)

n
.

w.p. at least 1− 6c1 exp[−(c2
2 − 1) log(p1p2)].

For the second term, first we note that

1

n

∥∥∥X ′E(Θ̂ε −Θ∗ε )
∥∥∥
∞

=
1

n
max

1≤i≤p1
1≤j≤p2

∣∣∣e′iX ′E(Θ̂ε −Θ∗ε )ej

∣∣∣
≤ 1

n
max
i

∥∥e′iX ′E∥∥∞max
j

∥∥∥(Θ̂ε −Θ∗ε )ej

∥∥∥
1
,

(54)

where we have ei ∈ Rp1 and ej ∈ Rp2 , and the inequality comes from the fact that |a′b| ≤
‖a‖∞‖b‖1. Note that

max
i

∥∥e′iX ′E∥∥∞ = ‖X ′E‖∞,

since ‖e′iX ′E‖∞ gives the largest element (in absolute value) of the ith row of X ′E, and
taking the maximum over all i’s gives the largest element of X ′E over all entries. And for

max
j

∥∥∥(Θ̂ε −Θ∗ε )ej

∥∥∥
1
, it holds that

max
j

∥∥∥(Θ̂ε −Θ∗ε )ej

∥∥∥
1

=
∣∣∣∣∣∣∣∣∣Θ̂ε −Θ∗ε

∣∣∣∣∣∣∣∣∣
1

=
∣∣∣∣∣∣∣∣∣Θ̂ε −Θ∗ε

∣∣∣∣∣∣∣∣∣
∞
,

where |||A|||1 := max‖x‖1=1 ‖Ax‖1 is the `1-operator norm, and the last equality follows from
the fact that |||A|||1 = |||A′|||∞. As a result, (54) can be re-written as:

1

n

∥∥∥X ′E(Θ̂ε −Θ∗ε )
∥∥∥
∞
≤
(

1

n
‖X ′E‖∞

)(∣∣∣∣∣∣∣∣∣Θ̂ε −Θ∗ε

∣∣∣∣∣∣∣∣∣
∞

)
. (55)

Now, using (51), w.p. at least 1− 6c1 exp[−(c2
2 − 1) log(p1p2)], we have

1

n

∥∥X ′E∥∥∞ ≤ c2 [Λmax(ΣX)Λmax(Σ∗ε )]
1/2

√
log(p1p2)

n
,

and since ‖Θ̂ε −Θ∗ε‖∞ ≤ νΘ, it directly follows that
∣∣∣∣∣∣∣∣∣Θ̂ε −Θ∗ε

∣∣∣∣∣∣∣∣∣
∞
≤ dνΘ. Therefore, with

probability at least 1− 6c1 exp[−(c2
2 − 1) log(p1p2)],

1

n

∥∥∥X ′E(Θ̂ε −Θ∗ε )
∥∥∥
∞
≤ c2dνΘ [Λmax(ΣX)Λmax(Σ∗ε )]

1/2

√
log(p1p2)

n
. (56)

Combine the two terms, we obtain the conclusion in Proposition 2.
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Proof of Proposition 3. First we note the following decomposition:

‖Ŝ − Σ∗ε‖∞ ≤ ‖S − Σε‖∞ + ‖Ŝ − S‖∞ := ‖W1‖∞ + ‖W2‖∞,

where S is the sample covariance matrix of the true errors E.

For W1, by Lemma 8 in Ravikumar et al. (2011), for sample size

n ≥ 512(1 + 4σ2
ε )

4 max
i

(Σ∗ε,ii)
4 log(4pτ22 ),

the following bound holds w.p. at least 1− 1/pτ2−2
2 (τ2 > 2),

‖W1‖∞ ≤

√
log 4 + τ2 log p2

c∗εn
, where c∗ε =

[
128(1 + 4σ2

ε )
2 max

i
(Σ∗ε,ii)

2

]−1

. (57)

For W2, rewrite it as:

W2 =
2

n
E′X(B∗ − B̂) + (B∗ − B̂)′

(
X ′X

n

)
(B∗ − B̂). (58)

The first term in (58) can be bounded as:∥∥∥∥ 2

n
E′X(B∗ − B̂)

∥∥∥∥
∞
≤ 2
∣∣∣∣∣∣∣∣∣B∗ − B̂∣∣∣∣∣∣∣∣∣

1

∥∥∥∥ 1

n
X ′E

∥∥∥∥
∞
≤ 2‖β∗ − β̂‖1 ·

∥∥∥∥ 1

n
X ′E

∥∥∥∥
∞
. (59)

By Lemma 3, with probability at least 1− 6c1 exp[−(c2
2− 1) log(p1p2)], the following bound

holds: ∥∥∥∥ 2

n
E′X(B∗ − B̂)

∥∥∥∥
∞
≤ 2c2νβ [Λmax(ΣX)Λmax(Σ∗ε )]

1/2

√
log(p1p2)

n
, (60)

with the sample size requirement being n % log(p1p2).

