Journal of Machine Learning Research 17 (2016) 1-40 Submitted 11/15; Revised 7/16; Published 8/16

True Online Temporal-Difference Learning

Harm van Seijen'? HARM.VANSEIJEN@MALUUBA.COM
A. Rupam Mahmood? ASHIQUEQUALBERTA.CA
Patrick M. Pilarskif PATRICK.PILARSKIQUALBERTA.CA
Marlos C. Machado' MACHADOQUALBERTA.CA
Richard S. Sutton’ SUTTONQCS.UALBERTA.CA

t Reinforcement Learning and Artificial Intelligence Laboratory
University of Alberta

2-21 Athabasca Hall, Edmonton, AB

Canada, T6G 2E8

t Maluuba Research
2000 Peel Street, Montreal, QC
Canada, H3A 2W5

Editor: George Konidaris

Abstract

The temporal-difference methods TD(A) and Sarsa(\) form a core part of modern rein-
forcement learning. Their appeal comes from their good performance, low computational
cost, and their simple interpretation, given by their forward view. Recently, new versions
of these methods were introduced, called true online TD(A) and true online Sarsa()\), re-
spectively (van Seijen & Sutton, 2014). Algorithmically, these true online methods only
make two small changes to the update rules of the regular methods, and the extra com-
putational cost is negligible in most cases. However, they follow the ideas underlying the
forward view much more closely. In particular, they maintain an exact equivalence with
the forward view at all times, whereas the traditional versions only approximate it for small
step-sizes. We hypothesize that these true online methods not only have better theoretical
properties, but also dominate the regular methods empirically. In this article, we put this
hypothesis to the test by performing an extensive empirical comparison. Specifically, we
compare the performance of true online TD(A)/Sarsa(A) with regular TD(X)/Sarsa(A) on
random MRPs, a real-world myoelectric prosthetic arm, and a domain from the Arcade
Learning Environment. We use linear function approximation with tabular, binary, and
non-binary features. Our results suggest that the true online methods indeed dominate
the regular methods. Across all domains/representations the learning speed of the true
online methods are often better, but never worse than that of the regular methods. An
additional advantage is that no choice between traces has to be made for the true online
methods. Besides the empirical results, we provide an in-dept analysis of the theory be-
hind true online temporal-difference learning. In addition, we show that new true online
temporal-difference methods can be derived by making changes to the online forward view
and then rewriting the update equations.
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1. Introduction

Temporal-difference (TD) learning is a core learning technique in modern reinforcement
learning (Sutton, 1988; Kaelbling et al., 1996; Sutton & Barto, 1998; Szepesvari, 2010).
One of the main challenges in reinforcement learning is to make predictions, in an initially
unknown environment, about the (discounted) sum of future rewards, the return, based on
currently observed feature values and a certain behaviour policy. With TD learning it is
possible to learn good estimates of the expected return quickly by bootstrapping from other
expected-return estimates. TD(A) (Sutton, 1988) is a popular TD algorithm that combines
basic TD learning with eligibility traces to further speed learning. The popularity of TD(\)
can be explained by its simple implementation, its low-computational complexity and its
conceptually straightforward interpretation, given by its forward view. The forward view of
TD()) states that the estimate at each time step is moved towards an update target known
as the A-return, with A determining the fundamental trade-off between bias and variance
of the update target. This trade-off has a large influence on the speed of learning and its
optimal setting varies from domain to domain. The ability to improve this trade-off by
adjusting the value of X\ is what underlies the performance advantage of eligibility traces.

Although the forward view provides a clear intuition, TD()) closely approximates the
forward view only for appropriately small step-sizes. Until recently, this was considered
an unfortunate, but unavoidable part of the theory behind TD()). This changed with the
introduction of true online TD(\) (van Seijen & Sutton, 2014), which computes exactly the
same weight vectors as the forward view at any step-size. This gives true online TD(X) full
control over the bias-variance trade-off. In particular, true online TD(1) can achieve fully
unbiased updates. Moreover, true online TD(A) only requires small modifications to the
TD()\) update equations, and the extra computational cost is negligible in most cases.

We hypothesize that true online TD(\), and its control version true online Sarsa(\), not
only have better theoretical properties than their regular counterparts, but also dominate
them empirically. We test this hypothesis by performing an extensive empirical comparison
between true online TD()), regular TD(\) (which is based on accumulating traces), and the
common variation based on replacing traces. In addition, we perform comparisons between
true online Sarsa(A) and Sarsa(\) (with accumulating and replacing traces). The domains
we use include random Markov reward processes, a real-world myoelectric prosthetic arm,
and a domain from the Arcade Learning Environment (Bellemare et al., 2013). The rep-
resentations we consider range from tabular values to linear function approximation with
binary and non-binary features.

Besides the empirical study, we provide an in-depth discussion on the theory behind
true online TD(A). This theory is based on a new online forward view. The traditional
forward view, based on the A-return, is inherently an offline forward view meaning that
updates only occur at the end of an episode, because the A-return requires data up to
the end of an episode. We extend this forward view to the online case, where updates
occur at every time step, by using a bounded version of the A-return that grows over time.
Whereas TD(A) approximates the traditional forward view only at the end of an episode,
we show that TD()A) approximates this new online forward view at all time steps. True
online TD(A) is equivalent to this new online forward view at all time steps. We prove
this by deriving the true online TD()A) update equations directly from the online forward
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view update equations. This derivation forms a blueprint for the derivation of other true
online methods. By making variations to the online forward view and following the same
derivation as for true online TD()), we derive several other true online methods.

This article is organized as follows. We start by presenting the required background
in Section 2. Then, we present the new online forward view in Section 3, followed by the
presentation of true online TD(A) in Section 4. Section 5 presents the empirical study.
Furthermore, in Section 6, we present several other true online methods. In Section 7, we
discuss in detail related papers. Finally, Section 8 concludes.

2. Background

Here, we present the main learning framework. As a convention, we indicate scalar-valued
random variables by capital letters (e.g., S¢, R:), vectors by bold lowercase letters (e.g., 6,
¢), functions by non-bold lowercase letters (e.g., v), and sets by calligraphic font (e.g., S,

A)L

2.1 Markov Decision Processes

Reinforcement learning (RL) problems are often formalized as Markov decision processes
(MDPs), which can be described as 5-tuples of the form (S,.A,p,r,~), where S indicates
the set of all states; A indicates the set of all actions; p(s’|s,a) indicates the probability of
a transition to state s’ € S, when action a € A is taken in state s € S; r(s,a, s’) indicates
the expected reward for a transition from state s to state s’ under action a; the discount
factor v specifies how future rewards are weighted with respect to the immediate reward.

Actions are taken at discrete time steps t = 0, 1,2, ... according to a policy 7 : S x A —
[0, 1], which defines for each action the selection probability conditioned on the state. The
return at time t is defined as the discounted sum of rewards, observed after t:

o0
Gii=Rij1+yRipo + 7 Rigs + ... = Z Y Ry,
i—1

where Ryy1 is the reward received after taking action A; in state S;. Some MDPs contain
special states called terminal states. After reaching a terminal state, no further reward is
obtained and no further state transitions occur. Hence, a terminal state can be interpreted
as a state where each action returns to itself with a reward of 0. An interaction sequence
from the initial state to a terminal state is called an episode.

Each policy 7 has a corresponding state-value function v,, which maps any state s € S
to the expected value of the return from that state, when following policy :

Ur(s) :=E{G¢| St = s,m}.

In addition, the action-value function ¢, gives the expected return for policy =, given that
action a € A is taken in state s € S:

qr(s,a) =E{G¢| St = s, As,=a,m}.

1. An exception to this convention is the TD error, a scalar-valued random variable that we indicate by ;.
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Because no further rewards can be obtained from a terminal state, the state-value and
action-values for a terminal state are always 0.

There are two tasks that are typically associated with an MDP. First, there is the task
of determining (an estimate of) the value function v, for some given policy 7. The second,
more challenging task is that of determining (an estimate of) the optimal policy ., which
is defined as the policy whose corresponding value function has the highest value in each
state:

Ur, (8) := max vr(s), for each s € S.

In RL, these two tasks are considered under the condition that the reward function r and
the transition-probability function p are unknown. Hence, the tasks have to be solved using
samples obtained from interacting with the environment.

2.2 Temporal-Difference Learning

Let’s consider the task of learning an estimate V' of the value function v, from samples,
where v, is being estimated using linear function approximation. That is, V is the inner
product between a feature vector ¢(s) € R™ of s, and a weight vector 8 € R™:

V(s,0) =0T ¢(s).

If s is a terminal state, then by definition ¢(s) := 0, and hence V (s,0) = 0.

