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Abstract

Teaching dimension is a learning theoretic quantity that specifies the minimum training set
size to teach a target model to a learner. Previous studies on teaching dimension focused
on version-space learners which maintain all hypotheses consistent with the training data,
and cannot be applied to modern machine learners which select a specific hypothesis via
optimization. This paper presents the first known teaching dimension for ridge regression,
support vector machines, and logistic regression. We also exhibit optimal training sets that
match these teaching dimensions. Our approach generalizes to other linear learners.
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1. Introduction

Consider a teacher who knows both a target model and the learning algorithm used by a
machine learner. The teacher wants to teach the target model to the learner by constructing
a training set. The training set does not need to contain independent and identically
distributed items drawn from some distribution. Furthermore, the teacher can construct
any item in the input space. How many training items are needed? This is the question
addressed by the teaching dimension (Goldman and Kearns, 1995; Shinohara and Miyano,
1991). We give the precise definition in section 2, but first illustrate the intuition with an
example.

Consider integers x ∈ {1 . . . 10} and threshold classifiers hθ on them, so that hθ(x)
returns -1 if x < θ and 1 if x ≥ θ. Now let the hypothesis space H consist of eleven classifiers
H = {hθ | θ ∈ {1 . . . 11}}. Let the learner be a version-space learner, namely it maintains a
version space {hθ ∈ H | hθ consistent with the training set}. Equivalently, the learner is a
0-1 loss empirical risk minimizer (ERM) which finds all models with zero training error. If
we want to teach a target model (in this paper we use hypothesis and model exchangeably),
say h9, to such a learner, we can construct a training set that results in a singleton version
space {h9}. It is easy to see that the training set D = {(x1 = 8, y1 = −1), (x2 = 9, y2 = 1)}
is the smallest set for this purpose. We say that the teaching dimension of h9 with respect
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to H is TD(h9) = |D| = 2. Similarly, TD(h11) = 1 because D = {(x1 = 10, y1 = −1)}
suffices. In fact, TD(h∗θ) = 1 for target model θ∗ = 1 or 11, and 2 for θ∗ = 2, 3, . . . , 10.

The astute reader may notice that this example does not apply to continuous spaces.
To see this, let us extend x ∈ R and H = {hθ | θ ∈ R}. The learner’s version space under
any linearly separable training set would now be represented by the interval between the
two closest oppositely labeled items. It is impossible for the version-space learner to pick
out a unique target model hθ∗ with a finite training set. In other words, TD(hθ∗) =∞ for
all target models θ∗. This is counterintuitive because ostensibly we can teach any one of
the “modern” machine learning algorithms such as a support vector machine (SVM) with
only two training items: D = {(x1 = θ∗− ε, y1 = −1), (x2 = θ∗+ ε, y2 = 1)} with any ε > 0.

The issue here is that a version-space learner is not equipped with the ability to pick
the max-margin (or any other specific) hypothesis from the version space. In contrast, an
SVM is not a version-space learner in our terminology; we have stronger knowledge from
optimization on how it picks a specific hypothesis from the hypothesis space. This paper will
utilize such knowledge to derive teaching dimensions that are distinct from classic teaching
dimension analysis (e.g. Doliwa et al. (2014)). Specifically, we extend teaching dimension
to linear learners that learn by regularized surrogate-loss empirical risk minimization:

Aopt(D) := Argminθθθ∈Rd

n∑
i=1

`(x>i θθθ, yi) +
λ

2
‖θθθ‖2A︸ ︷︷ ︸

=:f(θθθ)

. (1)

Here, we identify H with Rd, h with θθθ, the surrogate loss function ` is either smooth or
convex in the first argument, λ > 0 is the regularization coefficient, and A is a positive
semidefinite matrix. ‖ · ‖A is the Mahalanobis norm: ‖θθθ‖A :=

√
θθθ>Aθθθ. This covers both

homogeneous (e.g. A = I) and inhomogeneous (e.g. A = [I, 0; 0, I]) learners. We follow
the convention in optimization when we use the capitalized Argmin to emphasize that it
returns a set that achieves the minimum. The teacher can construct a training set with
any items in Rd. The alternative pool-based teaching setting, where the teacher is given a
finite pool of candidate training items and must select items from that pool, is not studied
in this paper. By linear learners we mean the input x and the parameter θθθ interact only
via their inner product x>θθθ. Linear learners include SVMs, logistic regression, and linear
regression. Our analysis technique involves a novel application of the Karush-Kuhn-Tucker
(KKT) conditions.

homogeneous inhomogeneous
ridge SVM logistic ridge SVM logistic

exact parameter 1
⌈
λ‖θθθ∗‖2

⌉ ⌈
λ‖θθθ∗‖2
τmax

⌉
2 2

⌈
λ‖w∗‖2

2

⌉†
2
⌈
λ‖w∗‖2
2τmax

⌉†
decision boundary - 1 1 - 2 2

Table 1: The teaching dimension of ridge regression, SVM, and logistic regression. (†: up
to rounding effect, see section 3.3).
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To our knowledge, this paper gives the first known values of teaching dimension for
ridge regression, SVM, and logistic regression. We summarize our main results in Table 1.
The table separately lists homogeneous (without a bias term) and inhomogeneous (with
a bias term) versions of the linear learners. The teaching goal refers to the intention of
the teacher: is teaching considered successful only when the learner learns the exact target
parameter, or when the learner learns the correct decision boundary (which can be achieved
by any positive scaling of the target parameter)? See section 3 for definition of the target
parameters θθθ∗,w∗ and the constant τmax. The target parameters are assumed to be nonzero.
We will also present the corresponding minimum teaching set construction in section 3.

2. Classic Teaching Dimension and its Limitations

Let X denote the input space and Y ⊆ R the output space. A hypothesis is a function
h : X → Y. In this section we identify a hypothesis hθθθ with its model parameter θθθ. The
hypothesis space H is a set of hypotheses. By training item we mean a pair (x, y) ∈ X ×Y.
A training set is a multiset D = {(x1, y1) . . . (xn, yn)} where repeated items are allowed.
Importantly, for the purpose of teaching we do not assume that D be drawn i.i.d. from
a distribution. Let D = ∪∞n=1(X × Y)n denote the set of all training sets of all sizes. A
learning algorithm A : D → 2H takes in a training set D ∈ D and outputs a subset of the
hypothesis space H. That is, A does not necessarily return a unique hypothesis.

Classic teaching dimension analysis is restricted to the version-space learner Avs:

Avs(D) = {h ∈ H | ∀(x, y) ∈ D,h(x) = y}. (2)

That is, the learner Avs keeps track of the version space consisting of all hypotheses h that
are consistent with D. Let the target model be hθθθ∗ ∈ H. Teaching is successful if the
teacher identifies a training set D ∈ D such that Avs(D) = {hθθθ∗} the singleton set. Such
a D is called a teaching set of hθθθ∗ with respect to H. The teaching dimension of the
hypothesis hθθθ∗ is the minimum size of the teaching set:

TD(hθθθ∗) =

{
minD∈D |D|, for D a teaching set of hθθθ∗

∞, if no teaching set exists

Furthermore, the teaching dimension of the whole hypothesis space H is defined by the
hardest hypothesis: TD(H) = maxh∈H TD(h). In this paper we will focus on the fine-
grained teaching dimension of individual hypothesis TD(h).

Classic teaching dimension analysis has several limitations: the learner is assumed to be
a version-space learner Avs, and the hypothesis space is typically finite or countably infinite.
As the example in section 1 showed, these fail to capture the teaching dimension of “modern”
machine learners which has Rd as input space and picks a unique hypothesis via regularized
empirical risk minimization (1). Furthermore, the target model can be ambiguous when the
learner is a classifier: should the learner learn the exact target parameter θθθ∗, or the target
decision boundary? In linear models any scaled parameter cθθθ∗ with c > 0 produces the
same target decision boundary. These limitations motivate us to generalize the teaching
dimension in the next section.
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3. Main Results

To make our teaching dimension’s dependency on the learning algorithm explicit, henceforth
we write teaching dimension with two arguments as

TD(h∗,A)

where h∗ ∈ H is the target model, and A : D→ 2H is the learning algorithm which given a
training set D ∈ D returns a set of hypotheses A(D). We define teaching dimension to be
the size of the smallest training set D such that A(D) = {h∗}, the singleton set containing
the target model. With this notation, the classic teaching dimension is TD(h∗,Avs) where
Avs is the version space learning algorithm (2). In this paper we focus on Aopt in (1) instead,
namely linear learners in Rd. Linear learners include many popular members such as both
homogeneous and inhomogeneous versions of linear regression, SVM, and logistic regression.
In addition, the linear interaction between x and θθθ makes the loss function subgradient easy
to compute, though in principle our analysis technique is applicable to other optimization-
based learners, too. In this section our goal is to teach the exact parameter θθθ∗, consequently
our teaching dimension of interest is

TD(θθθ∗,Aopt).

