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Abstract

Clustering is unsupervised and exploratory in nature. Yet, it can be performed through
penalized regression with grouping pursuit, as demonstrated in Pan et al. (2013). In this
paper, we develop a more efficient algorithm for scalable computation and a new theory
of clustering consistency for the method. This algorithm, called DC-ADMM, combines
difference of convex (DC) programming with the alternating direction method of multipliers
(ADMM). This algorithm is shown to be more computationally efficient than the quadratic
penalty based algorithm of Pan et al. (2013) because of the former’s closed-form updating
formulas. Numerically, we compare the DC-ADMM algorithm with the quadratic penalty
algorithm to demonstrate its utility and scalability. Theoretically, we establish a finite-
sample mis-clustering error bound for penalized regression based clustering with the L0

constrained regularization in a general setting. On this ground, we provide conditions for
clustering consistency of the penalized clustering method. As an end product, we put R
package prclust implementing PRclust with various loss and grouping penalty functions
available on GitHub and CRAN.

Keywords: Alternating direction method of multipliers (ADMM), Difference of convex
(DC) programming, Clustering consistency, Truncated L1-penalty (TLP).

1. Introduction

Clustering analysis separates a set of unlabeled data points into disparate groups, or clusters,
based on some common properties of these points. It is a fundamental tool in machine
learning, pattern recognition, and statistics, and has been widely applied in many fields,
ranging from image processing to genetics. Clustering analysis has a long history, and,
naturally, a large number of clustering methods have been developed; see Jain (2010) for
an excellent overview.
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Clustering analysis is regarded as unsupervised learning in absence of a class label, as
opposed to supervised learning. Over the last few years, a new framework of clustering
analysis has been introduced by treating it as a penalized regression problem (Pelckmans
et al., 2005; Lindsten et al., 2011; Hocking et al., 2011; Pan et al., 2013; Chi and Lange, 2015)
based on over-parameterization. Specifically, we parameterize p-dimensional observations,
say xi, 1 ≤ i ≤ n, with its own centroid, say µi. Two observations are said to belong to the
same cluster if their corresponding µi’s are equal. Then clustering analysis is formulated to
identify a small subset of distinct values of these µi’s via solving the following optimization
problem

minµ
1

2

n∑
i=1

||xi − µi||22 + λJ (µ),

where λ is a nonnegative tuning parameter controlling the trade-off between the model fit
and the number of clusters, and J (µ) is a penalty on µ = (µ

′
1, · · · , µ

′
n)
′
. Perhaps due to

computational simplicity, a convex J (µ) has been extensively studied. For example, sum-
of-norms clustering (Lindsten et al., 2011) defines J (µ) =

∑n
j=1

∑
i<j ||µi − µj ||q, where

|| · ||q is the Lq-norm. However, a convex J (µ) usually yields biased parameter estimates,
leading to difficulties in separating the clusters. To overcome this disadvantage, Pan et al.
(2013) proposed penalized regression-based clustering (PRclust), which uses the non-convex
grouped truncated lasso penalty (gTLP) J (µ) =

∑
i<j TLP (||µi − µj ||2; τ). Specifically,

TLP is defined as TLP(α; τ) = min(|α|, τ) for a scalar α and a tuning parameter τ . It can
be thought of as the L1-penalty for a small |α| ≤ τ , but no further penalization for a large
|α| > τ . One benefit of PRclust is that it can treat some complex clustering situations,
for example, in the presence of non-convex clusters, in which traditional methods such as
K-means break down (Pan et al., 2013).

To deal with the nonseparable and non-convex grouping penalty in µi’s, a quadratic
penalty based algorithm (Pan et al., 2013) was developed by introducing some new pa-
rameters θij = µi − µj . This algorithm is relatively slow, and due to use of the quadratic
penalty, the estimated centroids from the same cluster can never be exactly the same. To
overcome these difficulties, we develop a novel and efficient computational algorithm called
DC-ADMM, which combines the benefit of the alternating direction method of multipliers
(ADMM) (Boyd et al., 2011) with that of the difference of convex (DC) method (Le Thi Hoai
and Tao, 1997). As a result, DC-ADMM is much faster than the quadratic penalty based
algorithm, in addition to that some estimated centroids can be exactly equal to each other
when their corresponding observations come from the same cluster. As a by-product of
this new method, we make R package prclust implementing both the quadratic penalty
based algorithm and DC-ADMM available in CRAN (https://cran.r-project.org) and
GitHub (https://github.com/ChongWu-Biostat/prclust).

Clustering consistency of PRclust remains unknown, though operating characteristics of
PRclust have been studied via some simulations and real data analysis (Pan et al., 2013). In
the penalized regression based clustering framework, clustering consistency of some related
models has been studied (Radchenko and Mukherjee, 2014; Zhu et al., 2014). For example,
Radchenko and Mukherjee (2014) studied clustering consistency of another method with
univariate observations; Zhu et al. (2014) extended this result to multivariate observations
by assuming only two clusters. In this paper,with some distributional assumptions, we
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establish a general clustering consistency theory for a wide range of models, including
PRclust as a special case. Our theory is applicable to multiple clusters and provide a
finite-sample mis-clustering error bound in the absence of overlapping clusters. On this
ground, we give sufficient conditions for PRclust to correctly identify clusters in terms of
the expected Hellinger loss. As a result, PRclust not only reconstructs the true clusters,
but also yields optimal parameter estimation through the L0 grouping penalty.

The remaining of this paper is organized as follows. Section 2 introduces the new DC-
ADMM algorithm and discusses a stability criterion to select the tuning parameters. A
simulation study is then performed to demonstrate the numerical performance of the new
algorithm as compared to other methods. This is followed by a theory for accuracy of
clustering in Section 3. A discussion of the results is given in Section 4. The proofs of the
main results are given in an Appendix.

