
Journal of Machine Learning Research 17 (2016) 1-40 Submitted 11/15; Revised 7/16; Published 10/16

Classification of Imbalanced Data with a Geometric Digraph
Family

Artür Manukyan amanukyan13@ku.edu.tr
Graduate School of Sciences and Engineering
Koç University
Sarıyer, 34450, Istanbul, Turkey

Elvan Ceyhan elvanceyhan@gmail.com

Department of Statistics

University of Pittsburgh

Pittsburgh, 15260, PA, USA

Editor: William Cohen

Abstract

We use a geometric digraph family called class cover catch digraphs (CCCDs) to tackle
the class imbalance problem in statistical classification. CCCDs provide graph theoretic
solutions to the class cover problem and have been employed in classification. We assess
the classification performance of CCCD classifiers by extensive Monte Carlo simulations,
comparing them with other classifiers commonly used in the literature. In particular, we
show that CCCD classifiers perform relatively well when one class is more frequent than
the other in a two-class setting, an example of the class imbalance problem. We also point
out the relationship between class imbalance and class overlapping problems, and their
influence on the performance of CCCD classifiers and other classification methods as well
as some state-of-the-art algorithms which are robust to class imbalance by construction.
Experiments on both simulated and real data sets indicate that CCCD classifiers are robust
to the class imbalance problem. CCCDs substantially undersample from the majority class
while preserving the information on the discarded points during the undersampling pro-
cess. Many state-of-the-art methods, however, keep this information by means of ensemble
classifiers, but CCCDs yield only a single classifier with the same property, making it both
appealing and fast.

Keywords: Class Cover Catch Digraphs, Class Cover Problem, Class Imbalance Problem,
Class Overlapping Problem, Graph Domination, Prototype Selection, Support Estimation

1. Introduction

Class imbalance problem has recently become a topic of extensive research. In a two-class
setting, imbalance in class(es) occurs when one class is represented by far more observations
(points) than the other class in the data set (see, e.g., Chawla et al. (2004) and López
et al. (2013)). Class imbalance problem is observed in many areas such as medicine, fraud
detection and education. Some examples are clinical trials in which only 5% of patients
in the data set have a certain disease, such as cancer (Mazurowski et al., 2008); detecting
fraudulent customers where most individuals are law-abiding in insurance, credit card and
telecommunications industries (Phua et al., 2004); and archives of college students where

c©2016 Artür Manukyan and Elvan Ceyhan.

Manukyan and Ceyhan

mostly the ones who have fair results are kept (Thai-Nghe et al., 2009). In these and many
other real life cases, majority class (i.e., the class with larger size) confounds the classifier
performance by hindering the detection of subjects from the minority class (i.e., the class
with fewer points).

The classification methods in machine learning usually suffer from the imbalance of class
sizes in the data sets because most of these methods work on the assumption that class sizes
are balanced (Japkowicz and Stephen, 2002). For example, the commonly used k-nearest
neighbor (k-NN) classification algorithm is highly influenced by the class imbalance problem.
In the k-NN approach, a new point is classified as the class of the most frequent one from
its first k nearest neighbors (Fix and Hodges, 1989; Cover and Hart, 1967). As a result, in a
two-class setting where one class substantially outnumbers the other, a point is more likely
to be classified as the majority class by the k-NN classifier. In literature, sensitivity of k-NN
classifier to the class imbalance problem and some solutions on choosing the appropriate k
have been discussed in cases of imbalanced classes (see Mani and Zhang, 2003; Garćıa et al.,
2008; Hand and Vinciotti, 2003). Decision trees and support vector machines (SVM) are
also some of the well known classifiers that are sensitive to the class imbalance in a data set
(Japkowicz and Stephen, 2002; Tang et al., 2009). SVMs are among the most commonly used
algorithms in the machine learning literature due to their well understood theory and high
performance among popular algorithms (Wu et al., 2008; Fernández-Delgado et al., 2014),
but these methods have been demonstrated to be inefficient against highly imbalanced data
sets, although SVMs are still robust to moderately imbalanced data sets (Akbani et al.,
2004; Raskutti and Kowalczyk, 2004).

We approach the classification of imbalanced data sets with methods that solve class
cover problem (CCP), where the goal is to find a region that encapsulates all the members
of the class of interest (i.e., target class). This particular region can be viewed as a cover ;
hence the name class cover (Cannon and Cowen, 2004). This problem is closely related
to another problem in statistics, namely support estimation: estimating the support of a
particular random variable defined in a measurable space (Schölkopf et al., 2001). Here,
each cover can be realized as estimates of its associated class support. Priebe et al. (2001)
introduced the class cover catch digraphs (CCCD) to find graph theoretic solutions to
the CCP problem, and provided some results on the minimum dominating sets and the
distribution of the domination number of such digraphs for one dimensional data. Priebe
et al. (2003a) applied CCCDs on classification and showed that approximate minimum
dominating sets of CCCDs (which were obtained by a greedy algorithm) and radii of the
covering balls can be used to establish efficient classifiers. Moreover, DeVinney et al. (2002)
defined random walk CCCDs (RW-CCCDs) where balls of class covers are more relaxed
compared to previously introduced so called pure-CCCDs (P-CCCDs). In P-CCCDs, no
member of the non-target class is covered, but RW-CCCDs allow some points of non-target
class to be covered by the cover of the target class. Some target class points may also be
uncovered in the process. Hence, RW-CCCDs may potentially avoid overfitting. CCCDs
have been applied in face detection (Socolinsky et al., 2003) and latent class discovery in
gene expression data (Priebe et al., 2003b). There are several other approaches in the
literature to solve the class cover problem, including covering the classes with a set of boxes
(Bereg et al., 2012) or set of convex hulls (Takigawa et al., 2009).

2

Classification of Imbalanced Data with a Geometric Digraph Family

In this article, we study the effects of class imbalance on two CCCD classifiers, P-
CCCD and RW-CCCD. Moreover, we report on the effects of class overlapping problem
(which is defined as deterioration of classification performance when class supports overlap)
along with the class imbalance problem to further investigate the performance of CCCD
classifiers when imbalance and overlapping between classes co-exist. Thus, we show that
when there is a considerable amount of class imbalance, whether class supports overlap or
not, the CCCD classifiers perform better than the k-NN classifier. We show the robustness of
CCCD classifiers to the class imbalance by simulating cases having increasing levels of class
imbalance. We also compare CCCD classifiers with SVM classifiers which are potentially
robust to moderate levels of class imbalance but not to high levels. With respect to class
imbalance problem, the k-NN, SVM and decision tree classifiers may be referred to as
“weak” classifiers; that is, these methods perform weakly when there is imbalance in the
data set. However, such classifiers can be modified to address the unequal priors in a data
set, and hence, can be converted to “strong” classifiers which are potentially robust to the
class imbalance problem. We show that CCCD classifiers are also inherently robust (i.e.,
robust to class imbalance without any modification), and we compare the CCCD classifiers
against the state-of-the-art strong classification methods which are constructed to perform
well when class imbalance occurs. We consider ensemble learning, cost sensitive learning
and resampling schemes in conjunction with k-NN, SVM and decision tree classifiers, and
show that RW-CCCDs and P-CCCDs perform comparable to those strong classifiers.

Among the two variations of CCCD classifiers, we show that the RW-CCCD is more
appealing in many aspects. For both simulated and real life examples, RW-CCCDs perform
better than P-CCCDs and weak classifiers, and perform comparable to strong classifiers
when the classes of data sets are imbalanced and/or overlapping. Moreover, we report on
the complexity of the two CCCD classifiers and demonstrate that RW-CCCDs reduce the
data sets substantially more than the other classifiers, thus increasing the testing speed.
But most importantly, while reducing the majority class to mitigate the effects of class
imbalances, CCCDs preserve the information on the discarded points of the majority class.
CCCDs provide a novel potential solution to the class imbalance problem; that is, they
capture the density around prototype points (i.e., members of the dominating sets) as radii
of the covering balls. Hence, CCCDs preserve the information while reducing the data set
In the literature, only the strong classifiers based on hybrids of ensembles and resampling
schemes achieve a similar task which requires multiple classifiers to be employed, and thus,
result in lengthy training and testing time. However, CCCDs define single classifiers that
undersample the data set with, possibly, a slight loss of information.

We provide a short review of the existing methods for classifying data sets with class
imbalance in Section 2, introduce P-CCCD and RW-CCCD classifiers in Section 3, discuss
the balancing effect of CCCD classifiers in Section 4. Finally, in Section 5, we compare
the CCCD classifiers with the classifiers that are both sensitive (weak) and non-sensitive
(strong) classifiers to class imbalance by simulated and real data sets, and report on the
computational complexity of all weak classifiers.

3

Manukyan and Ceyhan

2. Methods for Handling Class Imbalance Problem

Solving the class imbalance problem received considerable attention in the machine learning
literature (see Chawla et al., 2004; Kotsiantis et al., 2006; Longadge and Dongre, 2013).
Almost all algorithms designed to mitigate the effects of class imbalance incorporate a
“weak” classifier which is modified to show some level of robustness to the class imbalance
problem. The weak algorithm is modified either (i) in data level which involves a pre-
processing of the data set being used in training, or (ii) in algorithmic level such that a
“strong” classifier is constructed with a decision rule suited for the imbalances in the data
set. Many modern algorithms are hybrids of both types; but in particular, there are mainly
three of them: resampling methods, cost-sensitive methods, and ensemble methods (He and
Garcia, 2009).

Resampling methods are commonly employed to remove the effects of class imbalance
in the classification process. Resampling methods provide solutions to the class imbal-
ance problem by (i) downsizing the majority class (undersampling) or (ii) generating new
(synthetic) points for the minority class (oversampling). Hence, such methods modify the
classifiers only at the data level. It might be useful to clean or erase some points in the ma-
jority class to balance the data (Drummond et al., 2003; Liu et al., 2009). However, in some
cases, all points from both classes may be valuable/important, and hence, should be kept
despite the differences in the class sizes. Oversampling methods generate synthetic points
similar to the minority class to mitigate the class imbalance problem while preserving the
information (Han et al., 2005). On the other hand, Batista et al. (2004) suggest that the
combination of both over and undersampling methods can further improve the classifica-
tion performance. One such method is the SMOTE+ENN method where the oversampling
method SMOTE of Chawla et al. (2002) and edited nearest neighbors (ENN) method of
Wilson (1972) are applied to an imbalanced data set, consecutively. While SMOTE bal-
ances the classes of the data set by generating artificial points between members of the
minority class, ENN cleans the data set to further increase the classification performance
of the weak classifier. Here, ENN method is an undersampling method that primarily aims
to remove noisy points from the data set but not to balance the classes.

Another family of methods, namely cost-sensitive learning methods, has originated from
real life: the cost of misclassifying a minority and a majority class member is usually not
the same (Elkan, 2001). Frequently, the minority class has higher misclassification cost
than the majority class. Classification methods such as decision trees (e.g., C4.5), can be
modified to take these costs into account (see Ling et al., 2004; Zadrozny et al., 2003). C5.0
is an extended version of C4.5 incorporating the cost of each class (Kuhn and Johnson,
2013). Most weak classifiers can be easily modified so as to recognizing misclassification
costs. The constrained violation cost C of SVM classifiers can be adjusted to individual
class costs (Chang and Lin, 2011). As for k-NN, one solution is to appoint weights to all
points of the data set with respect to their classes. Hence, such weights are the costs of
classes giving precedence to minority class points (Barandela et al., 2003). On the other
hand, for those algorithms that costs are not inherently recognizable or available, meta-
learning schemes can be used along with weak classifiers without modifying the classifiers.
Such learning methods are similar to ensemble learning methods (Domingos, 1999).

4

Classification of Imbalanced Data with a Geometric Digraph Family

A fast developing field called ensemble learning also contributes to the family of methods
handling the class imbalance problem (see Galar et al., 2012). The idea is to combine
several classifiers to create a new classifier which has significantly better performance than
its constituents (Rokach, 2010). AdaBoost is a popular algorithm among this family of
learning methods (Freund and Schapire, 1997; Wu et al., 2008). AdaBoost assigns weights
to each of the points in the data set and updates these weights in accordance with how
well the points are estimated by each classifier. Galar et al. (2012) provide a survey of
the most important ensemble learning methods that solve the class imbalance problem.
However, it has been observed in some studies that ensemble learning methods work best
when used together with resampling methods (López et al., 2013). In fact, ensembling and
resampling schemes compensate the shortcomings of each other. The EasyEnsemble is a
classifier with two levels of ensembles. First, a random undersampled majority class and the
original minority class are used to train an ensemble classifier, then another random sample
is drawn in the same way to train a second ensemble. This process is repeated several times
to mitigate the effects of information loss as each ensemble would be applied on a different
random subset of the majority class.

3. Classification with Class Cover Catch Digraphs

Class Cover Catch Digraphs (CCCDs) offer graph theoretic solutions to CCP (Priebe et al.,
2001, 2003a). The objective of CCP is to find a region that covers the members of a specific
class. More specifically, let (Ω,M) be a measurable space and let Xn = {x1, x2, ..., xn} ⊂
Ω and Ym = {y1, y2, ..., ym} ⊂ Ω be observations from two classes X and Y with class
conditional distributions FX , FY and a joint cdf FX,Y , respectively. Let Ω = Rd and,
without loss of generality, assume that the target class (i.e., the class of interest) is X . In
a CCCD, for xi, xj ∈ Xn ⊂ Rd is the center of a ball with radius ri = r(xi). Each ball is
represented by Bi = B(xi, ri) and if xj ∈ Bi then xi is said to cover (or catch) xj . Here,
d(., .) can be any dissimilarity measure but we use the Euclidean distance henceforth. A
CCCD is a digraph D = D(V,A) with vertex set V (D) = Xn and the arc set A(D) where
(xi, xj) ∈ A(D) if and only if xj ∈ Bi. The term “catch” refers to arc (xi, xj) of the digraph
D where xi is said to catch xj . The binary relation xi ∼ xj , which is defined as xj ∈ Bi,
is asymmetric, thus the adjacency of xi and xj is represented with directed edges or arcs
which yield a digraph instead of a graph.

In CCCDs, the goal is to find a subset of balls CX ⊆ BX = {B1, B2, ..., Bn} such that
QX ⊆ ∪B∈CXB for QX ⊆ Xn where the set QX is some desirable subset of the target class
training set Xn which we want to cover. Preferably, the goal is to find a set CX such that
QX = Xn, however it might be desirable that the class cover may ignore some target class
points to avoid overfitting. If a class cover of a CCCD fails to cover some target class points,
it is called an improper cover, otherwise it is a proper cover. For covering Ym, we reverse the
roles of classes X and Y. The class Y becomes the target class and X becomes the non-target
class. Finding an appropriate cover CX is equivalent to finding the dominating set of the
CCCD with V (D) = Xn. Let N(s) = {t ∈ V (D) : (s, t) ∈ A(D)} be the open neighborhood
of a vertex s ∈ V (D): the set of vertices that have an arc from the vertex s, or the neighbors
of s. A dominating set of a digraph D is defined as a subset of vertices S ⊆ V (D) such
that union of the closed neighborhoods, defined by N̄(s) = N(s) ∪ {s}, of elements of S

5

Manukyan and Ceyhan

is the vertex set of the digraph: ∪s∈SN̄(s) = V (D). Among all dominating sets, usually
the ones with minimum cardinality, called the minimum dominating sets, are preferable.
The cardinality of the minimum dominating set(s) is referred to as the domination number,
denoted as γ(D). However, minimum dominating sets are often computationally intractable
and finding them is, in general, an NP-hard optimization problem. Hence, greedy algorithms
are often employed to find sets with approximately minimum cardinality (Chvatal, 1979;
DeVinney, 2003).