We can formulate the problem of estimating v, as an error-minimization problem, where
the error is a weighted average of the squared difference between the value of a state and
its estimate:

B(0) = 53 de(s) (vr(s0) — 07 6(s0))

with d, the stationary distribution induced by w. The above error function can be mini-
mized by using stochastic gradient descent while sampling from the stationary distribution,
resulting in the following update rule:

1 2
9t+1 =0, — G§V(9 (UW(St) - 9T¢t> 5

using ¢ as a shorthand for ¢(S;). The parameter « is called the step-size. Using the chain
rule, we can rewrite this update as:

01 = O+ a<vﬂ(st) _ 0T¢t) Vo0  dy),
= 0, + Oé(%(st) — 9T¢t)¢t~

Because v, is in general unknown, an estimate U; of v, (S;) is used, which we call the update
target, resulting in the following general update rule:

011 =0, +a(U; — 0" ) ;. (1)

There are many different update targets possible. For an unbiased estimator the full
return can be used, that is, Uy = Gy. However, the full return has the disadvantage that its
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variance is typically very high. Hence, learning with the full return can be slow. Temporal-
difference (TD) learning addresses this issue by using update targets based on other value
estimates. While the update target is no longer unbiased in this case, the variance is
typically much smaller, and learning much faster. TD learning uses the Bellman equations
as its mathematical foundation for constructing update targets. These equations relate the
value of a state to the values of its successor states:

vr(s) = Z (s, a) Zp(s’\s, a)(r(s,a,s') + v (') .

Writing this equation in terms of an expectation yields:

Ur(s) = BE{Rey1 + yvr (Si1)[St = s}apr -

Sampling from this expectation, while using linear function approximation to approximate
vr, results in the update target:

Uy =Riy1+70 i1

This update target is called a one-step update target, because it is based on information
from only one time step ahead. Applying the Bellman equation multiple times results in
update targets based on information further ahead. Such update targets are called multi-
step update targets.

2.3 TD())
The TD()) algorithm implements the following update equations:
& = Rip1+70] pri1 — 0/ ¢, (2)
e = YAe1+ ¢, (3)
Ory1 = 0i+adie, (4)

for t > 0, and with e_1 = 0. The scalar J; is called the T'D error, and the vector e; is called
the eligibility-trace vector. The update of e; shown above is referred to as the accumulating-
trace update. As a shorthand, we will refer to this version of TD(\) as ‘accumulate TD())’,
to distinguish it from a slightly different version that is discussed below. While these
updates appear to deviate from the general, gradient-descent-based update rule given in
(1), there is a close connection to this update rule. This connection is formalized through
the forward view of TD(A), which we discuss in detail in the next section. Algorithm 1
shows the pseudocode for accumulate TD(A).

Accumulate TD(\) can be very sensitive with respect to the aw and A\ parameters. Espe-
cially, a large value of A combined with a large value of « can easily cause divergence, even
on simple tasks with bounded rewards. For this reason, a variant of TD()) is sometimes
used that is more robust with respect to these parameters. This variant, which assumes
binary features, uses a different trace-update equation:

elli] = YAer—1[i], if @fi] = 0;
R R if i) =1,

for all features 7.
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Algorithm 1 accumulate TD())
INPUT: o, A, v, O
0 <+ 0t
Loop (over episodes):
obtain initial ¢
e+ 0
While terminal state has not been reached, do:
obtain next feature vector ¢’ and reward R
S+ R+~70"T¢'—0"¢
e+ yle+ o
6 <~ 0 + ade
¢+ ¢

where x[i] indicates the i-th component of vector @. This update is referred to as the
replacing-trace update. As a shorthand, we will refer to the version of TD(\) using the
replacing-trace update as ‘replace TD()) .

3. The Online Forward View

The traditional forward view relates the TD(A) update equations to the general update
rule shown in Equation (1). Specifically, for small step-sizes the weight vector at the end
of an episode computed by accumulate TD(A) is approximately the same as the weight
vector resulting from a sequence of Equation (1) updates (one for each visited state) using
a particular multi-step update target, called the \-return (Sutton & Barto, 1998; Bertsekas
& Tsitsiklis, 1996). The A-return for state S; is defined as:

T—t-1
G =(1-2 Y ala TGy, (5)
n=1

)

where T is the time step the terminal state is reached, and ng is the n-step return, defined

as:

G = > A Rk 4"V (SignlOrn1).
k=1

We call a method that updates the value of each visited state at the end of the episode
an offfine method; we call a method that updates the value of each visited state immediately
after the visit (i.e., at the time step after the visit) an online method. TD(\) is an online
method. The update sequence of the traditional forward view, however, corresponds with
an offline method, because the A-return requires data up to the end of an episode. This
leaves open the question of how to interpret the weights of TD(A) during an episode. In this
section, we provide an answer to this long-standing open question. We introduce a bounded
version of the A-return that only uses information up to a certain horizon and we use this
to construct an online forward view. This online forward view approximates the weight
vectors of accumulate TD(A) at all time steps, instead of only at the end of an episode.
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3.1 The Online A-Return Algorithm

The concept of an online forward view contains a paradox. On the one hand, multi-step
update targets require data from time steps far beyond the time a state is visited; on
the other hand, the online aspect requires that the value of a visited state is updated
immediately. The solution to this paradox is to assign a sequence of update targets to each
visited state. The first update target in this sequence contains data from only the next time
step, the second contains data from the next two time steps, the third from the next three
time steps, and so on. Now, given an initial weight vector and a sequence of visited states, a
new weight vector can be constructed by updating each visited state with an update target
that contains data up to the current time step. Below, we formalize this idea.
We define the interim A-return for state Sj with horizon h € N, h > k as follows:

h—k—1
=1 Y g A ktgih (6)

n=1

Note that this update target does not use data beyond the horizon h. Gzlh implicitly defines
a sequence of update targets for Sg: {Gz‘kﬂ, Gz‘kﬂ, G2|k+3, ... }. As time increases, update
targets based on data further away become available for state S. At a particular time step
t, a new weight vector is computed by performing an Equation (1) update for each visited
state using the interim A-return with horizon ¢, starting from the initial weight vector
0;,it. Hence, at time step ¢, a sequence of ¢ updates occurs. To describe this sequence
mathematically, we use weight vectors with two indices: 6/. The superscript indicates the
time step at which the updates are performed (this value corresponds with the horizon of
the interim A-returns that are used in the updates). The subscript is the iteration index
of the sequence (it corresponds with the number of updates that have been performed at
a particular time step). As an example, the update sequences for the first three time steps
are:

t=1: 81 =0 +a(G)" — (6)) o),

t=2: 62 =02+a(G)” - (62)" ¢o)o,
03 =62 +a(G)” — (63) ¢1) s,
t=3: 03 =03+a(G)" — (63T ¢0)bo,
: A
03 =07 + (G — ()T 1),
03 = 63 + a(Gg‘S —(63)7 ¢2) b2,
with 6} := 6,,,;; for all t. More generally, the update sequence at time step ¢ is:
oL, =0, + a(ag‘t — ()T qﬁk)(bk, for 0 < k < t. (7)

We define 0, (without superscript) as the final weight vector of the update sequence at time
t, that is, 8; := 6!. We call the algorithm implementing Equation (7) the online A-return
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Figure 1: RMS error as function of time for the first 3 episodes of a random walk task, for
A =1and a = 0.2. The error shown is the RMS error over all states, normalized
by the initial RMS error.

algorithm. By contrast, we call the algorithm that implements the traditional forward view
the offline A-return algorithm.

The update sequence performed by the online A-return algorithm at time step T (the
time step that a terminal state is reached) is very similar to the update sequence performed

by the offline A-return algorithm. In particular, note that G? 7 and Gi‘ are the same, under
the assumption that the weights used for the value estimates are the same. Because these
weights are in practise not exactly the same, there will typically be a small difference.?

Figure 1 illustrates the difference between the online and offline A-return algorithm, as
well as accumulate TD(A), by showing the RMS error on a random walk task. The task
consists of 10 states laid out in a row plus a terminal state on the left. Each state transitions
with 70% probability to its left neighbour and with 30% probability to its right neighbour
(or to itself in case of the right-most state). All rewards are 1 and v = 1. Furthermore,
A =1 and o = 0.2. The right-most state is the initial state. Whereas the offline A-return
algorithm only makes updates at the end of an episode, the online A-return algorithm, as
well as accumulate TD()), make updates at every time step.

The comparison on the random walk task shows that accumulate TD(\) behaves similar
to the online A-return algorithm. In fact, the smaller the step-size, the smaller the differ-
ence between accumulate TD(A) and the online A-return algorithm. This is formalized by
Theorem 1. The proof of the theorem can be found in Appendix A. The theorem uses the
term A!, which is defined as:

Al= (G 0] di) i,

with @j"t the interim A-return for state S; with horizon ¢ that uses 8y for all value evalua-
tions. Note that Al is independent of the step-size.