Later in section 4 for classification we will teach the decision boundary instead.
How to reason about our teaching dimension TD(θθθ∗,Aopt)? It is the size of the smallest

training set D with which (1) has a unique solution θθθ∗. Our strategy is to first establish a
number of lower bounds LB ≤ TD(θθθ∗,Aopt) by showing that any training set with which (1)
has a unique solution θθθ∗ must have at least LB items. Section 3.1 is devoted to such lower
bounds. The actual teaching dimension is learner dependent. In sections 3.2 and 3.3
we construct specific teaching sets for three popular learners: ridge regression, SVM, and
logistic regression. These teaching sets uniquely returns θθθ∗ via (1). By definition, the size
of these teaching sets is an upper bound on TD(θθθ∗,Aopt), respectively. If the lower and
upper bounds match, we would have identified the teaching dimension TD(θθθ∗,Aopt).

3.1 Lower Bounds on Teaching Dimension TD(θθθ∗,Aopt)

In this section we provide three general lower bounds on the teaching dimension. These
lower bounds capture different aspects of a teaching set, and should be used in conjunction
(i.e. taking the maximum) when applicable. We will instantiate these lower bounds for
specific learners in section 3.2. In the following let X and Y be the feasible region of all
xi’s and yi’s respectively. We will use the notation ∂1`(·, ·) in the following way: if `(·, ·)
is smooth, then it denotes a singleton set only containing the gradient w.r.t. the first
argument; if `(·, ·) is convex, then it denotes the subdifferential w.r.t the first argument.

LB1 comes from a degree-of-freedom perspective. It is necessary to have this amount of
training items for a unique solution to exist in (1).

Theorem 1 Given any target model θθθ∗, there is a degree-of-freedom lower bound on the
number of training items to obtain a unique solution θθθ∗ from solving (1):

LB1 =

{
d− Rank(A) + 1, if Aθθθ∗ 6= 0

d− Rank(A), otherwise.
(3)
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Proof Let n∗ be the minimal number of training items to ensure a unique solution θθθ∗.
First consider the case n∗ = 0. It happens if and only if θθθ∗ = 0 and Rank(A) = d, which is
a special case of Aθθθ∗ = 0. Clearly, this case is consistent with LB1. Next consider the case
n∗ ≥ 1. Since θθθ∗ solves (1), the KKT condition holds:

−λAθθθ∗ ∈
n∗∑
i=1

∂1`(x
>
i θθθ
∗, yi)xi. (4)

We seek all δδδ such that θθθ∗ + δδδ satisfies

A(θθθ∗ + δδδ) = Aθθθ∗ and x>i (θθθ∗ + δδδ) = x>i θθθ
∗ ∀i = 1, · · · , n∗, (5)

For any such δδδ, simple algebra verifies that θθθ∗ + tδδδ satisfies the KKT condition (4) for any
t ∈ [0, 1]. Consequently, θθθ∗ + δδδ also solves the problem in (1). To see this, we consider two
situations:

• If the loss function `(·, ·) is convex in the first argument, the KKT condition is a
sufficient optimality condition, which means that θθθ∗ + δδδ solves (1).

• If the loss function `(·, ·) is smooth (not necessary convex) in the first argument, we
have f(θθθ∗) = f(θθθ∗+δδδ) by using the Taylor expansion (recall f is defined in equation 1):

f(θθθ∗ + δδδ) =f(θθθ∗) + 〈∇f(θθθ∗ + tδδδ), δδδ〉 (for some t ∈ [0, 1])

=f(θθθ∗) +

〈
n∗∑
i=1

∇1`(x
>
i (θθθ∗ + tδδδ), yi)xi + λA(θθθ∗ + tδδδ)), δδδ

〉

=f(θθθ∗) +

〈
n∗∑
i=1

∇1`(x
>
i θθθ
∗, yi)xi + λAθθθ∗︸ ︷︷ ︸

=0 due to the KKT condition (4)

, δδδ

〉

=f(θθθ∗).

Therefore, θθθ∗ + δδδ also solves (1). However, the uniqueness of θθθ∗ requires δδδ = 0 to be the
only value satisfying (5). This is equivalent to say

Null(A) ∩Null(Span{x1, · · · ,xn∗}) = {0}. (6)

It indicates that
Rank(A) + Dim(Span{x1, · · · ,xn∗}) ≥ d.

From n∗ ≥ Dim(span{x1, · · · ,xn∗}), we have n∗ ≥ d − Rank(A). We proved the general
case for LB1.

If we have Aθθθ∗ 6= 0, we can further improve LB1. Let g∗ = (g∗1, . . . , g
∗
n∗)> be the vector

satisfying

−λAθθθ∗ =

n∗∑
i=1

g∗i xi and g∗i ∈ ∂1`(x
>
i θθθ
∗, yi) ∀i = 1, 2, · · · , n∗. (7)
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Since θθθ∗ satisfies the KKT condition, such vector g∗ must exist. Applying Aθθθ∗ 6= 0 to (7),
we have g∗ 6= 0 and

Dim (Span{A.1, A.2, · · · , A.d} ∩ Span{x1, · · · ,xn∗}) ≥ 1. (8)

To satisfy (6), we must have

d = Dim (Span{A.1, A.2, · · · , A.d,x1, · · · ,xn∗}) .

Using the fact in linear algebra

Dim (Span{A.1, A.2, · · · , A.d,x1, · · · ,xn∗})
= Dim (Span{A.1, A.2, · · · , A.d})︸ ︷︷ ︸

=Rank(A)

+

Dim (Span{x1, · · · ,xn∗})︸ ︷︷ ︸
≤n∗

−

Dim (Span{A.1, A.2, · · · , A.d} ∩ Span{x1, · · · ,xn∗})︸ ︷︷ ︸
≥1 (from (8))

We conclude that n∗ ≥ d− Rank(A) + 1. We completed the proof for LB1.

LB2 observes that the regularizer acts as a prior. If λ is large, more items are needed
to sway the prior toward the target θθθ∗.

Theorem 2 Given any target model θθθ∗, there is a strength-of-regularization lower bound
on the required number of training items to obtain a unique solution θθθ∗ from solving (1):

LB2 =


⌈
λ
(

supα∈R,y∈Y,g∈−∂1`(α‖θθθ∗‖2A,y) αg
)−1

⌉
, if A has full rank and θθθ∗ 6= 0

0, otherwise.
(9)

Proof When A has full rank we have an equivalent expression for the KKT condition (4):

−λA
1
2θθθ∗ ∈

n∗∑
i=1

A−
1
2 xi∂1`(x

>
i θθθ
∗, yi) ∀i = 1, · · · , n∗. (10)

Let us decompose A−
1
2 xi for all i = 1, · · · , n∗ into A−

1
2 xi = αiA

1
2θθθ∗+ui, where ui is orthog-

onal to A
1
2θθθ∗: u>i A

1
2θθθ∗ = 0. Equivalently xi = αiAθθθ

∗+A
1
2 ui. Applying this decomposition,

we have
x>i θθθ

∗ = αi‖θθθ∗‖2A + u>i A
1
2θθθ∗ = αi‖θθθ∗‖2A.