CCCDs can easily be generalized to the multi-class case with k classes. To establish the
set of covers C = {C1, C2, · · · , Ck} associated with a set of classes X = {X1,X2, · · · ,Xk},
we merge the classes into two classes as XT = Xi and XNT = ∪i 6=jXj for i, j = 1, · · · , k.
We refer to classes XT and XNT as target class and non-target class, respectively. More
specifically, target class is the class we want to find the cover of, and the non-target class
is the union of the remaining classes. We transform the multi-class case into a two-class
setting and find the cover of i-th class, Ci, for each i = 1, · · · , k.

We employ two families of CCCDs, pure-CCCDs (P-CCCDs) and random walk CCCDs
(RW-CCCDs) that differ in the definition of the radius r(x). In these two digraphs, the
(approximate) minimum dominating set S and the classifier are defined in slightly different
ways; with the main distinction between the two being the way the covers are defined.
The covering balls of P-CCCDs do not contain any non-target class point (hence the name
“pure”) whereas RW-CCCDs possibly allow some non-target class points inside of the class
cover of the target class so as to avoid overfitting. Moreover, some target class points may
also be excluded from the covers of RW-CCCDs. Therefore, P-CCCDs construct pure and
proper covers but RW-CCCD covers are not necessarily pure or proper.

3.1 Classification with P-CCCDs

In P-CCCDs, the covering balls Bx = B(x, r(x)) exclude all non-target class points. Thus,
for a target class point x ∈ Xn, which is the center of a ball Bx, the radius r(x) should
be smaller than the distance between x and the closest non-target point y ∈ Ym: r(x) <
miny∈Ym d(x, y). Given τ ∈ (0, 1], the radius r(x) is defined as follows (Marchette, 2010):

r(x) := (1− τ)d(x, l(x)) + τd(x, u(x)), (1)

where

u(x) := argmin
y∈Ym

d(x, y)

and

l(x) := argmax
z∈Xn

{d(x, z) : d(x, z) < d(x, u(x))}.

The effect of parameter τ on the radius r(x) is illustrated in Figure 1 (DeVinney, 2003).
The ball with radius r(x) catches the neighboring target class points, and for any τ ∈ (0, 1],
the ball Bx catches the same points as well. Hence, the choice of τ does not effect the
structure of digraph but might affect the classification performance which will be shown
later in Section 5. On the other hand, for all x ∈ Xn, the definition of r(x) in Equation (1)
keeps any non-target point y ∈ Ym out of the ball Bx, that is Ym ∪Bx = ∅ for all Bx ∈ CX .
Here, Bx is an open ball: Bx = {z ∈ Rd : d(x, z) < r(x)}. The digraph D is “pure” since

6

Classification of Imbalanced Data with a Geometric Digraph Family

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

x

Figure 1: The effect of τ on the radius r(x) of the target class point x in a two-class setting.
Grey and black points represent the target and non-target classes, respectively.
The solid circle centered at x is constructed with the radius associated with τ = 1
and the dashed one with τ = 0.0001 (DeVinney, 2003).

the balls contain only the target class points; hence, the name pure-CCCD. Once all balls
are constructed, so is the digraph D. Therefore, we have to find a covering set CX which
is equivalent to finding a minimum dominating set S ⊆ V (D). The greedy algorithm of
finding an approximate minimum dominating set of a P-CCCD is given in Algorithm 1. At
each iteration, the vertex which has the largest neighborhood (i.e., highest number of arcs)
is removed from the graph together with its neighbors. Then, the process is repeated until
all vertices of D are removed. The algorithm adds elements to the dominating set until all
points are either dominated or dominate some other points. Hence, the covers established
by P-CCCDs are proper covers: QX = Xn and QY = Ym. The P-CCCD of one class, its
associated class cover (constructed by the elements of the dominating set), and covers of
both classes are illustrated in Figure 2.

Algorithm 1 The greedy algorithm for finding an approximate minimum dominating set
of a digraph D. Here, D[H] is the graph induced by the set of vertices H ⊆ V (D) (see
West, 2000).

Input: A digraph D = D(V,A)
Output: An approximate minimum dominating set, S
1: set H = V (D) and S = ∅
2: while H 6= ∅ do
3: v∗ = argmaxv∈V (D) |N̄(v)|
4: S = S ∪ {v∗}
5: H = V (D) \ N̄(v∗)
6: D = D[H]
7: end while

Before Algorithm 1 finds an approximate solution, we should first construct the digraph
D. The P-CCCD cover CX and the P-CCCD D depend on the distances between points
of the target class Xn, denoted by the matrix MX , and the distances from all points of
Xn to all points of Ym, denoted by matrix MX ,Y . Later, we construct the set of balls

7

Manukyan and Ceyhan

BX = {B1, B2, ..., Bn}, and get the set of arcs A(D) where V (D) = Xn. Hence, the
minimum cardinality ball cover problem is reduced to a minimum dominating set problem.
We find such a cover with Algorithm 2 which runs in quadratic time and, in addition,
depends on the dimensionality of the training set Xn ∪ Ym.

Algorithm 2 The greedy algorithm for finding an approximate minimum cardinality ball
cover CX of the target class points Xn given a set of non-target class points Ym.

Input: Points of the target class Xn, the non-target class Ym and the P-CCCD parameter τ ∈ (0, 1]
Output: An approximate minimum cardinality ball cover CX
1: r(x) := (1− τ)d(x, l(x)) + τd(x, u(x)) for all x ∈ Xn

2: Construct the digraph D with the set BX .
3: Find the approximate minimum dominating set S of digraph D by Algorithm 1.
4: CX := ∪s∈SB(s, r(s))

Theorem 1 Algorithm 2 is an O(log n)-approximation algorithm and finds an approximate
minimum cardinality ball cover CX of the target class X in O(n(n+m)d) time.

Proof. The algorithm is polynomial time reducible to a greedy minimum set cover algorithm
which finds an approximate solution with size at most O(log n) times of the optimum
solution (Chvatal, 1979; Cannon and Cowen, 2004). We first calculate the distance matrices
MX andMXY which takeO(n2d) andO(nmd) time, respectively. Constructing the digraph
D requires computing l(x) and u(x) in Equation (1) for all x ∈ Xn, taking O(n2 + nm)
time in total. Then, we set the arc set A(D) in O(n2) time. Finally, the algorithm finds a
solution for the digraph D in O(n2) time, hence the total running time of the algorithm is
O(n(n+m)d).

When Y is the target class, observe that the time complexity is O(m(n+m)d), and an
approximate solution is of size at most O(logm) times the optimal solution by Theorem 1,
since m = |Ym|. A P-CCCD classifier consists of the covers of all classes, hence the total
training time of finding CCCDs of a data set with two-class setting is O((n+m)2d).

After establishing both class covers CX and CY , any new data point can be classified
in Rd according to where it resides. Here, there are three cases according to the location
of the given point, z, to be classified: z is (i) only in CX or CY , (ii) in both CX and CY
or (iii) in neither of CX and CY . The case (i) is straightforward: z belongs to class X if
z ∈ CX \ CY or to class Y if z ∈ CY \ CX . For cases (ii) and (iii), we need to find a way to
decide the class of the point in a reasonable way. In fact, for all the cases, the estimated
class of a given point z is determined by

argmin
C∈{CX ,CY}

[
min

x:B(x,r)∈C
ρ(z, x)

]
(2)

where ρ(z, x) = d(z, x)/r(x) (Marchette, 2010). The dissimilarity measure ρ(x, z) indicates
whether or not the point z is in the ball of radius r(x) with center x, since ρ(x, z) ≤ 1 if
z is inside the (closure of the) ball and > 1 otherwise. The measure ρ : Ω × Ω → R+ is
simply a scaled dissimilarity measure, since Euclidean distance between two points, d(x, y),
is divided (or scaled) with the radius, r(x) or r(y). This measure violates the symmetry
axiom among metric axioms since ρ(x, y) 6= ρ(y, x) whenever r(x) 6= r(y). However, Priebe
et al. (2003a) showed that the dissimilarity measure ρ satisfies the continuity condition,

8

Classification of Imbalanced Data with a Geometric Digraph Family

Figure 2: An illustration of the CCCDs (with the grey points representing the points from
the target class) in a two-class setting. Presented in top left are all covering balls
and the digraph D = (V,A) and in top right are he balls that constitute a class
cover for the target class and are centered at points which are the elements of the
dominating set S ⊆ V (D). In the bottom panel, we present the dominating sets
of both classes and their associated balls which establish the class covers. The
class cover of grey points is the union of solid circles, and that of black points is
the union of dashed circles.

i.e., under the assumptions that both FX and FY are continuous and strictly separable
(infx∈Xn,y∈Ym d(x, y) = δ > 0), P-CCCD classifiers are consistent; that is, their misclassifi-
cation error approaches to the Bayes optimal classification error as m,n→∞. The measure
ρ favors points with bigger radii; that is, for example, for a new point z equidistant to two
points, the point with bigger radius is closer in terms of this scaled dissimilarity measure;
for example, ρ(x, z) < ρ(y, z) when d(x, z) = d(y, z) and r(x) > r(y). The radius r(x) can
be viewed as an indicator of the density around the point x. Thus, a point x with bigger
radius might suggest that the point z is more likely be drawn from the same distribution
(or class) where x is drawn (i.e., from the denser class).

3.2 Classification with Random Walk CCCDs

For P-CCCDs, the class covers defined by CCCDs were “pure” of non-target class points;
that is, no member of the non-target class was allowed inside the cover of the target class.
As in Figure 1, the ball centered at the point x cannot expand any further since its radius is
restricted by the distance to the closest non-target class point. This strategy may cause the

9

Manukyan and Ceyhan

cover to overfit or be sensitive to noise or outliers in the non-target class. By allowing some
neighboring non-target class points inside the cover and some target class points outside the
cover, the random walk CCCDs (RW-CCCDs) catch as much target class points as possible
with an adaptive strategy of choosing the radii (DeVinney et al., 2002). For x ∈ Xn,
|Xn| = n and |Ym| = m, RW-CCCDs define a function on radius of a ball given by

Rx(r) = Rx(r;Xn,Ym)

:=
m

n
|{z ∈ Xn : d(x, z) ≤ r}| − |{z ∈ Ym : d(x, z) ≤ r}|.

(3)

where second and third arguments in Rx(r;Xn,Ym) are suppressed when there is no ambi-
guity. The function Rx(r) can be viewed as a one-dimensional random walk. When the ball
centered at x ∈ Rd expands, it hits either a target class point or a non-target class point
which increases or decreases the random walk by one unit, respectively. The ratio m/n is
included in the first term as to avoid the bias resulted by unequal sample sizes (i.e., class
imbalance). An illustration is given in Figure 3 for the case m = n. The function Rx(r)
aims to find such radii that it contains a few non-target class points and sufficiently many
target class points. In addition, we also want to avoid balls with large radii. Hence, the
radius of x is the value maximizing Rx(r) with an additional penalty function Px(r) which
biases toward small radii:

rx := argmax
r∈{d(x,z):z∈Xn∪Ym}

Rx(r)− Px(r). (4)

Although a penalty function seems fit, DeVinney (2003) pointed out that the choice of
Px(r) = 0 usually works sufficiently well in practice. As in P-CCCDs, the radius of a
ball represents the density of its center’s neighborhood. Maximizing Rx(r) determines the
best possible radius. Moreover, unlike P-CCCDs, the balls of RW-CCCDs are closed balls:
Bx = {z ∈ Rd : d(x, z) ≤ r(x)}.

Similar to P-CCCDs, finding a cover, or a dominating set, of a RW-CCCD is an NP-hard
problem. However, RW-CCCDs find the minimum dominating sets in a slightly different
fashion. Instead of finding a set S such that ∪s∈SN̄(s) = V (D) as in Algorithm 1, we first
locate the vertex x∗ (a target class point) which has maximum of some score, Tx∗ , and
remove all target and non-target class points covered with the ball of this vertex, Bx∗ . In
the next iteration, we recalculate the radii of remaining target class points, find the next
point with the maximum score and continue until all target class points are covered. This
greedy method of finding dominating set(s) S of RW-CCCDs is given in Algorithm 3. The
resulting dominating set S has approximate minimum cardinality. For each target class
point x ∈ Xn, the score Tx is associated with Rx(rx) and is given by

Tx = Rx(rx)− rxnu
2dm(x)

(5)

where nu is the number of uncovered target class points in the current iteration, and dm(x) =
maxz∈Xn d(x, z). The term which is linear in rx of the right hand side of Equation (5) is
similar to P (r) in Equation (4): it biases the scores toward choosing dominating points
with smaller radii. On the other hand, Algorithm 3 is likely to choose dominating points
with radius r = 0. These points only dominate themselves but they are thought of being

10

Classification of Imbalanced Data with a Geometric Digraph Family

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

r

x R
x
(r
)

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

r

x R
x
(r
)

Figure 3: Two snapshots of Rx(r) associated with the ball Bx centered at x for m = n.

Algorithm 3 The greedy algorithm for finding an approximate minimum dominating set
for RW-CCCDs of points Xn from the target class given non-target class points Ym.
Input: Target class points Xn and non-target class points Ym
Output: Approximate dominating set S of Xn

1: H0 = Xn, H1 = Ym and S = ∅
2: ∀x ∈ Xn, dm(x) = maxz∈Xn

d(x, z)
3: while H0 6= ∅ do
4: nu = |H0|
5: for all x ∈ Xn do
6: r(x) = argmaxr Rx(r;H0, H1) for r ∈ {d(x, z) : z ∈ H0 ∪H1}
7: end for
8: x∗ = argmaxx∈H0

Rx(r(x);H0, H1)− r(x)nu

2dm(x)

9: S = S ∪ {x∗}
10: H0 = H0 \ (N̄(x∗) ∩ Xn) and H1 = H1 \ (N̄(x∗) ∩ Ym)
11: end while
12: CX := ∪s∈SB(s, r(s))

not covered since their balls have radii r = 0. Hence, RW-CCCDs may establish improper
covers.

Algorithm 3 is similar to Algorithm 2, however after each iteration, a point is added to
the set S and the random walk Rx(r) is recalculated for all uncovered x ∈ A0. Hence, we
need an additional sweep on the training set which makes Algorithm 3 run in cubic time.

Theorem 2 Algorithm 3 finds covers CX of the target class X and Y in O((n + d +
log (n+m))(n+m)2) time.

Proof. In Algorithm 3, the matrix of distances between points of training set Xn ∪ Ym
should be computed since, for all x ∈ Xn ∪ Ym, the entire data set is swept to maximize
Rx(r). This takes O((n + m)2d) time. The algorithm runs until all target class points

11

Manukyan and Ceyhan

are covered, but for each iteration, the random walk Rx(r) is recalculated. The maximum
Rx(rx) could be found by sorting the distances for all x ∈ A0 which could be done prior
to the while loop. This sorting takes O((n + m)2 log (n+m)) time. Since A0 and A1 are
updated at each iteration, we can just erase the distances corresponding to points covered
by N̄(x∗) which does not change the order of sorted list provided before the while loop.
Hence, argmaxRx(rx) is found and the covered points erased in O((n + m)2) time. The
while loop iterates n times in the worst case, and hence the algorithm runs in a total of
O((n+ d+ log (n+m))(n+m)2) time.

Note that Algorithm 3 finds a cover of Ym in O((m+d+log (n+m))(n+m)2) time which
makes a RW-CCCD classifier trained in O((n + m)3) time for d < n and log (n+m) < n.
RW-CCCD classifiers are much better classifiers that potentially avoid overfitting, but with
a cost of being much slower compared to the P-CCCD classifiers.