2. If A =1 there is never a difference because there is no bootstrapping.
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Figure 2: Left: One-state example (the square indicates a terminal state). Right: The
RMS error of the state value at the end of an episode, averaged over the first 10
episodes, for A = 1.

Theorem 1 Let 0y be the initial weight vector, 8 be the weight vector at time t computed
by accumulate TD(X), and 0} be the weight vector at time t computed by the online \-return
algorithm. Furthermore, assume that Eﬁ;é Al =£0. Then, for all time steps t:

etd_gz\
thitH—H), as a — 0.
16§ — o]

Theorem 1 generalizes the traditional result to arbitrary time steps. The traditional
result states that the difference between the weight vector at the end of an episode computed
by the offline A-return algorithm and the weight vector at the end of an episode computed
by accumulate TD(A) goes to 0, if the step-size goes to 0 (Bertsekas & Tsitsiklis, 1996).

3.2 Comparison to Accumulate TD()\)

While accumulate TD(\) behaves like the online A-return algorithm for small step-sizes,
small step-sizes often result in slow learning. Hence, higher step-sizes are desirable. For
higher step-sizes, however, the behaviour of accumulate TD(\) can be very different from
that of the online A-return algorithm. And as we show in the empirical section of this article
(Section 5), when there is a difference, it is almost exclusively in favour of the online A-return
algorithm. In this section, we analyze why the online A-return algorithm can outperform
accumulate TD(A), using the one-state example shown in the left of Figure 2.

The right of Figure 2 shows the RMS error over the first 10 episodes of the one-state
example for different step-sizes and A = 1. While for small step-sizes accumulate TD())
behaves indeed like the online A-return algorithm—as predicted by Theorem 1—, for larger
step-sizes the difference becomes huge. To understand the reason for this, we derive an
analytical expression for the value at the end of an episode.

First, we consider accumulate TD(\). Because there is only one state involved, we
indicate the value of this state simply by V. The update at the end of an episode is Vp =
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Vir_1 + aep_10p_1. In our example, §; = 0 for all time steps ¢, except for t =T — 1, where
0r_1 = 1—Vp_1. Because d; is 0 for all time steps except the last, Vp_1 = V. Furthermore,
¢r = 1 for all time steps t, resulting in ep_y = T'. Substituting all this in the expression for
Vr yields:

Vr=Vo+Ta(l-V), for accumulate TD(M). (8)

So for accumulate TD()), the total value difference is simply a summation of the value
difference corresponding to a single update.

Now, consider the online A-return algorithm. The value at the end of an episode, Vp, is
equal to V:,T , resulting from the update sequence:

Vil =Vl + a(Gi'T -V, for0<k<T.

By incremental substitution, we can directly express V in terms of the initial value, Vj,
and the update targets:

Vi=(1-a)"Vo+a(l—-a)TG" +a - )26+ 1 ac)T).

Because G;'T =1 for all £ in our example, the weights of all update targets can be added
together and the expression can be rewritten as a single pseudo-update, yielding;:

Ve=Vo+(1-(1- a)T) (1-W), for the online A-return algorithm. (9)

The term 1 — (1 — )7 in (9) acts like a pseudo step-size. For larger a or T this pseudo
step-size increases in value, but as long as a < 1 the value will never exceed 1. By contrast,
for accumulate TD(A) the pseudo step-size is T'a, which can grow much larger than 1 even
for a < 1, causing divergence of values. This is the reason that accumulate TD(A) can
be very sensitive to the step-size and it explains why the optimal step-size for accumulate
TD(A) is much smaller than the optimal step-size for the online A-return algorithm in
Figure 2 (o =~ 0.15 versus a = 1, respectively). Moreover, because the variance on the
pseudo step-size is higher for accumulate TD()\) the performance at the optimal step-size
for accumulate TD(\) is worse than the performance at the optimal step-size for the online
A-return algorithm.

3.3 Comparison to Replace TD()\)

The sensitivity of accumulate TD(A) to divergence, demonstrated in the previous subsection,
has been known for long. In fact, replace TD(\) was designed to deal with this. But while
replace TD(A) is much more robust with respect to divergence, it also has its limitations.
One obvious limitation is that it only applies to binary features, so it is not generally
applicable. But even in domains where replace TD(\) can be applied, it can perform
poorly. The reason is that replacing previous trace values, rather than adding to it, reduces
the multi-step characteristics of TD()).

To illustrate this, consider the two-state example shown in the left of Figure 3. It is
easy to see that the value of the left-most state is 2 and of the other state is 0. The state
representation consists of only a single, binary feature that is 1 in both states and 0 in the
terminal state. Because there is only a single feature, the state values cannot be represented

10
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Figure 3: Left: Two-state example. Right: The RMS error after convergence for different
A (at @ = 0.01). We consider values to be converged if the error changed less
than 1% over the last 100 time steps.

exactly. The weight that minimizes the mean squared error assigns a value of 1 to both
states, resulting in an RMS error of 1. Now consider the graph shown in the right of Figure
3, which shows the asymptotic RMS error for different values of A. The error for accumulate
TD()) converges to the least mean squares (LMS) error for A = 1, as predicted by the theory
(Dayan, 1992). The online A-return algorithm has the same convergence behaviour (due
to Theorem 1). By contrast, replace TD(\) converges to the same value as TD(0) for any
value of X\. The reason for this behaviour is that because the single feature is active at all
time steps, the multi-step behaviour of TD()) is fully removed, no matter the value of A.
Hence, replace TD(A) behaves exactly the same as TD(0) for any value of A at all time
steps. As a result, it also behaves like TD(0) asymptotically.

The two-state example very clearly demonstrates that there is a price payed by replace
TD()) to achieve robustness with respect to divergence: a reduction in multi-step behaviour.
By contrast, the online A-return algorithm, which is also robust to divergence, does not have
this disadvantage. Of course, the two-state example, as well as the one-state example from
the previous section, are extreme examples, merely meant to illustrate what can go wrong.
But in practise, a domain will often have some characteristics of the one-state example
and some of the two-state example, which negatively impacts the performance of both
accumulate and replace TD(\).

4. True Online TD()\)

The online A-return algorithm is impractical on many domains: the memory it uses, as
well as the computation required per time step increases linearly with time. Fortunately, it
is possible to rewrite the update equations of the online A-return algorithm to a different
set of update equations that can be implemented with a computational complexity that is
independent of time. In fact, this alternative set of update equations differs from the update
equations of accumulate TD(A) only by two extra terms, each of which can be computed

11
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Algorithm 2 true online TD(\)
INPUT: o, A, v, O
0 <+ 0t
Loop (over episodes):
obtain initial ¢
€ <— 0; Vold +~0
While terminal state has not been reached, do:
obtain next feature vector ¢’ and reward R
V<09
V!« 0T¢/
S« R+~yV' -V
e e+ ¢—aye )¢
0+ 0+ 04(5 +V - V;)ld)e — a(V — Vold)qf)
Void < V'
¢ ¢

efficiently. The algorithm implementing these equations is called true online TD()) and is
discussed below.

4.1 The Algorithm

For the online A-return algorithm, at each time step a sequence of updates is performed.
The length of this sequence, and hence the computation per time step, increases over time.
However, it is possible to compute the weight vector resulting from the sequence at time
step t + 1 directly from the weight vector resulting from the sequence at time step t. This
results in the following update equations (see Appendix B for the derivation):

6 = Rit1+70) pri1— 8/ b1, (10)
er = e 1+ ¢ —ayhel, dr) b, (11)
0ii1 = O +adie+ a0 ¢ — 0, 19:)(er — b)), (12)

for t > 0, and with e_; = 0. Compared to accumulate TD()\), both the trace update and
the weight update have an additional term. We call a trace updated in this way a dutch
trace; we call the term «(8, ¢, — 0, ¢¢)(e; — ¢;) the TD-error time-step correction, or
simply the d-correction. Algorithm 2 shows pseudocode that implements these equations.®

In terms of computation time, true online TD(A) has a (slightly) higher cost due to the
two extra terms that have to be accounted for. While the computation-time complexity
of true online TD()) is the same as that of accumulate/replace TD(A)—O(n) per time
step with n being the number of features—, the actual computation time can be close to
twice as much in some cases. In other cases (for example if sparse feature vectors are
used), the computation time of true online TD()) is only a fraction more than that of

3. When using a time-dependent step-size (e.g., when annealing the step-size) use the pseudocode from
Section 6.1. For reasons explained in that section this requires a modified trace update. That pseudocode
is the same as the pseudocode from van Seijen & Sutton (2014).
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accumulate/replace TD(A). In terms of memory, true online TD(A) has the same cost as
accumulate/replace TD(A).