Putting it back in (10) we obtain

−λA
1
2θθθ∗ ∈

n∗∑
i=1

(
αiA

1
2θθθ∗ + ui

)
∂1`(αi‖θθθ∗‖2A, yi) ∀i = 1, · · · , n∗. (11)
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Since ui is orthogonal to A
1
2θθθ∗, (11) can be rewritten as

∃αi ∈ R, ∃yi ∈ Y, ∃gi ∈ ∂1`(αi‖θθθ∗‖2A, yi) ∀i = 1, · · · , n∗

satisfying
n∗∑
i=1

giui = 0

− λA
1
2θθθ∗ = A

1
2θθθ∗

n∗∑
i=1

αigi (12)

Since Aθθθ∗ 6= 0, we have A
1
2θθθ∗ 6= 0 and (12) is equivalent to −λ =

∑n∗

i=1 αigi. It follows that

λ = −
n∗∑
i=1

αigi ≤ n∗ sup
α∈R,y∈Y,g∈∂1`(α‖θθθ∗‖2A,y)

−αg = n∗ sup
α∈R,y∈Y,g∈−∂1`(α‖θθθ∗‖2A,y)

αg

It indicates the lower bound for n∗

n∗ ≥

⌈
λ

supα∈R,y∈Y,g∈−∂1`(α‖θθθ∗‖2A,y) αg

⌉
.

LB1 and LB2 apply to all generalized linear learners. Due to the popularity of inhomo-
geneous margin-based linear learners (which include the standard form of SVM and logistic
regression), we provide a tighter lower bound LB3 for such learners in Theorem 3. For
inhomogeneous margin-based linear learners the learning algorithm Aopt solves a special
form of (1):

Aopt(D) = Argminw,b

n∑
i=1

`(yi(x
>
i w + b)) +

λ

2
‖w‖2A. (13)

LB3 will prove to be instrumental in computing the teaching dimension for those learners.
Following standard notation, we define θθθ = [w; b] where w ∈ Rd is the weight vector and
b ∈ R the bias (offset) term. Note θθθ ∈ Rd+1 now. The d×d regularization matrix A applies
only to w while b is not regularized. Furthermore, margin-based linear learners have loss
functions defined on the margin y(x>w + b). This loss function structure will play a key
role in obtaining LB3.

Theorem 3 Assume matrix A in (13) has full rank and w∗ 6= 0. Given any target model
[w∗; b∗], there is an inhomogeneous-margin lower bound on the required number of training
items to obtain a unique solution [w∗; b∗] from solving (13):

LB3 =

λ
(

sup
α∈R,g∈−∂`(α‖w∗‖2A)

αg

)−1
 . (14)
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Proof Let D = {xi, yi}i=1,··· ,n be a teaching set for [w∗; b∗]. The following KKT condition
needs to be satisfied:

0 ∈
n∑
i=1

∂`(yi(x
>
i w∗ + b∗))yi

[
xi
1

]
+

[
λAw∗

0

]
. (15)

If we construct a new training set

D̂ =

{
x̂i = xi +

b∗

‖w∗‖2A
Aw∗, ŷi = yi

}
i=1,··· ,n

then [w∗; 0] satisfies the KKT condition defined on D̂. This can be verified as follows:

n∑
i=1

∂`(ŷi(x̂
>
i w∗))ŷi

[
x̂i
1

]
+

[
λAw∗

0

]

=
n∑
i=1

∂`(yi(x
>
i w∗ + b∗))yi

[
xi + b∗

‖w∗‖2A
Aw∗

1

]
+

[
λAw∗

0

]

=

n∑
i=1

∂`(yi(x
>
i w∗ + b∗))yi

[
xi
1

]
+

[
λAw∗

0

]
︸ ︷︷ ︸

30 from (15)

+

[
b∗

‖w∗‖2A
Aw∗

0

]
n∑
i=1

∂`(yi(x
>
i w∗ + b∗))yi︸ ︷︷ ︸

30 from (15)

30

where 0 ∈
∑n

i=1 ∂`(yi(x
>
i w∗ + b∗))yi is from the bias dimension in (15). It follows that

0 ∈
n∑
i=1

∂`(ŷix̂
>
i w∗)ŷix̂i + λAw∗

which is equivalent to

0 ∈
n∑
i=1

∂`(ŷix̂
>
i w∗)A−

1
2 ŷix̂i︸︷︷︸

=:zi

+λA
1
2 w∗

=

n∑
i=1

∂`(z>i w∗)A−
1
2 zi + λA

1
2 w∗. (16)

We decompose A−
1
2 zi = αiA

1
2 w∗ + ui where ui satisfies u>i A

1
2 w∗ = 0. Applying this

decomposition to (16), we have

λA
1
2 w∗ ∈

n∑
i=1

−∂`(αi‖w∗‖2A)(αiA
1
2 w∗ + ui). (17)

Since ui is orthogonal to A
1
2 w∗, (17) implies that

λA
1
2 w∗ ∈

n∑
i=1

−∂`(αi‖w∗‖2A)αiA
1
2 w∗.
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Since w∗ 6= 0 we have

λ ∈
n∑
i=1

−∂`(αi‖w∗‖2A)αi.

Together with
n∑
i=1

−∂`(αi‖w∗‖2A)αi ≤ n sup
α∈R,g∈−∂`(α‖w∗‖2A)

αg,

we obtain LB3.

3.2 The Teaching Dimension TD(θθθ∗,Aopt) of Three Homogeneous Learners

We now turn to upper bounding teaching dimension by constructing teaching sets. To prove
that we indeed have a teaching set for a target θθθ∗, we need to show that θθθ∗ is a solution
of (1), and the solution is unique. The size of any such teaching set is an upper bound
on the teaching dimension. The teaching dimension itself is determined if such an upper
bound matches the corresponding lower bound. We show that this is indeed the case for our
constructed teaching sets. For the sake of reference we preview in Table 2 the instantiated
lower bounds that we will use in this section; their derivation will be shown below.

homogeneous inhomogeneous
lower bound ridge SVM logistic ridge SVM logistic

LB1 1 1 1 2 2 2

LB2 0
⌈
λ‖θθθ∗‖2

⌉ ⌈
λ‖θθθ∗‖2
τmax

⌉
0 0 0

LB3 - - - -
⌈
λ‖w∗‖2

⌉ ⌈
λ‖w∗‖2
τmax

⌉

Table 2: Lower bounds of teaching dimension TD(θθθ∗,Aopt) for homogeneous and inhomo-
geneous versions of ridge regression, SVM, and logistic regression.

Teaching dimension is learner-dependent. We choose three learners to study their teach-
ing dimension due to these learners’ popularity in machine learning: ridge regression, SVM,
and logistic regression. It turns out that homogeneous and inhomogeneous versions of these
learners require different analysis. We devote this section to the homogeneous version where
the regularizer matrix A = I the identity matrix, and the next section to the inhomogeneous
version. It is possible to extend our analysis to other linear learners of the form (1).

It is easy to see that if the target model θθθ∗ = 0, we do not need any training data to
uniquely obtain the target model from (1). In the following, we only consider the nontrivial
case θθθ∗ 6= 0.

Homogeneous ridge regression solves the following optimization problem:

min
θθθ∈Rd

n∑
i=1

1

2
(x>i θθθ − yi)2 +

λ

2
‖θθθ‖2. (18)

We only need one training item to uniquely obtain any nonzero target model θθθ∗, as the
following construction shows.

9
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Proposition 1 Given any target model θθθ∗ 6= 0, the following is a teaching set for homoge-
neous ridge regression (18):

x1 = aθθθ∗, y1 =
λ+ ‖x1‖2

a
(19)

where a can be any nonzero real number.

Proof We simply verify the KKT condition to see that θθθ∗ is a solution to (18) by applying
the construction in (19). The uniqueness of θθθ∗ is guaranteed by the strong convexity of
(18).

It is worth to note that the teaching set is inconsistent with the target model, that is,
x>1 θθθ

∗ = a‖θθθ∗‖2 6= y1 = λ
a + a‖θθθ∗‖2, unless the regularization is absent λ = 0. The teacher

intentionally overshoots the target in order to precisely counter the learner’s regularizer.
This has been observed before for Bayesian learners, too (Zhu, 2013).

We encourage the reader to distinguish two senses of uniqueness. The teaching set itself
is not necessarily unique. In the construction (19), any a 6= 0 leads to a valid teaching set.
Nonetheless, any one of the teaching sets will lead to the unique solution θθθ∗ in (18).

Corollary 1 The teaching dimension TD(θθθ∗,Ahomridge) = 1 for homogeneous ridge regression
and target θθθ∗ 6= 0.

Proof Substituting A by I in LB1 (3), we obtain the lower bound d − Rank(I) + 1 = 1
which matches the teaching set size in (19).