Since P-CCCD covers are pure and proper covers, P-CCCD classifiers tend to overfit
(DeVinney, 2003). In RW-CCCDs, covering balls allow some points of Ym inside CX to
increase average classification performance. In that case, Algorithm 3 cannot be reduced
to a minimum set cover problem since the definition of sets change after adding a single
point to the dominating set. Hence, the upper bound O(log n) does not apply to RW-
CCCDs. However, we expect to get bigger balls in RW-CCCDs compared the ones in
P-CCCDs which intuitively suggests that the covers of RW-CCCDs are lower in cardinality.
We conduct empirical studies to show that RW-CCCDs, in fact, produce dominating sets
with lower size compared to P-CCCDs in some cases.

In RW-CCCD, once the class covers (or dominating sets) are determined, the scaled
dissimilarity measure in Equation (2) is a good choice for estimating the class of a new
point z. However, DeVinney (2003) incorporates the scores of each ball to produce better
performing class covers in classification. Hence, the class of a new point z is determined by

argmin
C∈{CX ,CY}

[
min

x:B(x,r)∈C
ρ(z, x)T

e
x

]
where ρ(z, x) is defined as in Equation (2). Here, e ∈ [0, 1] controls at what level the score
Tx is incorporated. We observe that for d(z, x) < r(x), ρ(z, x) = d(z, x)/r(x) decreases
as Tx increases. Hence, if a new point z is in both covers, z ∈ CX ∩ CY , the score Tx
is a good indicator to which class the new point z belongs since the bigger the Tx, the
more likely the ball contains more target class points. For e = 1, we fully incorporate each
score Tx of covering balls and with e = 0, we ignore the scores. By introducing a value for
the parameter e in (0, 1), it is possible to further improve the performance of RW-CCCD
classifiers.

4. Balancing the Class Sizes with CCCDs

The CCCD classifiers substantially reduce the number of majority class observations in
a data set. The reason is that balls of majority class members are more likely to catch
neighboring points of the same class. The greedy algorithm given in Algorithm 1 selects
vertices with the largest closed neighborhood. Similarly, Algorithm 3 selects vertices so
that their balls are as dense as possible (i.e., target class points are abundant in the balls)
with some contaminating non-target class points. Both algorithms choose balls with a large

12

Classification of Imbalanced Data with a Geometric Digraph Family

number of target class points, and hence substantially reduce the data set (in particular,
majority class points). Points of the minimum dominating set correspond to the centers of
balls that establish the class covers. Hence CCCD classifiers can also be viewed as prototype
selection methods where the objective is findind a set of points, or prototypes, S; from
the training set to preserve or increase the classification performance while substantially
reducing the sample size. However, the radii of dominating set(s) are also stored and used
in the classification process.

In Figure 4, we illustrate the behavior of balls associated with P-CCCDs and RW-
CCCDs. Note that in both families of digraphs, balls of the majority class tend to be larger
and hence are more likely to catch more majority class points. Since the majority class
has much more members than the minority class, balls of the majority points are more
likely to catch the neighboring majority points. CCCD classifiers keep the information of
ball centers and their associated radii. Larger cardinality of the majority class allows the
construction of bigger balls and hence, larger values of radii are more likely to correspond
to larger number of catched class members. As a result, CCCDs balance the data set and,
at the same time, preserve the information of the local density by retaining the radii. The
data set becomes balanced since the center of balls are the points of the new training data
set which will be employed later in classification.

The loss of information in undersampling schemes are of course inevitable, however it is
possible to preserve a portion of that discarded information by other means. EasyEnsemble
is an ensemble classifier used for that very purpose; however, it needs multiple classifiers
to be employed. Each classifier is trained on a different balanced subset of the original
training data set, and hence the ensemble classifier preserves the information on the entire
data set given by a collection of unbiased classifiers. On the other hand, CCCDs achieve
the same goal by transforming the density around points into the radii. CCCDs resemble
cluster based resampling methods in that regard. Instead of randomly sampling the data
set, cluster based sampling schemes divide each class into clusters, and then, oversample the
minority class or undersample the majority class proportional to each subclass. Covering
balls of CCCDs have a similar purpose which has also been discussed in Priebe et al. (2003b).
They use the covering balls of the minimum dominating sets to explore the latent subclasses
of each class of gene expression data sets. In fact, the balls of CCCDs may correspond to
clusters. Hence, sets of points associated with each cluster is undersampled to a single point
(i.e., a prototype or a dominating point), and the information on the cluster is provided
by the radius which represents the density of that cluster. The bigger the radius, the more
influence a prototype has over the domain. In P-CCCDs, the radii may be sensitive to noise,
but RW-CCCDs ignore noisy points to avoid overfitting. Moreover, in RW-CCCDs, we have
an additional statistic provided by each cluster, the score given in Equation (5) based on the
random walk. We use both the radii and these scores to define the RW-CCCD classifiers,
and thus achieve better performing classifiers with more reduction and less information loss.

We approach the problem of class imbalance from the perspective of class overlapping
problem as well. Several researchers on class imbalance revealed that overlap between the
class supports degrade the classification performance of imbalanced data sets even more
(see Prati et al., 2004; Batista et al., 2004, 2005; Galar et al., 2012). Let E ⊂ Rd, and
let s(FX) and s(FY) be the supports of the classes X and Y, respectively. We define E
as the overlapping region of these two class supports, E := s(FX) ∩ s(FY). Moreover, let

13

Manukyan and Ceyhan

Figure 4: An illustration of the covering balls associated with majority and minority P-
CCCD (left) and the corresponding RW-CCCDs (τ = 0.0001) (right) of an im-
balanced data set in a two-class setting where majority and minority class points
are represented by grey dots and black triangles, respectively.

q(E) := |Ym ∩ E|/|Xn ∩ E| be ratio of class sizes restricted to the region E ⊂ Rd. We say
q(E) is the “local” imbalance ratio with respect to E. Also, let the “global” imbalance ratio
be q = q(Rd) = m/n. Throughout this work, in both simulated and real data examples, we
study and discuss the local imbalance ratio q(E) restricted to the overlapping region E and
the global imbalance ratio q. We specifically illustrate the performance of several classifiers
for various levels of class imbalance (local or global) and class overlapping, and assess the
performance of CCCD classifiers compared to weak and strong versions of k-NN, SVM and
C4.5 classifiers.

5. Comparing CCCDs with Other Classifiers

We study the performance of CCCD classifiers in comparison with weak and strong classi-
fiers in two separate sections. Recall that we call a classifier as “weak” when the method
is inherently sensitive to class imbalance, and as “strong” when it is non-sensitive (or less
sensitive). We use the area under curve (AUC) measure to evaluate the performance of the
classifiers on the imbalanced data sets (López et al., 2013). AUC measure is often used on
imbalanced real data classes. This measure has been shown to be better than the correct
classification rate in general (Huang and Ling, 2005). We discuss the computational com-
plexity of weak classifiers to emphasize the testing speed of CCCD classifiers when trained
by imbalanced data sets. Finally, we compare both weak and strong classifiers with CCCDs
on real data sets by considering the overlapping and imbalance ratios of all data sets.

14

Classification of Imbalanced Data with a Geometric Digraph Family

5.1 Monte Carlo Simulation Study with Weak Classifiers

In this section, we compare the CCCD-based classifiers, namely P-CCCD and RW-CCCD,
with k-NN, support vector machines (SVM) and C4.5, on simulated data sets. These
classifiers are listed in Table 1. We employ the cccd, e0171 and RWeka packages in R to
classify test data sets with the P-CCCD, SVM (with Gaussian kernel) and C4.5 classifiers,
respectively (Marchette, 2013; Meyer et al., 2014; R Core Team, 2015).

For each of four classification methods other than C4.5, we assign the optimum param-
eter values which are the best performing values among all considered parameters. For
example, an optimum the P-CCCD parameter τ is found in a preliminary (pilot) Monte
Carlo simulation study associated with the main simulation setting (i.e., the same set-
ting of the main simulation). In the pilot study, we perform a Monte Carlo simulation
with 200 replications and count how many times a τ value has the maximum AUC among
τ = 0.0, 0.1, · · · , 1.0 in 200 trials. Note that, since τ ∈ (0, 1], we denote τ = ε (machine
epsilon) as τ = 0 for the sake of simplicity. For each replication of the pilot simulation, we
(i) classify the test data set with all τ values, (ii) record the τ values with maximum AUC
and (iii) update the count of the recorded τ values. Finally, we appoint the one that has the
maximum count (the best performing τ) as the τ∗, the optimum τ . Then, we use τ∗ as the
parameter of P-CCCD classifier in our main simulation. The parameters of optimal k-NN,
SVM and RW-CCCD classifiers are defined similarly. SVM methods often incorporate both
a kernel parameter γ and a constrained violation cost C. We only optimize γ since the
selection of an optimum C parameter will be more crucial for cost-sensitive SVM methods.
Moreover, we consider two versions of the C4.5 classifier where both incorporate Laplace
smoothing. The first tree classifier, C45-LP, prunes the decision tree with %25 confidence
level but the second classifier, C45-LNP, does not use pruning at all.

We first consider a simulation setting similar to the one in DeVinney et al. (2002) where
CCCD classifiers showed relatively good performance compared to the k-NN classifier. Here,
we simulate a two-class setting where observations from both classes are drawn from separate
multivariate uniform distributions: FX = U(0, 1)d and FY = U(0.3, 0.7)d for d = 2, 3, 5, 10.
Notice that s(FY) ⊂ s(FX); i.e., E = s(FY). We perform Monte Carlo replications where
on each replication, we train the data with equal sizes of observations (m = n) from each
class for n = 50, 100, 200, 500. On each replication, we record the AUC measures of the
classifiers on the test data set with 100 observations from each class, resulting a test data
set of size 200. We simulate test data sets until AUCs of all classifiers achieve a standard
error below 0.0005. Average of AUCs of all classifiers in Table 1 are given in Figure 5 for all
(n, d) combinations. Additionally, in Figure 6, we report the τ values of best performing P-
CCCD classifiers in our pilot simulation study for all (n, d) combinations. In Figure 6, there
are separate histograms for each combination. Each histogram represents the number of
times a τ value has the maximum AUC. Also in Figure 7, we report the e values of the best
performing RW-CCCD classifiers of the same pilot simulation study for e = 0, 0.1, · · · , 1.0.

We start by investigating the effect of τ and e on CCCD classifiers. The relationship
between τ , n and d can also be observed in Figure 6. The higher the τ value, the better the
performance of P-CCCD classifier with increasing d and decreasing n. This may indicate
that balls with τ = 0 (i.e., τ = ε) represent the density around their centers better for low
dimensional data sets. However, with increasing dimensionality and lower class sizes, the

15

Manukyan and Ceyhan

Method Description
P-CCCD P-CCCD with the optimum τ (in the pilot study) among τ =

0, 0.1, · · · , 1.0
RW-CCCD RW-CCCD with the optimum e (in the pilot study) among e =

0, 0.1, · · · , 1.0
k-NN k-NN with optimum k (in the pilot study) among k = 1, 2, · · · , 30
SVM SVM with the radial basis function (Gaussian) kernel with the opti-

mum γ (in the pilot study) among γ = 0.1, 0.2, · · · , 3.9, 4.0 (Joachims,
1999)

C45-LP C4.5 with Laplace smoothing and reduced error pruning (%25 confi-
dence)

C45-LNP C4.5 with Laplace smoothing and no pruning

Table 1: The description of classifiers employed in the article.

A
U

C

0.75

0.80

0.85

0.90

0.95

1.00

n=50 n=100 n=200 n=500

d=5

n=50 n=100 n=200 n=500

d=10

d=2

0.75

0.80

0.85

0.90

0.95

1.00

d=3

P−CCCD

RW−CCCD

k−NN

SVM

C45−LP

C45−LNP

Figure 5: CCRs in the two-class setting, FX = U(0, 1)d and FY = U(0.3, 0.7)d under var-
ious simulation settings, with d = 2, 3, 5, 10 and equal class sizes m = n =
50, 100, 200, 500.

16

Classification of Imbalanced Data with a Geometric Digraph Family

P−CCCD parameter (τ)

F
re

q
u

e
n

c
y

0

10

20

30

40

0.0 0.2 0.4 0.6 0.8 1.0

n
=

5
0

0.0 0.2 0.4 0.6 0.8 1.0

n
=

1
0

0

0

10

20

30

40
0

10

20

30

40

n
=

2
0

0

d=2

n
=

5
0

0

0.0 0.2 0.4 0.6 0.8 1.0

d=3 d=5

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40
d=10

Figure 6: Frequencies of the best performing τ values among τ = 0.0, 0.1, · · · , 1.0 in our
pilot study (this is used to determine the optimal τ used in P-CCCD). The
simulation setting is same as to the one presented in Figure 5.

17

Manukyan and Ceyhan

RW−CCCD parameter (e)

F
re

q
u

e
n

c
y

0

5

10

15

0.0 0.2 0.4 0.6 0.8 1.0

n
=

5
0

0.0 0.2 0.4 0.6 0.8 1.0

n
=

1
0

0

0

5

10

15

0

5

10

15

n
=

2
0

0

d=2

n
=

5
0

0

0.0 0.2 0.4 0.6 0.8 1.0

d=3 d=5

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

d=10

Figure 7: Frequencies of the best performing e values among τ = 0.0, 0.1, · · · , 1.0 in our
pilot study (this is used to determine the optimal e used in RW-CCCD). The
simulation setting is same as to the one presented in Figure 5.

18

Classification of Imbalanced Data with a Geometric Digraph Family

set of points gets sparser in Rd. In the case of RW-CCCD, classifiers with high e values
are either better or comparable to those with lower e values. The scores Tx of covering
balls are definitely beneficial to the performance of the RW-CCCD classifiers, however with
increasing n and decreasing d (especially for n = 500 and d = 2) RW-CCCD with lower e
is better since the radii successfully represent the density around the prototype points due
to the high number of observations in the data set.

Figure 5 illustrates the AUCs of all classifiers along with the Bayes optimal performance
given with the dashed line. Comparing the performance of CCCD classifiers with other
classification methods, we observe that RW-CCCD and P-CCCD classifiers outperform the
k-NN classifier when the support of one class is entirely embedded inside that of the other
class. These results are similar to the conclusions of DeVinney et al. (2002): with increasing
dimensionality, the difference between k-NN and CCCD classifiers becomes more apparent,
i.e., CCCD classifiers have nearly 0.20 AUC more than k-NN. On the other hand, the SVM
classifier has about 0.05 more AUC than P-CCCD and RW-CCCD classifiers, especially for
lower class sizes. Although, both versions of CCCD classifiers outperform the k-NN and
C4.5 classifiers with increasing dimensionality, the gap between these two classifiers and
CCCD classifier is getting narrower with increasing class sizes. The RW-CCCD classifier
is slightly better than the P-CCCD classifier for lower n. In addition, C45-LNP achieves
slightly better results than C45-LP.

In the setting presented in Figure 5, apparently, two classes overlap on the region
E = s(FY) = [0.3, 0.7]d which is the entire support of the class Y. For equal class sizes,
q = m/n = 1 but q(E) ≈ (1/0.4)d = Vol(s(FY))/Vol(s(FX)), where Vol(·) is the volume
functional. The classes are clearly imbalanced in E, although m = n. Hence, class X
becomes the minority and class Y becomes the majority class with respect to E. However,
readjusting the class sizes m and n might change the performance of P-CCCD and RW-
CCCD classifiers compared to the k-NN and C4.5 classifiers. Therefore, we conduct another
simulation study with classes from the same uniform distributions, but we set m = 50 and
n = 200 for d = 2, 3, and m = 50 and n = 1000 for d = 5, 10. In this experiment, we simu-
lated 4 times more X class members than Y for d = 2, 3, and 20 times more for d = 5, 10.
Results of this second experiment is given in Figure 8. k-NN and C4.5 classifiers outperform
P-CCCD classifier in all d cases and has comparable AUC with SVM. However, only for
d = 2, 5, RW-CCCD classifier achieves considerably more or comparable AUC compared
to other classifiers. In this example, k-NN classifiers have nearly 0.05 more AUC than
P-CCCDs, and also RW-CCCDs have, in general, 0.05 more AUC than k-NN classifiers.