2. New Algorithm

To treat non-convexity more efficiently, we introduce a DC algorithm based on the ADMM,
called DC-ADMM. We prove DC-ADMM yields a Karush-Kuhn-Tucker (KKT) solution,
and some extensions are discussed.

2.1 DC-ADMM

DC-ADMM contains three steps: first, it rewrites the original unconstrained cost function
into a constrained one and introduces some new variables to simplify optimization with
respect to the non-convex grouping penalty; second, DC programming is applied to convert
the non-convex optimization problem into a sequence of convex relaxations; third, each
relaxed convex problem is solved by a standard ADMM.

First, rewrite the PRclust cost function

minµ
1

2

n∑
i=1

||xi − µi||22 + λ
∑
i<j

TLP (||µi − µj ||2; τ) (1)

as the equivalent constrained problem

minµ,θ S(µ, θ) =
1

2

n∑
i=1

||xi − µi||22 + λ
∑
i<j

TLP (||θij ||2; τ)

subject to θij = µi − µj , 1 ≤ i < j ≤ n,
where ||·||2 is the L2-norm. Here, we introduce new variables θij = µi−µj for the differences
between the centroids and thus simplify optimization with respect to the grouping penalty.

To treat the non-convex gTLP on θij ’s, we apply DC programming (Le Thi Hoai and
Tao, 1997). In particular, the cost function S(µ, θ) is decomposed into a difference of two
convex functions S(µ, θ) = S1(µ, θ)− S2(θ):

S1(µ, θ) =
1

2

n∑
i=1

||xi − µi||22 + λ
∑
i<j

||θij ||2,

S2(θ) =λ
∑
i<j

(||θij ||2 − τ)+,
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where (α)+ denotes the positive part of α, which is α if α > 0 and 0 otherwise.
Given the DC composition, we construct a sequence of upper approximations of S(µ, θ)

iteratively by replacing S2(θ) at iteration m+ 1 with its piecewise affine minorization

S
(m)
2 (θ) =S2

(
θ̂(m)

)
+ λ

∑
i<j

(
||θij ||2 − ||θ̂(m)

ij ||2
)
I
(
||θ̂(m)

ij ||2 ≥ τ
)

at the current estimate θ̂(m) from iteration m, leading to an upper convex approximating
function at iteration m+ 1:

S(m+1)(µ, θ) =
1

2

n∑
i=1

||xi − µi||22

+ λ
∑
i<j

(||θij ||2) I
(
||θ̂(m)

ij ||2 < τ
)

+ λτ
∑
i<j

I
(
||θ̂(m)

ij ||2 ≥ τ
)
, (2)

where I(·) is the indicator function.
Then apply ADMM to solve the corresponding constrained convex problem at iteration

m+ 1

minµ,θ S(m+1)(µ, θ), subject to θij = µi − µj , 1 ≤ i < j ≤ n. (3)

ADMM solves (3) by minimizing the corresponding scaled augmented Lagrangian

Lρ(µ, θ) =
1

2

n∑
i=1

||xi − µi||22 + λ
∑
i<j

(||θij ||2) I
(
||θ̂(m)

ij ||2 < τ
)

+ λτ
∑
i<j

I
(
||θ̂(m)

ij ||2 ≥ τ
)

+ y′
∑
i<j

(θij − (µi − µj)) + (ρ/2)
∑
i<j

||θij − (µi − µj)||22, (4)

where the dual variable y is a vector of Lagrange multipliers and ρ is a nonnegative penalty
parameter. Using the scaled Lagrange multiplier u = y/ρ (Boyd et al., 2011, §3.3.1), we
can express ADMM as

µ̂k+1
i = argmin

µi

1

2
||xi − µi||22 +

ρ

2

∑
j>i

||θ̂kij − (µi − µ̂kj ) + ûkij ||22

+
ρ

2

∑
j<i

||θ̂kij − (µi − µ̂k+1
j ) + ûkij ||22,

θ̂k+1
ij = argmin

θij

{
λτ + ρ

2 ||θij − (µ̂k+1
i − µ̂k+1

j ) + ûkij ||22, if ||θ̂(m)
ij ||2 ≥ τ ;

λ||θij ||2 + ρ
2 ||θij − (µ̂k+1

i − µ̂k+1
j ) + ûkij ||22, if ||θ̂(m)

ij ||2 < τ ;

ûk+1
ij = ûkij + θ̂k+1

ij − (µ̂k+1
i − µ̂k+1

j ), 1 ≤ i < j ≤ n, (5)

where k stands for step k in the standard ADMM. Using some simple algebra, we obtain
the updating formula for µ as follows

µ̂k+1
i =

xi + ρ
∑
j>i

(
µ̂kj + θ̂kij + ûkij

)
+ ρ

∑
j<i

(
µ̂k+1
j − θ̂kji − ûkij

)
1 + ρ(n− 1)

.
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Applying a block soft thresholding operator for the group lasso penalty (Yuan and Lin,
2006), we have

θ̂k+1
ij =

{
µ̂k+1
i − µ̂k+1

j − ûkij if ||θ̂(m)
ij ||2 ≥ τ ;

ST
(
µ̂k+1
i − µ̂k+1

j − ûkij ;λ/ρ
)

if ||θ̂(m)
ij ||2 < τ ;

(6)

where ST(θ; γ) = (||θ||2 − γ)+θ/||θ||2. The convergence time of ADMM is highly related
to the penalty parameter ρ. A poor selection of ρ can result in a slow convergence for
the ADMM algorithm (Ghadimi et al., 2015) and thus DC-ADMM. In this paper, we fix
ρ = 0.4 throughout for simplicity. For the subsequent relaxed convex problem (3), µ̂(m+1)

and θ̂(m+1) are updated according to standard ADMM (5) until some stopping criteria,
such as that both dual and primal residuals are small (Boyd et al., 2011), are met. We
summarize the DC-ADMM algorithm in Algorithm 1.

Algorithm 1: DC-ADMM for penalized regression based clustering

Input : n observations X = {x1, . . . , xn}; tuning parameters λ, τ and ρ.

