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Abstract

We introduce a novel scheme for choosing the regularization parameter in high-dimensional
linear regression with Lasso. This scheme, inspired by Lepski’s method for bandwidth selec-
tion in non-parametric regression, is equipped with both optimal finite-sample guarantees
and a fast algorithm. In particular, for any design matrix such that the Lasso has low
sup-norm error under an “oracle choice” of the regularization parameter, we show that our
method matches the oracle performance up to a small constant factor, and show that it
can be implemented by performing simple tests along a single Lasso path. By applying the
Lasso to simulated and real data, we find that our novel scheme can be faster and more
accurate than standard schemes such as Cross-Validation.

Keywords: Lasso, regularization parameter, tuning parameter, high-dimensional regres-
sion, oracle inequalities

1. Introduction

Regularized estimators—among them the Lasso (Tibshirani, 1996), the Square-Root and
the Scaled Lasso (Antoniadis, 2010; Belloni et al., 2011; Stédler et al., 2010; Sun and Zhang,
2012), as well as estimators based on nonconvex penalties such as MCP (Zhang, 2010) and
SCAD (Fan and Li, 2001)—all hinge on finding a “suitable” choice of tuning parameters.
There are many possible methods for solving this so-called calibration problem, but for
high-dimensional regression problems, there is a not a single method that is computationally
tractable and for which the non-asymptotic theory is well understood.

The focus of this paper is the calibration of the Lasso for sparse linear regression,
where the tuning parameter needs to be adjusted to both the noise distribution and the
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design matrix (van de Geer and Lederer, 2013; Hebiri and Lederer, 2013; Dalalyan et al.,
2014). Calibration schemes for this setting are typically based on Cross-Validation (CV)
or BIC-type criteria. However, CV-based procedures can be computationally intensive
and are currently lacking in non-asymptotic theory for high-dimensional problems. BIC-
type criteria, on the other hand, are computationally simpler but also lacking in non-
asymptotic guarantees. Another approach is to replace the Lasso with Square-Root Lasso
or TREX (Lederer and Miiller, 2015); however, Square-Root Lasso still contains a tuning
parameter that needs to be calibrated to certain aspects of the model, and the theory for
TREX is currently fragmentary. For these reasons and given the extensive use of the Lasso
in practice, understanding the calibration of Lasso is important.

In this paper, we introduce a new scheme for calibrating the Lasso in the supremum
norm (¢ )-loss, which we refer to as Adaptive Validation for {s (AVs). This method is
based on tests that are inspired by Lepski’s method for non-parametric regression (Lepski,
1990; Lepski et al., 1997), see also Chichignoud and Lederer (2014). In contrast to current
schemes for the Lasso, our method is equipped with both optimal theoretical guarantees
and a fast computational routine.

The remainder of this paper is organized as follows. In Section 2, we introduce the
AV, method. Our main theoretical results show that this method enjoys finite sample
guarantees for the calibration of Lasso with respect to sup-norm loss (Theorem 3) and
variable selection (Remark 4). In addition, we provide a simple and fast algorithm (Algo-
rithm 1). In Section 3, we illustrate these features with applications to simulated data and
to biological data. We conclude with a discussion in Section 4.

Notation: The indicator of events is denoted by 1{-} € {0, 1}, the cardinality of sets by
| -], the sup-norm or maximum norm of vectors in R? vectors || - ||, the number of non-zero
entries by ||-||o, the ¢1- and fo-norms by ||-||1 and ||-||2, respectively, and [p] : = {1,...,p}. For
given vector € RP and subset A of [p], B4 € R4l and Bac € R4l denote the components
in A and in its complement A€, respectively.

2. Background and Methodology

In this section, we introduce some background and then move onto a description of the
AV method.

