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Abstract

Inference and learning of graphical models are both well-studied problems in statistics and
machine learning that have found many applications in science and engineering. However,
exact inference is intractable in general graphical models, which suggests the problem of
seeking the best approximation to a collection of random variables within some tractable
family of graphical models. In this paper, we focus on the class of planar Ising models, for
which exact inference is tractable using techniques of statistical physics. Based on these
techniques and recent methods for planarity testing and planar embedding, we propose
a greedy algorithm for learning the best planar Ising model to approximate an arbitrary
collection of binary random variables (possibly from sample data). Given the set of all
pairwise correlations among variables, we select a planar graph and optimal planar Ising
model defined on this graph to best approximate that set of correlations. We demonstrate
our method in simulations and for two applications: modeling senate voting records and
identifying geo-chemical depth trends from Mars rover data.

Keywords: Ising models, graphical models

1. Introduction

Graphical models are widely used to represent the statistical relations among a set of ran-
dom variables (Lauritzen, [1996; MacKay), 2003). Nodes of the graph correspond to random
variables and edges of the graph represent statistical interactions among the variables. The
problems of inference and learning on graphical models arise in many practical applications.
The problem of inference is to deduce certain statistical properties (such as marginal prob-
abilities, modes etc.) of a given set of random variables whose graphical model is known.
Inference has wide applications in areas such as error correcting codes, statistical physics
and so on. The problem of learning on the other hand is to deduce the graphical model of
a set of random variables given statistics (possibly from samples) of the random variables.
Learning is also a widely encountered problem in areas such as biology, neuroscience and
so on (Barabasi and Oltvai, [2004; Smith et al., [2011]).
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The Ising model, a class of binary-variable graphical models with pairwise interactions,
has been studied by physicists as a simple model of order-disorder transitions in magnetic
materials (Onsager, 1944). Remarkably, it was found that in the special case of an Ising
model with zero-mean {—1,+1} binary random variables and pairwise interactions defined
on a planar graph, calculation of the partition function (which is closely tied to inference)
is tractable, essentially reducing to calculation of a matrix determinant (Kac and Ward,
1952; |Shermanl, |1960; Kasteleyn, [1963; Fisher, [1966|). Planar graph inference methods have
been used in machine learning for efficient inference on planar graphs (Schraudolph and
Kamenetsky|, 2008} |Gomez et all [2010), in approximating inference for general graphs with
planar graph decomposition (Jaakkola and T., 2007); and applied to problems such as
computer vision (Batra et al., [2010; [Yarkony et al., 2012) and financial forecasting (Pozzi
et al.l 2013), usually as an approximation method for problems with non-binary data.

We address the problem of approximating a collection of binary random variables (given
their pairwise marginal distributions) by a zero-mean planar Ising model. We also consider
the related problem of selecting a non-zero mean Ising model defined on an outer-planar
graph (these models are also tractable, being essentially equivalent to a zero-field model on
a related planar graph).

There has been a great deal of work on learning graphical models. Much of these have
focused on learning over the class of thin graphical models (Deshpande et al.l 2001} [Bach
and Jordan, 2001} |[Karger and Srebro, 2001; Shahaf et all [2009) for which inference is
tractable by converting the model to a junction tree. The simplest case of this is learning
tree models (treewidth one graphs) for which it is tractable to find the best tree model
by reduction to a max-weight spanning tree problem (Chow and Liu, |1968). However, the
problem of finding the best bounded-treewidth model is NP-hard for treewidths greater
than two (Karger and Srebro| 2001)), and so heuristic methods are used to select the graph
structure (Deshpande et al., [2001; Karger and Srebrol 2001). Another popular method is
to use convex optimization of the log-likelihood penalized by the ¢; norm of parameters of
the graphical model so as to promote sparsity (Banerjee et al.l 2008; Lee et al., [2006). To
go beyond low-treewidth graphs, such methods either focus on Gaussian graphical mod-
els or adopt a tractable approximation of the likelihood. Other methods learn only the
graph structure itself (Ravikumar et al., 2010; |Abbeel et al., [2006) and are often able to
demonstrate asymptotic correctness of this estimate under appropriate conditions.

In contrast to existing approaches, this paper explores planarity as an alternative re-
striction on the model class, instead of low treewidth, to make learning tractable while
maintaining a tractable model for inference, unlike unrestricted regularized approaches,
while still providing a solution in which the number of edges learned is linear in the number
of variables.

2. Preliminaries

We develop our notation and briefly review the necessary background theory on graph
estimation, Ising models and exact inference in planar graphs.



LEARNING PLANAR ISING MODELS

2.1 Divergence and Likelihood

A graph represents a joint probability distribution over a collection of variables. Suppose we
want to calculate how well a probability distribution ) approximates another probability
distribution P (on the same sample space x). For any two probability distributions P and @
on some sample space Y, we denote by D(P, Q) the Kullback-Leibler divergence (or relative

entropy) between P and @ as D(P,Q) = erx (z)log ngg. The log-likelihood function

is defined as LL(P,Q) = }_,¢, P(z)logQ(z). The probability distribution in a family F
that maximizes the log-likelihood of a probability distribution P is called the mazimum-

likelihood estimate of P in F, and this is equivalent to the minimum-divergence projection
of P to F, so that Pr = argmaxger LL(P, Q) = argming. » D(P, Q).