Homogeneous SVM solves the problem:

min
θθθ∈Rd

n∑
i=1

max(1− yix>i θθθ, 0) +
λ

2
‖θθθ‖2. (20)

To teach this learner one training item is in general not enough: we will show that we need⌈
λ‖θθθ∗‖2

⌉
training items. In fact, we will construct such a teaching set consisting of identical

training items. It is well-known in the teaching literature that a teaching set does not need
to consist of i.i.d. samples from a distribution, and can look unusual. It is possible to
incorporate additional constraints into a teaching problem if one wants the training items
to be diverse, but we do not consider that in the present paper.

Proposition 2 Given any target model θθθ∗ 6= 0, the following is a teaching set for homoge-
neous SVM (20). There are n =

⌈
λ‖θθθ∗‖2

⌉
identical training items, each taking the form

xi =
λθθθ∗

dλ‖θθθ∗‖2e
, yi = 1. (21)

Proof We only need to verify that the KKT condition holds for θθθ∗. Due to the strong
convexity of (20) uniqueness is guaranteed automatically. We denote the subgradient

10
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∂a max(1− a, 0) = −∂1 max(1− a, 0) = −I(a), where

I(a) =


1, if a < 1

[0, 1], if a = 1

0, otherwise

. (22)

The KKT condition is

n∑
i=1

−yixi∂1 max(1− yix>i θθθ∗, 0) + λθθθ∗

=

n∑
i=1

−yixiI(yix
>
i θθθ
∗) + λθθθ∗

=− n λθθθ∗

dλ‖θθθ∗‖2e
I

(
λ‖θθθ∗‖2

dλ‖θθθ∗‖2e

)
+ λθθθ∗

=− λθθθ∗I
(
λ‖θθθ∗‖2

dλ‖θθθ∗‖2e

)
+ λθθθ∗

30

where the last line is due to I
(

λ‖θθθ∗‖2
dλ‖θθθ∗‖2e

)
giving either the set [0, 1] or the value 1.

Corollary 2 The teaching dimension TD(θθθ∗,Ahomsvm) =
⌈
λ‖θθθ∗‖2

⌉
for homogeneous SVM

and target θθθ∗ 6= 0.

Proof We show this number matches LB2. Let A = I, `(a, b) = max(1 − ab, 0), and
consider the denominator of (9):

sup
α∈R,y∈Y,g∈−∂1`(α‖θθθ∗‖2,y)

αg = sup
α,y∈{−1,1},g∈yI(yα‖θθθ∗‖2)

αg

= sup
α,g∈I(α‖θθθ∗‖2)

αg

=
1

‖θθθ∗‖2

where the first equality is due to ∂1`(a, b) = −bI(ab). Therefore, LB2 =
⌈
λ‖θθθ∗‖2

⌉
which

matches the construction in (21).

Homogeneous logistic regression solves the problem:

min
θθθ∈Rd

n∑
i=1

log(1 + exp{−yix>i θθθ}) +
λ

2
‖θθθ‖2 (23)

where log has base e. The situation is similar to homogeneous SVM. However, due to the
negative log likelihood term we have a coefficient defined by the Lambert W function (Cor-
less et al., 1996), which we denote by Wlam. Recall the defining equation for Lambert W

11
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function is Wlam(x)eWlam(x) = x. We further define

τmax := max
t

t

1 + et
= Wlam(1/e) ≈ 0.2785,

where the equality can be derived in following: The optimal t∗ satisfies

1 + et
∗

= t∗et
∗ ⇔ (t∗ − 1)et

∗−1 = 1/e

which suggests t∗ = Wlam(1/e) + 1. We apply the optimality condition above and the
optimal value of t∗ to obtain

max
t

t

1 + et
=

t∗

1 + et∗
=

1

et∗
=

1

e · eWlam(1/e)
= Wlam(1/e).

For any value a ≤ τmax, we define τ−1(a) as the solution to a = t
1+et . By using the Lambert

W function τ−1(a) can be expressed as τ−1(a) ≡ a −Wlam(−aea), which can be derived
from

t

1 + et
=

a−Wlam(−aea)
1 + ea−Wlam(−aea)

=
a+ aea/eWlam(−aea)

1 + ea−Wlam(−aea)
= a.

Proposition 3 Given any target model θθθ∗ 6= 0, the following is a teaching set for homoge-

neous logistic regression (23). There are n =
⌈
λ‖θθθ∗‖2
τmax

⌉
identical training items, each taking

the form

xi = τ−1

(
λ‖θθθ∗‖2

⌈
λ‖θθθ∗‖2

τmax

⌉−1
)

θθθ∗

‖θθθ∗‖2
, yi = 1. (24)

Proof We first verify that θθθ∗ is a solution to (23) based on the teaching set construction in
(24). We only need to verify the gradient of (23) is zero. Computing the gradient of (23),
we have

n∑
i=1

−yixi
1 + exp{yix>i θθθ∗}

+ λθθθ∗

=− n xi

1 + exp

{
τ−1

(
λ‖θθθ∗‖2

⌈
λ‖θθθ∗‖2
τmax

⌉−1
)} + λθθθ∗

=− n
τ−1

(
λ‖θθθ∗‖2

⌈
λ‖θθθ∗‖2
τmax

⌉−1
)

1 + exp

{
τ−1

(
λ‖θθθ∗‖2

⌈
λ‖θθθ∗‖2
τmax

⌉−1
)} θθθ∗

‖θθθ∗‖2
+ λθθθ∗

=− nλ‖θθθ∗‖2
⌈
λ‖θθθ∗‖2

τmax

⌉−1
θθθ∗

‖θθθ∗‖2
+ λθθθ∗

=0,

where the third equality uses the fact λ‖θθθ∗‖2
⌈
λ‖θθθ∗‖2
τmax

⌉−1
≤ τmax and the property a =

τ−1(a)

1+eτ
−1(a)

. The strong convexity of (23) automatically implies uniqueness.

12
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Corollary 3 The teaching dimension TD(θθθ∗,Ahomlog ) =
⌈
λ‖θθθ∗‖2
τmax

⌉
for homogeneous logistic

regression and target θθθ∗ 6= 0.

Proof We show that the number matches LB2. In (9) let A = I and `(a, b) = log(1 +
exp{−ab}). The denominator of LB2 is:

sup
α∈R,y∈Y,g∈−∂1`(α‖θθθ∗‖2,y)

αg = sup
α,y∈{−1,1},g=y(1+exp{yα‖θθθ∗‖2})−1

αg

= sup
α,g=(1+exp{α‖θθθ∗‖2})−1

αg

= sup
α

α

1 + exp{α‖θθθ∗‖2}

=‖θθθ∗‖−2 sup
t

t

1 + exp{t}

=
τmax

‖θθθ∗‖2
,

which implies LB2 =
⌈
λ‖θθθ∗‖2
τmax

⌉
.

3.3 The Teaching Dimension TD(θθθ∗,Aopt) of Three Inhomogeneous Learners

Inhomogeneous learners are defined by θθθ = [w; b] where the weight vector w ∈ Rd and the
scalar offset b ∈ R. The offset b is not regularized. Similar to the previous section, we need
to instantiate the teaching dimension lower bounds and design the teaching sets. We show
that the size of our teaching set exactly matches the lower bound for inhomogeneous ridge
regression, and differs from the lower bound of inhomogeneous SVM and logistic regression
by at most one due to rounding. Therefore, up to rounding we also establish the teaching
dimension for these inhomogeneous learners.

Inhomogeneous ridge regression solves the problem:

min
w∈Rd,b∈R

n∑
i=1

1

2
(x>i w + b− yi)2 +

λ

2
‖w‖2 (25)

Proposition 4 Given any target model [w∗; b∗], if w∗ = 0 (b∗ can be an arbitrary value),
the following is a teaching set for inhomogeneous ridge regression (25) with n = 1:

x1 = 0, y1 = b∗. (26)

If w∗ 6= 0, any n = 2 items satisfying the following are a teaching set for a 6= 0:

x1 − x2 = aw∗, y1 = x>1 w∗ + b∗ +
λ

a
, y2 = y1 − a‖w∗‖2 − 2

λ

a
. (27)

Proof We first prove the case for w∗ = 0. We can verify that the KKT condition is
satisfied by designing x1 and y1 as in (26):

(x>1 w∗ + b∗ − y1)x1 + λw∗ =0

x>1 w∗ + b∗ − y1 =0.