For the second term in (58), we consider the following bound:

‖(B∗ − B̂)′
(
X ′X

n

)
(B∗ − B̂)‖∞ ≤

∣∣∣∣∣∣∣∣∣B∗ − B̂∣∣∣∣∣∣∣∣∣
1

∥∥∥∥(X ′Xn
)

(B∗ − B̂)

∥∥∥∥
∞

≤
∣∣∣∣∣∣∣∣∣B∗ − B̂∣∣∣∣∣∣∣∣∣2

1

∥∥∥∥(X ′Xn
)∥∥∥∥
∞
.

(61)

Here, we apply Lemma 8 in Ravikumar et al. (2011) to the design matrix X, for sample
size

n ≥ 512(1 + 4σ2
x)4 max

i
(ΣX,ii)

4 log(4pτ11 ),

the following bound holds w.p. at least 1− 1/pτ1−2
1 (τ1 > 2),∥∥∥∥(X ′Xn

)
− ΣX

∥∥∥∥
∞
≤

√
log 4 + τ1 log p1

c∗Xn
, where c∗X =

[
128(1 + 4σ2

x)2 max
i

(ΣX,ii)
2

]−1

.

(62)
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This indicates that with this choice of n, the following bound holds with probability at least
1− 1/pτ1−2

1 (τ1 > 2), ∥∥∥∥(X ′Xn
)∥∥∥∥
∞
≤

√
log 4 + τ1 log p1

c∗Xn
+ max

i
(ΣX,ii).

Combine with the bound in (61), with probability at least 1−1/pτ1−2
1 (τ1 > 2), the following

bound holds:

‖(B∗ − B̂)′
(
X ′X

n

)
(B∗ − B̂)‖∞ ≤ ν2

β

(√
log 4 + τ1 log p1

c∗Xn
+ max

i
(ΣX,ii)

)
. (63)

Now combine (59), (60) and (63), we reach the conclusion of Proposition 3, with the leading
term in the sample size requirement being n % log(p1p2).

Proof for Proposition 4. From the structural equations of a multi-layered graph intro-
duced in Section 2.1, and setting ε1 := X1, we can write[

ε1

ε2

]
=

[
I 0

−(B12)′ I

] [
X1

X2

]
. (64)

Define P = [I, 0;−(B12)′, I]. Then, PX̃ is a centered Gaussian random vector with a block
diagonal variance-covariance matrix diag(Σ1,Σ2). Hence, the concentration matrix of X̃
takes the form

ΘX̃ = Σ−1
X̃

=

[
I −B12

0 I

] [
Θ1 0
0 Θ2

] [
I 0

−(B12)′ 0

]
.

This leads to an upper bound

‖Θ
X̃
‖ ≤ ‖Θ1‖‖Θ2‖‖P‖2.

The result then follows by using the matrix norm inequality ‖A‖ ≤
√
‖A‖1‖A‖∞ (Golub

and Van Loan, 2012), where ‖A‖1 and ‖A‖∞ denote the maximum absolute row and column
sums of A, and the fact that Λmin(ΣX̃) = ‖ΘX̃‖

−1.

Appendix C. Numerical comparisons between different parametrizations.

In this subsection, we provide some numerical evidence to substantiate the point we made
in Section 5, that the two parametrizations are not always equivalent. This is a point
also mentioned in the original work on AMP graphs by Andersson et al. (2001), the
framework adopted in this paper. The other parametrization which we referred to as the
(ΩXY ,ΩY )-parametrization corresponds to the LWF framework (see Andersson et al., 2001,
p.34-35). In the presence of sparsity penalization, a specific sparsity pattern for the (B,Θε)-
parameterization may not be recoverable through the (ΩXY ,ΩY )-parametrization and vice
versa.

Consider the following two simulation settings, in which the data are generated from the
AMP framework ((B,Θε)-parameterization) and the LWF framework ((ΩXY ,ΩY )-parametrization)
respectively.
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• AMP framework. The data are generated according to the model Y = XB∗ + E,
similar to Model A described in Section 4; that is, each entry in B∗ is nonzero with
probability 5/p1, and off-diagonal entries for Θ∗ε are nonzero with probability 5/p2.
Nonzero entries of B∗ and Θ∗ε are generated from Unif [(−1,−0.5) ∪ (0.5, 1)], and di-
agonals of Θ∗ε are set identical, such that the condition number of Θ∗ε is p2. Table 11
shows the performance of estimated B using different methods that are designed for
different parameterizations: the node-conditional method (mixed MRF) and the pro-
posed method in this study (PML).

Table 11: Performance for B̂ using different methods for different parameterizations
(p1, p2, n) Method SEN SPC MCC

(30, 60, 100) mixed MRF (th) 0.86 0.71 0.45
PML 0.96 0.99 0.93

(60, 30, 100) mixed MRF (th) 0.96 0.76 0.70
PML 0.99 0.99 0.93

(200, 200, 150) mixed MRF (th) 0.80 0.99 0.70
PML 0.99 0.99 0.88

• LWF framework. The data are generated based on the multivariate Gaussian specifi-
cation: (

X
Y

)
∼ N

(
0,

(
ΩX ΩXY

ΩY X ΩY

)−1
)
,

Specifically, ΩX is banded with 1 on the diagonal and 0.2 on the upper and lower
first diagonal, ΩY is also banded with 1 on the diagonal and 0.3 on the upper and
lower first diagonal. Each entry in ΩXY is nonzero with probability 5/p1, and the
nonzero entries are generated from Unif [(−1,−0.8) ∪ (0.8, 1)]. Further, we bump up

the diagonal of the joint precision matrix
[

ΩX ΩXY
Ω′XY ΩY

]
such that it is positive definite.