2.2 Graphical Models and The Ising Model

We will be dealing with binary random variables throughout the paper. We write P(x)
to denote the probability distribution of a collection of random variables x = (z1,...,x,).
Unless otherwise stated, we work with undirected graphs G = (V, E') with vertex (or node)
set V and edges {i,j} € E C (g) For vertices 7, j € V we write G +ij to denote the graph
(V,EU{i,3}). A pairwise graphical model is a probability distribution P(z) = P(z1,...,y)
that is defined on a graph G = (V, E') with vertices V = {1,..,n} as

P)oc [[eite) T vl

eV {i,j}eF

x exp Zfi(:ci)—i- Z fij(xi, ) o,

eV {i,j}€E

(1)

where 1;,1;; > 0 are non-negative node and edge compatibility functions. For positive
¥’s, we may also represent P(x) as a Gibbs distribution with potentials f; = log; and

fij = log ¥yj.

Definition 1 An Ising model on binary random variables © = (x1,...,x,) and graph G =
(V, E) is the probability distribution defined by

P(x) = exp ZQ x; + Z Oijxizy o,
% {i,j}€FE
Zexp ZH z; + Z Oijziz; o,
eV {i,7}€FE

where x; € {—1,1}. The partition function Z(0) serves to normalize the probability distri-
bution.

Formally, this defines an exponential family Pp(x) = exp{0T ¢(x) — ®(0)
Nielsen) |1979; |Wainwright and Jordan, 2008|) based on sufficient statistics (¢;(x
and (¢;j(x) = xjz;,{i,j} € E), parameters (6;,7 € V) and (0;5,{3,j} € E)

} (Barndorff-
) J}i,i € V)
and moment
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parameters (p; = E[z;],i € V) and (55 = E[z;25], {4, j} € E). The function ®(0 ) lo
is a convex function of § and has the moment generating properties: V®(0) = Eg[¢(z
and V2®(0) = Eg[(¢(x) — p)(¢(x) — m)"].

In fact, any pairwise graphical model among binary variables can be represented as an
Ising model:

og (9)
)] =

0; = %szfz('fz i Z Z xlf’b] 3717«733
x;

{i,j}EE Ti,xj
bij = 5 D wiw;fij(@i ))-

Ti,Tj

The moments can be computed as: w; = >, x;P(x;) and p;; = 3, o xixi P(x;, xj).
Inversely, the marginals are computed by:

N I

P(x;)
Pz, x;) =

(1 + pii),
(L4 piwi + pjws + pijeizs).

We will be especially concerned with the following sub-family of Ising models:

Definition 2 An Ising model is said to be zero-field if ; = 0 for alli € V. It is zero-mean
if pi =0 (P(x; =£1) = %) for alli € V.

The Ising model is zero-field if and only if it is zero-mean. Although the zero-field assump-
tion appears very restrictive, a general Ising model can be represented as a zero-field model
by adding one auxiliary variable node connected to every other node of the graph (Jaakkola,
and T 2007). The parameters and moments of the two models are then related as follows:

Proposition 1 Consider the Ising model on G = (V, E) with V. = {1,...,n}, parameters
{0;} and {0;;}, moments {p;} and {pi;} and partition function Z. Let G = (V, E) denote
the extended graph based on nodes V =V U{n+1} with edges E=FEU{{i,n+1},i e V}).
We define a zero-field Ising model on G with parameters {6;;}, moments {fi;;} and partition
function Z. If we set the parameters according to

)

0. _{ 0, ifj=n+1

Y| 655 otherwise

then Z =27 and
~ _Jmifij=n+l
Hij = wij otherwise

Thus, inference on the corresponding zero-field Ising model on the extended graph G is
equivalent to inference on the (non-zero-field) Ising model defined on G. Proof given in

Appendix [A]
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2.3 Inference for Planar Ising Models

The motivation for our paper is the following result on tractability of inference for the
planar zero-field Ising model.

Definition 3 A graph is planar if it may be embedded in the plane without any edge cross-
mngs.

Moreover, it is known that any planar graph can be embedded such that all edges are drawn
as straight lines.

Theorem 1 (Kac and Ward, |1952; |Sherman, |1960; Loebl, |2010) Let G be a planar graph
with specified straight-line embedding in the plane and let ¢;;1, € [—m,+7] denote the clock-
wise rotation between the directed edges (i,7) and (j, k). We define the matriz W €
CAE2E jndezed by directed edges of the graph as follows: W = AD where D is the
diagonal matrix with D;;;; = tanh 0;; = wi; and

Aoy = { exp(5v/—1dij), j=Fk andi#1
ig,kl —

0, otherwise.

Then, the partition function of the zero-field planar Ising model is given by the Kac-Ward
determinant formula:

Z=2"| [[ coshby | det(z — W)z
{i,j}€E

Another related method for computing the Ising model partition function is based on count-
ing perfect matchings of planar graphs (Kasteleyn, [1963; Fisher, [1966). Thus, calculating
the partition function reduces to calculating the determinant of a matrix; therefore, using
the generalized nested dissection algorithm to exploit sparsity of the matrix, the complex-
ity of these calculations is O(n3/2) (Lipton et al., [1979; Lipton and Tarjan, [1979; Galluccio
et al., 2000). Thus, inference of the zero-field planar Ising model is tractable and scales well
with problem size.

The gradient and Hessian of the log-partition function ®(f) = log Z(6) can also be
calculated efficiently from the Kac-Ward determinant formula. Derivatives of ®(6) recover
the moment parameters of the exponential family model as V®(6) = Eg[¢] = o (Barndorff-
Nielsen) 1979; Wainwright and Jordan) 2008]). Thus, inference of moments (and node and
edge marginals) is tractable for the zero-field planar Ising model.