1 Initialize: Set m = 0, û
(0)
ij = 0, µ̂

(0)
i = xi and θ̂

(0)
ij = xi − xj for 1 ≤ i < j ≤ n.

2 while m = 0 or S(µ̂(m), θ̂(m))− S(µ̂(m−1), θ̂(m−1)) < 0 do
3 m← m+ 1

4 Update µ̂(m) and θ̂(m) based on (5) until convergence with a standard ADMM.

5 end
Output: Estimated centroids for the observations, µ̂1, . . . , µ̂n, from which a cluster

label for each observation is assigned.

In Algorithm 1, for each iteration m, µ̂0
i = xi and θ̂0 = xi−xj for 1 ≤ i < j ≤ n are used

as the starting values for (5); (µ̂(m+1), θ̂(m+1)) is the limit point of the ADMM iterations
in (5), or equivalently, is a minimizer of (3). (µ̂(m+1), θ̂(m+1)) is then used to update the
objective function S(m+1)(µ, θ) in (2) as a new approximation to S(µ, θ). The process is
iterated until the stopping criteria are met.

Since the cost function (3) is a sum of a differentiable and convex function and a convex
penalty in θ (while θ̂(m) is known), ADMM converges to its minimizer (Boyd et al., 2011).
Then DC-ADMM’s convergence in a finite number of steps follows by the facts that DC
programming guarantees the decrease of the subsequent convex relaxations (2), and that
S(m+1)(µ, θ) has only a finite set of possible forms across all m. Theorem 1 shows that the
solution of the DC-ADMM converges to a KKT point.

Theorem 1 In the DC-ADMM, S
(
µ̂(m), θ̂(m)

)
converges in a finite number of steps; that

is, there exists an m∗ <∞ with

S
(
µ̂(m), θ̂(m)

)
= S

(
µ̂(m∗), θ̂(m∗)

)
for m ≥ m∗

Furthermore,
(
µ̂(m∗), θ̂(m∗)

)
is a KKT point.
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DC-ADMM only guarantees a local instead of a global minimizer. As shown in sim-
ulations, DC-ADMM performed well in terms of clustering accuracy. This suggests that
DC-ADMM typically yields a good local solution, though not necessarily global. A variant
of DC algorithms called outer approximation method of Breiman and Cutler (1993) gives a
global minimizer, but may converge slowly. For a large-scale problem, we prefer the present
version for its faster convergence at an expense of possibly missing global solutions.

With different random starting values, DC-ADMM could yield different KKT points for
the same data and parameters. However, our limited numerical experience suggests that
DC-ADMM gives good solutions with our proposed starting values.

Let Nadmm, Nquad be the numbers of iterations for running the standard ADMM and
quadratic based algorithm, respectively. The computational complexity of updating θ and
µ for one time is O(pn2). Note that the complexity of DC programming is O(1) and Nadmm

typically scales as O(1/ε), where ε is the tolerance (He and Yuan, 2015). Then for the
DC-ADMM algorithm, the computational complexity is O(pn2/ε). In contrast, based on
the empirical experience, Nquad relates to the number of observations n and quadratic based
algorithm is much slower than DC-ADMM. In practice, especially in earlier iterations, one
may not want to run the ADMM updates fully until convergence to save computing time.
Another trick is that for the subsequent convex relaxations, we can initialize (warm start)
µ̂0, θ̂0 and û0 at their optimal values from the previous relaxed convex problem, which
significantly reduces the number of ADMM iterations.

In the DC-ADMM, the hard constraint guarantees that we can obtain exactly some
µ̂i − µ̂j − θ̂ij = 0; in contrast, in the quadratic penalty based algorithm (Pan et al., 2013),

due to the use of soft constraint, we cannot obtain exactly µ̂i − µ̂j − θ̂ij = 0 no matter
how large the finite tuning parameter is chosen. Pan et al. (2013) provided an alternative
algorithm (PRclust2) to force some µ̂i − µ̂j − θ̂ij = 0 by running the quadratic based
algorithm several times. Although PRclust2 leads to similar clustering results as DC-
ADMM in our simulations, it is on average around 10 to 30 times slower than the quadratic
based algorithm and is not feasible to large data sets.

2.2 Selection of the Number of Clusters

A generalized degrees of freedom (GDF) together with generalized cross validation (GCV)
was proposed for selection of tuning parameters for clustering (Pan et al., 2013). This
method, while yielding good performance, requires extensive computation and specification
of a hyper-parameter, perturbation size. Here, we provide an alternative by modifying a
stability-based criterion (Tibshirani and Walther, 2005; Liu et al., 2016) for determining
the tuning parameters.

The main idea of the method is based on cross-validation. That is, (1) randomly par-
tition the entire data set into a training set and a test set with an almost equal size; (2)
cluster the training and test sets separately via PRclust with the same tuning parameters;
(3) measure how well the training set clusters predict the test clusters. To be specific,
first, randomly partition the entire data set into a training set Xtr and a test set Xte with
a roughly equal size. Second, apply DC-ADMM (Algorithm 1) with the same tuning pa-
rameters to Xtr and Xte, leading to the corresponding clustering assignments ltr and lte,
respectively. Third, assign Xte to clusters according to ltr; that is, assign each observation
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in Xte to the closest cluster of Xtr defined by ltr in terms of the Euclidean distance, with
lte|tr the corresponding clustering assignments. Note that the distance between an obser-
vation in Xte and a cluster of Xtr is the minimum distance between the observation and
each observations in the cluster. To measure how well the training set clusters predict the
test clusters, we compute the adjusted Rand index (Hubert and Arabie, 1985) between lte|tr
and lte as the prediction strength. Recall that the adjusted Rand index ranges between
0 and 1 with a higher value indicating a higher agreement. Repeat the above process T
times and calculate the average prediction strength as the mean of T different prediction
strengths. This process is repeated over various tuning parameter values, obtaining their
corresponding average prediction strengths, then choose the set of the tuning parameters
with the maximum average prediction strength. The intuition behind this idea is that if the
tuning parameters lead to a stable clustering result, then the training set clusters will be
similar to the test set clusters, and hence will predict them well, leading to a high average
prediction strength.