2.1 Framework

We study the calibration of the Lasso tuning parameter in high-dimensional linear regression
models that can contain many predictors and allow for the possibility of correlated and
heavy-tailed noise. More specifically, we assume that the data (Y, X) with outcome ¥ € R™
and design matrix X € R™*P is distributed according to a linear regression model

Y = X5 +¢, (Model)

where 8* € RP is the regression vector and € € R" is a random noise vector. Our framework
allows for p larger than n and requires that the noise variables e satisfy only the second
moment condition

E[e?] < oo. 1
e [ei] < o0 (1)
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A standard approach for estimating 5* in such a model is by computing the ¢;-regularized
least-squares estimate, known as the Lasso, and given by

{IIY—XBH%
n

B,\ € argmin
BERP

+)\HB]1} . (Lasso)

Note that this equation actually defines a family of estimators indexed by the tuning pa-
rameter A > 0, which determines the level of regularization.

Intuitively, the optimal choice of X is dictated by a trade-off between bias and some
form of variance control. Bias is induced by the shrinkage effect of the /;-regularizer, which
acts even on non-zero coordinates of the regression vector. Thus, the bias grows as A is
increased. On the other hand, ¢;-regularization is useful in canceling out fluctuations in the
score function, which for the linear regression model is given by X "e/n. Thus, an optimal
choice of A is the smallest one that is large enough to control these fluctuations.

A large body of theoretical work (e.g., van de Geer and Biithlmann (2009); Bickel et al.
(2009); Biithlmann and van de Geer (2011); Negahban et al. (2012)) has shown that an
appropriate formalization of this intuition is based on the event

(X Telle _ A
Ta={ <) 2)
When this event holds, then as long as the design matrix X is “well-behaved”, it is possible
to obtain bounds on the sup-norm error of the Lasso estimate. There are various ways of
characterizing well-behaved design matrices; of most relevance for sup-norm error control
are mutual incoherence conditions (Bunea, 2008; Lounici, 2008) as well as f,.-restricted
eigenvalues (Ye and Zhang, 2010). See van de Geer and Biithlmann (2009) and Section 2.3
for further discussion of these design conditions.

In order to bring sharp focus to the calibration problem, rather than focusing on any
particular design condition, it is useful to instead work under the generic assumption that
the Lasso sup-norm error is controlled under the event 7, defined in equation (2). More
formally, we state:

Assumption 1 ({(C)) There is a numerical constant C' such that conditioned on Ty, the
Lasso lso-error is upper bounded as |5y — *||cc < CA.

As mentioned above, there are many conditions on the design matrix X under which As-
sumption (. (C) is valid, and we consider a number of them in the sequel.

With this set-up in place, we can now focus specifically on how to choose the regular-
ization parameter. Since we can handle only finitely many tuning parameters in practice,
we restrict ourselves to the selection of a tuning parameter among a finite but arbitrarily
large number of choices. It is easy to see that Amax : = 2[|X 7Y ||oo/n is the smallest tuning
parameter for which 8y equals zero. Accordingly, for a given positive integer N € N, let us
form the grid

0<)\1<"'</\N:)\maxa

denoted by A : = {A1,..., An} for short. Assumption ¢ (C) guarantees that the sup-norm
error is proportional to A whenever the event T, holds; consequently, for a given probability
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of error § € (0,1), it is natural to choose the smallest A\ for which event 7, holds with
probability at least 1 — §, assuming that it is finite. This criterion can be formalized as
follows:

Definition 1 (Oracle tuning parameter) For any constant § € (0,1), the oracle tuning
parameter is given by

Nj = argmin P (T3) 2 1 -3} (3)

Note that by construction, if we solve the Lasso using the oracle choice A§, and if the
design matrix X fulfills Assumption ¢ (C'), then the resulting estimate satisfies the bound
I BA; — B*||oc < CA; with probability at least 1 — . Unfortunately, the oracle choice is
inaccessible to us, since we cannot compute the probability of the event T, based on the
observed data. However, as we now describe, we can mimic this performance, up to a factor
of three, using a simple data-dependent procedure.

2.2 Adaptive Calibration Scheme

Let us now describe a data-dependent scheme for choosing the regularization parameter,
referred to as Adaptive Calibration for o (AV):

Definition 2 (AV.,) Under Assumption ls(C) and for a given constant C > C, Adaptive
Calibration for lo, (AVs) selects the tuning parameter
< 0}. (4)

The definition is based on tests for sup-norm differences of Lasso estimates with different
tuning parameters. We stress that Definition 2 requires neither prior knowledge about the
regression vector nor about the noise.