13



Liu and Zhu

The uniqueness of [w∗; b∗] is indicated by the strong convexity of (25) when n = 1.

We then prove the case for w∗ 6= 0. With simple algebra, we can verify the KKT
condition holds via the construction in (27):

(x>1 w∗ + b∗ − y1)x1 + (x>2 w∗ + b∗ − y2)x2 + λw∗ =0

(x>1 w∗ + b∗ − y1) + (x>2 w∗ + b∗ − y2) =0.

Similarly, the uniqueness is implied by the strong convexity of (25) when n = 2.

Corollary 4 The teaching dimension for inhomogeneous ridge regression with target θθθ∗ =
[w∗; b∗] is TD(θθθ∗,Ainhridge) = 1 if target w∗ = 0, or TD(θθθ∗,Ainhridge) = 2 if w∗ 6= 0, regardless
of the target offset b∗.

Proof We match the lower bound LB1 in (3). Note θθθ∗ = [w∗; b∗] ∈ Rd+1, and A in
this case is a (d + 1) × (d + 1) matrix with the d × d identity matrix Id padded with one
additional row and column of zeros for the offset. Therefore Rank(A) = Rank(Id) = d.
When w∗ = 0, Aθθθ∗ = 0 and LB1 = (d + 1) − Rank(A) = 1. When w∗ 6= 0, Aθθθ∗ 6= 0 and
LB1 = (d+ 1)−Rank(A) + 1 = 2. These lower bounds match the teaching set sizes in (26)
and (27), respectively.

Inhomogeneous SVM solves the problem:

min
w∈Rd,b∈R

n∑
i=1

max(1− yi(x>i w + b), 0) +
λ

2
‖w‖2. (28)

Proposition 5 Given any target model [w∗; b∗] with w∗ 6= 0, the following is a teaching

set for inhomogeneous SVM (28). We need n = 2
⌈
λ‖w∗‖2

2

⌉
training items, half of which

are identical positive items xi = x+, yi = 1, ∀i ∈
{

1, · · · , n2
}

and half identical negative
items xi = x−, yi = −1, ∀i ∈

{
n
2 + 1, · · · , n

}
. x+ and x− can be designed as any

vectors satisfying

x>+w∗ = 1− b∗, x− = x+ −
2w∗

‖w∗‖2
. (29)

Proof Unlike in previous learners (including homogeneous SVM), we no longer have strong
convexity w.r.t. b. In order to prove that (29) is a teaching set, we need to verify the KKT
condition and verify solution uniqueness.

We first verify the KKT condition to show that the solution under (29) includes the
target model [w∗; b∗]. From (29), we have

x>+w∗ + b∗ = 1, x>−w∗ + b∗ = −1. (30)

14
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Applying them to the KKT condition and using the notation in (22) we obtain

− n

2
I(x>+w∗ + b∗)

[
x+

1

]
+
n

2
I(−x>−w∗ − b∗)

[
x−
1

]
+

[
λw∗

0

]
=− n

2
I(1)

[
x+

1

]
+
n

2
I(1)

[
x−
1

]
+

[
λw∗

0

]
⊃n

2
I(1)

[
x− − x+

0

]
+

[
λw∗

0

]
setting the last dimension to 0

=I(1)

[
− n
‖w∗‖2 w∗

0

]
+

[
λw∗

0

]
applying (29)

⊇I(1)

[
−λw∗

0

]
+

[
λw∗

0

]
observing n ≥ λ‖w∗‖2

30.

It proves that [w∗; b∗] solves (28) by our teaching set construction.
Next we prove uniqueness by contradiction. We use f(w, b) to denote the objective

function in (28) under the teaching set. It is easy to verify that f(w∗, b∗) = λ
2‖w

∗‖2.
Assume that there exists another solution [w̄; b̄] different from [w∗; b∗]. We can obtain
‖w̄‖2 ≤ ‖w∗‖2 due to

λ

2
‖w∗‖2 = f(w∗, b∗) = f(w̄, b̄) ≥ λ

2
‖w̄‖2.

The second equality is due to [w̄; b̄] being a solution; the inequality is due to whole-part
relationship. Therefore, there are only two possibilities for the norm of w̄: ‖w̄‖ = ‖w∗‖ or
‖w̄‖ = t‖w∗‖ for some 0 ≤ t < 1. Next we will show that both cases are impossible.

(Case 1) For the case ‖w̄‖ = ‖w∗‖, we have

f(w̄, b̄) =
n

2
max

(
1− (x>+w̄ + b̄), 0

)
+
n

2
max

(
1 + (x>−w̄ + b̄), 0

)
+
λ

2
‖w̄‖2

=
n

2
max

x>+(w∗ − w̄) + (b∗ − b̄)︸ ︷︷ ︸
=:∆+

, 0

+
n

2
max

−x>−(w∗ − w̄)− (b∗ − b̄)︸ ︷︷ ︸
=:∆−

, 0


+
λ

2
‖w∗‖2

=
n

2
max (∆+, 0) +

n

2
max (∆−, 0) + f(w∗, b∗).

From f(w̄, b̄) = f(w∗, b∗), it follows ∆+ ≤ 0 and ∆− ≤ 0. Since

0 ≥ ∆+ + ∆− = (x+ − x−)>(w∗ − w̄) =
2(w∗)>(w∗ − w̄)

‖w∗‖2
= 2− 2

w̄>w∗

‖w∗‖2
,

we have w̄>w∗ ≥ ‖w∗‖2. But because ‖w̄‖ = ‖w∗‖, we must have w̄ = w∗. Applying this
new observation to ∆+ ≤ 0 and ∆− ≤ 0, we obtain b∗ = b̄. It means that [w∗; b∗] = [w̄; b̄],
contradicting our assumption [w∗; b∗] 6= [w̄; b̄].
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(Case 2) Next we turn to the case ‖w̄‖ = t‖w∗‖ for some t ∈ [0, 1). Recall our assump-
tion that [w̄; b̄] solves (28). Then it follows that the following specific construction [ŵ, b̂]
solves (28) as well:

ŵ = tw∗, b̂ = tb∗. (31)

To see this, we consider the following optimization problem:

min
w,b

L(w, b) :=
n

2
max(1− (x>+w + b), 0) +

n

2
max(1 + (x>−w + b), 0)

s.t. ‖w‖ ≤ t‖w∗‖.
(32)

Since [w̄; b̄] solves (28), it is easy to see that [w̄; b̄] solves (32) too, otherwise there exists a
solution for (32) which gives a lower function value on (28). Then we can verify that [ŵ; b̂]
solves (32) as well by showing the following geometric optimality condition holds:

−

[
∂L(w,b)
∂w

∂L(w,b)
∂b

]∣∣∣∣∣
[ŵ;b̂]

∩ N‖w‖≤t‖w∗‖(ŵ, b̂)︸ ︷︷ ︸
Normal cone to the set {[w; b] : ‖w‖ ≤ t‖w∗‖} at [ŵ; b̂]

6= ∅.

Given a convex closed set Ω and a point θθθ ∈ Ω, the normal cone at point θθθ is defined to be
a set

NΩ(θθθ) = {φφφ : 〈φφφ,ψψψ − θθθ〉 ≤ 0 ∀ψψψ ∈ Ω}.

The optimality condition basically suggests that at the optimal point, the negative (sub)gradient
direction overlaps with the normal cone. In other words, there does not exist any valid di-
rection to decrease the objective at the optimal point. Readers can refer to Nocedal and
Wright (2006) or Bertsekas and Nedic (2003) for more explanations about the geometric
optimality condition.

Because of (30) and (31), we have x>+ŵ + b̂ = t < 1. Thus at [ŵ; b̂] the subgradient is

−

[
∂L(w,b)
∂w

∂L(w,b)
∂b

]∣∣∣∣∣
[ŵ;b̂]

=
n

2

[
x+ − x−

0

]
=

[
nw∗

‖w∗‖2

0

]

And the normal cone is

N‖w‖≤t‖w∗‖(ŵ, b̂) =

{
s

[
w∗

0

] ∣∣∣∣∣ s ≥ 0

}
.