4.2 When Can a Performance Difference be Expected?

In Section 3, a number of examples were shown where the online A-return algorithm out-
performs accumulate/replace TD(\). Because true online TD()) is simply an efficient
implementation of the online A-return algorithm, true online TD(\) will outperform ac-
cumulate/replace TD(A) on these examples as well. But not in all cases will there be a
performance difference. For example, it follows from Theorem 1 that when appropriately
small step-sizes are used, the difference between the online A-return algorithm/true online
TD(A) and accumulate TD(A) is negligible. In this section, we identify two other factors
that affect whether or not there will be a performance difference. While the focus of this
section is on performance difference rather than performance advantage, our experiments
will show that true online TD(A) performs always at least as well as accumulate TD(\)
and replace TD(A). In other words, our experiments suggest that whenever there is a
performance difference, it is in favour of true online TD(\).

The first factor is the A parameter and follows straightforwardly from the true online
TD()) update equations.

Proposition 1 For A = 0, accumulate TD(X), replace TD(\) and the online \-return
algorithm / true online TD(X) behave the same.

Proof For A = 0, the accumulating-trace update, the replacing-trace update and the
dutch-trace update all reduce to e; = ¢;. In addition, because e; = ¢, the d-correction of
true online TD(\) is 0. [ |

Because the behaviour of TD(A) for small A is close to the behaviour of TD(0), it follows
that significant performance differences will only be observed when A is large.

The second factor is related to how often a feature has a non-zero value. We start again
with a proposition that highlights a condition under which the different TD(\) versions

behave the same. The proposition makes use of an accumulating trace at time step ¢t — 1,

ef“q, whose non-recursive form is:

t—1

e =Y (YN ey (13)

k=0
Furthermore, the proposition uses x[i] to denote the i-th element of vector x.
Proposition 2 If for all features i and at all time steps t
e [i] - uli] = 0, (14)

then accumulate TD(X), replace TD(X\) and the online A-return algorithm / true online
TD(\) behave the same (for any \).

Proof Condition (14) implies that if ¢[i] # 0, then ef[i] = 0. From this it follows
that for binary features the accumulating-trace update can be written as a replacing-trace

13
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update at every time step:

el = yAefli] + Puli],
[ egesla], i @uli] = 05
), if gyli] =1.

Hence, accumulate TD(A) and replace TD(A) perform exactly the same updates.
Furthermore, condition (14) implies that (€#°%) " ¢; = 0. Hence, the accumulating-trace

update can also be written as a dutch trace update at every time step:

el = el + ¢,
= AN + b — ayA(€f9) T Br) bt -

In addition, note that the d-correction is proportional to OtT qbt—HtT_ 1+, which can be written
as (91; — Bt_l)T(bt. The value (91; — Ht_l)T(bt is proportional to (e?fcl)T(bt for accumulate
TD(A). Because (€)@ = 0, accumulate TD()) can add a d-correction at every time

step without any consequence. This shows that accumulate TD(\) makes the same updates
as true online TD(A). [ ]

An example of a domain where the condition of Proposition 2 holds is a domain with tabular
features (each state is represented with a unique standard-basis vector), where a state is
never revisited within the same episode.

The condition of Proposition 2 holds approximately when the value |ef<[i] - ¢¢[i]| is
close to 0 for all features at all time steps. In this case, the different TD(\) versions will
perform very similarly. It follows from Equation (13) that this is the case when there is a
long time delay between the time steps that a feature has a non-zero value. Specifically,
if there is always at least n time steps between two subsequent times that a feature ¢ has
a non-zero value with yA™ being very small, then ‘effcl [i] - ¢ [ZH will always be close to 0.
Therefore, in order to see a large performance difference, the same features should have a
non-zero value often and within a small time frame (relative to y\).

Summarizing the analysis so far: in order to see a performance difference v and A should
be sufficiently large, and the same features should have a non-zero value often and within
a small time frame. Based on this summary, we can address a related question: on what
type of domains will there be a performance difference between true online TD(\) with
optimized parameters and accumulate/replace TD(A) with optimized parameters. The first
two conditions suggest that the domain should result in a relatively large optimal a and
optimal A. This is typically the case for domains with a relatively low variance on the
return. The last condition can be satisfied in multiple ways. It is for example satisfied by
domains that have non-sparse feature vectors (that is, domains for which at any particular
time step most features have a non-zero value).

4.3 True Online Sarsa(\)

TD()) and true online TD()) are policy evaluation methods. However, they can be turned
into control methods in a straightforward way. From a learning perspective, the main
difference is that the prediction of the expected return should be conditioned on the state

14
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Algorithm 3 true online Sarsa(\)

INPUT: o, A, v, O
0 <+ 0t
Loop (over episodes):
obtain initial state S
select action A based on state S (for example e-greedy)
1) + features corresponding to S, A
€<+ 0; Quqg <+ 0
While terminal state has not been reached, do:
take action A, observe next state S’ and reward R
select action A’ based on state S’
1y’ « features corresponding to S/, A’ (if S’ is terminal state, ¥’ < 0)
Q+0"y
Q/ — GT'I,D/
d+ R+7Q —Q
e re+ P —ayAe ¥) P
00+ a(d+Q—Qua)e—a(Q— Qua)yp
Qold + Q'
Py A A

and action, rather than only on the state. This means that an estimate of the action-value
function g, is being learned, rather than of the state-value function v.

Another difference is that instead of having a fixed policy that generates the behaviour,
the policy depends on the action-value estimates. Because these estimates typically improve
over time, so does the policy. The (on-policy) control counterpart of TD(\) is the popular
Sarsa(\) algorithm. The control counterpart of true online TD()) is ‘true online Sarsa(\)’.
Algorithm 3 shows pseudocode for true online Sarsa()\).

To ensure accurate estimates for all state-action values are obtained, typically some
exploration strategy has to be used. A simple, but often sufficient strategy is to use an
e-greedy behaviour policy. That is, given current state S;, with probability € a random
action is selected, and with probability 1 — e the greedy action is selected:

A;‘Zmedy = arg max 0 (S, a),

with (s, a) an action-feature vector, and 8, 1(s,a) a (linear) estimate of ¢, (s,a) at time
step t. A common way to derive an action-feature vector (s, a) from a state-feature vector
¢(s) involves an action-feature vector of size n|A|, where n is the number of state features
and |A| is the number of actions. Each action corresponds with a block of n features in
this action-feature vector. The features in (s, a) that correspond to action a take on the
values of the state features; the features corresponding to other actions have a value of 0.

5. Empirical Study

This section contains our main empirical study, comparing TD()), as well as Sarsa(\), with
their true online counterparts. For each method and each domain, a scan over the step-size
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« and the trace-decay parameter A is performed such that the optimal performance can be
compared. In Section 5.4, we discuss the results.

5.1 Random MRPs

For our first series of experiments we used randomly constructed Markov reward processes
(MRPs).* An MRP can be interpreted as an MDP with only a single action per state.
Consequently, there is only one policy possible. We represent a random MRP as a 3-tuple
(k,b,0), consisting of k, the number of states; b, the branching factor (that is, the number
of next states with a non-zero transition probability); and o, the standard deviation of the
reward. An MRP is constructed as follows. The b potential next states for a particular state
are drawn from the total set of states at random, and without replacement. The transition
probabilities to those states are randomized as well (by partitioning the unit interval at
b — 1 random cut points). The expected value of the reward for a transition is drawn from
a normal distribution with zero mean and unit variance. The actual reward is drawn from
a normal distribution with a mean equal to this expected reward and standard deviation o.
There are no terminal states.

We compared the performance of TD(A) on three different MRPs: one with a small
number of states, (10, 3,0.1), one with a larger number of states, (100, 10,0.1), and one with
a larger number of states but a low branching factor and no stochasticity for the reward,
(100, 3,0). The discount factor 7 is 0.99 for all three MRPs. Each MRP is evaluated using
three different representations. The first representation consists of tabular features, that is,
each state is represented with a unique standard-basis vector of £ dimensions. The second
representation is based on binary features. This binary representation is constructed by first
assigning indices, from 1 to k, to all states. Then, the binary encoding of the state index is
used as a feature vector to represent that state. The length of a feature vector is determined
by the total number of states: for k = 10, the length is 4; for k¥ = 100, the length is 7. As an
example, for £ = 10 the binary feature vectors of states 1, 2 and 3 are (0,0,0,1),(0,0,1,0)
and (0,0,1,1), respectively. Finally, the third representation uses non-binary features. For
this representation each state is mapped to a 5-dimensional feature vector, with the value
of each feature drawn from a normal distribution with zero mean and unit variance. After
all the feature values for a state are drawn, they are normalized such that the feature vector
has unit length. Once generated, the feature vectors are kept fixed for each state. Note
that replace TD(\) cannot be used with this representation, because replacing traces are
only defined for binary features (tabular features are a special case of this).