Results from Figures 5 and 8 seem conflicting to each other, even though E = s(FY).
In the simulation setting of Figure 8, we draw more samples from the class X to balance
the class sizes with respect to E. In fact, the effect on the difference of AUCs between
CCCD, k-NN and C4.5 classifiers depends heavily on the local class imbalance restricted to
the overlapping region E. The classes in region E are less imbalanced in setting of Figure 8
than in the setting of Figure 5. Observe that q(E) ≈ (1/0.4)d/4 when (m,n) = (50, 200),
q(E) ≈ (1/0.4)d/20 when (m,n) = (50, 1000), and q(E) ≈ (1/0.4)d in (m,n) = (50, 50).
Hence, d does also affect the balance between classes. With increasing d, the region E gets
smaller in volume compared to s(FX) and, as a result, fewer points of the class X falls in E.
Thus, we need to draw more samples from X as dimensionality increases, in order to balance
the classes with respect to E. These results suggest that, the more imbalanced the data set

19

Manukyan and Ceyhan

A
U

C

0.75

0.80

0.85

0.90

0.95

1.00

d=2 d=3 d=5 d=10

P−CCCD

RW−CCCD

k−NN

SVM

C45−LP

C45−LNP

Figure 8: CCRs in a two-class setting, FX = U(0, 1)d and FY = U(0.3, 0.7)d with fixed
n = 200 and m = 50 in d = 2, 3, and with fixed n = 1000 and m = 50 in
d = 5, 10.

in overlapping region E, the worse the performance of k-NN and C4.5 classifiers while CCCD
classifiers preserve their classification performance. So, CCCD classifiers exhibit robustness
(to the class imbalance problem). On the other hand, in Figure 5, we observe that the
AUC of k-NN classifier approaches to the AUC of CCCD classifiers with increasing class
sizes. Because, when q and q(E) are fixed, the classification performance still depends on
individual values of n or m. This result is in line with the results of Japkowicz and Stephen
(2002) who reported that the effect of class imbalance on the classification performance
diminishes if both class sizes are sufficiently large. Furthermore, SVM classifier performs
better than all classifiers in Figure 5, and performs worse than RW-CCCD classifiers only
for d = 2, 5 in Figure 8. This might be an indication that SVM classifier is also not affected
by the local class imbalance with respect to E, and performs usually better than both P-
CCCD and RW-CCCD classifiers if the support of one class is inside the other. For the C4.5
classifier, on the other hand, it is known for quite some time that the pruning is detrimental
for classifying imbalanced data sets (Cieslak and Chawla, 2008). In any case, C45-LNP has
more AUC than C45-LP in all simulation settings.

In a two-class setting with an overlapping region E, we should expect CCCD classifiers to
outperform k-NN classifiers in cases of (global or local) class imbalance. Let FX = U(0, 1)d

and FY = U(δ, 1 + δ)d for δ, q = 0.05, 0.10, · · · , 0.95, 1.00; d = 2, 3, 5, 10; n = 400 and
m = qn. Here, the shifting parameter δ controls the level of overlap. The class supports get
more overlapped with decreasing δ. Since E = (δ, 1)d and the supports of both classes are
unit boxes, observe that q(E) ≈ q. The closer the value of q to 1, more balanced the classes
are. We aim to address the relationship between the classifiers for various combinations of
overlapping and global class imbalance ratios.

Figure 9 illustrates the difference between AUCs of CCCD and other classifiers (k-NN,
SVM and C4.5) in separate heat maps for d = 2, 3, 5, 10. We use the unpruned C4.5 classifier

20

Classification of Imbalanced Data with a Geometric Digraph Family

Shifting parameter (δ)

G
lo

b
a
l
im

b
a
la

n
c
e
 r

a
ti
o
 (

q
)

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.00

0.00

0.00

0.00

0.05

d
=

2

0.00
0.00

0.00
0.00

0.00

0.00
0.00

0.00

0.05

0.2 0.4 0.6 0.8 1.0

0.00

0.00

0.
000.00

0.00

0.00
0.00

0.00

0.00

0.00
0.00

0.05

0.00
0.00

0.00

0.00

0.2 0.4 0.6 0.8 1.0

0.00
0.00

0.00 0.00

0.000.00

0.00

0.05

0.0
0

0.00

0.00 0.00

0.00

0.00

0.00

0.00

0.00
0.00

0.05

d
=

3

0.00
0.00

0.00

0.00

0.050.10
0.00

0.00
0.00

0.05
0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.
000.05 0.2

0.4

0.6

0.8

1.0

0
.0

0

0.00

0.00
0.00

0.2

0.4

0.6

0.8

1.0

0.00

0.00
0.000.00

0.05

0.050.05

0.10

d
=

5

0.00

0.00

0.05

0.100.15

−0.05

0.000.05

0.00

0.00

0.00

0.00
0.00

0.00
−0.05

0.00

0.00 0.00

0.00

0.05

−
0
.0

5

−0.05
0
.0

0

0.00

0.05

0.00
0.00

0.00

0
.0

5

0
.0

5

0.10

0.15

RW−kNN
d
=

1
0

0.2 0.4 0.6 0.8 1.0

0.00

0.00

0.00
0.050.10
0.15

RW−SVM

−0.10

−0.05

0.00 0.05

RW−C45

0.2 0.4 0.6 0.8 1.0

0.00

0.00

0.00

0.05

P−kNN

−0.05

0.00
0.00

0.00

0.05

P−SVM

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

−0.15

−0.15

−0.10−0.05

−0.050.00

0.05
0.10

P−C45

−0.2

−0.1

0.0

0.1

0.2

0.3

Figure 9: Differences between the AUCs of CCCD and other classifiers. For example, the
panel titled with ”RW-kNN” presents AUC(RW-CCCD)-AUC(kNN). In this two-
class setting, classes are drawn from FX = U(0, 1)d and FY = U(δ, 1 + δ)d with
d = 2, 3, 5, 10. Each cell of the grey scale heat map corresponds to a single
combination of simulation parameters δ, q = 0.05, 0.1, · · · , 0.95, 1.00 with n = 400
and m = qn.

C45-LNP, since it tends to perform better for imbalanced data sets, and we refer to C45-
LNP as C4.5 for simplicity. Each cell of a single heat map is associated with a combination
of δ and q values. Lighter tone cells indicate that CCCD classifiers are better than the
other classifiers in terms of AUC, and vice versa for the darker tones. When the classes are
imbalanced and moderately overlapping, RW-CCCD classifier has at least 0.05 more AUC
than all other non-CCCD classifiers but P-CCCD classifier is only better than all others
provided that d = 10. If the classes are balanced or their supports are not considerably
overlapping, there seem to be no visible difference between CCCD and the other classifiers.
Thus, the other classifiers suffer from the imbalance of the data while CCCD classifiers show
robustness to the class imbalance. But more importantly, this difference is getting more
apparent with increasing dimensionality. When d is high, fewer points of the minority class
fall in E although q(E) is fixed. Even though the classes are imbalanced, if the minority
class have substantially small size, the class imbalance problem becomes more detrimental
(Japkowicz and Stephen, 2002). Under the conditions that the data set has substantial
imbalance and overlapping, AUC of RW-CCCD classifier is followed, in order by, the AUC
of C4.5, SVM and k-NN classifiers.

Unlike the comparison of CCCD and SVM classifiers in Figures 5 and 8, SVM classifier
has less AUC than CCCD classifiers with low δ and low q values in Figure 9. In this
setting, n is fixed to 400 and the lowest value of m is 20. Compared to our experiments
in Figures 5 and 8, this setting produces highly imbalanced data sets (one class has far

21

Manukyan and Ceyhan

more observations than the other, m << n). Akbani et al. (2004) conducted a detailed
investigation and listed some reasons of SVM classifier being sensitive to highly imbalanced
UCI data sets (Bache and Lichman, 2013). They did not, however, address the problem
of overlapping class supports but offered a modification to SMOTE algorithm in order to
improve the robustness of SVM. On the other hand, especially for d = 5 and d = 10, SVM,
k-NN and C4.5 classifiers have more AUC than CCCD classifiers with increasing q and
decreasing δ. This may indicate that other weak classifiers are better than CCCD classifiers
for balanced classes.

The effects of class imbalance might also be observed when the class supports are well
separated. If the class supports are disjoint, that is s(FX) ∩ s(FY) = ∅, the AUC is fairly
high. However, it might still be affected by the global imbalance level, q. Therefore,
we simulate a data set with two classes where FX = U(0, 1)d and FY = U(1 + δ, 2 + δ) ×
U(0, 1)d−1. Figure 10 illustrates the results of this simulation study. Both class supports are
d dimensional unit boxes as in the previous simulation setting, however they are now disjoint
(separated along the first dimension). In addition, the parameter δ controls the smallest
distance between the class supports where δ = 0.05, 0.10, · · · , 0.45, 0.50. With increasing
δ, the points of class Y move further away from the points of X . Figure 10 illustrates the
difference between AUCs of CCCD and other classifiers under this simulation setting.

In Figure 10, unlike the performance of CCCD classifiers in Figure 9, P-CCCD classifiers
have more AUC than RW-CCCD classifiers. When classes are imbalanced and supports are
close, P-CCCD classifiers outperform both SVM and k-NN classifiers for all d values, but
RW-CCCD classifiers have nearly 0.03 more AUC than these classifiers only in d = 10.
However, this is not the case with C4.5 classifier since none of the classifiers outperform
C4.5; that is, C4.5 yields over 0.04 more AUC than CCCD classifiers. A well separated
data set is more likely to be classified better with C4.5 tree classifier because a single
separating line exists between the two class supports. Hence, C4.5 locates such a line and
efficiently classifies points regardless of the distance between class supports as long as the
distance is positive. On the other hand, the balls of P-CCCD classifiers establish appealing
covers for the class supports because the supports do not overlap. P-CCCD classifiers
establish covering balls, big enough to catch substantial amount of points from the same
class. Similarly, RW-CCCD classifiers establish pure covers, and this is the result of the
separation between class supports. However, P-CCCD classifiers achieve better classification
performance than RW-CCCD classifiers. When the classes are well separated, the radii of a
ball in random walk, say from class X , is likely maxz∈Xn d(z, x) but in P-CCCD classifiers,
it is minz∈Yn d(z, x). In fact, the RW-CCCD classifiers are nearly equivalent to P-CCCD
classifiers. Thus, when τ > 0, P-CCCD classifiers are more likely to produce bigger balls
than RW-CCCD classifiers, and potentially avoid overfitting.

In Figure 10, RW-CCCD classifiers have slightly or considerably less AUC than other
classifiers when data sets are imbalanced and the supports are slightly far away from each
other. The random walk contaminates the class cover with some non-target class points to
improve the classification performance. However, since the classes are well separated and one
class has substantially fewer points than the other, random walks are likely to yield balls to
cover some points from the support of the non-target class, resulting in a degradation in the
performance of RW-CCCD classifiers. On the other hand, P-CCCD classifiers outperform
both k-NN and SVM classifiers for lower q and lower δ. The closer and more imbalanced the

22

Classification of Imbalanced Data with a Geometric Digraph Family

Shifting parameter (δ)

G
lo

b
a
l
im

b
a
la

n
c
e
 r

a
ti
o
 (

q
)

0.2

0.4

0.6

0.8

1.0

0.1 0.2 0.3 0.4 0.5

−0.04 −0.02

0.00

0.00
0.00

0.000.00

d
=

2

−0.02
−0.02

0.00

0.00

0.00
0.000.00

0.1 0.2 0.3 0.4 0.5

−0.04
−0.02

0.00

0.00

0.00

0.1 0.2 0.3 0.4 0.5

0.00 0.00

−0.04

−0.02

0.00 0.00

0.00

0.00

d
=

3

−0.04

−0.02

0.000.00

0.00

0.00

0.00

0.00

−0.06

−0.04 −0.02

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.000.02 0.2

0.4

0.6

0.8

1.0

0.00

0.00

0.00

0.2

0.4

0.6

0.8

1.0

−0.020.00

0.00

0.00

0.00

0.00

0.00

d
=

5

−0.02

0.00

0.00

0.00

0.00
0.00

0.00

0.00

−0.08
−0.06

−0.04
−0.02

0.00

0.00

0.00

0.00
0.02

0.04

0.00

0.00

0.00

0.00

0.02

0.04
−0.02

0.00

0.00

0.00

0.00

0.020.04

RW−kNN

d
=

1
0

0.1 0.2 0.3 0.4 0.5

0.00

0.00

0.02

RW−SVM

−0.08
−0.06 −0.04−0.02

0
.0

0

0.00

RW−C45

0.1 0.2 0.3 0.4 0.5

0.00

0.00

0.02

0.04

0.06

P−kNN

0.00

0.00

0.00

0.02
0.04

P−SVM

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1.0

−0.04

−0.02

0.00

P−C45

−0.15

−0.10

−0.05

0.00

0.05

0.10

Figure 10: Differences between the AUCs of CCCD and other classifiers (see Figure 9 for
details). In this two-class setting, classes are drawn from FX = U(0, 1)d and
FY = U(1+δ, 2+δ)×U(0, 1)d−1 where d = 2, 3, 5, 10, δ = 0.05, 0.1, · · · , 0.45, 0.50
and q = 0.05, 0.1, · · · , 0.95, 1.00 with n = 400 andm = qn. AUCs of all classifiers
are over 88% since the class supports are well separated.

data, the better the performance of P-CCCDs than other classifiers. Although the classes
do not overlap, the effect of class imbalance is still observed when the supports are close.
When there is mild imbalance between classes, CCCD classifiers have either comparable or
less AUC. In addition, note that the performances of SVM and k-NN classifiers deteriorate
but P-CCCD classifiers preserve their AUC with increasing d. Let E ⊂ Rd be some region
that contains points of both classes which are sufficiently close to the decision boundary.
With increasing d, fewer minority class points are in this region, and hence fewer members
of this class fall in E. As a result, the performance of both SVM and k-NN classifiers suffer
from local class imbalance with respect to E.