2.3 Extensions

The K-means method uses squared L2-norm distances to generate cluster centroids, which
may be inaccurate if outliers are present (Xu et al., 2005). In contrast, K-medians uses the
L1-norm distance and is more robust to outliers. Corresponding to modifying the K-means
to K-medians, we can extend PRclust by replacing the squared L2-norm with the L1-norm
loss function and estimate the centroids µ through minimizing the following cost function

minµ SL1(µ) =
1

2

n∑
i=1

||xi − µi||1 + λ
∑
i<j

TLP (||µi − µj ||2; τ) .

Due to the nature of the DC-ADMM algorithm, we just need to change the updating
formula for µ̂ and leave the remaining updating formula (5), (6) unchanged. Note that

µ̂k+1
i = argmin

µi

1

2
||xi − µi||1 +

ρ

2

∑
j>i

||θ̂kij − (µi − µ̂kj ) + ûkij ||22

+
ρ

2

∑
j<i

||θ̂kij − (µi − µ̂k+1
j ) + ûkij ||22.

To solve the above problem, we define νi = xi − µi and simplify the cost function with
the L1-loss:

µ̂k+1
i = argmin

µi

1

2
||νi||1 +

ρ

2

∑
j>i

||θ̂kij − (xi − νi − µ̂kj ) + ûkij ||22

+
ρ

2

∑
j<i

||θ̂kij − (xi − νi − µ̂k+1
j ) + ûkij ||22.

7



Wu, Kwon, Shen and Pan

Using simple algebra and the soft thresholding operator for lasso (Tibshirani, 1996), we
obtain an updating formula as:

µ̂k+1
i = STL


∑
j>i

(
µ̂kj + θ̂kij + ûkij − xi

)
+
∑
j<i

(
µ̂k+1
j − θ̂kji − ûkij − xi

)
n− 1

,
1

2ρ(n− 1)

+ xi,

where STL(α, γ) = sign(α)(|α| − γ)+. In this case, the scalar operation on a vector is
element-wise.

In addition, we can also use other penalty functions. In an appendix, we provide details
of the DC-ADMM algorithm for PRclust with lasso or TLP as grouping penalty.

2.4 Simulations

Consider two overlapped convex clusters with the same spherical shape in two dimensions.
Specifically, a random sample of n = 100 observations was generated, with 50 from a
bivariate Gaussian distribution N((0, 0)

′
, 0.33I), while the other 50 from N((1, 1)

′
, 0.33I),

where I is the identity matrix.

For PRclust, we searched τ ∈ {0.1, 0.2, . . . , 1} and λ ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7,
1, 1.5, 2}. To evaluate the performance of selecting the tuning parameters, we used the
Rand index (Rand, 1971) and adjusted Rand index (Hubert and Arabie, 1985), measuring
the agreement between estimated cluster and the truth with a higher value indicating a
higher agreement. PRclust with the stability based criterion selecting its tuning parameters
performed well: the average number of clusters was 2.63, slightly larger than the truth
K0 = 2; the correspond clustering results had high degrees of agreement with the truth,
as evidenced by the high indices. Table 1 shows the frequencies of the number of clusters
selected by the stability criterion: for the overwhelming majority (93%), either the correct
number of cluster K0 = 2 was selected, or a slightly larger K = 3 or 4 was selected.
As expected, applying the quadratic penalty based algorithm with the stability criterion
yielded a similar result. GCV with GDF yielded the similar results for clustering accuracy.
However, to use GCV with GDF, the user has to specify the perturbation size, a hyper-
parameter. In contrast, the stability based criterion is insensitive to the repeat times T .
For the simulation, the average numbers of clusters selected with T = 10, 50 and 100 were
2.63, 2.68 and 2.76, respectively.

Now we illustrate differences between the two algorithms. First, we demonstrate how
two algorithms operated differently with respect to various values of the tuning parameter
λ, while τ was fixed at 0.7 (Figure 1). Note that, due to the soft constraint of the quadratic
penalty based algorithm, we cannot obtain exactly µ̂i− µ̂j − θ̂ij = 0. Even for a sufficiently
large λ, there were still quite some unequal µ̂i,1’s, which were all remarkably close to their
true values 0 or 1. In contrast, due to using the hard constraint on θij = µi−µj , DC-ADMM
yielded some equal estimated centroids µ̂i,1. In this simulation, the stability based criterion
tended to select the most stable tuning parameters, confirming its selecting good tuning
parameters and yielding good clustering results.

Figure 2 shows the run-time of two algorithms against the number of observations n and
dimension p. As a matter of fact, the DC-ADMM is much faster than the quadratic penalty
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Stability Based Criterion GCV with GDF

Algorithm Freq K̂ Rand aRand Freq K̂ Rand aRand

DC-ADMM All 2.63 0.950 0.901 All 3.29 0.956 0.912
60 2.00 0.954 0.908 39 2.00 0.958 0.917
26 3.00 0.949 0.898 22 3.00 0.965 0.930
7 4.00 0.945 0.890 17 4.00 0.959 0.918
5 5.00 0.924 0.847 8 5.00 0.940 0.881
2 6.00 0.952 0.903 12 6.00 0.947 0.894

Quadratic All 2.70 0.951 0.902 All 2.41 0.962 9.925

Table 1: Comparison of the tuning parameter selection criteria based on 100 simulated data
sets each with 2 clusters.