In each experiment, we performed a scan over a and A. Specifically, between 0 and 0.1,
« is varied according to 10° with 4 varying from -3 to -1 with steps of 0.2, and from 0.1 to
2.0 (linearly) with steps of 0.1. In addition, A is varied from 0 to 0.9 with steps of 0.1 and
from 0.9 to 1.0 with steps of 0.01. The initial weight vector is the zero vector in all domains.
As performance metric we used the mean-squared error (MSE) with respect to the LMS
solution during early learning (for k = 10, we averaged over the first 100 time steps; for k

4. The code for the MRP experiments is published online at: https://github.com/armahmood/
totd-rndmdp-experiments. The process we used to construct the MRPs is based on the process used
by Bhatnagar, Sutton, Ghavamzadeh and Lee (2009).
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= 100, we averaged over the first 1000 time steps). We normalized this error by dividing it
by the MSE under the initial weight estimate.

Figure 4 shows the results for different A at the best value of a. In Appendix C, the
results for all a values are shown. The optimal performance of true online TD()\) is at
least as good as the optimal performance of accumulate TD(A) and replace TD(A), on all
domains and for all representations. A more in-depth discussion of these results is provided
in Section 5.4.

5.2 Predicting Signals From a Myoelectric Prosthetic Arm

In this experiment, we compared the performance of true online TD(A) and TD()A) on a
real-world data-set consisting of sensorimotor signals measured during the human control
of an electromechanical robot arm. The source of the data is a series of manipulation tasks
performed by a participant with an amputation, as presented by Pilarski et al. (2013). In
this study, an amputee participant used signals recorded from the muscles of their residual
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Participant

Figure 5: Source of the input data stream and predicted signals used in this experiment:
a participant with an amputation performing a simple grasping task using a
myoelectrically controlled robot arm, as described in Pilarski et al. (2013). More
detail on the subject and experimental setting can be found in Hebert et al.
(2014).

limb to control a robot arm with multiple degrees-of-freedom (Figure 5). Interactions of
this kind are known as myoelectric control (see, for example, Parker et al., 2006).

For consistency and comparison of results, we used the same source data and prediction
learning architecture as published in Pilarski et al. (2013). In total, two signals are pre-
dicted: grip force and motor angle signals from the robot’s hand. Specifically, the target for
the prediction is a discounted sum of each signal over time, similar to return predictions (see
general value functions and nexting; Sutton et al., 2011; Modayil et al., 2014). Where possi-
ble, we used the same implementation and code base as Pilarski et al. (2013). Data for this
experiment consisted of 58,000 time steps of recorded sensorimotor information, sampled at
40 Hz (i.e., approximately 25 minutes of experimental data). The state space consisted of
a tile-coded representation of the robot gripper’s position, velocity, recorded gripping force,
and two muscle contraction signals from the human user. A standard implementation of
tile-coding was used, with ten bins per signal, eight overlapping tilings, and a single active
bias unit. This results in a state space with 800,001 features, 9 of which were active at any
given time. Hashing was used to reduce this space down to a vector of 200,000 features
that are then presented to the learning system. All signals were normalized between 0 and
1 before being provided to the function approximation routine. The discount factor for
predictions of both force and angle was v = 0.97, as in the results presented by Pilarski
et al. (2013). Parameter sweeps over A and « are conducted for all three methods. The
performance metric is the mean absolute return error over all 58,000 time steps of learning,
normalized by dividing by the error for A = 0.
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Figure 6: Performance as function of A at the optimal « value, for the prediction of the
servo motor angle (left), as well as the grip force (right).

Figure 6 shows the performance for the angle as well as the force predictions at the
best « value for different values of A. In Appendix D, the results for all o values are
shown. The relative performance of replace TD(A) and accumulate TD(A) depends on the
predictive question being asked. For predicting the robot’s grip force signal—a signal with
small magnitude and rapid changes—replace TD()) is better than accumulate TD(A) at all A
values larger than 0. However, for predicting the robot’s hand actuator position, a smoothly
changing signal that varies between a range of ~300-500, accumulate TD(A) dominates
replace TD(\). On both prediction tasks, true online TD(A) dominates accumulate TD(\)
and replace TD(\).

5.3 Control in the ALE Domain Asterix

In this final experiment, we compared the performance of true online Sarsa(\) with that
of accumulate Sarsa(\) and replace Sarsa(\), on a domain from the Arcade Learning Envi-
ronment (ALE) (Bellemare et al., 2013; Defazio & Graepel, 2014; Mnih et al., 2015), called
Asterix. The ALE is a general testbed that provides an interface to hundreds of Atari 2600
games.”

In the Asterix domain, the agent controls a yellow avatar, which has to collect ‘potion’
objects, while avoiding ‘harp’ objects (see Figure 7 for a screenshot). Both potions and
harps move across the screen horizontally. Every time the agent collects a potion it receives
a reward of 50 points, and every time it touches a harp it looses a life (it has three lives
in total). The agent can use the actions up, right, down, and left, combinations of two
directions, and a no-op action, resulting in 9 actions in total. The game ends after the
agent has lost three lives, or after 5 minutes, whichever comes first.

We use linear function approximation using features derived from the screen pixels.
Specifically, we use what Bellemare et al. (2013) call the Basic feature set, which “encodes

5. We used ALE version 0.4.4 for our experiments. The code for the Asterix experiments is published online
at: https://github.com/mcmachado/TrueOnlineSarsa.
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Figure 7: Screenshot of the game ASTERIX.

the presence of colours on the Atari 2600 screen.” It is obtained by first subtracting the game
screen background (see Bellemare et al., 2013, sec. 3.1.1) and then dividing the remaining
screen in to 16 x 14 tiles of size 10 x 15 pixels. Finally, for each tile, one binary feature is
generated for each of the 128 available colours, encoding whether a colour is active or not
in that tile. This generates 28,672 features (plus a bias term).

Because episode lengths can vary hugely (from about 10 seconds all the way up to 5
minutes), constructing a fair performance metric is non-trivial. For example, comparing the
average return on the first N episodes of two methods is only fair if they have seen roughly
the same amount of samples in those episodes, which is not guaranteed for this domain.
On the other hand, looking at the total reward collected for the first X samples is also not
a good metric, because there is no negative reward associated to dying. To resolve this,
we look at the return per episode, averaged over the first X samples. More specifically,
our metric consists of the average score per episode while learning for 20 hours (4,320,000
frames). In addition, we averaged the resulting number over 400 independent runs.

As with the evaluation experiments, we performed a scan over the step-size o and the
trace-decay parameter . Specifically, we looked at all combinations of « € {0.20,0.50, 0.80,
1.10,1.40,1.70,2.00} and A € {0.00,0.50,0.80,0.90,0.95,0.99} (these values were deter-
mined during a preliminary parameter sweep). We used a discount factor v = 0.999 and
e-greedy exploration with € = 0.01. The weight vector was initialized to the zero vector.
Also, as Bellemare et al. (2013), we take an action at each 5 frames. This decreases the al-
gorithms running time and avoids “super-human” reflexes. The results are shown in Figure
8. On this domain, the optimal performance of all three versions of Sarsa(\) is similar.

Note that the way we evaluate a domain is computationally very expensive: we perform
scans over \ and «, and use a large number of independent runs to get a low standard error.
In the case of Asterix, this results in a total of 7 -6 - 400 = 16,800 runs per method. This
rigorous evaluation prohibits us unfortunately to run experiments on the full suite of ALE
domains.

5.4 Discussion

Figure 9 summarizes the performance of the different TD(A) versions on all evaluation
domains. Specifically, it shows the error for each method at its best settings of « and A.
The error is normalized by dividing it by the error at A = 0 (remember that all versions of
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Figure 8: Return per episode, averaged over the first 4,320,000 frames as well as 400 inde-
pendent runs, as function of A, at optimal «, on the Asterix domain.

TD(A) behave the same for A = 0). Because A = 0 lies in the parameter range that is being
optimized over, the normalized error can never be higher than 1. If for a method/domain
the normalized error is equal to 1, this means that setting A higher than 0 either has no
effect, or that the error gets worse. In either case, eligibility traces are not effective for that
method /domain.

Overall, true online TD(A) is clearly better than accumulate TD(\) and replace TD(\)
in terms of optimal performance. Specifically, for each considered domain/representation,
the error for true online TD(A) is either smaller or equal to the error of accumulate/replace
TD(A). This is especially impressive, given the wide variety of domains, and the fact that
the computational overhead for true online TD()) is small (see Section 4.1 for details).