Proposition 2 Let u = V®(0), H = V?®(0). Let S= (I —-W) tA and T = (I + P)(S o
STY(I + PT) where A and W are defined as in Theorem |1, o denotes the element-wise
product and P is the permutation matriz swapping the indices of the directed edges (i, j)
and (j,i). Then,

pij = wij — 3(1—w)(Sijis + Sjigi)
1—p2, ij = ki
Hijr = { Hij J

—%(1 — wl-zj)Tij’kl(l —w3)), otherwise.

5



JOHNSON, OYEN, CHERTKOV AND NETRAPALLI

Calculating the full matrix S requires O(n?) calculations. However, to compute just the
moments p only the diagonal elements of S are needed. Then, using the generalized nested
dissection method, inference of moments (edge-wise marginals) of the zero-field Ising model
can be achieved with complexity O(n3/ 2). Computing the full Hessian is more expensive,
requiring O(n?) calculations.

2.3.1 INFERENCE FOR OUTER-PLANAR GRAPHICAL MODELS

We emphasize that the above calculations require both a planar graph G and a zero-field
Ising model. Using the graphical transformation of Proposition the latter zero-field
condition may be relaxed but at the expense of adding an auxiliary node connected to all
the other nodes. In general planar graphs G, the new graph G may not be planar and hence
may not admit tractable inference calculations. However, for the subset of planar graphs
where this transformation does preserve planarity inference is still tractable.

Definition 4 A graph G is said to be outer-planar if there exists an embedding of G in the
plane where all the nodes are on the outer face.

In other words, the graph G is outer-planar if the extended graph G (defined by Propo-
sition [1f) is planar. Then, from Proposition [1| and Theorem [1|it follows that:

Proposition 3 (Jaakkola and T'.,|2007) The partition function and moments of any outer-
planar Ising graphical model (not necessarily zero-field) can be calculated efficiently. Hence,
inference is tractable for any binary-variable graphical model with pairwise interactions de-
fined on an outer-planar graph.

This motivates the problem of learning outer-planar graphical models for a collection of
(possibly non-zero mean) binary random variables.

3. Learning Planar Ising Models

This section addresses the main goals of the paper, which are two-fold:

1. Solving for the maximum-likelihood Ising model on a given planar graph to best
approximate a collection of zero-mean random variables.

2. Selecting heuristically the planar graph to obtain the best approximation.

We address these problems in the following two subsections. The solution of the first
problem is an integral part of our approach to the second. Both solutions are easily adapted
to the context of learning outer-planar graphical models of (possibly non-zero mean) binary
random variables.

3.1 Maximum-Likelihood Parameter Estimation

Maximum-likelihood estimation over an exponential family is a convex optimization problem
based on the log-partition function ®(6). In the case of the zero-field Ising model defined on
a given planar graph it is tractable to compute ®(6) via a matrix determinant described in



LEARNING PLANAR ISING MODELS

Theorem (I Thus, we obtain an unconstrained, tractable, convex optimization problem for
the maximume-likelihood zero-field Ising model on the planar graph G to best approximate
a probability distribution P(z):

Ty _ - 0. — A _
mgmx{;z 0—®(0)} GIGnIg)é‘ izj(,uUGU log cosh 6;;) — 5 logdet(f — W(6))

Here, p1;; = Ep[z;x;] for all edges {i,j} € G and the matrix W (6) is as defined in Theorem[l]
If P represents the empirical distribution of a set of independent identically-distributed
(iid) samples {x(*), s = 1,..., S} then {s1;;} are the corresponding empirical moments j;; =

E sl
3.1.1 NEWTON’S METHOD

We solve this unconstrained convex optimization problem using Newton’s method with step-
size chosen by back-tracking line search (Boyd and Vandenberghel 2004). This produces a
sequence of estimates () calculated as follows:

O+ = 9 L X, H(OD) " (u(0W) — 1),

where p(6®) and H(6®)) are calculated using Proposition [2| and A; € (0,1] is a step-
size parameter chosen by backtracking line search (see Boyd and Vandenberghe| (2004):
Chapter 9, Section 2 for details). The per iteration complexity of this optimization is O(n?)
using explicit computation of the Hessian at each iteration. This complexity can be offset
somewhat by only re-computing the Hessian a few times (reusing the same Hessian for
a number of iterations), to take advantage of the fact that the gradient computation only
requires O(n%) calculations. As Newton’s method has quadratic convergence, the number of
iterations required to achieve a high-accuracy solution is typically 8-16 iterations (essentially
independent of problem size). We estimate the computational complexity of solving this
convex optimization problem as roughly O(n?).

3.2 Greedy Planar Graph Selection

We now consider the problem of selection of the planar graph G to best approximate a
probability distribution P(z) with pairwise moments p;; = Ep[z;z;] given for all 4,5 €
V. Formally, we seek the planar graph that maximizes the log-likelihood (minimizes the
divergence) relative to P:

~

G = argmax LL(P, Pg) = argmax max LL(P,Q),
GePy Gepy, Q&Fc
where Py is the set of planar graphs on the vertex set V, Fg denotes the family of zero-
field Ising models defined on graph G and Pg = argmaxgcr, LL(P, Q) is the maximum-
likelihood (minimum-divergence) approximation to P over this family.