The tests in Definition 2 can be formulated in terms of the binary random variables

H]l{”mA f;’“’“’ égo} for j € [N],
k

~

Ai=min{ A€ A| ma -C
= min { XA A”eA N+ N
NN >A

[né}/ — Byrlloo

from the AV, tuning parameter \ can be computed as follows:

Data: B)\},...,B\)\N,é
Result: A € A

Set initial index: j <~ N

while #), , #0 and j > 1 do
| Update index: j < j —1
end

Set output: A Aj
Algorithm 1: Algorithm for AV, in Definition 2.
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This algorithm can be readily implemented and only requires the computation of one Lasso
solution path. In strong contrast, k-fold Cross-Validation requires the computation of &
solution paths. Consequently, the Lasso with AV, can be computed about k times faster
than Lasso with k-fold Cross-Validation.

The following result guarantees that the Lasso with AV, method achieves the sup-norm
error up to a constant pre-factor:

Theorem 3 (Optimality of AV ) Suppose that condition £ (C) holds and the AV method
is implemented with parameter C > C. Then for any 6 € (0,1), the AVs, output pair (), Bs)
given by the rule (4) satisfies the bounds

AN and ||By — Bl <3CN; (5)
with probability at least 1 — §.

Remark 4 (Relevance for estimation and variable selection) The (. -bound from equa-
tion (5) directly implies that the AV, scheme is adaptively optimal for the estimation of
the regression vector B* in lo-loss. As another important feature, Theorem 3 entails strong
variable selection guarantees. First, the oo-bound implies that AV, recovers all non-zero
entries of the regression vector B* that are larger than 3C_7>\§ in absolute value. Additionally,

by virtue of the bound A< A%, thresholding 55\ by 3C\ leads to exact support recovery if
all non-zero entries of 3% are larger than 6C X} in absolute value. In strong contrast, stan-
dard calibration schemes are not equipped with comparable variable selection guarantees, and
there is mo theoretically sound guidance for how to threshold standard schemes.

We prove Theorem 3 in Appendix A; here let us make a few remarks about its con-
sequences. First, if we knew the oracle value A} defined in equation (3), then under As-
sumption fo(C), the Lasso estimate B would satisfy the fo-bound HE — B lee < CX;.
Consequently, when the AV, method is implemented with parameter C, then its sup-norm
error is optimal up to a factor of three. For standard calibration schemes, among them
Cross-Validation, no comparable guarantees are available in the literature. In fact, we are
not aware of any finite sample guarantees for standard calibration schemes.

We point out that Theorem 3—in contrast to asymptotic results or results with unspec-
ified constants—provides explicit guarantees for arbitrary sample sizes. Moreover, Theo-
rem 3 does not presume prior knowledge about the regression vector or the noise distribution
and allows, in particular, for correlated, heavy-tailed noise. From the perspective of theo-
retical sharpness, the best choice for C' is C = C. However, Theorem 3 shows that it also
suffices to know an upper bound for C. We provide more details on choices of C' and C
below.

We finally observe that the specific choice of the grid enters Theorem 3 only via the
oracle. Indeed, for any choice of the grid, Theorem 3 ensures that A performs as well as the
oracle tuning parameter A3, which is the “best” tuning parameter on the grid.

2.3 Conditions on the Design Matrix for /,,-guarantees

Let us now describe some conditions on the design matrix X that are sufficient for As-
sumption fo(C). We stress that these are conditions to ensure that the Lasso satisfies
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£so-bounds; importantly, our method itself does not impose any additional restrictions.
We defer all proofs of the results stated here to Appendix B and, for simplicity, we assume
in the following that the sample covariance Si=X'X /n has been normalized such that
Yj;; =1 for all j € [p].

The significance of the event 7 lies in the following implication: when 7, holds, then it
can be shown (e.g.,Bickel et al. (2009); Biihlmann and van de Geer (2011); Negahban et al.