The observed performance differences correspond well with the analysis from Section
4.2. In particular, note that MRP (10, 3, 0.1) has less states than the other two MRPs,
and hence the chance that the same feature has a non-zero value within a small time frame
is larger. The analysis correctly predicts that this results in larger performance differences.
Furthermore, MRP (100, 3,0) is less stochastic than MRP (100, 10,0.1), and hence it has
a smaller variance on the return. Also here, the experiments correspond with the analysis,
which predicts that this results in a larger performance difference.

On the Asterix domain, the performance of the three Sarsa(\) versions is similar. This
is in accordance with the evaluation results, which showed that the size of the performance
difference is domain dependent. In the worst case, the performance of the true online
method is similar to that of the regular method.

The optimal performance is not the only factor that determines how good a method is;
what also matters is how easy it is to find this performance. The detailed plots in appendices
C and D reveal that the parameter sensitivity of accumulate TD(A) is much higher than
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Figure 9: Summary of the evaluation results: error at optimal («, A)-settings for all do-
mains/representations, normalized with the TD(0) error.

that of true online TD(\) or replace TD(A). This is clearly visible for MRP (10, 3, 0.1)
(Figure 10), as well as the experiments with the myoelectric prosthetic arm (Figure 13).

There is one more thing to take away from the experiments. In MRP (10, 3, 0.1) with
non-binary features, replace TD(\) is not applicable and accumulate TD()) is ineffective.
However, true online TD(A) was still able to obtain a considerable performance advan-
tage with respect to TD(0). This demonstrates that true online TD(A) expands the set of
domains/representations where eligibility traces are effective. This could potentially have
far-reaching consequences. Specifically, using non-binary features becomes a lot more in-
teresting. Replacing traces are not applicable to such representations, while accumulating
traces can easily result in divergence of values. For true online TD(\), however, non-binary
features are not necessarily more challenging than binary features. Exploring new, non-
binary representations could potentially further improve the performance for true online
TD(A) on domains such as the myoelectic prosthetic arm or the Asterix domain.

6. Other True Online Methods

In Appendix B, it is shown that the true online TD(\) equations can be derived directly
from the online forward view equations. By using different online forward views, new true
online methods can be derived. Sometimes, small changes in the forward view, like using a
time-dependent step-size, can result in surprising changes in the true online equations. In
this section, we look at a number of such variations.

6.1 True Online TD()\) with Time-Dependent Step-Size

When using a time-dependent step-size in the base equation of the forward view (Equation
7) and deriving the update equations following the procedure from Appendix B, it turns
out that a slightly different trace definition appears. We indicate this new trace using a ‘+’
superscript: e™. For fixed step-size, this new trace definition is equal to:

e = ae;, for all ¢.
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Algorithm 4 true online TD(\) with time-dependent step-size
INPUT: X\, 0;,;, oy for t > 0
0 «— aimt RS 0
Loop (over episodes):
obtain initial ¢
et «— 0; Vold +~0
While terminal state is not reached, do:
obtain next feature vector ¢’ and reward R
V<09
V!« 0T¢/
& R-i—’}/V/—VOld
et — et +ap—aryA((eh) o) ¢
0+ 0+ et — at(V — V:)ld)(b
Void < V'
¢ ¢
t+—1t+1

Of course, using e;" instead of e; also changes the weight vector update slightly. Below, the
full set of update equations is shown:

6 = Ri1+70] pri1— 60/ ¢y,
ej = 'y/\e;“_l + @y — Oét”)’)\((ej—ﬂT ¢t) bt
0t+1 - et + 5t e?‘ + (et—r¢t - Ht—r—l¢t> (ez_ - at¢t> :

In addition, efl := 0. We can simplify the weight update equation slightly, by using
0t =646 ¢ — 6,11,

which changes the update equations to:°

5 = Rip1+70/ di1 — 011, (15)
e?‘ = ’y)\ef_l + ¢ — Oét’)’/\((e;r_l)—r d’t) o (16)
011 = O,+6,ef — (92—¢t - 9tT_1¢t)¢t . (17)

Algorithm 2 shows the corresponding pseudocode. Of course, this pseudocode can also be
used for constant step-size.

6.2 True Online Version of Watkins’s Q(\)

So far, we just considered on-policy methods, that is, methods that evaluate a policy that
is the same as the policy that generates the samples. However, the true online principle can
also be applied to off-policy methods, for which the evaluation policy is different from the
behaviour policy. As a simple example, consider Watkins’s Q(A) (Watkins, 1989). This is
an off-policy method that evaluates the greedy policy given an arbitrary behaviour policy.

6. These equations are the same as in the original true online paper (van Seijen & Sutton, 2014).
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Algorithm 5 true online version of Watkins’s Q(\)
INPUT: o, A, v, 0, ¥
0 <+ 0t
Loop (over episodes):
obtain initial state S
select action A based on state S (for example e-greedy)
1) + features corresponding to S, A
€<+ 0; Quqg <+ 0
While terminal state has not been reached, do:
take action A, observe next state S’ and reward R
select action A’ based on state S’
A* « argmax, 0 (S, a) (if A ties for the max, then A* < A')
1)’ + features corresponding to S, A*  (if S’ is terminal state, 1’ < 0)
Q04
Q/ s GT’lpl
S R+7Q -Q
e+ e+ P —ayA(e' )
0+ 0+a(d+Q—Qoa)e—a(Q — Qoa)
if A/ #£A*: e« 0
Qotd + Q'
PP A A

It does this by combining accumulating traces with a TD error that uses the maximum
state-action value of the successor state:

0 = Rp1 +max Q(Sy, a) — Q(St, Ar) -

In addition, traces are reset to 0 whenever a non-greedy action is taken.

From an online forward-view perspective, the strategy of Watkins’s Q(A) method can
be interpreted as a growing update target that stops growing once a non-greedy action is
taken. Specifically, let 7 be the first time step after time step t that a non-greedy action is
taken, then the interim update target for time step ¢ can be defined as:

z—t—1
Uf = (1-2) Y A X162 = mindh, Ty
n=1

with

n

G = 32 gt 3 s O, (St
k=1

Algorithm 5 shows the pseudocode for the true online method that corresponds with this
update target definition. A problem with Watkins’s Q()) is that if the behaviour policy is
very different from the greedy policy traces are reset very often, reducing the overall effect
of the traces. In Section 7, we discuss more advanced off-policy methods.
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Algorithm 6 tabular true online TD())
initialize v(s) for all s
Loop (over episodes):
initialize S
e(s) « 0 for all s
Voia <0
While S is not terminal, do:
obtain next state S’ and reward R
AV «+— V(S) — Vold
Vo < V(5)
d«— R+~V(S)—-V(S)
e(S) (1 —a)e(S)+1
For all s:
V(s) < V(s) +a(d+ AV)e(s)
e(s) «+ yAe(s)
V(S) «+ V(S) —aAV
S5

6.3 Tabular True Online TD())

Tabular features are a special case of linear function approximation. Hence, the update
equations for true online TD()) that are presented so far also apply to the tabular case.
However, we discuss it here separately, because the simplicity of this special case can provide
extra insight.

Rewriting the true online update equations (equations 10 — 12) for the special case of
tabular features results in:

0t = Rip1 +7Ve(Seg1) — Vi(Se) s

erls) = yAer—1(s), if s #£ S

! (I —a)yrei—i1(s)+1, ifs=5,
Vi (s) Vi(s) + (8 4+ Vi(St) — Vie1(Sh)) ex(s) if s # S;
" Vils) + (8 + Vi(Sh) — Vie1(S0)) ex(s) — a(Vi(St) — Vier(S1)),  if s =S,

What is interesting about the tabular case is that the dutch-trace update reduces to a
particularly simple form. In fact, for the tabular case, a dutch-trace update is equal to the
weighted average between an accumulating-trace update and a replacing-trace update, with
the weight of the former (1 — «) and the latter a. Algorithm 6 shows the corresponding
pseudocode.