We obtain a heuristic solution to this graph selection problem using the following greedy
edge-selection procedure. The input to the algorithm is a probability distribution P (which
could be empirical) on n binary {—1,1} random variables. In fact, it is sufficient to sum-
marize P by its pairwise correlations j;; = Ep[z;x;] on all pairs ¢,j € V. The output is a
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mazximal planar graph G and the maximum-likelihood approximation 65 to P in the family
of zero-field Ising models defined on this graph. Note that a maximal planar graph is a
planar graph for which no new edge can be added that would maintain planarity. Planar
graphs are inherently sparse. All maximal planar graphs with n > 2 have 3n — 6 edgesﬂ

Algorithm 1 GreedyPlanarGraphSelect(P)

1 G=0,0g=0

2: fork=1:3n—-6do > Add edges until maximal planar graph reached
3: A={{i,j} cVH{i,j} ¢ G,G+1ij € Py} > Set of edges that preserve planarity
4: in = {ftij = Eo, [ziz;],{i,5} € A} > Compute pairwise correlations
5 G + G Uargmax D(P,, P.) > Select edge that maximizes gain in log-likelihood

ecA

6: 0 = Planarlsing(G, P) > Compute maximum-likelihood parameters for G
7: end for

The algorithm starts with an empty graph and then sequentially adds edges to the graph
one at a time so as to greedily increase the log-likelihood (decrease the divergence) relative
to P as much as possible at each step. Here is a more detailed description of the algorithm
along with estimates of the computational complexity of each step:

e Line 3. First, we enumerate the set A of all edges one might add (individually) to
the graph while preserving planarity. This is accomplished by an O(n3) algorithm in
which we iterate over all pairs {i,j} ¢ G and for each such pair we form the graph
G + ij and test planarity of this graph using known O(n) algorithms (Chrobak and
Paynel [1995).

o Line 4. Next, we perform tractable inference calculations with respect to the Ising
model on G to calculate the pairwise correlations fi;; for all pairs {i,j} € A. This is
accomplished using O(n3/ 2) inference calculations on augmented versions of the graph
G. For computational efficiency instead of calculating the addition of each proposed
edge individually, moments of proposed edges are calculated in batches as follows.
For each inference calculation we add as many edges to G from A as possible (setting
6 = 0 on these edges) while preserving planarity and then calculate all the edge-wise
moments of this graph using Proposition (including the zero-edges). This requires at
most O(n) iterations to cover all pairs of A, so the worst-case complexity to compute
all required pairwise moments is O(n%/?).

e Line 5. Once we have these moments, which specify the corresponding pairwise
marginals of the current Ising model, we compare these moments (pairwise marginals)
to those of the input distribution P by evaluating the pairwise KL-divergence between
the Ising model and P. As seen by the following proposition, this gives us a lower-

1. Euler’s formula states that for a planar graph, n —e+ f = 2, where f is the number of faces and e is the
number of edges (Richeson, |2012). The faces of a planar graph are simple polygons, so each face has at
least 3 edges and each edge is part of at most 2 faces, 2e < 3f. Combining these two properties, gives
e < 3n — 6 for planar graphs. A maximal planar graph is triangulated, meaning that all faces have three
sides, and therefore e = 3n — 6 (if any face has more than 3 sides, an edge can be added as a chord of
that face polygon without breaking planarity).
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bound on the improvement obtained by adding edge {7, j} (see Appendix [A]for proof):

Proposition 4 Let Pg and Pgyi; be projections of P on G and G + ij respectively.
Then,
D(P, Pg) — D(P, Pg+ij) = D (P(xi, %), Pa(wi, x;)) ,

where P(x;,x;) and Pg(x;, ;) represent the marginal distributions on x;, x; of prob-
abilities P and Pg respectively.

Thus, we greedily select the next edge {7, j} to add so as to maximize this lower-bound
on the improvement measured by the increase on log-likelihood (this being equal to
the decrease in KL-divergence).

e Line 6. Finally, we calculate the new maximum-likelihood parameters g on the new
graph G < G + ij. This involves solving the convex optimization problem discussed
in the preceding subsection, which requires O(n3) complexity. This step is necessary
in order to subsequently calculate the pairwise moments [ which guide further edge-
selection steps, and also to provide the final estimate.

We continue adding one edge at a time until a maximal planar graph (with 3n—6 edges)
is obtained. Thus, the total complexity of our greedy algorithm for planar graph selection
is O(n%).

3.2.1 NON-MAXIMAL PLANAR GRAPHS

Since adding an edge always improves the log-likelihood, the greedy algorithm always out-
puts a maximal planar graph. However, this might lead to over-fitting of the data especially
when the input probability distribution is an empirical distribution. Note that at 3n — 6
edges, the maximal planar graph is sparse and our empirical work indicates that over-fitting
is often not an issue. In the case that over-fitting is a concern, we could terminate the al-
gorithm when adding an edge to the graph would only improve the log-likelihood by less
than some threshold . A data-driven search can be performed for a suitable value of this
threshold so as to minimize some estimate of the generalization, such as in cross validation
methods (Zhang, [1993)). Or, one could use some heuristic value for v based on the number
of samples such as Akaike’s information criterion (AIC) or Schwarz’s Bayesian information
criterion (BIC) (Akaike, 1974; |Schwarz, [1978).

3.2.2 OUTER-PLANAR GRAPHS AND NON-ZERO MEANS

The greedy algorithm returns a zero-field Ising model (which has zero mean for all the
random variables) defined on a planar graph. If the actual random variables are non-zero
mean, this may not be desirable. For this case we may prefer to exactly model the means of
each random variable but still retain tractability by restricting the greedy learning algorithm
to select outer-planar graphs. This model faithfully represents the marginals of each random
variable but at the cost of modeling fewer pairwise interactions among the variables.