(2012)) that the Lasso error A := () — * must belong to the cone
C(S) :={A R | [Asellr < 2| As]l1}, (6)

where S denotes the support of 5*, and 5S¢ its complement. Accordingly, all known condi-
tions involve controlling the behavior of the sample covariance matrix S for vectors lying
within this cone.

The most directly stated sufficient condition is based on lower bounding the £, -restricted
etgenvalue: there exists some v > 0 such that

IZAfle > Y[Alloe  for all A € C(S). (7)

See van de Geer and Biithlmann (2009) for an overview of various conditions for the Lasso,
and their relations. Based on (7), we prove in Appendix B.1 the following result:

Lemma 5 ({s-restricted eigenvalue) Suppose that 3 satisfies the v-RE condition (7)

and that Ty holds. Then Assumption {x(C) is valid with C = %.

Although this result is cleanly stated, the RE condition cannot be verified in practice,
since it involves the unknown support set S. Accordingly, let us now state some sufficient
and verifiable conditions for obtaining bounds on the restricted eigenvalues, and hence for
verifying Assumption £ (C').

For a given integer § € [2,p] and scalar v > 0, let us say that the sample covariance 5
is diagonally dominant with parameters (5, v) if

‘I;l‘z?g Z \i‘]k\ <v  forallje[p. (8)

TCp\{i} FET
In the context of this definition, the reader should recall that we have assumed that f]jj =1
for all j € [p]. Note that this condition can be verified in polynomial-time, since the
subset T achieving the maximum in row j can be obtained simply by sorting the entries
{IX;kl,k € [p]\j}. The significance of this condition lies in the following result:

Lemma 6 (Diagonal dominance of order §) Suppose that § > 9|S| and S is §-order
diagonally dominant with parameter v € [0,1). Then under the event Ty, Assumption
lo(C) is valid with C = ﬁ.
See Appendix B.2 for the proof.

It is worth noting that the diagonal dominance condition is weaker than the pairwise
incoherence conditions that have been used in past work on sup-norm error (Lounici, 2008).
The pairwise incoherence of the sample covariance is given by p(f)) = max;Lj @]k\ If the
pairwise incoherence satisfies the bound p(f]) < v/§, then it follows that S is diagonally
dominant with parameters (3, v).

By combining Lemma 6 with Theorem 3, we obtain the following corollary:
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Corollary 7 Suppose that § > 9|S| and S is §-order diagonally dominant with parameter
v €10,1). Then for any § € (0,1), the AVy method with C = 5_1/) returns an estimate

i
B5 such that

) * 15 *
185 — B lloo < m/\d (9)

with probability at least 1 — 6.

Another sufficient condition for the sup-norm optimality of AV .is a design compatibility
condition due to van de Geer (2007). For each index j € [p], suppose that we define the
deterministic vector

BERP n

. X 3|2 |
7’ € arg min {H Bl + ogn(p) ||ﬁ||1}
Bji=-1

Note that this optimization problem defining the vector regression of the jth column of the
design matrix on the set of all other columns, where we have imposed an ¢1-penalty with

weight %. We can then derive the following sup-norm bound for the Lasso.

Lemma 8 (Lasso bound under compatibility) Assume that X fulfills the compatibil-

ity condition
VISIIIX
min VISlIX Bl >t (Compatibility)
IBseli<3l8sl | vnllBsl

for a constant t > 0. Additionally, assume that

< 5| _ 1 \/T
up L < ‘
J€lp] 2|71 ~ logn '\ logp

Then under the event Ty, Assumption ls(C) is valid with

3 1 7|2
C:=|-+ > max , - .
(4 log(n) ) jelpl || Xn7[13/n + \/log(p) /n|ni||-;/2

This bound is a consequence of results in (van de Geer, 2014); the proof is deferred to
Section B.3. We are now ready to state the optimality of AV, with respect to this bound.