The intersection is non-empty by choosing s = n
‖w∗‖2 . Since both [ŵ; b̂] and [w̄; b̄] solve

(32), we have L(ŵ, b̂) = L(w̄, b̄). Together with ‖ŵ‖ = ‖w̄‖, we have

f(ŵ, b̂) = L(ŵ, b̂) +
λ

2
‖ŵ‖2 = f(w̄, b̄) = f(w∗, b∗).
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Therefore, we proved that [ŵ; b̂] solves (28) as well. To see the contradiction, let us check
the function value of f(ŵ, b̂) via a different route:

f(ŵ, b̂) =f(tw∗, tb∗)

=

n
2∑
i=1

max
(

1− t(x>+w∗ + b∗), 0
)

+

n
2∑
i=1

max
(

1 + t(x>−w∗ + b∗), 0
)

+
λ

2
‖w∗‖2t2

=

n
2∑
i=1

max (1− t, 0) +

n
2∑
i=1

max (1− t, 0) +
λ

2
‖w∗‖2t2

=n(1− t)− λ

2
‖w∗‖2(1− t2) +

λ

2
‖w∗‖2

≥n(1− t)− n

2
(1− t2) +

λ

2
‖w∗‖2

=
n

2
(1− t)2 + f(w∗, b∗)

>f(w∗, b∗),

where the first inequality uses the fact that n ≥ λ‖w∗‖2. It contradicts our early assertion
f(ŵ, b̂) = f(w∗, b∗). Putting cases 1 and 2 together we prove uniqueness.

Our construction of the teaching set in (29) requires n = 2
⌈
λ‖w∗‖2

2

⌉
training items.

This is an upper bound on the teaching dimension. Meanwhile, we show below that the
inhomogeneous SVM lower bound is LB3 =

⌈
λ‖w∗‖2

⌉
. There can be a difference of at most

one between the lower and upper bounds, which we call the “rounding effect.” We suspect
that this small gap is a technicality and not intrinsic. However, at present we do not have a
teaching set construction that bridges this gap. Therefore, we state the teaching dimension
as an interval in the following corollary and leave the precise value as an open question for
future research.

Corollary 5 The teaching dimension for inhomogeneous SVM and target θθθ∗ = [w∗; b∗]

where w∗ 6= 0 is in the interval
⌈
λ‖w∗‖2

⌉
≤ TD(θθθ∗,Ainhsvm) ≤ 2

⌈
λ‖w∗‖2

2

⌉
.

Proof The upper bound directly follows Proposition 5. We only need to show the lower
bound LB3 =

⌈
λ‖w∗‖2

⌉
in Theorem 3. Let A = I, `(a) = max(1− a, 0), and consider the

denominator of (14):

sup
α∈R,g∈−∂`(α‖w∗‖2)

αg = sup
α,g∈I(α‖w∗‖2)

αg =
1

‖w∗‖2

where the first equality is due to ∂`(a) = −I(a). Therefore, LB3 =
⌈
λ‖w∗‖2

⌉
which proves

the lower bound.

Inhomogeneous logistic regression solves the problem

min
w∈Rd,b∈R

n∑
i=1

log(1 + exp{−yi(x>i w + b)}) +
λ

2
‖w‖2. (33)
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Proposition 6 To create a teaching set for target model [w∗; b∗] with nonzero w∗ for in-

homogeneous logistic regression (33), we can use n = 2
⌈
λ‖w∗‖2
2τmax

⌉
training items where

xi = x+, yi = 1, ∀i ∈
{

1, · · · , n2
}

and xi = x−, yi = −1, ∀i ∈
{
n
2 + 1, · · · , n

}
.

x+ and x− can be designed as any vectors satisfying

x>+w∗ = t− b∗, x− = x+ −
2t

‖w∗‖2
w∗, (34)

where the constant t is defined by t := τ−1
(
λ‖w∗‖2

n

)
.

Proof We first point out that for t to be well-defined the argument to τ−1() has to be

bounded λ‖w∗‖2
n ≤ τmax. This implies n ≥ λ‖w∗‖2

τmax
. The size of our proposed teaching set is

the smallest among all such symmetric construction that satisfy this constraint.
We verify that the KKT condition to show the construction in (34) includes the solution

[w∗; b∗]. From (34), we have

x>+w∗ + b∗ = t x>−w∗ + b∗ = −t.

We apply them and the teaching set construction to compute the gradient of (33):

− n

2

1

1 + exp{x>+w∗ + b∗}

[
x+

1

]
+
n

2

1

1 + exp{−x>−w∗ − b∗}

[
x−
1

]
+

[
λw∗

0

]
=− n

2

1

1 + exp{t}

[
x+

1

]
+
n

2

1

1 + exp{t}

[
x−
1

]
+

[
λw∗

0

]
=− n

‖w∗‖2
t

1 + exp{t}

[
w∗

0

]
+

[
λw∗

0

]
=− n

‖w∗‖2
λ‖w∗‖2

n

[
w∗

0

]
+

[
λw∗

0

]
=0.

This verifies the KKT condition.
Finally we show uniqueness. The Hessian matrix of the objective function (33) under

our training set (34) is:

n

2

exp{t}
(1 + exp{t})2︸ ︷︷ ︸

:=a

[
x+x>+ + x−x>− x+ + x−

x>+ + x>− 2

]
︸ ︷︷ ︸

:=A

+λ

[
I 0

0> 0

]
︸ ︷︷ ︸

:=B

.

Note a > 0 and A =

[
x+

1

] [
x+ 1

]
+

[
x−
1

] [
x− 1

]
is positive semi-definite. We show

that aA + λB is positive definite. Suppose not. Then there exists [u; v] 6= 0 such that
[u; v]>(aA+ λB)[u; v] = 0. This implies [u; v]>(aA)[u; v] + λu>u = 0. Since the first term
is non-negative due to A being positive semi-definite, u = 0. But then we have 2av2 = 0
which implies [u; v] = 0, a contradiction. Therefore uniqueness is guaranteed.
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Corollary 6 The teaching dimension for inhomogeneous logistic regression and target θθθ∗ =

[w∗; b∗] where w∗ 6= 0 is in the interval
⌈
λ‖w∗‖2
τmax

⌉
≤ TD(θθθ∗,Ainhlog ) ≤ 2

⌈
λ‖w∗‖2
2τmax

⌉
.

Proof The upper bound directly follows Proposition 6. We only need to show the lower

bound
⌈
λ‖w∗‖2
τmax

⌉
by applying LB3 in Theorem 3. Let A = I and `(a) = log(1 + exp{−a})

and consider the denominator of (14):

sup
α∈R,g∈∂`(−α‖w∗‖2)

αg = sup
α,g=(1+exp{α‖w∗‖2})−1

αg

= sup
α

α

1 + exp{α‖w∗‖2}

=‖w∗‖−2 sup
t

t

1 + exp{t}

=
τmax

‖w∗‖2
,

which implies LB3 =
⌈
λ‖w∗‖2
τmax

⌉
.

4. Teaching a Decision Boundary Instead of a Parameter

In section 3 we considered the teaching goal where the learner is required to learn the
exact target parameter θθθ∗. But when the learner is a classifier often a weaker teaching goal
is sufficient, namely teaching the learner a target decision boundary. In this section we
consider this teaching goal. Equivalently, such a goal is defined by the set of parameters
that produce the target decision boundary. Teaching is successful if the learner arrives at
any one parameter within that set.

In the case of inhomogeneous linear learners, the linear decision boundary {x | x>w∗ +
b∗ = 0} is identified with the parameter set {t[w∗; b∗] : t > 0}. Here we assume w∗ is
nonzero. The parameter θθθ∗ = [w∗; b∗] is just a representative member of the set. Ho-
mogeneous linear learners are similar without b∗. We denote the corresponding “decision
boundary” teaching dimension by TD({tθθθ∗},Aopt). This notation extends our earlier def-
inition of TD by allowing the first argument to be a set, with the understanding that the
teaching goal is for the learned model to be an element in the set. It immediately follows
that

TD({tθθθ∗},Aopt) = min
t>0

TD(tθθθ∗,Aopt).