This is equivalent to the following procedure. First, given the sample moments {u;}
and {u;;} we convert these to an equivalent set of zero-mean moments i on the extended
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Figure 1: Results on known models, (top row): 7x7 grid; and (bottom row): outer planar.
Left column (a,d): true graph. Middle column (b,e): likelihood of learned planar graphs
as edges are added; the true number of edges is marked with a vertical dashed line. Right
column (c,f): likelihood of test data for various algorithms; x-axis values are perturbed
horizontally so that overlapping errorbars are visible.

vertex set V =V U {n+ 1} according to Proposition I} Then, we select a zero-mean planar
Ising model for these moments using our greedy algorithm. However, to fit the means of
each of the original n variables, we initialize this graph to include all the edges {\i, n+1}
for all i € V' (requiring that these are present in our final estimate of the graph G). After
this initialization step, we use the same greedy edge-selection procedure as before. This
yields the graph G and parameters 6. Lastly, we convert back to a (non-zero field) Ising
model on the subgraph of G defined on nodes V', as prescribed by Proposition The
resulting graph G and parameters 0 is our heuristic solution for the maximum-likelihood
outer-planar Ising model.

We remark that it is not essential to choose between the zero-field planar Ising model
and the outer-planar Ising model. The greedy algorithm may instead select something in
between—a partial outer-planar Ising model where only nodes of the outer-face are allowed
to have non-zero means. This is accomplished simply by omitting the initialization step of
adding edges {i,n+ 1} for all i € V.
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4. Experiments

We present the results of experiments evaluating our algorithm on known models with
simulated data to evaluate the correctness of the learned models. We generate two styles of
known Ising models: a 7 x 7 grid (n = 49) with zero-field; and a 12-node outer planar model
where nodes have non-zero mean; shown in Figures [laj and The edge parameters are
chosen uniformly randomly between —1 and 1 with the condition that the absolute value be
greater than a threshold (chosen to be 0.05) so as to avoid edges with negligible interactions.
We use Gibbs sampling to obtain samples from this model and calculate empirical moments
from these samples which are then passed as input to our algorithm. We run 10 trials of
randomly generated edge parameters and data samples. Though our algorithm can run
on graphs with many more nodes, we choose small examples here to illustrate the result
effectively. On the outer planar model, we ensure that the first moments of all the nodes
are satisfied by starting our algorithm with the auxiliary node connected to all other nodes.

As the planar learning algorithm adds edges to the model, the likelihood of the training
data is guaranteed to increase. We assess how adding edges affects the likelihood of out-
of-sample test data. Figures and [le] demonstrate that likelihood on test sets generally
increases as edges are added up to the maximal planar graph. The true number of edges
in each synthetic graph is marked with a vertical dotted line. On the smallest data sets
(100 samples) the out-of-sample performance begins to degrade, a sign of over-fitting the
training data; yet the likelihood of the maximal graph is not significantly worse than the
best likelihood obtained (with fewer edges).

We also compare against a Markov random field (MRF) learning algorithm for binary
data (Schmidt et al., [2008), as implemented in the undirected graphical model learning
Matlab package, UGMLearnﬂ UGM is not restricted to learning planar graphs. The ob-
jective is optimized via projected gradient descent. We try two versions of the objective
function, one using pseudo-likelihood and the other using loopy belief propagation for infer-
ence. UGM employs a regularization parameter which we set using two different methods.
First, we used the tuning method on validation data as detailed in [Schmidt et al.| (2008)).
That is, we split the data into two parts, train on half the data using 7 different values for
the parameter, measure the data likelihood of the other half of the data and vice-versa, then
select the parameter value that maximizes the validation data likelihood across both folds.
The learned model is trained on the full training data with the tuned regularization param-
eter value. The second method for setting the regularization parameter we call the oracle
method, where we select the learned model at the true number of edges, k, in our known
models. For UGM, we set the regularization parameter via linear search until k edges are
learned. The likelihood of test data for the learned UGM model is calculated exactly when
n < 25; in this case, the outer planar example. For larger graphs, e.g. the grid example,
the likelihood of test data for UGM is approximated via loopy belief propagation, which we
observed to converge well therefore providing a reasonable estimate.

We compare the likelihood of test data from the various learned models in Figures
and For comparison, we selected the maximal planar graph that our algorithm learns,
Planar maximal; as well as the planar graph learned if the algorithm were stopped when
the true number of edges are learned, Planar oracle. We compare against UGM pseudo

2. http://www.cs.ubc.ca/~murphyk/Software/L1CRF
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tuned and UGM loopy tuned, both of which tune the regularization parameter on validation
data; but the former uses pseudo-likelihood in learning and the latter uses loopy belief
propagation. The tuning method is the most common way of selecting the regularization
parameter, but tends to produce relatively dense graphs. For fair comparison, we also show
the likelihood of UGM pseudo oracle and UGM loopy oracle; that is, the model with the
known true number of edges.

Figures [1d and [If] show that our greedy planar Ising model learning algorithm is at
least as accurate and often better than the UGM learning algorithms on these inputs. As
mentioned earlier, we see that Planar maximal and Planar oracle fit test data nearly
equally well. On the outer planar model, UGM pseudo tuned performs nearly as well as
our planar algorithm, yet on the larger grid model it performs quite poorly at the smaller
sample sizes. UGM loopy tuned performs more consistently close to our planar algorithm,
but it seems that loopy belief propagation performs worse at large sample sizes.

On the largest data set (10° samples) of the 7 x 7 grid model, UGM was aborted after
running for 40 hours without reaching convergence on a single run, and so results are not
available.

5. Applications

We apply our planar graph learning algorithm to real-world data in which there is no guar-
antee that the data is generated according to our model assumptions. The first application
models voting patterns of the United States senate, while the second application models
geological layers in rocks on Mars. We compare our learned planar graphs against the non-
planar graph learning algorithm UGM, as described in the previous section. For the UGM
learned graphs, the likelihood of test data is approximated via loopy belief propagation,
which we observed to converge well therefore providing a reasonable estimate. Quantitative
comparisons indicate that the learned planar models better predict held-out test data with
sparser graphs than the non-planar graphs. We also discuss qualitative comparisons of the
learned graphs.