Corollary 9 (Optimality of AV ) Assume that the assumptions in Lemma 8 are met.
Then for any constant & > 0, the following bound for Lasso AV with C = C, and C as
above, holds with probability at least 1 — J:

185, — B loc < 3CX;. (10)

This result demonstrates the optimality of AV, for sup-norm loss under the compatibility
condition.
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Remark 10 (Constant C in practice) The optimal choice is C = C in view of our
theoretical results. The constant C (or an upper bound of it) can be readily computed,
because it depends only on X (cf. Lemma 8) or on X and an upper bound on s (cf.
Lemma 6). However, we propose the universal choice C' = 0.75 for all practical purposes.
Note that accurate support recovery and Lo -estimation is possible only if the design is near
orthogonal. A direct computation yields the bound HBA — Bloo < CX with C = 0.75 for
orthogonal design. Letting o — oo in Theorem 1 due to Lounici (2008) yields the same
bound with C' =~ 0.75 for mear orthogonal designs. This provides strong theoretical support
for the choice C = 0.75. The empirical evidence in Section 3 indicates that a further
calibration is indeed not necessary.

3. Simulations

In this section, we perform experiments on both simulated and real data to demonstrate
the practical performance of AV .

3.1 Simulated Data

We simulate data from linear regression models as in equation (Model) with n = 200
observations and p € {300,900} parameters. More specifically, we sample each row of
the design matrix X € R™*P from a p-dimensional normal distribution with mean 0 and
covariance matrix (1 — &) I+x1, where I is the identity matrix, 1:= (1,...,1)7(1,...,1) is
the matrix of ones, and xk € {0,0.2,0.4} is the magnitude of the mutual correlations. For
the entries of the noise ¢ € R™, we take the one-dimensional normal distribution with mean
0 and variance 1. The entries of g* are first set to 0 except for 6 uniformly at random
chosen entries that are each set to 1 or —1 with equal probability. The entire vector 5*
is then rescaled such that the signal-to-noise ratio || X3*||3/n is equal to 5. We finally
consider a grid of 100 tuning parameters A := {Amax/1.3%, Amax/1.3%, . .., Amax/1.3%9} with
Amax (= 2[|X Y ||oo/n. We run 100 experiments for each set of parameters and report
the corresponding means (thick, colored bars) and standard deviations (thin, black lines).
All computations are conducted with the software R (R Core Team, 2013) and the glmnet
package (Friedman et al., 2010). While we restrict the presentation to the parameter settings
described, we found similar results over a wide range of settings.

We compare the sup-norm and variable selection performance of the following three
procedures:

- Oracle: Lasso with the tuning parameter that minimizes the fo, loss (this tuning
parameter is unknown in practice);

- AV..: Lasso with AV, and C = 0.75;
- Cross-Validation: Lasso with 10-fold Cross-Validation.

Our choice C' = 0.75 is motivated by a theorem due to Lounici (2008) in the regime av — 00;
see Remark 10 for details.
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Oracle

p = 300
x=0.2
Oracle
p = 300 |
k=04

. >

0 0.1 0.2 0.3 {s error

Figure 1: Sup-norm error || By — B*||so of the Lasso with three different calibration schemes
for the tuning parameter \. Depicted are the results for three simulation settings
that differ in the correlation level k. The simulation settings and the calibration
schemes are specified in the body of the text.
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Oracle

p = 900
k=0.2
Oracle
p = 900
k=04
| : : : )
0 0.1 0.2 0.3 {~ error

Figure 2: Sup-norm error || By — B*||so of the Lasso with three different calibration schemes
for the tuning parameter \. Depicted are the results for three simulation settings
that differ in the correlation level k. The simulation settings and the calibration
schemes are specified in the body of the text.

10
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Cross-Validation false-; negatives
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ETRTETYE " e F
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b&fa&s&—pesﬁ—wes—o——{
= 300 Cross-Validat
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Cross-Validation false: negatives
>

0 20 40 60 Variable selection

error

Figure 3: Number of false positives [{j : 8] = 0, (B\)\)j # 0}] and false negatives |{j :

B; # 0, (B)\)j = 0}| of the Lasso with AV, and Cross-Validation as calibration
schemes for the tuning parameter A\. For AV, the safe threshold described after
Theorem 3 is applied. The simulations settings correspond to those in Figure 1.