7. Related Work

Since the first publication on true online TD(\) (van Seijen & Sutton, 2014), several related
papers have been published, extending the underlying concepts and improving the presen-
tation. In sections 7.1, 7.2 and 7.3, we review those papers. In Section 7.4, we discuss other
variations of TD(\).
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7.1 True Online Learning and Dutch Traces

As mentioned before, the traditional forward view, which is based on the A-return, is inher-
ently an offline forward view, because the A-return is constructed from data up to the end
of an episode. As a consequence, the work regarding equivalence between a forward view
and a backward view traditionally focused on the final weight vector @7. This changed in
2014, when two papers introduced an online forward view with a corresponding backward
view that has an exact equivalence at each moment in time (van Seijen & Sutton, 2014;
Sutton et al., 2014). While both papers introduced an online forward view, the two forward
views presented are very different from each other. One difference is that the forward view
introduced by van Seijen & Sutton is an on-policy forward view, whereas the forward view
by Sutton et al. is an off-policy forward view. However, there is an even more fundamental
difference related to how the forward views are constructed. In particular, the forward view
by van Seijen & Sutton is constructed in such a way that at each moment in time the weight
vector can be interpreted as the result of a sequence of updates of the form:

Opi1 =0+ (U — 0, ), for0<k<t. (18)

By contrast, the forward view by Sutton et al. gives the following interpretation:

t—1
0 =00+ Spdr, (19)
k=0

with Jd; some multi-step TD error. Of course, the different forward views also result in
different backward views. Whereas the backward view of Sutton et al. uses a generalized
version of an accumulating trace, the backward view of van Seijen & Sutton introduced a
completely new type of trace.

The advantage of a forward view based on (18) instead of (19) is that it results in much
more stable updates. In particular, the sensitivity to divergence of accumulate TD()) is a
general side-effect of (19), whereas (18) is much more robust with respect to divergence. As
a result, true online TD(A) not only has the property that it has an exact equivalence with
an online forward view at all times, it consistently dominates TD(\) empirically.

The strong performance of true online TD(A) motivated van Hasselt et al. (2014) to
construct an off-policy version of the forward view of true online TD(A). The corresponding
backward view resulted in the algorithm true online GTD()), which empirically outperforms
GTD(A). They also introduced the term ‘dutch traces’ for the new eligiblity trace.

Van Hasselt & Sutton (2015) showed that dutch traces are not only useful for TD
learning. In an offline setting with no bootstrapping using dutch traces can result in certain
computational advantages. To understand why, consider the Monte Carlo algorithm (MC),
which updates state values at the end of an episode using (18), with the full return as
update target. MC requires storing all the feature vectors and rewards during an episode,
so the memory complexity is linear in the length of the episode. Moreover, the required
computation time is distributed very unevenly: during an episode almost no computation
is required, but at the end of an episode there is a huge peak in computation time due to all
the updates that need to be performed. With dutch traces an alternative implementation
can be made that results in the same final weight vector but that does not require storing all
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the feature vectors and where the required computation time is spread out evenly over all
the time steps. Van Hasselt & Sutton refer to this appealing property as span-independence:
the memory and computation time required per time step is constant and independent of
the span of the prediction.”

7.2 Backward View Derivation

The task of finding an efficient backward view that corresponds exactly with a particular
online forward view is not easy. Moreover, there is no guarantee that there exists an efficient
implementation of a particular online forward view. Often, minor changes in the forward
view determine whether or not an efficient backward view can be constructed. This created
the desire to somehow automate the process of constructing an efficient backward view.

Van Seijen & Sutton (2014) did not provide a direct derivation of the backward view up-
date equations; they simply proved that the forward view and the backward view equations
result in the same weight vectors. Sutton et al. (2014) were the first to attempt to come
up with a general strategy for deriving a backward view (although for forward views based
on Equation 19). Van Hasselt et al. (2014) took the approach of providing a theorem that
proves equivalence between a general forward view and a corresponding general backward
view. They showed that the forward/backward view of true online TD()) is a special case
of this general forward/backward view. They showed the same for the off-policy method
that they introduced—true online GTD(\). Recently, Mahmood & Sutton (2015) extended
this theorem further by proving equivalence between an even more general forward view
and backward view.

Furthermore, van Hasselt & Sutton (2015) derived backward views for a series of in-
creasingly complex forward views. The derivation of the true online TD()\) equations in
Appendix B is similar to those derivations.

7.3 Extension to Non-Linear Function Approximation

The linear update equations of the online forward view presented in Section 3.1 can be
easily extended to the case of non-linear function approximation. Unfortunately, it appears
to be impossible to construct an efficient backward view with exact equivalence in the case
of non-linear function approximation. The reason is that the derivation in Appendix B
makes use of the fact that the gradient with respect to the value function is independent of
the weight vector; this does not hold for non-linear function approximation.

Fortunately, van Seijen (2016) shows that many of the benefits of true online learning
can also be achieved in the case of non-linear function approximation by using an alternative
forward view (but still based on Equation 18). While this alternative forward view is not
fully online (there is a delay in the updates), it can be implemented efficiently.

7.4 Other Variations on TD())

Several variations on TD()\) other than those treated in this article have been suggested
in the literature. Schapire & Warmuth (1996) introduced a variation of TD(\) for which

7. The span of the prediction refers to the time difference between the first prediction and the moment its
target is known (e.g., for episodic tasks it corresponds to the length of an episode).
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upper and lower bounds on performance can be derived and proven. Konidaris et al. (2011)
introduced TD,, a parameter-free alternative to TD(X) based on a multi-step update target
called the y-return. TD, is an offline algorithm with a computational cost proportional to
the episode-length. Furthermore, Thomas et al. (2015) proposed a method based on a
multi-step update target, which they call the Q-return. The Q-return can account for the
correlation of different length returns, something that both the A-return and the ~-return
cannot. However, it is expensive to compute and it is open question whether efficient
approximations exist.

8. Conclusions

We tested the hypothesis that true online TD(A) (and true online Sarsa()\)) dominates
TD(A) (and Sarsa(\)) with accumulating as well as with replacing traces by performing ex-
periments over a wide range of domains. Our extensive results support this hypothesis. In
terms of learning speed, true online TD()) was often better, but never worse than TD(\)
with either accumulating or replacing traces, across all domains/representations that we
tried. Our analysis showed that especially on domains with non-sparse features and a rela-
tively low variance on the return a large difference in learning speed can be expected. More
generally, true online TD(\) has the advantage over TD(\) with replacing traces that it can
be used with non-binary features, and it has the advantage over TD(\) with accumulating
traces that it is less sensitive with respect to its parameters. In terms of computation time,
TD()) has a slight advantage. In the worst case, true online TD(\) is twice as expensive.
In the typical case of sparse features, it is only fractionally more expensive than TD(\).
Memory requirements are the same. Finally, we outlined an approach for deriving new true
online methods, based on rewriting the equations of an online forward view. This may lead
to new, interesting methods in the future.

Acknowledgments

The authors thank Hado van Hasselt for extensive discussions leading to the refinement of
these ideas. Furthermore, the authors thank the anonymous reviewers for their valuable
suggestions, resulting in a substantially improved presentation. This work was supported
by grants from Alberta Innovates — Technology Futures and the National Science and En-
gineering Research Council of Canada. Computing resources were provided by Compute
Canada through WestGrid.

28



TRUE ONLINE TEMPORAL-DIFFERENCE LEARNING

Appendix A. Proof of Theorem 1

Theorem 1 Let 8y be the initial weight vector, 0§d be the weight vector at time t computed
by accumulate TD(X), and 0} be the weight vector at time t computed by the online A\-return
algorithm. Furthermore, assume that Zf;é Al =£0. Then, for all time steps t:

[EHEAll

HO%d—BoH_)O’ as a — 0.

Proof We prove the theorem by showing that |0} — 6}||/||0:% — 6y|| can be approximated
by O(a)/(C 4+ O(a)) as o — 0, with C' > 0. For readability, we will not use the ‘td” and
‘A’ superscripts; instead, we always use weights with double indices for the online A-return
algorithm and weights with single indices for accumulate TD()).

The update equations for accumulate TD(\) are:

6 = Riy1+70, i1 — 6/ ¢,
e = YAer 1+ @y,
0,11 = 6,+adie.

By incremental substitution, we can write 8, directly in terms of 6g:

t—1
0, = 00+O[Z(Sj€j,
=0

t—1 J

= Oota) 5 ) (W e,
j=0 =0
t—1 J

= B+ad Y (N i

=0 =0
Using the summation rule 337 331, a;; = >, >0, a;j we can rewrite this as:

t—1 t—-1

0r=00+a) > (YN 5 ¢ (20)
i=0 j=i
As part of the derivation shown in Appendix B, we prove the following (see Equation
26):
G = G e
with
8 = Ris1 +70), dry1 — 041 -

By applying this sequentially for ¢ +1 < h < t, we can derive:

t—1
A Ali+1 i—q
Gl =GN ST (i) (21)
j=i+1
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Ali+-1 .
Furthermore, Gj 1 can be written as:

G = Rit +46] pin
= Riy1+70; div1— 010+ 601 ¢;,
= 5 +6 ;.
Substituting this in (21) yields:
t—1
G =01 14+ > (N5
=i

Using that & = d; + BjT(j)j - OjT_l(j)j, it follows that

t—1 -1
S AT =GN 0] — ST (A TH(0; — 0;-1) T ¢
j=i j=i

As o — 0, we can approximate this as:
t—1
i At
2(7)\)] ‘05 = Gi| 616+ 0(a),
j=i

= G?“—BJ@'%—O(O‘),

with Gj"t the interim A-return that uses 6y for all value evaluations. Substituting this in
(20) yields:

90+Oéz (G~ 6] di + O() . (22)

For the online A-return algorlthm, we can derive the following by sequential substitution
of Equation (7):

eo+az( G —(6) )i
As a — 0, we can approximate this as:
Bo+aZ( G~ 8] ¢+ 0(a)) . (23)

Combining (22) and (23), it follows that as o — 0:

16, — 67| _ 1(6: — 67)/al| __0(a)
10: — 6ol|  1|(8: — 60)/c]]  C+O(a)’

with o
A
o= |5 @ - o7e)en
i=0
From the condition Zf;cl) Al +£ 0 it follows that C > 0. [ |
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Appendix B. Derivation Update Equations
In this subsection, we derive the update equations of true online TD()) directly from the

online forward view, deﬁned by equations (6) and (7) (and 6} := 0;,;1). The derivation is
based on expressing 197'55 11 in terms of 0;.