5.1 Modeling Correlations of Senator Voting

We consider an interesting application of our algorithm to model correlations of senator
voting following [Banerjee et al. (2008). We use senator voting data from the years 2009 and
2010 to calculate correlations in the voting patterns among senators. A Yea vote is treated
as +1 and a Nay vote is treated as —1. We also treat non-votes as —1, but only consider
senators who voted in at least % of the votes per year to limit bias. The data includes
n = 108 variables and 645 samples. To accommodate the non-zero mean data we add an
auxiliary node and allow the algorithm to select the connections between it and other nodes.
We run a 10-fold cross-validation, training on 90% of the data and measuring likelihood on
the held-out 10% of data. Figure [3|shows that the likelihood of test data increases as edges
are added. We also show the likelihood of cross-validation test data for the UGM pseudo and
UGM loopy algorithms for two different methods of choosing the value of the regularization
parameter: (1) the value that produces the same number of edges as the maximal planar
graph (at 318 edges); and (2) the value selected by tuning with validation data (at a variable
number of edges, typically a dense graph). The likelihood of the sparse UGM models are

12
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Figure 2: Senator voting results: Learned planar graphical model representing the senator
voting pattern. Blue nodes represent Democrats, red nodes represent Republicans and
black nodes represents Independents. We use a force-directed graph drawing algorithm
(Fruchterman and Reingold, [1991)).

significantly worse than the planar model. Only the UGM loopy algorithm at a very dense
(nearly fully connected) graph has better fit to test data.

The maximal planar graph learned from the full data set, shown in Figure [2| conveys
many facts that are already known to us. For instance, the graph shows Sanders with
edges only to Democrats which makes sense because he caucuses with Democrats. Same
is the case with Lieberman. The graph also shows the senate minority leader McConnell
well connected to other Republicans though the same is not true of the senate majority
leader Reid. The learned UGM models can be seen in Appendix [B] and they show that
the non-planar models are qualitatively different, learning one or two densely connected
components.
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Figure 3: Senator voting results: Comparison of algorithms by likelihood of holdout data
versus the number of edges in the learned graph. Note the break in the x-axis, due to tuned
UGM learning dense graphs. On the tuned UGM models, we indicate standard error on

number of edges learned.
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Figure 4: The ChemCam LIBS instrument fires a laser at a target, creating a plasma.
Depending on its chemical composition, the plasma gives off different wavelengths of light
which are measured by the spectrometer, producing an observed spectrum. KEach shot
ablates the target surface, leaving a small pit. Typically, sequences of 30 or more shots are

fired in several locations on a single target.

5.2 Discovering Depth Trends in Rocks on Mars from Sample Correlations

Our second real-world data set consists of geological observations from the Mars rover
Curiosity. We are interested in identifying correlations in chemical composition among
spatially-related rock samples as taken from the Mars rover Curiosity. The ChemCam in-
strument onboard Curiosity collects observations of the chemical composition of rock targets
using Laser-Induced Breakdown Spectrometry (LIBS) (Wiens et al., 2012)). With each laser
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Figure 5: Comparison of algorithms on ChemCam data. Likelihood of holdout data versus
the number of edges in the learned graph.

shot, the rock surface is ablated and therefore ChemCam produces a sequence of samples
at increasing depth; potentially revealing compositional trends such as coatings, weathering
rinds and thin stratigraphic layers that could give clues about the past atmospheric and
aqueous conditions of Mars (Lanza et al., 2014)).

We expect spatial correlations to exist among observations (samples), yet do not expect
that the correlations will necessarily correspond to a fixed (known) grid; therefore, our
planar model is a reasonable assumption to make. To test this, we compare against the
non-planar UGM algorithm.

As shown in Figure[d] each LIBS shot produces a spectral observation consisting of 5810
wavelength bands between 224nm and 840nm. The spectral response is given as a table of
intensity values for each wavelength band for each shot. A typical sequence of shots includes
30 - 150 shots on a fixed location. We model the correlations of rock chemistry among these
shots, as measured by the set of wavelength bands that show non-zero response (above a
noise threshold) in the observed spectra. More precisely, each spectrum is normalized, then
thresholded so that 50% of the values are +1. To investigate shot-to-shot correlations, shots
are the nodes in the graph while the 5810 wavelength bands are treated as samples. We
add an auxiliary node and allow the algorithm to select the connections between it and
other nodes. For comparison, we run a 10-fold cross validation using our planar model, the
UGM model with pseudolikelihood and loopy belief propagation. Model selection for UGM
is done by tuning with validation data and by comparing at the same number of edges
learned by the planar algorithm.

We look at 30-shot depth sequences taken at one location at a time to find depth
trends of interest. The rock is named Bell Island, and there are three locations that we
investigatedlﬂ The graphs learned by our planar algorithm are quantitatively better than
those learned by UGM, as shown in Figure We compare the log-likelihood of 10-fold
cross validation data for Planar, UGM pseudo and UGM loopy. With the number of edges
in the graph fixed at 3n — 6 (the number of edges in a maximal planar graph), we see that
Planar achieves a significantly better fit to holdout data than UGM with either objective
function. When we use the standard tuning method for UGM, it selects dense graphs that

3. NASA data is archived and available at |http://pds-geosciences.wustl.edu/missions/msl/chemcam.html
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(a) Bell Island, Location 1 (b) Bell Island, Location 2 (c) Bell Island, Location 3

Figure 6: Learned planar graphs from ChemCam data. Nodes are numbered by LIBS laser
shot number and color-coded by number starting with dark red at shot 1 and fading to
light yellow at shot 30. We use a force-directed graph drawing algorithm (Fruchterman and
Reingold, 1991)).

are nearly fully-connected. While these tuned graphs learned by UGM do fit the data with
higher log-likelihood, they provide no insight into the nature of depth trends.