0

1

-4 -2 0 2
log(λ)

µ̂
1

a) DC-ADMM

0

1

-4 -2 0 2
log(λ)

µ̂ 1

b) Quadratic Penalty

Figure 1: Solution paths of the first coordinate µ̂i,1 for the first simulated data set. τ is
fixed at 0.7. Vertical black line represents the tuning parameter selected by the
stability based criterion.
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Figure 2: Comparison of run-times of DC-ADMM and quadratic penalty based algorithm
based on the average of 100 simulations with different random seeds. Shaded
regions represent the 25% and 75% quantiles of the run-times for corresponding
algorithms. The complexity of DC-ADMM is O(pn2/ε), whereas the quadratic
penalty based algorithm is much slower.

based algorithm, particularly when either n or p is large. For DC-ADMM, the number
of iteration was insensitive to the sample size and was around 100. In contrast, for the
quadratic penalty based algorithm, it increased dramatically as the sample size increased;
when the sample size was 200, the number of iteration was around 1, 000; however, the
number of iteration increased to around 85, 000 when the sample size increased to 6, 000.
The complexity of DC-ADMM is quadratic in the sample size n (the ratio of run-time to
n2 was around 10−5) and linear in the dimension p (the ratio of run-time to p was around
0.05), confirming that the computational complexity is O(pn2/ε).

Figure 3 shows the solution paths for other methods. PRclust2 provided very similar
results as DC-ADMM (Figure 3a). However, PRclust2 is extremely slow (around 10 to 30
times slower than the quadratic penalty based algorithm) and not feasible to large data sets.
Convex penalties, such as the lasso and the L2-norm penalty, always shrink all the estimates
towards zero and thus lead to severely biased parameter estimates. For example, if we used
the L2-norm (Figure 3b) or the lasso (Figure 3c) as the grouping penalty, the estimated
centroids were shrunk towards each other, leading to their convergence to the same point
at the end and thus much worse performance in clustering. The TLP (Shen et al., 2012)
preformed much better than the lasso since it imposed no further penalty on large estimates
(Figure 3d). Since the TLP does not borrow information from other variables, it performed
slightly worse than its grouped version.

10
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Figure 3: Solution paths of µ̂i,1 for a) PRclust2, b) L2 penalty, c) Lasso penalty and d)
TLP for the first simulated data set.
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3. Theory

Though operating characteristics of PRclust have been intensively studied, its clustering
consistency properties remain unknown. In this section, based on the maximum likelihood
estimation framework, we develop some theoretical properties for penalized regression based
clustering method, which incorporates original PRclust (Pan et al., 2013) as a special case.
Recall that PRclust does not put any distribution assumptions on the data; however, it
can be treated as assuming a Gaussian distribution for the data implicitly as to be shown
later. To avoid unaddressable complexity of over-parameterizing the underlying distribu-
tion, some mild technical assumptions are introduced. Then we develop a probability bound
of clustering consistency which is slightly harder than clustering center consistency (Pollard,
1981).

3.1 PRclust in the Penalized Maximum Likelihood Framework

Assume xi ∈ Rp ∼ fµi(·), 1 ≤ i ≤ n are n independent random samples, where fµi is a
probability density function of xi with its centroid µi ∈ Rp. We obtain an estimate µ̂L0 of
µ = (µ

′
1, . . . , µ

′
n)
′ ∈ Rpn via solving the following constrained L0-problem:

minµ − L(µ) subject to J (µ) ≤ J, (7)

where J is a nonnegative tuning parameter controlling the trade-off between the model fit
and the number of clusters, L(µ) =

∑n
i=1 log(fµi(xi)) is the log-likelihood that corresponds

to the model fit, and J (µ) =
∑

i<j I{d(µi, µj) 6= 0} is the grouping penalty that controls
the number of clusters. I(·) is the indicator function and d(·, ·) : Rp×Rp → R is a distance,

which can be defined d(µi, µj) = ||µi − µj ||q = {
∑p

m=1 |µim − µjm|q}
1/q

, 0 < q <∞. Then
J (µ) equals the number of distinct pairs of centroids µi 6= µj .

The regularization problem (7) is a constrained counterpart of the following penalized
unconstrained L0-problem:

minµ − L(µ) + λJ (µ), (8)

where λ ≥ 0 is a tuning parameter corresponding to J in (8). Note that (7) and (8) may
not be equivalent in their global minimizers, which is unlike a convex problem.

In a high-dimensional situation, it is not computationally feasible to minimize a discon-
tinuous cost function in (8) and (7). As a surrogate, we consider an estimator µ̂tL1 that
minimizes the following truncated L1-problem:

minµ − L(µ) + λJτ (µ), (9)

where Jτ (µ) =
∑

i<j TLP(d(µi, µj); τ). Note that if assuming xi ∼MVN(µi, σ
2I), 1 ≤ i ≤

n and using L2-distance, we get −L(µ) =
∑n

i=1 ||xi−µi||22 after ignoring some constants and
Jτ (µ) =

∑
i<j TLP (||µi − µj ||2; τ), which indicate that (9) reduces to the original PRclust

(1) under multivariate Gaussian distribution assumption. When τ is sufficiently small, the
truncated L1 constraint has a good approximation to the L0 loss (Shen et al., 2012).

12
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3.2 A Fundamental Assumption for Over-parameterization

To reduce the unaddressable complexity to an addressable level, we propose a fundamental
assumption. Let Ck, 1 ≤ k ≤ K be K clusters that satisfy ∪Kk=1Ck = {x1, . . . , xn} and
Ci ∩ Cj = ∅, for 1 ≤ i 6= j ≤ K. The number of partitions of n samples into K clusters

is (1/K!)
∑K

k=1(−1)K−k
(
K
k

)
kn, which in turn can be approximated by Kn/K! (Steinley,

2006). Since PRclust is based on over-parameterization and assumes one parameter (cen-
troid) for one corresponding sample, the complexity of PRclust is the same as all possible
ways of constructing clusters based on all samples. Unfortunately, to the best of our knowl-
edge, there is no possible probability bound that can cover this complexity that requires
tail probability decreasing faster than exp(−n logK). However, many of the clustering for-
mulation lead to the overlapped clusters and there is no way to reconstruct the true clusters
exactly. To recover non-overlapped true clusters, we put a mild technical restriction on the
clustering formulation to reduce the complexity.