Table 12 depicts the selection property of the estimated ΩXY using different methods
that are designed for different parameterizations.

Table 12: Performance for Ω̂XY using different methods for different parameterizations
(p1, p2, n) Method SEN SPC MCC

(30, 60, 100) mixed MRF 0.84 0.88 0.63
PML-th 0.99 0.52 0.39

(60, 30, 100) mixed MRF 0.847 0.95 0.70
PML-th 1 0.80 0.52

(200, 200, 150) mixed MRF 0.89 0.93 0.70
PML-th 1 0.79 0.30

Note that to retrieve stable and meaningful results, for the AMP framework, the estimates
using mixed MRF are thresholded at a proper level, and for the LWF framework, the
estimates using PML are also thresholded.
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It can be seen that the method compatible with the data generation mechanism exhibits
superior performance, vis-a-vis its competitor that was designed for another parameteriza-
tion. Further, the mixed MRF method suffers in terms of both sensititvity and specificity
under the AMP parameterization, while the PML method suffers in terms of specificity only
under the LWF parameterization.

Appendix D. An example for multi-layered network estimation.

As mentioned at the beginning of Section 2, the proposed methodology is designed for
obtaining MLEs for multi-layer Gaussian networks, but the problem breaks down into a
sequence of 2-layered estimation problems. Here we give an detailed example to illustrate
how our proposed methodology proceeds for a 3-layered network.

Suppose there are p1, p2 and p3 nodes in Layers 1, 2 and 3, respectively. This three-
layered network is modeled as follows:

– X ∼ N (0,ΣX), X ∈ Rp1 .

– For j = 1, · · · , p2: Yj = X ′Bxy
j + εYj , Bxy

j ∈ Rp1 . (εY1 · · · εYp2
)′ ∼ N (0,Σε,Y ).

– For l = 1, 2, · · · , p3: Zl = X ′Bxz
l + Y ′Byz

l + εZl , Bxz
l ∈ Rp1 and Byz

l ∈ Rp2 .
(εZ1 · · · εZp3

)′ ∼ N (0,Σε,Z).

The parameters of interest are : ΘX , Θε,Y := Σ−1
ε,Y , Θε,Z := Σ−1

ε,Z , which denote the within-
layer conditional dependencies, and

BXY =
[
Bxy

1 · · · Bxy
p2

]
, BXZ =

[
Bxz

1 · · · Bxz
p3

]
and BY Z =

[
Byz

1 · · · Byz
p3

]
,

which encode the across-layer dependencies.

Now given data X ∈ Rn×p1 , Y ∈ Rn×p2 and Z ∈ Rn×p3 , all centered, the full log-
likelihood can be written as:

`(Z, Y,X) = `(Z|Y,X; Θε,Z , BY Z , BXZ) + `(Y |X; Θε,Y , BXY ) + `(X; ΘX). (65)

The separability of the log-likelihood enables us to ignore the inner structure of the com-
bined layer X̃ := (X,Y ) when trying to estimate the dependencies between Layer 1 and
Layer 3, Layer 2 and Layer 3, as well as the conditional dependencies within Layer 3. As
a consequence, the optimization problem minimizing the negative log-likelihood can be de-
composed into three separate problems, i.e., solving for {Θε,Z , BXZ , BY Z}, {Θε,Y , BXY }
and {ΘX}, respectively.

The estimation procedure described in Section 2.2 can thus be carried out in a recursive
way in a sense of what follows. To obtain estimates for {BXZ , BY Z ,Θε,Z}, based on the
formulation in (2), we solve the following opmization problem:

min
Θε,Z∈S

p3×p3
++

BXZ ,BY Z

− log det Θε,Z + 1
n

∑p3
j=1

∑p3
i=1 σ

ij
Z (Zi −XBxz

i − Y B
yz
i )>(Zj −XBxz

j − Y B
yz
j )

+λn(‖BXZ‖1 + ‖BY Z‖1) + ρn‖Θε,Z‖1,off

 ,
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which can be solved by treating the combined design matrix X̃ = (X,Y ) as a single super
layer and Z as the response layer, then apply each step described in Section 2.2. To ob-
tain estimates for BXY and Θε,Y , we can ignore the 3rd layer for now and apply the exact
procedure all over again, by treating Y as the response layer and X as the design layer.
The estimate for the precision matrix of the bottom layer ΘX can be obtained by graphical
lasso (Friedman et al., 2008) or the nodewise regression (Meinshausen and Bühlmann, 2006).
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