Figure [6] shows the planar graphs learned from the Bell Island ChemCam data. Bell
Island, Location 1 shows an interesting pattern of the first 10 or so shots being related to
each other in ascending order, while the last 20 shots are more arbitrarily dependent. This
pattern is consistent with the observation that the rock is covered in a layer of dust. As the
laser ablates through the dust, each shot is conditionally dependent on the next shot. Once
the rock itself is being sampled, the composition is more homogenous. At Locations 2 and
3, there is less dust cover, and so there is less of a "tail” formed by the first few shots than
seen at Location 1. However, in all of these graphs, we see that the graphs generally link
earlier shots with early shots and later shots with late shots, despite not being given this
ordering information. This indicates that the chemical composition of the rock is changing
with depth.

6. Conclusion and Future Work

We provide a greedy heuristic to obtain the maximum-likelihood planar Ising model ap-
proximation to a collection of binary random variables with known pairwise marginals. The
algorithm is simple to implement with the help of known methods for tractable exact in-
ference in planar Ising models, efficient methods for planarity testing and embedding of
planar graphs. While limiting the search to planar graphs, our learning model provides key
advantages over arbitrary (non-planar) graph learning. Namely, the planar graph is sparse
without necessitating a regularization term or tuning parameter. Also, the learned planar
graph can be used for efficient inference of hidden values in future partially observed data.
Further validating this approach, our empirical results on synthetic data and on real data
indicate that our planar graph learning finds solutions that it are competitive with arbitrary
(non-planar) graph learning in terms of fitting the distribution well.
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Directions for further work are suggested by the methods and results of this paper.
Firstly, we know that the greedy algorithm is not guaranteed to find the best planar graph.
In Appendix [C| we provide an enlightening counterexample in which the combination of
the planarity restriction and greedy method prevent the correct model from being learned,
because a strong indirect correlation exists that masks the correct combination of weaker
direct correlations. That counterexample suggests strategies one might consider to further
refine the estimate. One strategy would be to allow the greedy algorithm to prune edges
which turn out to be less important once later edges are added. It would also be feasible
to implement a multi-step greedy look-ahead search technique for selection of which edge
to add (or prune) next.

Currently, our framework only allows learning planar graphical models on the set of
observed random variables and requires that all variables are observed in each sample. One
could imagine extensions of our approach to handle missing samples or to try to identify
hidden variables that were not seen in the data. This concept offers another avenue to
achieve a better fit to data that is not well-approximated by a planar graph among just
the set of observed nodes, but might be well-approximated as the marginal distribution of
a planar model with more nodes.
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Appendix A. Proofs

Proof [Proposition (1 l Let the probability distributions corresponding to G and G be P
and P respectively and the corresponding expectations be E and E respectively. For the
partition function, we have that

2 = Zexp Z é\ijxil'j
Ty {i,j}eE
= Z exp | Tnt1 Z 0;x; + Z Oijxix;
Ty eV {i,j}€FE
= Z exp Z 0;x; + Z O;jxix; | + Zexp — Z O;x; + Z 0T
TV 2% {i,j}eE eV {i.j}teE
=2 Z exp Z 0;x; + Z ;7
€V {i,j}€FE
= 2Z,

where the fourth equality follows from the symmetry between —1 and 1 in an Ising model.
For the second part, since P is zero-field, we have that

Elz;] =0VieV.
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Now consider any {i,j} € E. If 41 is fixed to a value of 1, then the model is the same as
the original one on V' and we have

]E[xixj | Tpy1 = 1] = E[z;a;] V {i,j} € E.

By symmetry (between —1 and 1) in the model, the same is true for z,+1 = —1 and so
E[l’zm’]] = E[xzxj ‘ Tn4+1 = 1}?(1‘,14_1 = 1) + I/E'\,[xzx] ‘ Tn+1 = —l]ﬁ(xn_H = —1)

Fixing x,1 to a value of 1, we have
Elzi | #ny1 = 1] =E[z] Vi€V,

and by symmetry R
Elz; | tp41 = —1] = —E[z;] Vie V.
Combining the two equations above, we have

Elzitni1] =E[2; | g1 = UP(xnpy = 1) + E[—2; | 2ns1 = —1]P(zpp1 = —1)

Proof [Proposition 2] From Theorem |1, we see that the log partition function can be
written as

1
®(6) =nlog2+ Z log cosh 6;; + 3 logdet(I — AD),
{ijteE
where A and D are as given in Theorem [I] For the derivatives, we have
0P (6 —10(I—-AD
O80) — tanh 03 + LT ((1 — AD) "1 2UZAD) ))
— tanh 6;; — 3Tr (1 — AD)—lAD;.j)
= wij — 3(1 —wyj)* (Sijij + Sjii) »
where ng is the derivative of the matrix D with respect to 6;;. The first equality follows
from the chain rule and the fact that VIn|K| = K~! for any matrix K. Please refer to

Boyd and Vandenberghe (2004) for details.
For the Hessian, we have

0%®(0) _ 1 9°2(00) 1 (92(0)\?
86'1.2]. — Z(0) 89% Z(0)2 \ 96;;
=1 - pf.