Assumption (A0): Partition samples x1, x2, . . . , xn into K clusters. For any clusters

C1, C2, . . . , CK , there exists m points y
(k)
1 , . . . , y

(k)
m ∈ Ck such that d(y

(k)
m , xk) ≤ d(y

(k)
m , xc)

for all xk ∈ Ck and xc ∈ Cck, where y
(k)
m =

∑m
l=1 yl/m and Ac denotes the complement of a

set A. We define m as the minimal disjoint centering number.

Note that all the clusters are separated under (A0). Violating (A0) implies that there

exist xk ∈ Ck and xc ∈ Cck such that d(y
(k)
m , xk) > d(y

(k)
m , xc), indicating that there exists

another cluster that overlaps with Ck. Interestingly, assumption of this kind seems necessary
because clustering consistency is impossible when some clusters overlap, although it appears
strong. Worth of note is that other papers, for instance Zhu et al. (2014), explicitly assume
that different clusters are reasonably separable from each other for clustering consistency.
Furthermore, (A0) excludes any irregular cluster structures, which are not constructed.
Most importantly, Lemma 1 in the Appendix gives an upper bound of the number of
ways of reconstructable clusters under (A0), reducing the overparameterization complexity
from the super-exponential level in the sample size n, exp(−n logK), to a polynomial level
in n, exp(−mK log n). Lastly, (A0) implies that all the clusters must include at least
m samples, and guarantees cluster-center consistency asymptotically: for each 1 ≤ k ≤
K, ‖y(k)

m − µk‖2 → 0 almost surely as m → ∞, where µk is the centroid of the cluster Ck.
Note that Pollard (1981) used a similar assumption for cluster-center consistency for the
k-means method.

3.3 Clustering Consistency for L0-constrained Problem

Define C = {C(µ) : µ ∈ Rpn}, where C(µ) = {C1, . . . , CK} is a set of clusters based on µ
such that for any cluster Ck, d(µi, µj) = 0, ∀i, j ∈ Ck and d(µi, µj) 6= 0, ∀i ∈ Ck, j ∈ Cck.
Let µ∗ = (µ∗

′
1 , . . . , µ

∗′
n )
′ ∈ Rpn with µ∗i = (µ∗i1, . . . , µ

∗
ip)
′ ∈ Rp be the true centroid. We

study asymptotic properties of µ̂L0 in (7) by giving a bound of the incorrect clustering
probability: P

(
µ̂L0 6= µ̂o

)
, where µ̂o = (µ̂o

′
1 , . . . , µ̂

o′
n )
′

= argminC(µ)=C(µ∗)L(µ) is the oracle
estimator that is usually unavailable unless the true clusters are known beforehand. Note
that µ̂L0 is defined as a global minimizer of (7) and assume to be any global minimizer.

Before proceeding, we define a complexity measure for a given function space F . For
any ε > 0, let H(ε,F) be the logarithm of the cardinality of the ε-bracketing of F of the
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smallest size. To be specific, let S(ε,F , r) = {f l1, fu1 , . . . , f lr, fur } be the bracket covering of
F that satisfies max1≤j≤r ||fuj − f lj ||2 ≤ ε, where ||f ||2 = (

∫
f2dv)1/2 and there exists a j

such that f lj ≤ f ≤ fuj for any f ∈ F , then H(ε,F) = log(min{r : S(ε,F , r)}). For more
discussions about metric entropy of this type, see Kolmogorov and Tikhomirov (1959). To
construct the clustering consistency properties, we need the following two assumptions.
Assumption (A1): There exists some constant d0 > 0 such that, for any ε > 0,

supC∈C:|C|≤|C(µ∗)|H(t,FC) ≤ d0m log(n) log(ε2/28t), ε2/28 < t < 21/2ε ≤ 1,

where FC = {fµ : h2
a(fµ, fµ∗) ≤ ε2, µ ∈ BC}, fµ is the density of x = (x

′
1, . . . , x

′
n)
′
,

BC = {µ : C(µ) = C}, |A| is the cardinality of a set A and m is the minimal disjoint
centering number defined in (A0).

Note that (A1) puts some constraints on the size of parameter space, which is similar as
Assumption A in Shen et al. (2012) and is a direct modification of the assumption in Wong
and Shen (1995).

Define

Cmin(µ∗) ≡ inf
µ∈B

h2
a(fµ, fµ∗)

|C(µ)|

to be the degree-of-separation or the level of difficulty of clustering, where B = {µ : C(µ) 6=
C(µ∗),J (µ) ≤ J (µ∗)} is a parameter space of interest, ha(fµ, fµ∗) =

∑n
i=1 h(fµi , fµ∗i )/n

1/2

is the averaged Hellinger metric with h(fµi , fµ∗i ) =
{

1
2

∫
(f

1/2
µi − f

1/2
µ∗i

)2dv
}1/2

.