Finally, we investigate the effect of dimensionality when classes are balanced (i.e., q = 1)
and their supports are overlapping. In this setting, FX = U(0, 1)d and FY = U(δ, 1 + δ)d.
Here, let q(E) ≈ q = 1, hence the classes are also locally balanced with respect to E as
well as being globally balanced. Also, δ controls the level of overlap between two classes.
However, we define δ in such a way that the overlapping ratio α ∈ [0, 1] is fixed for all
dimensions. When α is 0, the supports are well separated, and when α is 1, the supports
of classes are the same, i.e., s(FX) = s(FY). The closer α to 1, the more the supports
overlap. Observe that δ ∈ [0, 1] can be expressed in terms of the overlapping ratio α and

23

Manukyan and Ceyhan

Dimensionality (d)

O
ve

rl
a
p
p
in

g
 r

a
ti
o
 (

 α
)

0.2

0.4

0.6

0.8

1.0

5 10 15 20

−0.02
0.00

0.00

0.00

0.00 0.00 0.00
0.00

0.00

0.00

0.00

0.02

n
=

5
0 −0.02

−0.02

−0.02−0.02

−0.02

0.0
0

0.00

0.00 0.00

0.00
0.00

5 10 15 20

0.00

0.00

0.00

0.00

0.000.00 0.00

0.00

0.00

0.00

0.00

0.02
−0.04

−0.02

0.00

0.00

0.00

0.000.00

0.00 0.00

5 10 15 20

−0.06

−0.04

−0.02

0.00 0.00

0.00

0.00

0.00

0.000
.0

0

0.00

−0.02
0.00

0.00

0.000.00

0.00

0.00
0.00

0.00

0.02

−0.02

0.00

0.00 0.00

0.00
0.00

0.00
0.00 0.00

0.00

0.00

0.00

0.00

n
=

1
0
0

−0.02

0.00

0.00
0.00

0.00

−0.04

−0.02

0.00

0.00

0.00

0.00

0.00 0.00

0.00

0.00
0.00

0.00

0.00

−0.04

−0.02

0.00

0.000.00

0.00

0.00
0.00

−0.06

−0.04

−0.02

0
.0

0

0.00
0.00
0.000

.00

0.00

0.00 0
.0

0

0.00

0.2

0.4

0.6

0.8

1.0

−0.08

−0.06
−0.04

−0.02

0.00

0.00

0.00
0.00

0.00

0.
00

0
.0

0

0.2

0.4

0.6

0.8

1.0

0.00

0.00

0
.0

0 0.00

0.00

0.00

0.00
0.00

0.00

0.00
0.00

0.00

0.00

0.02

n
=

2
0
0

−0.02 −0.02

−0.02

0.00
0.00

0.00
0.00

0.00

0.00

−0.08
−0.08

−
0
.0

6 −0.04
−0.02

0.00

0.00

0.00

0.00
0.00
0.00

0.00

0.00

0.00

0.00

0.00

−0.04

−0.02

−0.020.00

0.000.00

0.00

0.00
0.00

0.00

−0.06
−0.06

−0.04

−0.04
−0.02

−0.02

0.00

0.00
0.00

0.00 0.00

0.00

0.00

0.
00

−0.12
−0.10

−0.08
−0.06

−0.04
−0.02

0.00

0.00
0.00

0.00
0.00

0.00

0.00

0.00

0.00
0.00

0.00
0.00

0.00

0.00
0.000.00

0.00

0.00

0.00

RW−kNN
n
=

5
0
0

5 10 15 20

−0.04

−0.02

−0.02 −0.02
−0.02

−0.02

0.
00

0.00

0.000.00 0.00

0.000.00

0.000.0
0

0.00

RW−SVM

−0.12

−0.10

−0.08

−0.06
−0.04
−0.02

0.00

0.00
0.00 0.00

0.00

0.00

0.00

0.00

RW−C45

5 10 15 20

−0.04

−0.02

0.00
0.00

0.00

0.00
0.00

0.00

0.00

0.00

P−kNN

−0.06 −0.06

−0.04
−0.02

0.00

0.00

0.000.00

0.00

0.00

P−SVM

5 10 15 20

0.2

0.4

0.6

0.8

1.0

−0.18 −0.18−0.18−0.16
−0.14−0.12

−0.10
−0.08

−0.06
−0.04

−0.02
0.00

0.00

0.00

0.00

0.00
0.00

0.00

P−C45

−0.20

−0.15

−0.10

−0.05

0.00

0.05

Figure 11: Differences between the AUCs of CCCD and other classifiers (see Figure 9 for
details). In this two-class setting, classes are drawn from FX = U(0, 1)d and
FY = U(δ, 1 + δ)d where n = 50, 100, 200, 500, α = 0.05, 0.1, · · · , 0.45, 1.00 and
d = 2, 3, 4, · · · , 20.

dimensionality d:

α =
Vol(s(FX) ∩ s(FY))

Vol(s(FX) ∪ s(FY))
=

(1− δ)d

2− (1− δ)d
⇐⇒ δ = 1−

(
2α

1 + α

)1/d

. (6)

Hence, we calculate δ for each (d, α) combination by the Equation (6). In Figure 11, each
cell of the grey scale heat map corresponds to a single combination of simulation parameters
α = 0.05, 0.1, · · · , 0.95, 1.00 and d = 2, 3, 4, · · · , 20. In Figure 11, the differences between
the AUCs of CCCD classifiers and other classifiers are up to 0.20. The k-NN and SVM
classifiers have comparable performance with CCCD classifiers, or outperform both CCCD
classifiers. However, C4.5 has more AUC with increasing d. Employing CCCD classifiers do
not considerably increase the classification performance over other classifiers when classes
are balanced.

5.2 Empirical Comparison of CCCD-based and Strong Classifiers

In this section, we compare the CCCD-based classifiers with strong versions of k-NN, SVM
and C4.5 classifiers on simulated data sets. Each classifier is modified in three different
schemes, namely, resampling, ensemble and cost-sensitive schemes. We use SMOTE+ENN
algorithm as the resampling scheme and EasyEnsemble algorithm as the ensembling scheme.
As for the cost sensitive versions on weak classifier, we adjust the classifiers into recogniz-
ing class weights. For k-NN, we employ an algorithm giving more weight on neighboring
minority class members; for SVM, we use two separate constrained violation costs for each

24

Classification of Imbalanced Data with a Geometric Digraph Family

Method Description
SMOTE+ENN A combination of SMOTE (t = 2 and k = 5) and ENN (k = 3)

(Batista et al., 2004).
EasyEnsemble A combination of undersampling (T = 4) and Adaboost (si = 10) for

i = 1, 2, · · · , T (Liu et al., 2009)
C5.0 The cost sensitive version of C4.5 (Kuhn and Johnson, 2013).
CkNN A cost sensitive version of k-NN (Barandela et al., 2003).
CSVM A cost sensitive version of SVM (Chang and Lin, 2011).

Table 2: The description of classifiers employed in the article.

corresponding class; and for C4.5, we employ the C5.0. With three schemes and three weak
classifiers, we get nine strong classifiers to study. We list and describe all these schemes in
Table 2.

SMOTE+ENN algorithm, first, oversamples the entire training data set by generating
artificial points in between a point and its neighbors. Specifically, for each point in the
data set, t points among k neighbors are selected, and until the data set is balanced,
new artificial points are generated in between these points and their selected neighbors.
Later, ENN algorithm cleans the data set of noisy points by checking all points if the
majority of their k neighbors are labeled as the class of the point. If not, the point is erased
from the data set. Simply, SMOTE+ENN is a hybrid of over and undersampling methods.
EasyEnsemble algorithm is a hybrid of undersampling and ensemble methods. An ensemble
of weak classifiers is established by generating T many undersampled balanced data sets
from the training data set. Then, each data set is used to train individual Adaboost
classifiers with si many weak classifiers for i = 1, 2, . . . , T . Hence, EasyEnsemble is an
ensemble of

∑T
i=1 si many weak classifiers.

We choose one of the simulation settings conducted in Section 5.1. Since CCCD classi-
fiers are observed to be better than other classifiers when both class imbalance and overlap-
ping occurred, we only compare CCCD classifiers with strong classifiers on a single simula-
tion setting. Hence we choose the setting presented in Figure 9, i.e., we let FX = U(0, 1)d

and FY = U(δ, 1+δ)d for bura δ, q = 0.05, 0.10, · · · , 0.95, 1.00, n = 400 and m = qn. We aim
to highlight the differences between the strong classifiers and CCCD classifiers for various
combinations of overlapping and class imbalance ratios. The results on average AUCs of
each strong classifier is given in Figure 12. In general, RW-CCCDs seem to perform better
than P-CCCDs. For d > 2, P-CCCDs have nearly 0.10 less AUC than RW-CCCDs when
the classes are substantially overlapping and imbalanced, and it is observed that P-CCCDs
are usually worse compared to the strong classifiers considered. However, the AUCs of
RW-CCCD classifiers are either comparable or slightly less compared to others with the
most difference being seen in the case of d = 10 when RW-CCCDs compared to EC4.5 and
C5.0, ensemble and cost sensitive versions of the C4.5 classifier, respectively. However, with
decreasing δ and q, the RW-CCCDs have only 0.05 less AUC than others. Also, RW-CCCDs
seem to have 0.05 more AUC than C5.0 for moderately overlapping and imbalanced data
sets, and seem to have 0.05 more AUC then ESVM, ensemble based SVMs, when the data
set is both overlapping and imbalanced. This suggests that RW-CCCDs yield compara-
ble results in comparison to the state-of-the-art robust methods when class imbalance and
class overlapping co-exist. Additionally, we show in Section 5.3 that RW-CCCDs generate
prototype sets that considerably reduce the training data set.

25

Manukyan and Ceyhan

Shifting parameter (δ)

G
lo

b
a
l
im

b
a
la

n
c
e
 r

a
ti
o
 (

q
)

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.00

0.00

0.00

0.00

0.00

0.00
0.00 0.00

0.00

0.00

0.00

0.00

d
=

2

0.00
0.00

0.00
0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00
0.00

0.00

0.2 0.4 0.6 0.8 1.0

0.00
0.00

0.
00

0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.2 0.4 0.6 0.8 1.0

0.00

0.00

0.00
0.00
0.00

0.00

0.00
0.00

0.00
0.00

0.00

0.00

0.00
0.00

0
.0

0

0.00
0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.2 0.4 0.6 0.8 1.0

0.00

0.00

0.00
0.00

0.000.00 0.000.00

0.00

0.00 0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.2 0.4 0.6 0.8 1.0

0.00
0.00

0.00

0.00

0.00

0.00

0.00

0.00

−0.05

−0.050.00

0.00

d
=

3

−0.05

0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.
00

0.00
0.00

0.00

−
0
.0

5

0.00

0.00
0.00

0.00

0.00

0.00

0.00

−0.05

0.000.00

0.00

0.00

−0.05

0.00

0.000.000.00
0.00

0.00

0.00

0.00

0.00
0.00

0.00

−0.05

0.00

0.00

0.00

0.00

0.00

0.000.00

0.00

−0.05

0.00

−0.10

−
0.05

0.00

0.00
0.000.00

0.00

0.00

0.00

0.000.00

0.00

0.00

0.2

0.4

0.6

0.8

1.0

−0.05

0.00
0.00

0.00

0.00

0.00

0.00

0.00

0.2

0.4

0.6

0.8

1.0

−0.10

−0.05

−0.05

0.00 0.00

0.00

0.00

d
=

5

−0.10

−
0
.0

5

−
0
.0

5

0.00

−0.10−0.05

0.00

0.000.00

0.00

0.00
0.00

0.00

0.00 −0.10
−0.05

−0.05

−0.05

0.00

0.00

0.00
0.00

0.00

−0.15

−0.10

−0.10

−0.05

0.00

−0.10−0.05

0.00

0.00
0.00

0.00
0.00

−0.10

−0.05
0.00

0.00

0.00
−0.10

−
0
.0

5

−0.05

0.00

0.05
−0.10

−0.05
0.00

0.00

−0.10
−0.05

−0.05

0.00

0.00

0.00

P−SkNN

d
=

1
0

0.2 0.4 0.6 0.8 1.0

−0.10

−
0
.0

5

−
0
.0

5

0.00

0.00

P−SSVM

−0.15

−0.10

−0.10

−
0
.0

5 −0.05

0.00

P−SC45

0.2 0.4 0.6 0.8 1.0

−0.10

−0.05

0.00

0.00
0.00

0.00

0.00

P−EkNN

−
0.05

−0.05

0.00

0.00

0.00

P−ESVM

0.2 0.4 0.6 0.8 1.0

−0.20

−0.20

−0.20

−
0
.1

5

−0.15

−0.10

−0.05

0.00

0.00

0.00

P−EC45

−0.15

−0.10

−0.05

−0.05

0.00

0.00

0.00

P−CkNN

0.2 0.4 0.6 0.8 1.0

−0.10

−0.05

−0.05

0.00

0.00

0.00

P−CSVM

0.2

0.4

0.6

0.8

1.0

−
0
.1

5

−
0
.1

0

−0.10
−0.05

0.00

0.05

P−C50

−0.25 −0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

Shifting parameter (δ)

G
lo

b
a
l
im

b
a
la

n
c
e
 r

a
ti
o
 (

q
)

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.
00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

d
=

2

0.00

0.00

0.00

0.000.00

0.00

0.00
0.00

0.00

0.00

0.00

0.2 0.4 0.6 0.8 1.0

0.00

0.0
0

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00
0.00

0.00

0.00
0.00

0.00

0.000
.0

0

0.2 0.4 0.6 0.8 1.0

0.00 0.00

0.00

0.00

0.00 0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00
0.00

0.2 0.4 0.6 0.8 1.0

0.00
0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

0.00

0.00

0.00

0.00

0.00

0.00
0.00

0.00

0.00
0.00

0.00
0.00

0.00

0.00

0.00

0.00

0.00

0.2 0.4 0.6 0.8 1.0

0.00

0.00
0.00

0.00

0.00

0.00

0.00

0.00
0.00

0.00

0.00

d
=

3

−0.05

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.000
.00

0.00

0
.0

0

−0.05
0.00

0.00

0.00 0.00

0.000.00

0.00

0.00

0.00
0.00

0.00

0.00

0.00

−0.05

0.00

0.000.00

0
.0

0

0.00

0.000.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

−0.05

0.00

0.00
0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

−0.05

0.00

0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.000.00

0.00

0.00

0.00

0.00

0
.0

0
0.00

0.2

0.4

0.6

0.8

1.0

−0.05

0.00
0.00

0.00

0.00

0.00

0.00

0.00

0.0
0

0.2

0.4

0.6

0.8

1.0

−0.05

0.00

0.00

0.
00

d
=

5

−0.05

0.00 −0.05

0
.0

0

0.00
0.00

0.00
0.00

0.
00

−0.05

0.00
0.

00

−0.05

0.00

0.000.00

−0.05

0
.0

0

0.00

0.00

0.
00

−0.05

0.00

0.00

0
.0

0

−0.05

0.
00

−0.05

0.00 0.00 0
.0

0

−0.05

0.00

0.00

0.00

RW−SkNN

d
=

1
0

0.2 0.4 0.6 0.8 1.0

−0.05

0.00

0.00

RW−SSVM

−0.05

−0.05

−0.05
0
.0

0

RW−SC45

0.2 0.4 0.6 0.8 1.0

−0.05

0.00

0.00
0.00

0.05

0.05

0.
05

0.05

RW−EkNN

0.00

0.00
0.00

0.05

RW−ESVM

0.2 0.4 0.6 0.8 1.0

−0.15
−0.10

−
0
.0

5

0.00

0.00

RW−EC45

−0.05

0.00
0.00

RW−CkNN

0.2 0.4 0.6 0.8 1.0

−0.05

0.00
0.00

0.00

0.00

RW−CSVM

0.2

0.4

0.6

0.8

1.0

−0.10
−0.10

−
0
.0

5

0
.0

0

0.05

RW−C50

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

Figure 12: Differences between the AUCs of CCCD and other classifiers (see Figure 9 for de-
tails). P-CCCD in (top) and RW-CCCD in (bottom). Here, resampling scheme
strong classifiers are coded with “S”, ensemble schemes with “E”, and cost sensi-
tive schemes with “C”. For example, “SkNN” refers to the resampling schemed
k-NN classifier. In this two-class setting, classes are drawn from FX = U(0, 1)d

and FY = U(δ, 1 + δ)d where d = 2, 3, 5, 10, q, δ = 0.05, 0.1, · · · , 0.95, 1.00 with
n = 400 and m = qn.

26

Classification of Imbalanced Data with a Geometric Digraph Family

Training Testing

Time Space Time Space

P-CCCD O(N2d) O(N2) O(Nd) O(Nd)
RW-CCCD O(N3 +N2d) O(N2) O(Nd) O(Nd)
k-NN · · · · · · O(Nd) O(Nd)
SVM O(N3 +N2d) O(N2) O(Nd) O(Nd)

C45-LNP O(Nd2) O(Nd) O(d) O(2d)

Table 3: Training and testing space and time complexities of the weak classifiers.