For {i,5} # {k,}, following Boyd and Vandenberghe (2004), we have

a%i%(gzl =—3Tr (SD;]'SD§€1>
= —5(1 = w;) (SijatSkiij + SjikiSkigi + SijiSinij + SjiinSik i) (1 — wiy).
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On the other hand, we also have

Tij,kl = 63;([ + P)(S o ST>(I -+ P)ekl
= (eij +€;i)T (S 0 ST) (e + ewr)
= (S0 8M)ijm + (S 08Tk + (S0 ST)jim+ (S0 jium
= SijkiSki;ij + Sji ki Skiji + SijikSik,ij + SjiikSik,jis

h

where e;; is the unit vector with 1 in the ijt position and 0 everywhere else. Using the

above two equations, we obtain
1
Hija = —5(1 = wi) Tij (1 — wiy).

Proof [Proposition [4] The proof follows from the following steps of inequalities. The
Pythagorean law of information projection (Amari et al., [1992) gives

D(P, Pg) = D(P, Pg+ij) + D(Pa+ij, Pa).
The conditional rule of relative entropy (Cover and Thomas, [2006) gives
D(Pg+ij, Pa) = D(Pavij(wi, 75), Pa(xi, ©5)) + D(Patij(wv—ij|@i, 75), Pa(zv—ijli, 25)),

where Pgij(2s, ;) and Pg(x;, ;) represent the marginal distributions on x;,x; of proba-
biliities Pg4; and Pg respectively. Information inequality (Cover and Thomas, 2006) gives
us:

D(Pg+ij (wv_ij]xi, l’j), P(;(:cv_ij\xi, $j)) Z 0.

Plugging the above two properties into the first equation leads to the inequality
D(P,Pg) 2 D(P, Pg+ij) + D(Peij(%i, x5), Pa (@i, ).

Finally, the property of information projection to G + ij (Wainwright and Jordan, [2008])
gives us D(Pgij(xi, ), Pa(xi, xj)) > D(P(x4,z;), Pa(xi, z;)) leading to

D(P, Pg) > D(P, Pg+ij) + D(P (%, z5), Pa(zi, 75)).

Appendix B. Applications: UGM Learned Models

For comparison to our planar learning algorithm, we provide the results of using the UGM
MRF learning algorithm on the senate voting data and the ChemCam data. For all figures,
we use a force-directed graph drawing algorithm (Fruchterman and Reingold, 1991). Fig-
ure [7| presents the graph learned using pseudolikelihood, UGM pseudo, from the full data set
with the regularization parameter set to obtain the same number of edges as learned in the
planar case (3n — 6 edges).
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Figure 7: Senate voting graph learned by UGM pseudo with 318 edges. Blue nodes represent
Democrats, red nodes represent Republicans and black nodes represent Independents.
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Figure 8: Senate voting graph learned by UGM loopy with 318 edges. Blue nodes represent
Democrats, red nodes represent Republicans and black nodes represent Independents.
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(a) Bell Island, Location 1 (b) Bell Island, Location 2 (c) Bell Island, Location 3

Figure 9: Learned UGM Pseudo graphs from ChemCam data. Nodes are numbered by LIBS
laser shot number and color-coded by number starting with dark red at shot 1 and fading
to light yellow at shot 30. We use a force-directed graph drawing algorithm (Fruchterman
and Reingold), 1991)).

UGM graphs learned from the senate voting data are given in Figures[7] - [8| Figure
presents the graph learned using pseudolikelihood, UGM pseudo, from the full data set with
the regularization parameter set to obtain 318 edges. Figure [8| presents the graph learned
using loopy belief propagation, UGM loopy, from the full data set with the regularization
parameter set to obtain 318 edges. The graphs learned using the tuning method are not
displayed because they are nearly fully-connected graphs providing little visual information.

UGM graphs learned from the ChemCam data from the Bell Island target are given in
Figures [9] - Figure [J] presents the graph learned using pseudolikelihood, UGM pseudo,
from the full data set with the regularization parameter set to obtain 84 edges. Figure
presents the graph learning using loopy belief propagation, UGM loopy, from the full data
set with the regularization parameter set to obtain 84 edges. Graphs learned from this
data using the tuning method to select the number of edges are nearly fully connected, and
therefore provide little visual information.

Appendix C. Discussion: Counter Example

The result presented in Figure illustrates the fact that our algorithm does not always
recover the exact structure even when the underlying graph is planar and the algorithm
is given exact moments as inputs. This counterexample gives insight into how the greedy
algorithm works. The basic idea is that graphical models can have nodes which are not
neighbors but are more correlated than some other nodes which are neighbors. If the
spurious edges corresponding to these highly correlated nodes are added early on in the
algorithm, then the actual edges may have to be left out because of the planarity restriction.
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(a) Bell Island, Location 1 (b) Bell Island, Location 2 (c) Bell Island, Location 3

Figure 10: Learned UGM Loopy graphs from ChemCam data. Nodes are numbered by LIBS
laser shot number and color-coded by number starting with dark red at shot 1 and fading
to light yellow at shot 30. We use a force-directed graph drawing algorithm (Fruchterman
and Reingold, 1991)).

(a) Counter example original (b) Recovered model

Figure 11: Example graphical models. (a) Counter example. (b) The recovered graphical
model has one spurious edge {a, e} and one missing edge {c, d}.
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We define a zero-field Ising model on the graph in Figure with the edge parameters
as follows: Oy, = 0.q = 0pq = 0.1 and 0;; = 1 for all the other edges. Figure @ shows the
edge parameters in the graph pictorially using the intensity of the edges - the higher the
intensity of an edge, higher the corresponding edge parameter. With these edge parameters,
the correlation between nodes a and e is greater than the correlation between any other
pair of nodes. This leads to the edge between a and e to be the first edge added in the
algorithm. However, since K5 (the complete graph on 5 nodes) is not planar, one of the
actual edges is missed in the output graph as shown in Figure [T1D]
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