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Abstract

The Layer-wise Relevance Propagation (LRP) algorithm explains a classifier’s prediction
specific to a given data point by attributing relevance scores to important components
of the input by using the topology of the learned model itself. With the LRP Toolbox
we provide platform-agnostic implementations for explaining the predictions of pre-trained
state of the art Caffe networks and stand-alone implementations for fully connected Neural
Network models. The implementations for Matlab and python shall serve as a playing
field to familiarize oneself with the LRP algorithm and are implemented with readability
and transparency in mind. Models and data can be imported and exported using raw text
formats, Matlab’s .mat files and the .npy format for numpy or plain text.

Keywords: layer-wise relevance propagation, explaining classifiers, deep learning, artifi-
cial neural networks, computer vision

1. Introduction

Classification of images has become a key ingredient in many computer vision applications,
with nonlinear methods such as Deep Neural Networks (DNNs) being the gold standard
in the fields of vision (Krizhevsky et al., 2012; Ciresan et al., 2012b; Szegedy et al., 2014;
Ciresan et al., 2012a), natural language processing (Collobert et al., 2011; Socher et al.,
2013), speech recognition (Yu and Deng, 2014) or physics (Montavon et al., 2013); see also
(Montavon et al., 2012). Although performing incredibly well, they lack transparency. In
the sciences, however, understanding a learning machine in order to gain scientific insight on
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the problem analysed is often as important as record prediction performance. This is also
one of the reasons for the popularity of linear modeling as interpretation is straight forward.
In this sense DNNs so far held a disadvantage in practice over simpler but interpretable
models. Especially DNNs act as black boxes due to their multilayer nonlinear structure.
However, interest in gaining insight into the decision process of nonlinear methods has
peaked recently. Several works have been using sensitivity maps (Baehrens et al., 2010;
Rasmussen et al., 2012) for visualization of classifier predictions which were based on using
partial derivatives at the prediction point x.

For DNNs promising approaches for opening the black box are deconvolution networks
(Zeiler and Fergus, 2014) highlighting activated input patterns for object detected during
the forward pass of a convolutional neural network, saliency maps (Simonyan et al., 2013)
visualizing local sensitivities at the input point and LRP (Bach et al., 2015) producing
explanatory input patterns that indicate evidence for or against a prediction target of
choice in given data. The latter — for which this toolbox is provided and (Samek et al.,
2015) have measured and verified meaningfulnes of the computed heatmaps — takes a pre-
trained model and an evaluation data point and explains the classifier’s decision, e.g. LRP
decomposes the decision function such that for each input dimension d a relevance score Rl(il)
is computed, which indicates that the state of x4 speaks for the presence of the prediction
target if R((il) > 0 and against it if Rgl) < 0. By allowing both signs for Rﬁll) also class
background information can be modelled in a natural manner.

To this end, the model output f(x) is backwards-propagated through the model to the
input layer as relevance R, by taking into account the model’s reaction to the input x
in all its intermediate representations at all computational layers . Due to the relevance
conservation principle as a constraint to LRP (Bach et al., 2015), no relevance is lost or
gained in between layers of computation, e.g.

Z Rl(l) — ZR§.I+1) and thus Z RS) = [(z).
i J d

Note that to this end, the propagated relevances are always normalized. The relevance
values Rgl) can then be visualized as a heatmap, providing valuable insight to the classifier’s
decision process. For a theoretical view on LRP we refer the reader to Montavon et al. (2015)

2. Capabilities of the LRP Toolbox for Artificial Neural Networks

The LRP Toolbox provides platform-independant stand-alone implementations of the LRP
algorithm for python and Matlab, as well as adapted .cpp modules to support LRP for the
Caffe deep learning framework (Jia et al., 2014) and operates on pre-trained neural network
models. The functionality of the framework and a demo thereof is accessible via command
line or an IDE of choice for Matlab, python and Caffe (C++). The Caffe version is based
on the caffe-master branched on 3rd October 2015. The latest official release is available
from http://www.heatmapping.org.

We provide three implementations due to the different strengths and advantages of the
three implementations. Caffe is an established toolbox for neural networks, written in
C++, and has the big advantage that it comes with many pretrained neural networks in
the Caffe Model Zoo. The Caffe version works out of the box with the BVLC reference, the
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GoogLeNet model and the VGG CNN models from Chatfield et al. (2014). On the other
hand, many scientists are unfamiliar with programming C++ interfaces, thus creating a
barrier for experimentation when one is interested in modifying and trying out different
LRP implementations. Note that LRP is a principle which permits multiple solutions. The
python and Matlab implementations allow an easier access and for easy modification of LRP
rules, in particular because python and Matlab are popular among machine learners and
are taught in many undergrad university curricula. Furthermore the python and Matlab
implementations require less external libraries which is practical in restricted setups where
the user does not have full control over the installed packages. These trade-offs lead us to
the choice of implementing LRP in three ways.

2.1 Platforms and Requirements

The python and Matlab implementations are available for systems running Linux, Win-
dows and OSX due to the platform agnostic nature of python and Matlab. Caffe runs on
Linux and OSX, however Caffe ports for Windows became available very recently on github
(e.g. https://github.com/happynear/caffe-windows). Known and successfully tested
minimum package requirements are available in the toolbox manual.

2.2 User Interface

The example implementations of the LRP pipeline can be executed and modified with the
provided files matlab/lrp_demo.m and python/lrp_demo.py by navigating to the respective
folders and executing the scripts using the chosen language’s interpreter, e.g. for unix-based
systems

cd <toolbox_location>/matlab
matlab -nodesktop -r lrp_demo

or

cd <toolbox_location>/python
python lrp_demo.py

The C++-based Caffe implementation of LRP uses a configuration file with its settings
being explained in the manual. It takes as further input a text file which contains in each
line the path to one image and an integer denoting the class for which the heatmap is to
be computed. The third input is a path prefix.

cd <toolbox_location>/caffe-master-lrp/demonstrator
./1lrp_demo ./config sequential.txt ./testfilelist.txt ./

will then compute heatmaps for the images listed in ./testfilelist.txt.

2.3 Documentation and Examples

The user manual guides through the installation and use of the toolbox. It also explains
the LRP algorithm in detail and instructs on how to compute and interpret the results.
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2.4 Developer Access, Licensing and Availability

The source code is provided under FreeBSD (2-Clause) License and is available in a separate
archive for each released version. The latest official release of the toolbox code is available
from http://heatmapping.org. More recent and work-in-progress versions can be found
at https://github.com/sebastian-lapuschkin/lrp_toolbox.

3. Conclusion

The presented LRP package provides a simple and easy to use implementation that allows
a user to explore LRP in Matlab and python or run more involved applications within the
Caffe framework. We would like to emphasize that the user can readily take an existing
network to apply the LRP procedure. In other words also DNNs from past projects could
be retrospectively explained by LRP. Furthermore note that the usage of LRP is not limited
to DNNs, in fact, as shown in (Bach et al., 2015) also kernel methods and other learning
machines, e.g. using Bag of Words representations can yield heatmaps through LRP. Future
work will use the LRP framework and software package in the sciences and for general
applications that require explanation.
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