5.3 Complexity Analysis of the Classifiers

In Table 3, we compare training and testing time and space complexities of P-CCCDs, RW-
CCCDs, k-NN, SVM and C4.5 classifiers. Let N = n+m be the size of training data set.
C4.5 is the fastest among all classifiers and requires the least space. However, unpruned
C4.5 constitute a tree with its space complexity increasing exponentially on d since the
data set is divided into at most two for all dimensions. The remaining classifiers are all
instance based learning methods which depend on a matrix of distances between the points
of training data set. Hence, their space complexity is at least O(N2) and they run in at
least O(N2d) time. Both SVM and RW-CCCD classifiers run in O(N3) time for d < N ,
and P-CCCD runs in O(N2d) time. Minimum dominating set problem of P-CCCDs are
polynomial time reducible to minimum set cover problems, and hence they run in O(N2)
time in the worst case but they require the computation of the distance matrix which takes
the most time. However, in RW-CCCDs, covering balls are re-defined each time a new point
is added to the prototype set. As a result, this operation requires an additional sweep on
the training set on each iteration which makes RW-CCCD run in O(N3) time, for d < n.
For SVM, the training time of usual optimization algorithms is O(N3) for d < n. However,
it is possible to reduce the complexity to O(N2.3) with sequential minimal optimization
(SMO) method (Chang and Lin, 2011).

Note that, k-NN does not require any training time or space, and should use the entire
training data set to classify the test data set. However, CCCD and SVM classifiers reduce
the training data set by means of prototype sets (minimum dominating sets in CCCD and
support vectors in SVMs) even though their worst case testing space complexity is O(Nd).
The entire training data set could be chosen as the prototype set for some cases, but we show
that the data set is substantially reduced when the classes are imbalanced. In Figure 13,
we compare the sizes of the set of prototypes in RW-CCCDs and the set of support vectors
in SVM and CSVM classifiers. We consider the simulation settings with two classes for
FX = U(0, 1)d and FY = U(δ, 1 + δ)d, δ, q = 0.1, 0.4, 0.7, 1.0, d = 2, 3, 5, 10, n = 400 and
m = qn.

In Figure 13, the number of both support vectors and prototypes decrease with increas-
ing δ. The prototype set heavily depends on the overlapping ratio between class supports.
Undoubtedly, when points of either class are further away from each other, covering balls
get bigger for CCCDs, and the separating hyperplane requires less support vectors. On the
other hand, observe that the number of support vectors are much higher than the number
of prototypes of RW-CCCDs. The number of support vectors decreases with decreasing q.

27

Manukyan and Ceyhan

The more imbalanced the data set, the fewer support vectors are generated. But in any
case, RW-CCCDs still reduce the training data set more than SVMs. In Figure 14, we
compare the number of prototypes in both CCCD classifier and the size of the C4.5 and
C5.0 classifier trees for the same simulation setting.

The number of prototypes in P-CCCDs are, in general, much higher than that of other
classifiers. Also, notice that the less imbalanced the classes are, the less the data reduction
in P-CCCDs. However, there is not much change in the number in RW-CCCDs, C4.5 and
C5.0, and since the size of trees grows exponentially on d, the size of trees get bigger than
the size of CCCDs for some substantially high δ and d. Moreover, the size of trees in C5.0
is considerably less than that in C4.5 (Kuhn and Johnson, 2013). Although the number of
prototypes are much higher than the size of trees in highly overlapped and imbalanced cases,
RW-CCCDs reduce the training set substantially more than C4.5 and C5.0 in moderately
imbalanced and moderately overlapped higher dimensional settings.

5.4 Real Data Examples

In this section, we compare the performance of CCCD classifiers and all other weak and
strong classifiers on several data sets from UC Irvine (UCI) Machine Learning and KEEL
repositories (Bache and Lichman, 2013; Alcalá-Fdez et al., 2011). To test the difference
between the AUC of classifiers, we employ the 5x2 cross validation (CV) paired t-test (see
Dietterich, 1998) and the combined 5x2 CV F -test (see Alpaydın, 1999). The 5x2 CV test
has been devised by Dietterich (1998) and found to be the most powerful test among those
with acceptable type-I error. However, the test statistics of 5x2 t-tests depend on which one
of the ten folds is used. Hence, Alpaydın (1999) offered a combined 5x2 CV F -test which
works as an omnibus test for all ten possible 5x2 t-tests (for each five repetitions there are
two folds, hence ten folds in total). Basically, if a majority of ten 5x2 t-tests suggests that
two classifiers are significantly different in terms of performance, the F -test also suggests
a significant difference. Hence, an F -test with high p-value suggests that some of the ten
t-tests fail to have low p-values.

We also provide the overlapping ratios and imbalance levels of these data sets. In a
simulation study such as the one in Section 5.1, we have control on the overlapping region
of two classes since we can choose the supports of the classes, hence their overlapping region
is exactly known. However, in real data sets where the support of classes are neither defined
nor available, we need methods to estimate the supports and hence estimate the overlapping
ratios for the two classes. We employ the support vector data description (SVDD) method
of Tax and Duin (2004) for this purpose. The method finds a description (or a region)
of a data set, which covers a desired percentage of the points. SVDDs are also used in
novelty or outlier detection. It has been inspired by the SVM classifiers and is based on
defining a sphere around the data set. Similar to SVM, kernel functions can be employed
to define more relaxed regions. SVDD is also a one-class learning method where the goal is
to decide if a new point belongs to this particular class or not (Juszczak et al., 2002). By
using SVDD approach, Xiong et al. (2010) found the SVDD regions of each class and its
overlapping region. We also use SVDD to find the overlapping region E of each pair and
report on the imbalance ratio with respect to E. The overlapping ratio is the percentage
of points from both classes that reside in A. We use the Ddtools toolbox (Tax, 2014) of

28

Classification of Imbalanced Data with a Geometric Digraph Family

S
iz

e

0
2

0
0

4
0
0

6
0

0

q=0.1 q=0.4 q=0.7 q=1.0

d
=

2

0
1
0

0
2
0

0
3
0

0

0
5
0

1
0

0
1
5

0

q=0.1 q=0.4 q=0.7 q=1.0

0
3
0

6
0

9
0

0
2

0
0

4
0

0
6

0
0

d
=

3

0
1

0
0

2
0
0

3
0
0

0
5

0
1

0
0

1
5
0

0
3
0

6
0

9
0

0
2
0

0
4

0
0

6
0
0

d
=

5

0
1

0
0

2
0
0

3
0

0

0
5

0
1
0
0

1
5

0

0
3

0
6

0
9

0

0
2
0
0

4
0
0

6
0
0

δ = 0.1

d
=

1
0

q=0.1 q=0.4 q=0.7 q=1.0

0
1
0
0

2
0
0

3
0
0

δ = 0.4

0
5
0

1
0
0

1
5
0

δ = 0.7

q=0.1 q=0.4 q=0.7 q=1.0

0
3
0

6
0

9
0

δ = 1

RW−CCCD SVM CSVM

Figure 13: Comparison of the sizes of reduced data sets in RW-CCCDs, SVM and CSVM
classifiers. Here “size” refers to the number of covering balls in RW-CCCD or the
number of support vectors in SVM classifiers. In this two-class setting, classes
are drawn from FX = U(0, 1)d and FY = U(δ, 1+δ)d where δ, q = 0.1, 0.4, 0.7, 1.0
with n = 400 and m = qn.

29

Manukyan and Ceyhan

S
iz

e

0
1
0

0
2
0

0
3
0

0

q=0.1 q=0.4 q=0.7 q=1.0

d
=

2

0
5
0

1
0
0

1
5

0

q=0.1 q=0.4 q=0.7 q=1.0

0
1

0
2

0
3

0
4

0

q=0.1 q=0.4 q=0.7 q=1.0

0
2

4

q=0.1 q=0.4 q=0.7 q=1.0

0
1

0
0

2
0
0

3
0
0

d
=

3

0
4

0
8
0

1
2

0

0
5

1
0

1
5

0
2

4

0
1

0
0

2
0

0
3

0
0

d
=

5

0
3

0
6

0
9
0

0
5

1
0

1
5

0
2

4

0
1
0
0

2
0

0
3
0

0

δ = 0.1

d
=

1
0

0
1

0
2

0
3
0

4
0

δ = 0.4

0
5

1
0

1
5

δ = 0.7

0
2

4

δ = 1

RW−CCCD P−CCCD C4.5 C5.0

Figure 14: Comparison of the sizes of reduced data sets in CCCDs and C4.5. Here “size”
refers to the number of covering balls in CCCDs or the number of nodes in the
decision tree of C4.5 classifiers. The simulation setting is same as in Figure 13.

30

Classification of Imbalanced Data with a Geometric Digraph Family

Data q = m/n N d σ = 2 σ = 3 σ = 4 σ = 5 σ = 6 σ = 7 σ = 8 σ = 9 σ = 10

Sonar 1.14 208 61
OR 4% 19% 23% 25% 26% 26% 27% 28% 28%
IR 1.22 1.04 0.96 0.93 0.96 0.97 0.97 0.90 0.90

Ionosphere 1.78 351 35
OR 25% 36% 66% 69% 66% 79% 61% 76% 81%
IR 90.00 62.50 8.70 6.20 5.44 3.67 5.02 3.98 3.31

Segment0 6.02 2308 20
OR 0% 0% 0% 0% 0% 0% 0% 0% 0%
IR NA NA NA NA NA NA NA NA NA

Page-Blocks0 8.79 5472 11
OR 0.6% 0.6% 0.6% 0.8% 0.9% 1% 1% 1% 1%
IR 0.47 0.22 0.22 0.25 0.40 0.39 0.43 0.54 0.63

Vowel0 9.98 988 14
OR 0% 0% 0% 0% 0% 0% 0% 0% 0%
IR NA NA NA NA NA NA NA NA NA

Shuttle0vs4 13.87 1829 10
OR 0% 0% 0% 0% 0% 0% 0% 0% 0%
IR NA NA NA NA NA NA NA NA NA

Yeast4 28.10 1484 9
OR 45% 27% 39% 37% 26% 26% 26% 26% 31%
IR 18.97 99.75 18.50 18.24 392.00 390.00 391.00 390.00 41.18

Yeast1289vs7 30.70 947 9
OR 45% 44% 69% 43% 30% 29% 29% 29% 29%
IR 24.47 23.76 24.34 23.00 47.33 45.83 45.83 45.66 45.50

Yeast5 32.70 1484 9
OR 6% 3% 0% 0% 0% 0% 6% 7% 0.1%
IR NA 1.15 NA NA NA NA NA NA NA

Yeast6 41.40 1484 9
OR 30% 46% 42% 31% 30% 30% 10% 13% 13%
IR 64.14 21.03 27.59 76.33 73.66 73.66 38.25 63.00 63.00

Abalone19 129.40 4174 9
OR 25% 20% 15% 14% 13% 12% 12% 11% 11%
IR 104.30 104.30 163.75 197.33 278.00 262.50 253.00 244.00 234.00

Table 4: Overlapping ratios and (local) imbalance ratios in the overlapping region of data
sets. “IR” stands for the imbalance ratio in the overlapping region and “OR”
stands for the overlapping ratio which is the percentage of points from both classes
residing in the overlapping region. IR=“NA” indicates that one of the classes has
no members in the intersections of SVDD regions of classes.

MATLAB environment to produce the SVDDs of classes. Our choice of the kernel is the
same as we have used with SVM classifiers in this study, the radial basis (i.e., Gaussian)
kernel; for consistency. However, the selection of σ in the kernel is crucial for the SVDD
region.

In Table 4, we present the overlapping ratios and the imbalance in the overlapping
areas of all data sets for σ = 2, 3, · · · , 10. Although the value of σ produces different
overlapping ratios, it is apparent that classes of data sets Ionosphere, Abalone19, Yeast4,
Yeast6 and Yeast1289vs7 have more overlap than others, and these overlapping data sets
have substantial local class imbalance in their respective overlapping regions. Other data
sets have almost no overlapping nor imbalance in the overlapping regions even though their
classes are globally imbalanced. One of these data sets is Yeast5 which has a imbalance
ratio of q = 32.70 but has no imbalance in the small overlapping region.

In Table 5, we give the average AUC measures and their standard deviations of all
CCCD-based and other classifiers according to the 5x2 CV scheme for the data sets. All
other classifiers, weak or strong, have been two-way tested with 5x2 CV F -test against both
RW-CCCD and P-CCCD classifiers. Their p-values are also provided in Table 5. For each
of five repetitions, we divide the data into two folds. The AUC of fold 1 is given by using
fold 1 as a training set and fold 2 as the test set. For fold 2, the process is similar. We
repeated these experiments five times for all three classifiers. Looking at results from 11
data sets, RW-CCCD usually performs better than P-CCCD classifiers, and in addition,

31

Manukyan and Ceyhan

ensemble based classifiers perform the best in general. Moreover, ensemble classifiers seem
to perform better than RW-CCCDs but this difference is usually not significant, meaning
RW-CCCDs perform comparable to ensemble classifiers in more than few folds of all ten
folds. For example, compared to ensemble methods, RW-CCCD has nearly 0.07 less AUC in
Yeast5, 0.02 less AUC in Yeast6, and 0.1 less AUC in Yeast1289vs7 data set. The difference
is significant, however, with the data set Abalone19 with a level of < 0.03. Although RW-
CCCD achieves an average AUC value 0.6, ensemble classifiers achieve over 0.7. On the
other hand, there is no significant difference between AUCs of RW-CCCD and ensembles
in other highly overlapped and locally imbalanced data sets. On these data sets, RW-
CCCD have significantly more AUC than weak classifiers and have AUC comparable to
strong classifiers. Thus, these results from real data sets seem to resonate with the results
from our simulations and further support the robustness of CCCD classifiers to the class
imbalance problem.

6. Summary and Discussion

We assess the classification performance of various classifiers such as RW-CCCD, pure-
CCCD, k-NN, SVM and C4.5 classifiers and their variants when class imbalance occurs,
and we illustrate the robustness of CCCD classifiers to the class imbalance in data sets.
This imbalance often occurs in real life data sets where, in two-class settings, minority class
(the class with fewer number of observations) is usually dwarfed by the majority class.
Class imbalances hinder the performance of many classification algorithms. We studied the
performance of CCCD classifiers under class imbalance problem by first simulating a two-
class setting similar to the one used in DeVinney (2003). In this setting, the support of one
class is entirely embedded in the support of the other. Drawing equal number of observations
from both class supports results in an imbalance between two classes with respect to their
overlapping region, called local (or restricted) class imbalance. This difference in the class
sizes was also the case in the example of DeVinney (2003), and it is the reason that CCCD
classifiers show better results than the k-NN classifier. We show that P-CCCD classifiers
with lower τ values tend to perform better than the ones with higher τ values. This is merely
a result of balls with τ = 0 representing the local density of the target class points better.
Similarly, the RW-CCCD classifiers with lower e values are better when the dimensionality
is low and the class sizes are high. This might indicate that the denser the data set in
Rd, the less useful the scores Tx. However, fully utilizing the scores usually increases the
classification performance.

Analysis of both simulated and real data sets indicate that both CCCD classifiers show
robustness to the class imbalance problem. We demonstrated this by studying the effects of
the class overlapping problem together with the class imbalance problem. In fact, there are
studies in the literature focusing on the performance of classification methods when class
overlapping and class imbalance problems occur simultaneously (Prati et al., 2004; Denil
and Trappenberg, 2010). Overlapping of classes is an important factor in the classification
of imbalanced data sets; that is, it drastically affects the classification performance of most
algorithms. When classes are both imbalanced and overlapping, performance of k-NN,
SVM and C4.5 classifiers deteriorate whereas CCCD classifiers are not affected as severely
as these methods. We use two alternatives of C4.5 classifiers where we prune the decision

32

Classification of Imbalanced Data with a Geometric Digraph Family

Io
no

sp
he

re
So

na
r

Ye
as

t6
Ye

as
t5

Ye
as

t4
Ye

as
t1

28
9v

s7
Vo

w
el

0
Sh

ut
tle

0v
s4

A
ba

lo
ne

19
Se

gm
en

t0
Pa

ge
-B

lo
ck

s0

RW
-C

C
C

D
A

U
C

0.
91

7∓
0.

02
3

0.
72

2∓
0.