We start by writing 6! directly in terms of the initial weight vector and the interim
A-returns. First, we rewrite (7) as:

A
011 = (I— agpy) 0} + a ¢iG, ’
with I the identity matrix. Now, consider 8! for k =1 and k = 2:

05 = (I - a¢0¢(—)r) init + 04¢0G>\|t

0, = (I—apih])0 +apG,
= (I1— a1 )T — agod] )i + (I — agid] )boGy + ag G

For general £ < ¢, we can write:

k—1

A
Ot == Ak 107,7111‘, +QZA1+1 ()bz |ta
1=0

where Ag is defined as:
Al i=(1-ag;p) )A—apj1¢)_)...(I—agip]), forj>1i,
and A? 41 := L. We are now able to express 0! as

t—1
0l = AL 05t + 0> AL G (24)
=0

Because for the derivation of true online TD(\), we only need (24) and the definition of
Gg\lt, we can drop the double indices for the weight vectors and use 6; := %.
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A1 _ Al

We now derive a compact expression for the difference G; ;

t—i
G%\|t+1 B G)\\t = (1-)) Z )\nfle(n) i )\tfiGz(t+1fz)7

i 7
n=1
t—i—1

— (1= Z )\n—lGl(n) _ )\t—i—lGZ(t—i),
n=1
= (1= NNTLGUED g NG i1 Gltd)
= )\t—ithH—i) _ At—iGEt—i)’
g t—i

= )\t_’( Z ARk + 0] g — Z’Yk_lRiJrk - ’Yt_ietT—1¢t) :
k=1 k=1

= N\ (fyt_iRHl + ’7t+1_i02—¢t+1 - ,yt—i0;1¢t) ’

= O (Revr +76] b — 07101)

Note that the difference Gg\ltﬂ — Gf"t is naturally expressed using a term that looks like a

TD error but with a modified time step. We call this the modified TD error, §;:
8 = Rep1 + 760, pry1— 0] by
The modified TD error relates to the regular TD error, &, as follows:

5 = Rip1+70, b1 — 610,
_ T T T T
= Rip1+760; @111 — 0, d¢+ 6, o — 0,104,
= 5 +6/d—0,¢;. (25)

Using ¢}, the difference G;\‘Hl — Gi"t can be compactly written as:

Gt @t = ()t (26)

7
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To get the update rule, 6;,1 has to be expressed in terms of ;. This is done below,
using (24), (25) and (26):

Alt+1
0.1 = Al 00+aZA1+1¢iGi|t+,
=0
t—1
Alt+1 Alt+1
= Aoy +ad ALLeG faga)t
=0
t—1
= A“90+042A+1<j)Z Mt—i—aZAqu)Z )‘|t+1 G;\It)—i-a(th;\‘Hl,
1=0 =0

= (1-ape]) (AL 100+QZAZ+1¢1 )

+a Z AL (G =6 +agia)

_ (I_a¢t¢t 0t+aZA+1¢z( ealas G;"t> +O“’th?ItH’

t—1
= (I-app/)0; + Z AL i(VN) U0+ agi(Risa +70: T dria)
=0

t—1 ‘
= O +ad Al (v N 0+ agi(Rip1 + 70, i1 — 0] Br)

=0

t—1 ‘
= Oi+a) Aligi(yN)' S

=0

+ag(Res1 +70; i1 — 0 19+ 01 — 0/ ¢)

t—1
= Oi+a) AlL1gi(N) I8+ adid; — a(6] ¢ — 0, 1¢) b,

=0

t .

= O+« Z Al di(YN'T0 — (0] — 0, 101)

=0

t .
= 0, +aed, —a(0] ¢ — 6, 1d1) 1, with e; := Z Al i)
1=0

= O +ae (0 + 0, ¢ — 0 1¢1) — (6] ¢ — 0] 1),
= 0;+ ceidy + a(gtT(i)t - 0£1¢t) (et - ¢’t) . (27)
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We now have the update rule for 6, in addition to an explicit definition of e;.
using this explicit definition, we derive an update rule to compute e; from e;_1:

€t

t
Z A§+1 Pi (VA)tii )
i=0
t—1

S TAL L Gi(VN T+ ¢

1=0

t—1
(I agip[ )N D> AL (7)™ + ¢y,

i—0
I - agid, )y rei—1 + ¢,
YAer—1 + ¢ — avNe]  di) b .

Next,

(28)

Equations (27) and (28), together with the definition of ¢, form the true online TD(\)

update equations.
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Appendix C. Detailed Results Random MRPs

12 - tabular features 12 - binary features 124 non-binary features
1.0 accumulate TD(A) 1.0 1.04  accumulate TD(N)
0.8 1 08 cooumuate DM e 08 true-online TD(\)
: replace TD(\) :
MSE MSE MSE
4 4 replace TD(\) i
06 true-online TD(A) 06 06
true-online TD(A
0.4 4 0.4 0.4 -
0.2 T T T T d 0.2 T T T T d 0.2 T T T T J
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
A A A
12 tabular features, accumulate TD(A) 12 binary features, accumulate TD(\) 12 non-binary features, accumulate TD(\)
2=0 ’ 1 o
1.0 1.0 1.0
0.8 0.8 T 0.8
MSE MSE MSE
0.6 0.6 A=0 0.6
0.4 0.4 0.4
0. T T T J 0. r T T J 0. T T T d
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15 2.0
step-size step-size step-size
tabular features, replace TD(A) 12 binary features, replace TD(A) 12 non-binary features, replace TD(A)
A=0
1.0 1.04
o N\ ///
0.8 / 0.8
MSE MSE MSE
0.6+ 0.6
0.4 0.4 0.4
0. T T T d 0. T T T J 0. T T T d
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0
step-size step-size step-size
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0.0 0.5 1.0 2.0 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 2.0
step-size step-size step-size

Figure 10: Results on a random MRP with £ = 10, b = 3 and ¢ = 0.1. MSE is the mean
squared error averaged over the first 100 time steps, as well as 50 runs, and
normalized using the initial error. The top graphs summarize the results from
the graphs below it; they show the MSE error, for each A, at the best step-size.
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tabular features

binary features

non-binary features

1.2 4 1.2 q 1.2 -
1.0 4 accumulate TD(\) 1.0 4 1.0
0.8 4 o0 4 accumulate TD(A)  true-online TD(A) 08 | accumulate TD(Y
replace TD(\)
MSE MSE MSE true-online TD(A)
0.6 4 0.6 - 0.6 -
true-online TD(A) replace TD()
0.4 - 0.4 4 0.4 -
0.2 T T T T 1 0.2 T T T T d 0.2 T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
A A A
non-binary features, accumulate TD(\)
1.0
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MSE
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0.4 0.4
0. T T T 0.2+ T T T 0.2 T T T
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MSE
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o. T T T 0.21- T~ T 1 0.242 2 T 50
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MSE MSE
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0. T T T 0.2+ T T T 0.2+ T T T
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step-size

107
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step-size

Results on a random MRP with k£ = 100, b = 10 and ¢ = 0.1. MSE is the mean

squared error averaged over the first 1000 time steps, as well as 50 runs, and
normalized using the initial error.
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tabular features binary features non-binary features
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Figure 12: Results on a random MRP with £ = 100, b = 3 and ¢ = 0. MSE is the mean
squared error averaged over the first 1000 time steps, as well as 50 runs, and
normalized using the initial error.
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Appendix D. Detailed Results for Myoelectric Prosthetic Arm
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Figure 13: Results on prosthetic data from the single amputee subject described in Pilarski
et al. (2013), for the prediction of servo motor angle (left column) and grip force
(right column) as recorded from the amputee’s myoelectrically controlled robot
arm during a grasping task.
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