Assumption (A2): There exists some constant d1 > 0 such that

Cmin(µ∗) > d1m log(n)/n,

where m is the minimal disjoint centering number defined in (A0).
Assumption (A2) describes the least favorable situation through Cmin(µ∗) under which

we can identify the true cluster partition. In fact, Cmin(µ∗) depends on the number of true
clusters and the minimum distance among true cluster centers induced by the Hellinger loss.
Since (A2) puts some regularity conditions on log-likelihood function via Hellinger loss, we
do not make any regularity conditions for the log-likelihood function explicitly. Similar
assumptions as (A2) can be found in the literature of feature selection. For example, Shen
et al. (2012) assumed

Cmin(β∗) ≥ d0 log(p)/n, (10)

where β∗ is a true parameter vector of interest, d0 is a positive constant, p is the dimension
of β and n is the sample size. By assuming a probabilistic model such as the Gaussian
distribution, (10) can be further specified as

γ2
min = min

j:β∗j 6=0
|β∗j | ≥ d0 log(p)/n,

which implies the feature selection consistency can be constructed even when the minimal
signal size is vanishing γmin → 0 and the dimension of features is diverging p → ∞. This
assumption is much weaker than classical assumptions where γmin and p are usually fixed
constants.
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(A2) serves similar roles for clustering consistency as (10) for feature selection consis-
tency. As to be shown later in Proposition 1, by assuming the Gaussian distribution, (A2)
can be explicitly specified. More importantly, it allows the minimum distance among dif-
ferent cluster centroids decreases toward zero, αmin = minµ∗i 6=µ∗j ‖µ

∗
i − µ∗j‖2 → 0, and the

number of cluster diverge to infinity, K → ∞, indicating that the assumption used here
is weaker than many other studies where αmin and K are usually fixed constants (Pollard,
1981; Pelckmans et al., 2005; Radchenko and Mukherjee, 2014; Zhu et al., 2014). Then we
establish the main theory for clustering consistency as follows.

Theorem 2 Under Assumptions (A0) to (A2), if J = J (µ∗), then, there exists some
constant c2 > 0, such that

P
(
µ̂L0 6= µ̂o

)
≤ exp (−c2nCmin(µ∗) + (m+ 1) log(n) + 2) ,

provided that d1 > max{1/c2, 2d0(log c3)/c2
4}. For example, we may use c2 = 4/(27×1926),

c3 = 10 and c4 = (2/3)5/2/512. Further, µ̂L0 reconstructs the oracle estimator µ̂o with
probability tending to one as n→∞. The following two asymptotic results hold as n→∞:

(A) (Clustering consistency) P (µ̂L0 6= µ̂o)→ 0 and hence P
(
C(µ̂L0) 6= C(µ̂∗)

)
→ 0.

(B) (Optimal parameter estimation) E
[
h2
a(fµ̂L0 , fµ∗)

]
= (1+o(1))E

[
h2
a(fµ̂o , fµ∗)

]
, provided

that c2nCmin(µ∗) + log
(
E
[
h2
a(fµ̂o , fµ∗)

])
→∞.

Theorem 2 says that, under Assumptions (A0) to (A2), µ̂L0 consistently reconstructs
the oracle estimator µ̂o, and both an oracle clustering and an optimal parameter estimation
with respect to expected Hellinger risk are asymptotically available by solving a constrained
L0-problem. As pointed out by a reviewer, the number of clusters K is an important but
unknown tuning parameter. Theorem 2 shows that if the tuning parameter J is chosen to
be J = |J (µ∗)| then optimal clustering can be constructed asymptotically. We believe that
theory established here can be a starting point in developing some new tuning parameter
selection criteria, though we have not fully explored in this aspect here. Theorem 2 provides
an insight into or gives theoretical justification on when or under which condition the
proposed method is expected to give correct clustering. For instance, the theory suggests
that the optimal tuning parameters may depend on the underlying true parameters, which
needs to be estimated for real data. This, together with the tuning parameter selection
criterion lead to the estimated data-dependent tuning parameter for this real data set.

Although theoretical properties of penalized clustering have been intensively studied
(Radchenko and Mukherjee, 2014; Zhu et al., 2014), our result is new and different from
the proceeding ones. For example, Radchenko and Mukherjee (2014) proved clustering
consistency with univariate samples, which are not practical and, in fact, relatively easy to
prove in our context without assumption (A0) since the complexity of over-parametrization
falls down to an addressable level. Zhu et al. (2014) extended the clustering consistency to
multivariate samples by assuming there are only two clusters, say C1 and C2 with centroids
µ1 and µ2, respectively. To avoid some technical difficulties, Zhu et al. (2014) imposed an
assumption that is not required in Theorem 2: two clusters C1 and C2 consist proportional
number of samples in the sense that |C1|/|C2| → c, where c is a positive constant. Theorem
2 established here extended clustering consistency to a more realistic situation: multivariate
samples with many clusters.
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3.4 Example: Truncated Multivariate Gaussian Distributions

In this example, we give a sufficient condition for (A2) to hold asymptotically, by con-
structing a lower bound of Cmin(µ∗) in terms of the minimum center distance αmin =
minµ∗i 6=µ∗j ‖µ

∗
i −µ∗j‖2. Let φµi , 1 ≤ i ≤ n be the multivariate Gaussian density function with

mean µi ∈ Rp and identity covariance matrix Ip×p, that is, φµi(z) = (2π)−p/2 exp(−‖z −
µi‖22/2), z ∈ Rp, 1 ≤ i ≤ n. For notation simplicity, we denote φµi = φ when µi = 0.
Note that it is not generally anticipated for clustering consistency under the usual Gaussian
distribution assumption since the Gaussian distribution leads to overlapped clusters and
violates the assumption (A0). Hence we modify the underlying distributions for the results
in Theorem 2 by considering non-overlapping situations.

Consider a class of the truncated densities φµi,α, 1 ≤ i ≤ n with a truncation level α > 0:

φµi,α(z) = (1/cα)φµi(z)I
(
‖z − µi‖22 ≤ α/4

)
, (11)

where cα is a normalizing constant. Note thatcα =
∫
Aµi,α

φµi(z)dz =
∫
Aα
φ(z)dz = χp(α/4),

where Aµi,α = {z : ‖z − µi‖22 ≤ α/4}, Aα = {z : ‖z‖22 ≤ α/4} and χp is the chi-square
distribution function with p degrees of freedom. Given two mean vectors µi 6= µj , φµi,α does
not overlap with φµj ,α if ‖µi − µj‖22 > α. Since the truncated densities φµi,α for 1 ≤ i ≤ n
in (11) are not overlapped to each other if we take α = αmin = minµi 6=µj ‖µi − µj‖22,
we assume that the samples are independently distributed with true truncated densities
φµ∗i ,αmin

; 1 ≤ i ≤ n with a truncation level αmin.