05
0

0.
86

6∓
0.

05
1

0.
89

8∓
0.

06
3

0.
80

7∓
0.

04
8

0.
64

3∓
0.

05
7

0.
87

7∓
0.

04
6

0.
99

6∓
0.

00
3

0.
60

3∓
0.

06
5

0.
89

5∓
0.

01
1

0.
87

5∓
0.

01
9

P
-C

C
C

D
A

U
C

0.
93

4∓
0.

03
2

0.
80

5∓
0.

04
5

0.
75

5∓
0.

05
3

0.
79

3∓
0.

09
4

0.
60

2∓
0.

05
1

0.
55

6∓
0.

03
8

0.
95

8∓
0.

02
5

0.
98

8∓
0.

01
6

0.
50

6∓
0.

01
9

0.
95

7∓
0.

01
0

0.
86

9∓
0.

00
9

k-
N

N
A

U
C

0.
80

3∓
0.

01
9

0.
80

4∓
0.

02
7

0.
78

6∓
0.

03
2

0.
83

9∓
0.

06
3

0.
61

9∓
0.

03
8

0.
56

2∓
0.

04
0.

97
1∓

0.
03

1
0.

99
6∓

0.
00

4
0.

51
2∓

0.
01

5
0.

98
8∓

0.
00

4
0.

86
3∓

0.
00

9
p-

va
lu

e
(v

s
RW

)
0.

00
0

0.
10

7
0.

07
2

0.
57

3
0.

00
9

0.
08

7
0.

03
7

0.
69

3
0.

10
4

0.
00

0
0.

60
4

p-
va

lu
e

(v
s

P
)

0.
00

5
0.

47
3

0.
55

2
0.

20
9

0.
65

0
0.

17
7

0.
50

4
0.

53
4

0.
73

5
0.

02
6

0.
60

0

SV
M

A
U

C
0.

94
9∓

0.
01

0
0.

71
9∓

0.
05

7
0.

71
0∓

0.
04

5
0.

74
1∓

0.
06

9
0.

52
7∓

0.
02

4
0.

50
7∓

0.
01

4
0.

95
6∓

0.
03

9
0.

98
4∓

0.
01

2
0.

50
0∓

0.
00

0
0.

56
4∓

0.
00

6
0.

90
1∓

0.
01

3
p-

va
lu

e
(v

s
RW

)
0.

08
8

0.
76

3
0.

04
3

0.
09

6
0.

00
2

0.
04

7
0.

09
5

0.
45

9
0.

10
1

0.
00

0
0.

24
9

p-
va

lu
e

(v
s

P
)

0.
58

2
0.

09
1

0.
08

6
0.

46
7

0.
12

9
0.

08
4

0.
70

0
0.

63
2

0.
53

5
0.

00
0

0.
01

6

C
4.

5
A

U
C

0.
85

1∓
0.

02
4

0.
71

2∓
0.

04
9

0.
74

2∓
0.

04
8

0.
80

3∓
0.

07
5

0.
61

3∓
0.

05
7

0.
57

0∓
0.

04
3

0.
94

8∓
0.

03
2

0.
99

9∓
0.

00
1

0.
50

3∓
0.

00
9

0.
98

2∓
0.

00
4

0.
91

7∓
0.

01
2

p-
va

lu
e

(v
s

RW
)

0.
00

8
0.

74
7

0.
01

5
0.

42
9

0.
08

4
0.

27
0

0.
09

0
0.

24
2

0.
08

8
0.

00
0

0.
22

9
p-

va
lu

e
(v

s
P

)
0.

03
9

0.
35

8
0.

63
4

0.
73

4
0.

81
9

0.
50

8
0.

13
7

0.
53

3
0.

53
5

0.
10

0
0.

02
0

Sk
-N

N
A

U
C

0.
83

6∓
0.

02
2

0.
73

5∓
0.

07
3

0.
87

7∓
0.

04
2

0.
96

9∓
0.

01
5

0.
80

7∓
0.

05
0.

66
7∓

0.
04

0.
94

2∓
0.

04
0.

99
8∓

0.
00

1
0.

56
1∓

0.
02

4
0.

98
∓0

.0
05

0.
90

7∓
0.

00
9

p-
va

lu
e

(v
s

RW
)

0.
00

8
0.

17
2

0.
35

0
0.

40
2

0.
67

3
0.

73
5

0.
33

0
0.

45
8

0.
42

4
0.

00
0

0.
05

6
p-

va
lu

e
(v

s
P

)
0.

03
9

0.
37

4
0.

16
5

0.
06

3
0.

03
6

0.
00

6
0.

60
2

0.
57

1
0.

16
7

0.
12

1
0.

01
5

SS
V

M
A

U
C

0.
94

9∓
0.

01
4

0.
63

2∓
0.

05
4

0.
86

5∓
0.

04
2

0.
94

6∓
0.

02
5

0.
80

0∓
0.

03
1

0.
68

7∓
0.

04
7

0.
98

4∓
0.

02
3

0.
99

8∓
0.

00
1

0.
52

5∓
0.

01
7

0.
98

7∓
0.

00
4

0.
90

5∓
0.

01
1

p-
va

lu
e

(v
s

RW
)

0.
10

6
0.

00
8

0.
66

4
0.

47
7

0.
66

7
0.

31
2

0.
01

2
0.

32
4

0.
16

4
0.

00
0

0.
17

6
p-

va
lu

e
(v

s
P

)
0.

59
2

0.
03

1
0.

27
3

0.
12

0
0.

01
7

0.
05

5
0.

16
0

0.
56

7
0.

39
1

0.
03

1
0.

00
2

SC
4.

5
A

U
C

0.
86

7∓
0.

01
6

0.
68

6∓
0.

05
0

0.
76

0∓
0.

07
5

0.
87

2∓
0.

07
0

0.
68

8∓
0.

07
3

0.
60

5∓
0.

06
0

0.
94

2∓
0.

02
5

0.
99

7∓
0.

00
2

0.
50

0∓
0.

00
9

0.
98

2∓
0.

00
5

0.
92

2∓
0.

01
9

p-
va

lu
e

(v
s

RW
)

0.
06

6
0.

45
0

0.
07

4
0.

57
2

0.
21

6
0.

22
9

0.
20

3
0.

59
0

0.
08

6
0.

00
0

0.
02

7
p-

va
lu

e
(v

s
P

)
0.

14
1

0.
16

5
0.

55
9

0.
11

6
0.

47
2

0.
33

4
0.

61
6

0.
64

2
0.

50
9

0.
08

8
0.

00
5

E
k-

N
N

A
U

C
0.

85
6∓

0.
02

5
0.

81
3∓

0.
02

8
0.

88
9∓

0.
04

3
0.

96
4∓

0.
00

4
0.

85
7∓

0.
02

4
0.

75
5∓

0.
04

0
0.

96
0∓

0.
00

8
0.

99
6∓

0.
00

4
0.

73
1∓

0.
04

1
0.

95
5∓

0.
00

6
0.

91
3∓

0.
00

6
p-

va
lu

e
(v

s
RW

)
0.

01
9

0.
09

0
0.

49
4

0.
37

9
0.

26
7

0.
10

1
0.

09
2

0.
69

3
0.

00
7

0.
00

0
0.

06
0

p-
va

lu
e

(v
s

P
)

0.
06

9
0.

32
0

0.
10

8
0.

07
7

0.
00

5
0.

00
0

0.
63

8
0.

53
4

0.
00

6
0.

78
7

0.
00

1

E
SV

M
A

U
C

0.
94

8∓
0.

00
8

0.
78

3∓
0.

04
1

0.
89

6∓
0.

03
7

0.
97

0∓
0.

00
4

0.
86

2∓
0.

02
3

0.
74

9∓
0.

04
7

0.
97

3∓
0.

01
9

0.
99

8∓
0.

00
2

0.
74

4∓
0.

02
6

0.
73

5∓
0.

02
8

0.
95

3∓
0.

00
4

p-
va

lu
e

(v
s

RW
)

0.
13

8
0.

02
7

0.
37

6
0.

33
6

0.
17

5
0.

20
9

0.
02

3
0.

34
7

0.
02

8
0.

00
1

0.
01

1
p-

va
lu

e
(v

s
P

)
0.

66
9

0.
45

4
0.

06
0

0.
07

4
0.

00
4

0.
00

4
0.

31
2

0.
54

6
0.

00
0

0.
00

0
0.

00
1

E
C

4.
5

A
U

C
0.

90
9∓

0.
02

1
0.

80
0∓

0.
03

1
0.

85
8∓

0.
04

3
0.

95
7∓

0.
00

8
0.

83
5∓

0.
04

1
0.

66
2∓

0.
06

6
0.

96
3∓

0.
01

2
1.

00
0∓

0.
00

0
0.

69
4∓

0.
05

4
0.

99
0∓

0.
00

6
0.

95
9∓

0.
00

5
p-

va
lu

e
(v

s
RW

)
0.

39
7

0.
06

8
0.

43
0

0.
39

7
0.

49
4

0.
79

4
0.

10
1

0.
11

2
0.

00
4

0.
00

0
0.

00
8

p-
va

lu
e

(v
s

P
)

0.
41

5
0.

69
1

0.
15

3
0.

08
4

0.
01

8
0.

08
3

0.
55

3
0.

52
9

0.
01

4
0.

01
7

0.
00

1

C
k-

N
N

A
U

C
0.

83
4∓

0.
02

4
0.

80
9∓

0.
02

3
0.

87
4∓

0.
03

9
0.

97
2∓

0.
00

8
0.

81
9∓

0.
02

2
0.

69
2∓

0.
03

6
0.

98
6∓

0.
02

3
0.

99
8∓

0.
00

1
0.

58
3∓

0.
03

9
0.

98
7∓

0.
00

2
0.

88
9∓

0.
01

0
p-

va
lu

e
(v

s
RW

)
0.

00
8

0.
11

0
0.

66
0

0.
33

0
0.

71
6

0.
45

9
0.

00
7

0.
36

6
0.

54
9

0.
00

0
0.

55
2

p-
va

lu
e

(v
s

P
)

0.
04

2
0.

38
2

0.
13

8
0.

06
7

0.
00

6
0.

03
5

0.
03

0
0.

57
3

0.
01

3
0.

03
2

0.
00

8

C
SV

M
A

U
C

0.
95

1∓
0.

01
0

0.
73

5∓
0.

06
2

0.
83

5∓
0.

04
2

0.
94

8∓
0.

02
5

0.
76

6∓
0.

04
5

0.
69

0∓
0.

06
2

0.
98

3∓
0.

02
7

0.
98

4∓
0.

01
2

0.
68

5∓
0.

05
7

0.
59

0∓
0.

01
1

0.
95

3∓
0.

00
6

p-
va

lu
e

(v
s

RW
)

0.
06

8
0.

73
5

0.
56

9
0.

37
0

0.
20

7
0.

63
8

0.
00

9
0.

45
9

0.
25

7
0.

00
0

0.
01

6
p-

va
lu

e
(v

s
P

)
0.

53
2

0.
16

4
0.

40
8

0.
16

4
0.

05
4

0.
14

0
0.

10
9

0.
63

2
0.

04
3

0.
00

0
0.

00
2

C
5.

0
A

U
C

0.
86

5∓
0.

03
8

0.
70

9∓
0.

05
2

0.
80

2∓
0.

02
0

0.
90

5∓
0.

08
5

0.
69

2∓
0.

06
6

0.
61

0∓
0.

06
8

0.
93

9∓
0.

02
2

1.
00

0∓
0.

00
0

0.
52

1∓
0.

03
7

0.
98

7∓
0.

00
6

0.
93

5∓
0.

01
5

p-
va

lu
e

(v
s

RW
)

0.
02

0
0.

68
3

0.
39

5
0.

69
4

0.
21

9
0.

61
4

0.
26

5
0.

11
2

0.
13

2
0.

00
0

0.
02

7
p-

va
lu

e
(v

s
P

)
0.

00
5

0.
34

7
0.

51
4

0.
03

4
0.

43
9

0.
10

9
0.

43
6

0.
52

9
0.

34
2

0.
14

4
0.

00
2

Table 5: Average of AUC values of ten folds, and standard deviations, of CCCD, weak
and strong classifiers for data sets. The p-values of 5x2 CV F -tests show the
results of two-way tests comparing both CCCDs with other classifiers. Some of
best performers are given in bold.

33

Manukyan and Ceyhan

tree in one and do not in the other. It is known for some time that pruning deteriorates
the performance of tree classifiers under class imbalance. Moreover, SVM is robust to
moderately imbalanced class sizes but demonstrates no robustness in highly imbalanced
cases. However, whether the data set is highly or moderately imbalanced, CCCD classifiers
seem to preserve their AUC compared to k-NN, SVM and C4.5 classifiers. Hence, our study
suggests that CCCD classifiers are appealing alternatives when data have class imbalance.
In addition, we mention the effect of the individual class sizes on the class imbalance problem
(Japkowicz and Stephen, 2002). Whatever the ratio between class sizes is, if the minority
class has a substantially high number of points, the effect of imbalances between classes
tend to diminish.

The classifiers k-NN, SVM and C4.5 are referred to as weak classifiers since, by construc-
tion, they are sensitive to imbalances between classes in data sets. In addition, we consider
three distinct families of methods to establish strong classifiers based on weak classifiers,
and compare them with CCCD classifiers. We conduct simulation studies to determine how
the classification performance jointly depends on both (global) class imbalance and class
overlapping, parameterized as q and δ, respectively. Finally, we apply all these classifiers
on several UCI and KEEL data sets. By using the SVDD method of Tax and Duin (2004),
we estimated the overlapping ratios of all these data sets. We show that CCCD classifiers
outperform or perform comparable to k-NN, SVM and C4.5 classifiers for some overlapping
and imbalance ratios in both simulated and real data sets. In particular, CCCDs are better
than SVM classifiers in highly imbalanced cases. The effect of high class imbalance on
SVM classifier is also studied in Akbani et al. (2004) and Raskutti and Kowalczyk (2004).
However, when no imbalance occurs between classes, CCCD classifiers usually show either
comparable or slightly worse performance than the other classifiers. As for strong classifiers,
we employ the most successful methods from three families of schemes where EasyEnsemble
and SMOTE+ENN methods are among them. In our simulation studies, we demonstrated
that CCCD classifiers, especially RW-CCCDs, work well compared to these strong classi-
fiers when there are considerable overlap and the high (local) imbalance between classes.
However, these methods are slightly better than RW-CCCDs as these strong classifiers are
the best performing ones among their respective families (Batista et al., 2004; López et al.,
2013). Nevertheless, RW-CCCDs have still high performance compared to these classifiers
with additional increase in testing speed.

We also investigate the performance of CCCD classifiers under different conditions.
Specifically, in two different experiments, we simulate two classes where (i) classes are im-
balanced but supports are not overlapping (well separated) and (ii) classes are balanced
and supports are overlapping with increasing dimensionality. P-CCCD classifiers are better
than RW-CCCD classifiers in experiment (i). Both CCCD classifiers mostly outperform
k-NN and SVM classifiers when classes are imbalanced and not overlapping, however RW-
CCCD classifiers outperform these classifiers only when dimensionality is sufficiently high.
In experiment (ii), the classification performance of CCCD classifiers slightly degrade com-
pared to k-NN and SVM classifiers, especially with increasing d. Among CCCD classifiers,
random walk covers appear to be better when classes are both overlapping and imbalanced,
however our results suggest the use of pure covers when classes are imbalanced and well
separated (i.e., not overlapping). In fact, class supports are often overlapping in real life
data sets, hence RW-CCCD classifiers seem to be more appealing in practice.