11
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AV, false negatives
Cross-Validation falsez negatives

}—ﬁ false posif;ives
. |
p = 900 : : '

k=0.2 AV, false nega’éives

Cross-Validation false: negatives

AV, false positéives

p = 900
k=04

AV false negaﬁ:ives
Cross-Validation false: negatives

. i >

0 20 40 60 Variable selection

error

Figure 4: Number of false positives [{j : 3] = 0, (B\A)j # 0}| and false negatives [{j :

B; # 0, (B)\)j = 0}| of the Lasso with AV, and Cross-Validation as calibration
schemes for the tuning parameter A\. For AV, the safe threshold described after
Theorem 3 is applied. The simulations settings correspond to those in Figure 2.

12
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Sup-norm error: In Figures 1 and 2, we compare the £, error of the four procedures.
We observe that AV, outperforms Cross-Validation for most settings under consideration.
We also mention that the same conclusions can be drawn if the normal distribution for the
noise is replaced by other, possibly heavy-tailed distributions (for conciseness, we do not
show the outputs).

Variable selection: In Figures 3 and 4, we compare the variable selection performance
of AV and Cross-Validation. More specifically, we compare the number of false positives
{7+ B; = 0,(Bx); # 0} and the number of false negatives [{j : 87 # 0,(B\r); = 0}/
In contrast to Cross-Validation, AV, allows for a safe threshold of size 3CA (recall the
discussion after Theorem 3). Therefore, we report the results of Lasso with AV, and
an additional threshold of size 3CA applied to each component (that is, we consider the
vector with entries (B\)\)j ]1{|(§,\)J] > 3CA} ), and we report the results of Lasso with Cross-
Validation (without threshold). We observe that, as compared to Cross-Validation, AV
with subsequent thresholding can lead to a considerably smaller number of false positives,
while keeping the number of false negatives on a low level. Note that one could perform a
similar thresholding of the Cross-Validation solution, but unlike for AV, there is no theory
to guide the choice of the threshold. This problem also applies to other standard calibration
schemes.

Computational complezity: Cross-Validation with 10 folds requires the computation 10
Lasso paths, while AV, requires the computation of only one Lasso path - or even less.
AV, is therefore about 10 times more efficient than 10-fold Cross-Validation.

Let us conclude with remarks on the scope of the simulations. First, many meth-
ods have been proposed for tuning the regularization parameter in the Lasso, includ-
ing Cross-Validation, BIC and AIC-type criteria, Stability Selection (Meinshausen and
Bithlmann, 2010), LinSelect (Baraud et al., 2014; Giraud et al., 2012), permutation ap-
proaches (Sabourin et al., 2015), and many more. On top of that, there are many modifica-
tions and extensions of the Lasso itself, including BoLasso (Bach, 2008), Square-Root /Scaled
Lasso (Antoniadis, 2010; Belloni et al., 2011; Stadler et al., 2010; Sun and Zhang, 2012),
SCAD (Fan and Li, 2001), MCP (Zhang, 2010), and others. Detailed comparisons among
the selection schemes and the methods can be found in the cited papers. We also refer to
Leeb and Pétscher (2008) for theoretical insights about limitations of the methods.

In our simulations, we instead focus on the Lasso and, since we are not aware of guar-
antees similar to ours for any selection scheme, we compare to the most popular and most
extensively studied selection scheme, Cross-Validation. This comparison shows that, be-
yond its theoretical properties and the easy and efficient implementation, AV, is also a
competitor in numerical experiments.

3.2 Riboflavin Production in B. subtilis

We now consider variable selection for a data set that describes the production of riboflavin
(vitamin Bg) in B. subtilis (Bacillus subtilis), see (Bithlmann et al., 2014). The data set
comprises the expressions of p = 4088 genes and the corresponding riboflavin production
rates for n = 71 strains of B. subtilis. We apply AV, and then impose the threshold 3C\.