Since it is sufficient to teach the parameter tθθθ∗ for some t > 0 in order to teach the decision
boundary, we can choose the best t that minimizes TD(tθθθ∗,Aopt). For SVM and logistic re-
gression — either homogeneous or inhomogeneous — the teaching dimension TD(tθθθ∗,Aopt)
depends on ‖tθθθ∗‖ (see Table 1). We can choose t sufficiently small to drive down the teaching
set size toward its possible minimum indicated by the LB1 value in Table 2 (which is nonzero
because of the ceiling function). Specifically, for any fixed parameter θθθ∗ representing the
target decision boundary:

• (homogeneous SVM): we choose t ≤ 1√
λ‖θθθ∗‖ so that TD({tθθθ∗},Ahomsvm) = 1;
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• (homogeneous logistic regression): we choose t ≤
√
τmax√
λ‖θθθ∗‖ so that TD({tθθθ∗},Ahomlog ) = 1;

• (inhomogeneous SVM): we choose t ≤
√

2√
λ‖w∗‖ so that TD({tθθθ∗},Ainhsvm) = 2 (note LB1=2

in Table 2);

• (inhomogeneous logistic regression): we choose t ≤
√

2τmax√
λ‖w∗‖ so that TD({tθθθ∗},Ainhlog ) = 2

(note LB1=2 in Table 2).

The resulting teaching dimension TD({tθθθ∗},Aopt) is listed in Table 1 on the row marked by
“decision boundary.” The teaching set construction is the same as in sections 3.2 and 3.3,
respectively, but with tθθθ∗.

5. Related Work

Teaching dimension as a learning-theoretic quantity has attracted a long history of re-
search. It was proposed independently in Goldman and Kearns (1995); Shinohara and
Miyano (1991). Subsequent theoretical developments can be found in e.g. Zilles et al.
(2011); Balbach and Zeugmann (2009); Angluin (2004); Angluin and Krikis (1997); Gold-
man and Mathias (1996); Mathias (1997); Balbach and Zeugmann (2006); Balbach (2008);
Kobayashi and Shinohara (2009); Angluin and Krikis (2003); Rivest and Yin (1995); Ben-
David and Eiron (1998); Doliwa et al. (2014). Many of them assume little extra knowledge
on the learner other than that it is consistent with the training data; though Zilles et al.
(2011); Balbach (2008) allow the teacher and the learner to cooperate. These theoretically
elegant teaching definitions diverge from the practice of modern machine learning where
the learner solves an optimization problem to find a single model that is not necessarily the
0-1 loss ERM. Teaching such modern learners is our goal. Section 6 discusses a new view
to unify our work and some existing optimal teaching work.

Teaching dimension is distinct from VC dimension. For a finite hypothesis space H,
Goldman and Kearns (1995) proved the relation

V C(H)/ log(|H|) ≤ TD(H) ≤ V C(H) + |H| − 2V C(H).

These inequalities are somewhat weak, as Goldman and Kearns had shown both cases where
one quantity is much larger than the other. The distinction between TD and VC dimension
is also present in our setting. For example, by inspecting the inhomogeneous SVM column
in Table 1 we note that TD does not depend on the dimensionality d of the feature space
Rd. To see why this makes intuitive sense, note two d-dimensional points are sufficient to
specify any bisecting hyperplane in Rd. On the other hand, recall that the VC dimension for
inhomogeneous hyperplanes in Rd is d+ 1. Furthermore, there is an interesting connection
to sample compression in Floyd and Warmuth (1995). Our teaching set can be viewed
as the compressed sample, but with two generalizations: (i) the original “sample” is the
whole input space, and (ii) the labels is allowed to diverge from the target model. Further
quantification of these connections remains an open research question.

The teaching setting we considered is also distinct from active learning. In teaching the
teacher knows the target model a priori and her goal is to encode the target model as a
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training set, knowing that the decoder is special (namely a specific machine learning algo-
rithm). This communication perspective highlights the difference to active learning, which
must explore the hypothesis space to find the target model. Consequently, the teaching
dimension can be dramatically smaller than the active learning query complexity for the
same learner and hypothesis space. For example, Zhu (2013) demonstrated that to learn a
1D threshold classifier within ε error, the teaching dimension is a constant TD=2 regardless
of ε, while active learning would require O(log 1

ε ) queries which can be arbitrarily larger
than TD.

While the present paper focused on the theory of optimal teaching, there are practical
applications, too. One such application is computer-aided personalized education. The
human student is modeled by a computational cognitive model, or equivalently the learning
algorithm. The educational goal is specified by the target model. The optimal teaching set
is then well-defined, and represents the best personalized lesson for the student (Zhu, 2015,
2013; Khan et al., 2011). In one experiment, Patil et al. showed that real human students
learn statistically significantly better under such optimal teaching set compared to an i.i.d.
training set (Patil et al., 2014). Because contemporary cognitive models often employ
optimization-based machine learners, our teaching dimension study helps to characterize
these optimal lessons.

Another application of optimal teaching is in computer security. In particular, optimal
teaching is the mathematical formalism to study the so-called data poisoning attacks (Bar-
reno et al., 2010; Mei and Zhu, 2015a,b; Alfeld et al., 2016). Here the “teacher” is an
attacker who has a nefarious target model in mind. The “student” is a learning agent (such
as a spam filter) which accepts data and adapts itself. The attacker wants to minimally
manipulate the input data in order to manipulate the learning agent toward the attacker’s
target model. Teaching dimension quantifies the difficulty of data-poisoning attacks, and
supports research on defenses.

Teaching dimension also has applications in interactive machine learning to quantify
the minimum human interaction necessary (Suh et al., 2016; Cakmak and Thomaz, 2011),
and in formal synthesis to generate computer programs satisfying a specification (Jha and
Seshia, 2015).

6. A New View on Teaching

The optimal teaching literature has been cautious about the so-called collusion or coding
tricks between the teacher and the learner. Nonetheless, what constitutes collusion does
not have a fully satisfactory definition. Goldman and Mathias (1996) defined the teacher
and the learner as collusion-free if (i) the teaching set is consistent with the target concept;
(ii) any superset of the teaching set will make the learner learn the target concept, too.
While this definition of collusion-free is useful, it does not capture all interesting learning
behaviors. For example, Zilles et al. (2011, section 4) had to introduce a different notion
of collusion in order to allow benign cooperation between the teacher and the learner. As
another example, standard machine learning algorithms such as ridge regression does not
satisfy either of the two properties: the teaching set (19) is inconsistent in that y1 6= x>1 θθθ

∗,
and adding more consistent training items will in general produce a different model due to
regularization.

21



Liu and Zhu

We advance an alternative view on the relation between the teacher and the learner.
Under this view, the learner publishes his learning algorithm A : D→ 2H. Recall A takes in
a training set D ∈ D and outputs a subset of the hypothesis space H. The teacher then uses
a fixed strategy: she simply solves the training set cardinality minimization problem under
the constraint that A returns the target hypothesis set Θ∗. For example, to teach a specific
parameter vector θθθ∗ the target is the singleton set Θ∗ = {θθθ∗}; to teach a decision boundary
the target is the set Θ∗ = {tθθθ∗ | t > 0}. More precisely, the teacher’s strategy is to solve the
following optimization problem, whose objective value is the (learner-dependent) teaching
dimension TD(Θ∗,A):

min
D∈D

|D| (35)

s.t. Θ∗ = A(D).

Our teaching dimension for linear learners clearly fits this view, with Aopt being a regu-
larized empirical risk minimizer (1). Let us look at a few other interesting learners A under
this view. We will use the following hypothesis space as it is historically used to contrast
those learners (Goldman and Kearns, 1995; Zilles et al., 2011). Let X = {x1, . . . , xn}.
Let hi(x) = 1 if x = xi and 0 otherwise, for i = 1 . . . n. In other words, hi is the indicator
concept on xi. Let the all-negative concept be h0(x) = 0 for all x. Let H = {h0, h1, . . . , hn}.

• The version-space learner Avs as defined by (2). This is the learner behind the
teaching dimension defined by Goldman and Kearns (1995). We have Avs({(xi, 1)}) =
{hi} for i = 1 . . . n, such that these target concepts have classic teaching dimension
TD(hi,Avs) = 1. But note that Avs({(xi, 0)}) = {h0, . . . , hi−1, hi+1, . . .} which does
not reduce the version space to a single element. To specify the all-negative concept
we need Avs({(x1, 0), . . . , (xn, 0)}) = {h0}. That is, h0’s classic teaching dimension is
TD(h0,Avs) = n. These teaching dimensions are the objective values in our view (35)
when we plug in Avs.