34

Classification of Imbalanced Data with a Geometric Digraph Family

In practice, classifiers based on CCCD classifiers resemble prototype selection methods.
CCCDs balance the class sizes by defining balls that catch surrounding points of the same
class, and discard these points from the training set. The resulting data set is composed of
the centers of these balls and associated radii which are used in scaled dissimilarity measures.
Although, CCCD classifiers remove substantial amount of observations from the majority
class, they preserve (most of) the information with the radii. The bigger the radius, the
more likely that the balls of CCCD classifiers contain more points. The radii could be
considered as an indicator of the local density of the target class. The real advantage of
CCCD classifiers are these prototype sets which are of (approximately) minimum cardinality,
although training time and space of P-CCCDs and RW-CCCDs may be considerably high.
However, the number of points in the prototype set is substantially low, and hence testing
speed is increased. In some cases, RW-CCCDs provide classifiers with the least testing space
complexity. Only the decision tree based classifiers, C4.5 and C5.0, achieve comparable or
slightly more reduction to RW-CCCDs. However, with increasing dimensionality, sizes of
these trees grow exponentially, making them less appealing than RW-CCCDs in the sense
of classification space complexity. Hence, CCCDs preserve important information regarding
the data sets while substantially increasing the testing speed. In literature, many classifiers
have been devised to preserve the information on the deleted majority class points, however
they are all ensemble based classifiers which substantially increase both training and testing
time complexities. In that regard, CCCDs offer a novel approach to this particular problem.

Eveland et al. (2005) modified RW-CCCD classifiers as to increase the speed of the face
detection in which imbalances between classes occur naturally. They did only refer to the
real life applications which consist of class imbalances. They did not, however, investigate
the relationship between class imbalance and overlapping problems as thoroughly as our
study does. On the other hand, establishing class covers with Euclidean balls raise the
possibility of using different regions (the regions are Euclidean hyperballs around target
class points in CCCD) to balance the data and, thus, construct non-parametric classifiers
with more classification performance. Along this line, CCCDs can be generalized using
proximity maps (Jaromczyk and Toussaint, 1992). For example, Ceyhan (2005) defined
proximity catch digraphs (PCDs) that are generalized versions of CCCDs. Ceyhan (2005)
has introduced three families of PCDs and used them to test spatial data patterns of segre-
gation and association (see Ceyhan and Priebe, 2005; Ceyhan et al., 2006, 2007). PCDs can
also be used to derive new graph-based classifiers which are potentially robust to the class
imbalance problem. The study of their properties and performance is a topic of ongoing
research by the authors.

Acknowledgments

Most of the Monte Carlo simulations presented in this article were executed at Koç Uni-
versity High Performance Computing Laboratory. This research was supported by the Eu-
ropean Commission under the Marie Curie International Outgoing Fellowship Programme
via Project # 329370 titled PRinHDD.

35

Manukyan and Ceyhan

References

R. Akbani, S. Kwek, and N. Japkowicz. Applying support vector machines to imbalanced
datasets. In Proceedings of 15th European Conference on Machine Learning, pages 39–50,
Pisa, Italy, 2004.

J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, and S. Garc´a. KEEL data-mining
software tool: Data set repository, integration of algorithms and experimental analysis
framework. Multiple-Valued Logic and Soft Computing, 17(2-3):255–287, 2011.

E. Alpaydın. Combined 5×2 cv F test for comparing supervised classification learning
algorithms. Neural Computation, 11(8):1885–1892, 1999.

K. Bache and M. Lichman. UCI machine learning repository, 2013. URL http://archive.

ics.uci.edu/ml.

R. Barandela, J. S. Sánchez, V. Garcıa, and E. Rangel. Strategies for learning in class
imbalance problems. Pattern Recognition, 36(3):849–851, 2003.

G. E. Batista, R. C. Prati, and M. C. Monard. A study of the behavior of several methods
for balancing machine learning training data. ACM SIGKDD Explorations Newsletter, 6
(1):20–29, 2004.

G. E. Batista, R. C. Prati, and M. C. Monard. Balancing strategies and class overlapping.
In Proceedings of 6th International Symposium on Intelligent Data Analysis: Advances
in Intelligent Data Analysis VI, pages 24–35, Madrid, Spain, 2005.

S. Bereg, S. Cabello, J. M. Dı́az-Báñez, P. Pérez-Lantero, C. Seara, and I. Ventura. The
class cover problem with boxes. Computational Geometry, 45(7):294–304, 2012.

A. H. Cannon and L. J. Cowen. Approximation algorithms for the class cover problem.
Annals of Mathematics and Artificial Intelligence, 40(3):215–223, 2004.

E. Ceyhan. An investigation of proximity catch digraphs in Delaunay tessellations. PhD
thesis, Johns Hopkins University, Baltimore, MD, USA, 2005.

E. Ceyhan and C. E. Priebe. The use of domination number of a random proximity catch
digraph for testing spatial patterns of segregation and association. Statistics & Probability
Letters, 73(1):37–50, 2005.

E. Ceyhan, C. E. Priebe, and J. C. Wierman. Relative density of the random r-factor
proximity catch digraph for testing spatial patterns of segregation and association. Com-
putational Statistics & Data Analysis, 50(8):1925–1964, 2006.

E. Ceyhan, C. E. Priebe, and D. J. Marchette. A new family of random graphs for testing
spatial segregation. Canadian Journal of Statistics, 35(1):27–50, 2007.

C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

36

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Classification of Imbalanced Data with a Geometric Digraph Family

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. SMOTE: synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research, 16(1):321–
357, 2002.

N. V. Chawla, N. Japkowicz, and A. Kotcz. Editorial: Special issue on learning from
imbalanced data sets. ACM SIGKDD Explorations Newsletter, 6(1):1–6, 2004.

V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics of Operations
Research, 4(3):233–235, 1979.

D. A. Cieslak and N. V. Chawla. Learning decision trees for unbalanced data. In Proceedings
of the ECML PKDD 2008 Machine Learning and Knowledge Discovery in Databases:
European Conference, pages 241–256, Antwerp, Belgium, 2008.

T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on
Information Theory, 13(1):21–27, 1967.

M. Denil and T. Trappenberg. Overlap versus imbalance. In Proceedings of the 23rd Cana-
dian Conference on Advances in Artificial Intelligence, pages 220–231, Berlin, Heidelberg,
2010.

J. DeVinney, C. Priebe, D. Marchette, and D. Socolinsky. Random walks and catch digraphs
in classification. In Proceedings of the 34th Symposium on the Interface, Volume 34:
Computing Science and Statistics, Montreal, Quebec, Canada, 2002.

J. G. DeVinney. The class cover problem and its application in pattern recognition. PhD
thesis, Johns Hopkins University, Baltimore, MD, USA, 2003.

T. G. Dietterich. Approximate statistical tests for comparing supervised classification learn-
ing algorithms. Neural Computation, 10(7):1895–1923, 1998.

P. Domingos. MetaCost: A general method for making classifiers cost-sensitive. In Proceed-
ings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’99, pages 155–164, New York, NY, USA, 1999.

C. Drummond, R. C. Holte, et al. C4. 5, class imbalance, and cost sensitivity: why under-
sampling beats over-sampling. In Workshop on Learning from Imbalanced Datasets (II),
Washington DC, USA, 2003.

C. Elkan. The foundations of cost-sensitive learning. In Proceedings of the 17th International
Joint Conference on Artificial Intelligence, pages 973–978, Melbourne, Australia, 2001.

C. K. Eveland, D. A. Socolinsky, C. E. Priebe, and D. J. Marchette. A hierarchical method-
ology for class detection problems with skewed priors. Journal of Classification, 22(1):
17–48, 2005.

M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim. Do we need hundreds
of classifiers to solve real world classification problems. Journal of Machine Learning
Research, 15(1):3133–3181, 2014.

37

Manukyan and Ceyhan

E. Fix and J. L. Hodges. Discriminatory analysis. nonparametric discrimination: Consis-
tency properties. International Statistical Review, 57(3):238–247, 1989.

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and System Sciences, 55(1):119–139,
1997.

M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera. A review on ensem-
bles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches.
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Re-
views, 42(4):463–484, 2012.

V. Garćıa, R. A. Mollineda, and J. S. Sánchez. On the k-NN performance in a challenging
scenario of imbalance and overlapping. Pattern Analysis and Applications, 11(3-4):269–
280, 2008.

H. Han, W.-Y. Wang, and B.-H. Mao. Borderline-SMOTE: A new over-sampling method
in imbalanced data sets learning. In Proceedings of the 2005 International Conference on
Advances in Intelligent Computing - Volume Part I, pages 878–887, Berlin, Heidelberg,
2005.

D. J. Hand and V. Vinciotti. Choosing k for two-class nearest neighbour classifiers with
unbalanced classes. Pattern Recognition Letters, 24(9):1555–1562, 2003.

H. He and E. A. Garcia. Learning from imbalanced data. IEEE Transactions on Knowledge
and Data Engineering, 21(9):1263–1284, 2009.

J. Huang and C. X. Ling. Using AUC and accuracy in evaluating learning algorithms. IEEE
Transactions on Knowledge and Data Engineering, 17(3):299–310, 2005.

N. Japkowicz and S. Stephen. The class imbalance problem: A systematic study. Intelligent
Data Analysis, 6(5):429–449, 2002.

J. W. Jaromczyk and G. T. Toussaint. Relative neighborhood graphs and their relatives.
Proceedings of the IEEE, 80(9):1502–1517, 1992.

T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, and
A. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 169–184.
MIT Press, Cambridge, MA, 1999.

P. Juszczak, D. M. Tax, and R. Duin. Feature scaling in support vector data description. In
Proceedings of 8th Annual Conference of the Advanced School for Computing and Imaging,
pages 95–102, Delft, Netherlands, 2002.

S. Kotsiantis, D. Kanellopoulos, P. Pintelas, et al. Handling imbalanced datasets: A review.
GESTS International Transactions on Computer Science and Engineering, 30(1):25–36,
2006.

M. Kuhn and K. Johnson. Applied Predictive Modeling. Springer, New York, USA, 2013.

38

Classification of Imbalanced Data with a Geometric Digraph Family

C. X. Ling, Q. Yang, J. Wang, and S. Zhang. Decision trees with minimal costs. In
Proceedings of the 21th International Conference on Machine Learning, page 69, Banff,
Alberta, Canada, 2004.

X.-Y. Liu, J. Wu, and Z.-H. Zhou. Exploratory undersampling for class-imbalance learning.
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 39(2):539–
550, 2009.

R. Longadge and S. Dongre. Class imbalance problem in data mining: Review. International
Journal of Computer Science and Network, 2(1):83–87, 2013.

V. López, A. Fernández, S. Garćıa, V. Palade, and F. Herrera. An insight into classifica-
tion with imbalanced data: Empirical results and current trends on using data intrinsic
characteristics. Information Sciences, 250:113–141, 2013.

I. Mani and I. Zhang. kNN approach to unbalanced data distributions: A case study
involving information extraction. In Proceedings of ICML’2003 Workshop on Learning
from Imbalanced Datasets II, Washington, DC, USA, 2003.

D. J. Marchette. Class cover catch digraphs. Wiley Interdisciplinary Reviews: Computa-
tional Statistics, 2(2):171–177, 2010.

D. J. Marchette. cccd: Class Cover Catch Digraphs, 2013. URL http://CRAN.R-project.

org/package=cccd. R package version 1.04.

M. A. Mazurowski, P. A. Habas, J. M. Zurada, J. Y. Lo, J. A. Baker, and G. D. Tourassi.
Training neural network classifiers for medical decision making: The effects of imbalanced
datasets on classification performance. Neural Networks, 21(2):427–436, 2008.

D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch. e1071: Misc Functions
of the Department of Statistics (e1071), TU Wien, 2014. URL http://CRAN.R-project.

org/package=e1071. R package version 1.6-4.

C. Phua, D. Alahakoon, and V. Lee. Minority report in fraud detection: Classification of
skewed data. ACM SIGKDD Explorations Newsletter, 6(1):50–59, 2004.

R. C. Prati, G. E. Batista, and M. C. Monard. Class imbalances versus class overlapping:
An analysis of a learning system behavior. In Proceedings of 3rd Mexican International
Conference on Artificial Intelligence, pages 312–321, Mexico City, Mexico, 2004.

C. E. Priebe, J. G. DeVinney, and D. J. Marchette. On the distribution of the domination
number for random class cover catch digraphs. Statistics & Probability Letters, 55(3):
239–246, 2001.

C. E. Priebe, D. J. Marchette, J. G. DeVinney, and D. A. Socolinsky. Classification using
class cover catch digraphs. Journal of Classification, 20(1):3–23, 2003a.

C. E. Priebe, J. L. Solka, D. J. Marchette, and B. T. Clark. Class cover catch digraphs for
latent class discovery in gene expression monitoring by DNA microarrays. Computational
Statistics & Data Analysis, 43(4):621–632, 2003b.

39

http://CRAN.R-project.org/package=cccd
http://CRAN.R-project.org/package=cccd
http://CRAN.R-project.org/package=e1071
http://CRAN.R-project.org/package=e1071

Manukyan and Ceyhan

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2015. URL http://www.R-project.org/.

B. Raskutti and A. Kowalczyk. Extreme re-balancing for SVMs: A case study. ACM
SIGKDD Explorations Newsletter, 6(1):60–69, 2004.

L. Rokach. Ensemble-based classifiers. Artificial Intelligence Review, 33(1):1–39, 2010.

B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating
the support of a high-dimensional distribution. Neural computation, 13(7):1443–1471,
2001.

D. A. Socolinsky, J. D. Neuheisel, C. E. Priebe, J. G. DeVinney, and D. J. Marchette. Fast
face detection with a boosted CCCD classifier. In Proceedings of the 35th Symposium on
the Interface, Volume 34: Computing Science and Statistics, Salt Lake City, Utah, USA,
2003.

I. Takigawa, M. Kudo, and A. Nakamura. Convex sets as prototypes for classifying patterns.
Engineering Applications of Artificial Intelligence, 22(1):101–108, 2009.

Y. Tang, Y.-Q. Zhang, N. V. Chawla, and S. Krasser. SVMs modeling for highly imbal-
anced classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, 39(1):281–288, 2009.

D. M. Tax. Ddtools, the data description toolbox for MATLAB, July 2014. version 2.1.1.

D. M. Tax and R. P. Duin. Support vector data description. Machine Learning, 54(1):
45–66, 2004.

N. Thai-Nghe, A. Busche, and L. Schmidt-Thieme. Improving academic performance pre-
diction by dealing with class imbalance. In Proceedings of 19th Internation Conferenence
on Intelligent Systems Design and Applications, pages 878–883, Pisa, Italy, 2009.

D. B. West. Introduction to Graph Theory. Prentice Hall, New Jersey, USA, 2 edition, 2000.

D. L. Wilson. Asymptotic properties of nearest neighbor rules using edited data. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-2(3):408–421, July 1972.

X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng,
B. Liu, S. Y. Philip, et al. Top 10 algorithms in data mining. Knowledge and Information
Systems, 14(1):1–37, 2008.

H. Xiong, J. Wu, and L. Liu. Classification with class overlapping: A systematic study.
In Proceedings of the 1st International Conference on e-Business Intelligence, Shanghai,
China, 2010.

B. Zadrozny, J. Langford, and N. Abe. Cost-sensitive learning by cost-proportionate ex-
ample weighting. In Proceedings of 3rd IEEE International Conference on Data Mining,
pages 435–442, Melbourne, Florida, USA, 2003.

40

http://www.R-project.org/

	Introduction
	Methods for Handling Class Imbalance Problem
	Classification with Class Cover Catch Digraphs
	Classification with P-CCCDs
	Classification with Random Walk CCCDs

	Balancing the Class Sizes with CCCDs
	Comparing CCCDs with Other Classifiers
	Monte Carlo Simulation Study with Weak Classifiers
	Empirical Comparison of CCCD-based and Strong Classifiers
	Complexity Analysis of the Classifiers
	Real Data Examples

	Summary and Discussion