The resulting genes and the corresponding parameter values are given in the first col-
umn of Table 1. We see that these results commensurate with the results from previous

13
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AV Stability Selection B-TREX
YXLD at -0.405 YXLD at YXLD at
YOAB at -0.420 YOARB at YOARB at
YEBC at -0.146 LYSC at YXLE_at

ARGF _at -0.313
XHLB_at 0.278

Table 1: Variable selection results for the riboflavin data set. The first column depicts the
genes and the corresponding parameter values yielded by AV.,. The second and
third column depict the genes returned by approaches based on Stability Selection
and TREX.

approaches based on Stability Selection (Bithlmann et al., 2014) and TREX (Lederer and
Miiller, 2015), which are given in the third and fourth column.

4. Conclusions

We have introduced a novel method for sup-norm calibration, known as AV, that is
equipped with finite sample guarantees for estimation in £..-loss and for variable selection.
Moreover, we have shown that AV, allows for simple and fast implementations. These prop-
erties make AV, a competitive algorithm, as standard methods such as Cross-Validation
are computationally more demanding and lack non-asymptotic guarantees.

In order to bring sharp focus to the issue, we have focused this paper exclusively on the
calibration of the Lasso. However, we suspect that the methods and techniques developed
here could be more generally applicable, for instance to problems with nonconvex penalties
(e.g., SCAD, MCP). In particular, the paper (Loh and Wainwright, 2014) provides guar-
antees for f.,-recovery using such nonconvex methods, which could be combined with our
results. Another interesting direction for future work is the use of our methods for more
general decomposable penalty functions (Negahban et al., 2012), including the nuclear norm
that is often used in matrix estimation.

We also stress that our goals are {.-estimation and variable selection, which are feasible
only under strict conditions on the design matrix. Other objectives, including prediction
and fe-estimation, can typically be achieved under less stringent conditions. However, the
corresponding oracle inequalities contain quantities (such as the sparsity level) that are
typically unknown in practice. Adaptations of our method to objectives beyond the ones
considered here thus need further investigation. We refer to (Chételat et al., 2014) for ideas
in this direction. However, there might be no approach that is uniformly optimal for all
objectives, see also the papers (Yang, 2005; Zhao and Yu, 2006).

Finally, as pointed out by one of the reviewers, another field for further study is model
misspecification. It would be interesting to see how robust the Lasso with the AV, scheme
is with respect to, for example, non-linearities in the model.

14
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Appendix A. Proof of Theorem 1

[X el
n

Define the event 73 := { < )‘%} and note that P[75*] > 1 — ¢ by our definition

of the oracle tuning parameter in (3). Thus, it suffices to show that the two bounds hold
conditioned on the event 7.

Bound on \: To show that \ < A3, we proceed by proof by contradiction. If A > A3,

then the definition of the AV, method implies that there must exist two tuning parameters
N, N> X5 such that

1By — Barlloe > C (N + N'). (11)

However, since Ty and Ty~ are both subsets of 7., Assumption /o, (C) implies that we must

have the simultaneous inequalities ||By — 8*[oc < CN and ||Byr — B*||lsc < CN”. Combined
with the triangle inequality, we find that

1B — Barlloo < 1By — B*lloo + 18" = Brrlloe < C (N + A").

Since C' > C, this upper bound contradicts our earlier conclusion (11) and, therefore, yields
the desired claim.

Bound on the sup-norm error: On the event 7", we have A< A}, and so the AV, def-
inition implies that

185 = Brllos < C (A +25) < 20A;.

Combined with the triangle inequality, we find that

185 = B lloo < 1185 — Bazlloo + [18xs = B¥lloo < 2CA5 + [1Brz = B [loo-

Finally, under 73 and C' > C, Assumption s (C) implies that HBAE — B*lle < CA: < O,
and combining the pieces completes the proof. |

Appendix B. Remaining Proofs for Section 2

In this appendix, we provide the proofs of Lemmas 5, 6, and 8.
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B.1 Proof of Lemma 5

By the first-order stationarity conditions for an optimum, the Lasso solution B \ must satisfy
the stationary condition %XT (XB,\ — Y) + Az = 0, where z € RP belongs to the sub-
differential of the ¢1-norm at ). Since Y = X 5* + ¢, we find that