• The Balbach learner AB (Balbach, 2008). Balbach noticed that h1, . . . , hn can
each be taught with one item. The reasoning goes that as soon as the teaching set
contains more than one item, it must be a helpful teacher’s hint that the target concept
is h0. That is, the size of the training set carries useful information about the target
concept. In the view of (35), we may define AB({(xi, 1)}) = {hi} for i = 1 . . . n,
and AB({(xi, 0), (xj , 0)}) = {h0} for any i 6= j. For the sake of completeness, here
and below for all other D ∈ D not explicitly mentioned we simply define A·(D) =
{h consistent with D}. When we plug AB into (35) we obtain Balbach’s teaching
dimension TD(hi,AB) of 1 for h1, . . . , hn, and 2 for h0.

• The subset learner As (Zilles et al., 2011). Since the teaching sets for h1, . . . , hn
each contain a positive item, it stands to reason that h0 is the target concept as soon
as a single negative training item is observed. We can define As({(xi, 1)}) = {hi} and
As({(xi, 0)}) = {h0} for i = 1 . . . n. When we plug As into (35) we obtain the subset
teaching dimension of TD(h,As) = 1 for all h ∈ H, which is an improvement over the
Balbach teaching dimension by a certain benign cooperation.
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• A coding-trick learner Ac1. This “learner” uses x to encode hypothesis: Ac1({(xi, y)}) =
{hi} for i = 1 . . . n regardless of y, and all non-singleton training set maps to h0:
Ac1(D) = {h0} if |D| 6= 1. Ac1 is mathematically well-defined for teaching in (35),
but one can argue that it does not seem like a reasonable learner: it ignores y com-
pletely and thus is inconsistent (although recall modern regularized empirical risk
minimizers (1) can be inconsistent, too).

• Another coding-trick learner Ac2. This “learner” uses training set size to encode
the hypothesis, while ignoring the content of the training set: Ac2(D) = {h|D|} if
|D| ≤ n, and ∅ if |D| > n. Again, Ac2 is mathematically well-defined but does not
seem like a reasonable learner.

As the examples above show, our alternative view of teaching in (35) does not resolve
the issue of what constitutes coding-tricks. All the learners A are well-defined functions
mapping a training set to a subset of hypotheses, so that the optimization problem (35) is
also well-defined even for “unreasonable” learners likeAc1 andAc2. However, our alternative
view does provide two benefits:

• Because the teacher employs a fixed strategy (35), this view removes the notion of
“collusion” altogether. Instead, the question becomes what learning algorithm A one
would consider as admissible. This view point can be more natural when we extend
teaching to richer, more complex learners.

• There can be a misconception that the classic teaching dimension defined by Goldman
and Kearns (1995) is learner-independent and a property of H only, in part perhaps
fueled by the original notation TD(H). Our view highlights classic teaching dimen-
sion’s dependency on the version space learner Avs. It is true that Avs is a particularly
simple and elegant learner with very nice properties. But, as others have observed
(e.g. Balbach (2008); Zilles et al. (2011)), it does not capture all natural teaching and
learning behaviors.

7. Conclusion

We have presented a generalization on teaching dimension to optimization-based learners.
To the best of our knowledge, our teaching dimension for ridge regression, SVM, and logistic
regression is new; so are the lower bounds and our analysis technique in general.

There are many possible extensions to the present work. For example, one may extend
our analysis to nonlinear learners. This can potentially be achieved by using the kernel
trick on the linear learners. As another example, one may allow “approximate teaching” by
relaxing the teaching goal, such that teaching is considered successful if the learner arrives
at a model close enough to the target model. Taken together, the present paper and its
extensions are expected to enrich our understanding of optimal teaching and enable novel
applications.

Acknowledgments

23



Liu and Zhu

The authors thank the editor and referees for their valuable comments. Special thanks to
the production editor Dr. Charles Sutton for his help to prepare the final version of this
paper. This work is supported in part by NSF grants CNS-1548078, IIS-0953219, DGE-
1545481, and by the University of Wisconsin-Madison Graduate School with funding from
the Wisconsin Alumni Research Foundation.

References

S. Alfeld, X. Zhu, and P. Barford. Data poisoning attacks against autoregressive models.
AAAI, 2016.

D. Angluin. Queries revisited. Theoretical Computer Science, 313(2):175–194, 2004.

D. Angluin and M. Krikis. Teachers, learners and black boxes. COLT, 1997.

D. Angluin and M. Krikis. Learning from different teachers. Machine Learning, 51(2):
137–163, 2003.

F. J. Balbach. Measuring teachability using variants of the teaching dimension. Theor.
Comput. Sci., 397(1-3):94–113, 2008.

F. J. Balbach and T. Zeugmann. Teaching randomized learners. COLT, pages 229–243,
2006.

F. J. Balbach and T. Zeugmann. Recent developments in algorithmic teaching. In Pro-
ceedings of the 3rd International Conference on Language and Automata Theory and
Applications, pages 1–18, 2009.

M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar. The security of machine learning.
Machine Learning Journal, 81(2):121–148, 2010.

S. Ben-David and N. Eiron. Self-directed learning and its relation to the VC-dimension and
to teacher-directed learning. Machine Learning, 33(1):87–104, 1998.

D. Bertsekas and A. Nedic. Convex analysis and optimization (conservative). Athena
Scientific, 2003.

M. Cakmak and A. Thomaz. Mixed-initiative active learning. ICML Workshop on Com-
bining Learning Strategies to Reduce Label Cost, 2011.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the
LambertW function. Advances in Computational Mathematics, 5(1):329–359, 1996.

T. Doliwa, G. Fan, H. U. Simon, and S. Zilles. Recursive teaching dimension, VC-dimension
and sample compression. Journal of Machine Learning Research, 15:3107–3131, 2014.

S. Floyd and M. Warmuth. Sample compression, learnability, and the Vapnik-Chervonenkis
dimension. Machine learning, 21(3):269–304, 1995.

S. Goldman and M. Kearns. On the complexity of teaching. Journal of Computer and
Systems Sciences, 50(1):20–31, 1995.

24



The Teaching Dimension of Linear Learners

S. A. Goldman and H. D. Mathias. Teaching a smarter learner. Journal of Computer and
Systems Sciences, 52(2):255–267, 1996.

S. Jha and S. A. Seshia. A theory of formal synthesis via inductive learning. CoRR, 2015.

F. Khan, X. Zhu, and B. Mutlu. How do humans teach: On curriculum learning and
teaching dimension. NIPS, 2011.

H. Kobayashi and A. Shinohara. Complexity of teaching by a restricted number of examples.
COLT, pages 293–302, 2009.

H. David Mathias. A model of interactive teaching. J. Comput. Syst. Sci., 54(3):487–501,
1997.

S. Mei and X. Zhu. Using machine teaching to identify optimal training-set attacks on
machine learners. AAAI, 2015a.

S. Mei and X. Zhu. The security of latent Dirichlet allocation. AISTATS, 2015b.

J. Nocedal and S. J. Wright. Numerical Optimization (2nd edition). Springer, 2006.

K. Patil, X. Zhu, L. Kopec, and B. C. Love. Optimal teaching for limited-capacity human
learners. NIPS, 2014.

R. L. Rivest and Y. L. Yin. Being taught can be faster than asking questions. COLT, 1995.

A. Shinohara and S. Miyano. Teachability in computational learning. New Generation
Computing, 8(4):337–348, 1991.

J. Suh, X. Zhu, and S. Amershi. The label complexity of mixed-initiative classifier training.
ICML, 2016.

X. Zhu. Machine teaching for Bayesian learners in the exponential family. NIPS, 2013.

X. Zhu. Machine teaching: an inverse problem to machine learning and an approach toward
optimal education. AAAI, 2015.

S. Zilles, S. Lange, R. Holte, and M. Zinkevich. Models of cooperative teaching and learning.
Journal of Machine Learning Research, 12:349–384, 2011.

25


	Introduction
	Classic Teaching Dimension and its Limitations
	Main Results
	Lower Bounds on Teaching Dimension TD(-.4*, Aopt)
	The Teaching Dimension TD(-.4*, Aopt) of Three Homogeneous Learners
	The Teaching Dimension TD(-.4*, Aopt) of Three Inhomogeneous Learners

	Teaching a Decision Boundary Instead of a Parameter
	Related Work
	A New View on Teaching
	Conclusion