X'Te

(B — BY) = -2+
Taking the £o,-norm of both sides and applying the triangle inequality yields

XTe

o i .
IE )r!oogAuzuoo+H SSPE Y

o0

using the bound from event 7y, and the fact that [|Z]|c < 1, by definition of the ¢;-sub-
differential. As noted previously, under the event T, the error vector A= By — B* belongs
to the cone C(S) in (6), so that the 7-RE condition can be applied so as to obtain the lower
bou [|£(Bx — B)loe = 7l18x — B*|lso. Combining the pieces concludes the proof. [

B.2 Proof of Lemma 6
Since A € C(S5), we have

IAIT < 9llAsllt < 9ISIIAsE < 9ISIIA[Z < 9ISIIAN Al

which implies ||Al1 < 9]S|||Alloc- In view of Lemma 5, it thus suffices to prove the lower
bound

Hf]AHOO > (1—-v)||Allso forall A € A:=DB1(9|S]) N B (1), (12)

where we set By(r) := {8 € RP : ||5|lq¢ < r} for d € [0,00] and r > 0. We claim that

B1(9]S]) NBoo(1) C 2clconv {B0(9]S]) NBw(1)}, (13)
A B

where clconv denotes the closed convex hull. Taking this as given for the moment, let us
use it to prove the desired claim. We have

(ORI 15— DAl (€ -DAs
max ——————— = — < —_— ax max ik v
Aca Ao AeA/2 A 0o A€B 1A 0o p] |T| 9|S|kz;| J =

TClp\j
(14)

using the diagonal dominance (8). Combined with the triangle inequality, the lower bound (12)
follows.

It remains to prove the inclusion (13). Since both A and B are closed and convex,
it suffices to prove that ¢4(0) < ¢p(f) for all # € RP, where ¢4(0) := sup,c4(z, 0) and
¢B(0) : = sup,cp(z, 0) are the support functions. For a given vector § € RP, let T" be the
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subset indexing its top 9|S| values in absolute value. By construction, we are guaranteed
to have the bound 9|5]||07¢||cc < ||07||1, and consequently

Sup ((zr, 1) + (27c, O7c)) Pa(0) < sug(HZTlloollﬁTlh + [lzrel1l|fze|lso)
1S S

<07 |lx + 9I5| |07l oo
< 2||07]1-

On the other hand, for this same subset T', we have ¢p(6) > sup,cg(zr, Or) = 2[/0r|1,
which completes the proof. |

B.3 Proof of Lemma 8

In order to prove Lemma 8, we use a somewhat simplified version of a recent result due
to van de Geer (2014). So as to simplify notation, we first define the norms ||al|; : = |a;|
and [lal|—; := >, ; |a;| for any vector a. We then have:

Lemma 11 (van de Geer (2014), Lemma 2.1) Given any tuning parameter A > 0, it
holds that

~ XT ~ /1 _
|’ﬁ)\_5*"j§Dj<‘ el os(p Hﬁ/\ ﬁ”j—i-> forallj=1,...,p,

n 2v/n|ln |y 2

where for each j € [pl,

D, — ||77j||1
= . - .
1 Xn7113/n + \/log(p)/nllni||—;/2

This result provides a specific bound for each coordinate of Lasso. Lemma 8 can then
readily be proven using this result together with Theorem 6.1 from Biihlmann and van de
Geer (2011). [ |

Appendix C. Strong Correlations

In this paper, we assume that the correlations in design matrix are small, which is needed
for precise f~.-estimation and variable selection. In the interest of completeness, however,
we add here two simulations where the correlations are large. Overall, we use the same
settings as described in the main part of the paper, but we set k = 0.9. The results are
summarized in Figure 5 (note that the x-scale in the upper part of the figure is different
from the scales of the corresponding plots in the main part of the paper). We find that
AV misses about half of the pertinent variables but has almost no false positives. Cross-
Validation, on the other hand, has less false negatives but selects many irrelevant variables.
As expected, none of the methods, including the oracle, provide accurate £.-estimation.
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