Now, ignoring constants, consider the problem in (7) for minimizing the minus log-
likelihood −L(µ) =

∑n
i=1 ‖xi − µi‖22/2 under the constraint J (µ) ≤ J . To derive a suf-

ficient condition for (A2), we construct a lower bound of Cmin(µ∗), the level of difficulty
in recovering C(µ∗). Asymptotic properties cannot be established when cluster Cj ∈ C(µ)
only shares a finite number of samples with true clusters, and thus we make the following
assumption.

Assumption (A3): For any µ ∈ Rnp, there exists m1 such that infC∈C(µ),C∗∈C(µ∗),C∩C∗ 6=∅
|C ∩ C∗| ≥ m1.

Proposition 1 Let rαmin = {infµ∈B infαmin−‖µi−µ∗i ‖22≤t≤αmin
χp(t/4)}/{4χp(αmin/4)}, where

χp and χp are the chi-square density and distribution functions with p degrees of freedom,
respectively. Under assumptions (A0), (A1) and (A3), if J = J (µ∗) then the consistency
results (A) and (B) in Theorem 2 hold, provided that

rαminαmin ≥ d1mK
∗ log(n)/m1, (12)

for some constants d1 > max{1/c2, 2d0 log(c3)/c2
4}, where K∗ = |C(µ∗)|.

Proposition 1 implies that (12) is a sufficient condition for (A2) for the truncated
multivariate Gaussian distributions. In low dimensional situation, αmin, p and K∗ may
be fixed. rαmin is bounded below, which implies the clustering consistency follows when
m log(n)/m1 → ∞ as n → ∞. Moreover, clustering consistency holds when αmin → 0 and
p → ∞. From L’Hpital’s rule, limαmin→0 rαmin ≤ limαmin→0 χp(αmin/4)/4χp(αmin/4) = ∞
for any p ≥ 3, which implies (12) is satisfied when m1αmin/mK

∗ log(n) → ∞ as n → ∞.
For example, let K∗ log(n) = nk, m = nh and m1 = nh1 for some positive constants k, h
and h1, then the theorem holds provided that αminn

h1−(h+k) →∞ for any k + h < h1 < 1,
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implying that we can recover the true clusters even when αmin → 0 and K∗ →∞ as n→∞
for any p ≥ 3.

At first sight, a truncated multivariate Gaussian distribution is an extreme example;
however, after ignoring some constants the corresponding minus log-likelihood function
−L(µ) =

∑n
i=1 ||xi − µi||22, is used in the original PRclust. Moreover, truncated multi-

variate Gaussian distributions guarantee that different clusters are separated from each
other; non-truncated Gaussian distributions lead to overlapping clusters, and consistency
of distance-based clustering methods, including ours, is not expected as a result. For exam-
ple, suppose we have n observations, n/2 form a Gaussian distribution N(−0.5, 1), while
the other n/2 from N(0.5, 1). According to the K-means cluster center consistency theory
(Pollard, 1981), the cluster centers determined by the K-means with K = 2 converge to
a1 = −0.9 and a2 = 0.9, not the original clusters centers at µ1 = −0.5 and µ2 = 0.5.
The reason is that all the negative observations from the second distribution/cluster are
mis-clustered into the first cluster, while all positive observations from the first clusters are
incorrectly assigned to the second cluster by the K-means, leading to an under-estimated
center for the first cluster; similarly the over-estimation of the second cluster center can be
explained. This simple example suggests that clustering consistency cannot be established
when non-truncated Gaussian distributions are used in K-means. Furthermore, previous
works focused on establishing clustering consistency with the distance between clusters
growing at a sufficiently fast rate. For example, Zhu et al. (2014) showed that if the dis-
tance between two clusters and sample size n grow at the same rate as n → ∞, then the
corresponding method can separate the two clusters perfectly. In contrast, clustering con-
sistency established here still holds when minimum distance between the cluster centroids
αmin → 0 , implying that the assumptions used here are weaker than the previous ones.

4. Discussion

The proposed new algorithm DC-ADMM bears some similarity to the quadratic penalty
based algorithm in terms of the cost function and using difference convex programming.
However, they differ significantly in their specific formulations. Instead of using the quad-
ratic penalty technique, we use a hard constraint and an augmented Lagrangian in DC-
ADMM. Consequently, the DC-ADMM is much faster than the quadratic penalty based
algorithm and can be relatively easy to be extended to other cost functions that may have
some advantages for certain problems.

The theory that states some sufficient conditions for clustering consistency and optimal
parameter estimation in the PRclust framework covers a much wide range of loss functions
and grouping penalties, which helps us study theoretical results uniformly for some specific
PRclust implementations in the future. For example, when graph information is available,
by adding a constraint on the two connected nodes in the graph, we can estimate a clus-
ter partition and grouping structure of variables simultaneously. The mis-clustering error
bound and asymptotic properties of this graph-based PRclust can be obtained via a slight
modification to the theory established here.

The methods can be extended in several directions. First, the convergence of the DC-
ADMM algorithm is related to the penalty parameter ρ. A poor choice of ρ may result
in a slow convergence for the ADMM algorithm (Ghadimi et al., 2015). One may use an
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over-relaxed ADMM algorithm to speed up. Other options exist; for example, we may use
different values of ρ in each iteration (Wang and Liao, 2001). Second, since the algorithm
is relatively fast, it is now feasible to deal with high dimensional data, for which variable
selection is necessary. In principle, we may add a new penalty into the cost function for
variable selection (Pan and Shen, 2007). Third, we may modify PRclust for noisy big data.
Others have developed an iterative sub-sampling approach to improve the computational
efficiency of a solution path clustering and to handle noisy big data (Marchetti and Zhou,
2014). A modification of PRclust along this direction may be useful.

An R package prclust implementing the DC-ADMM algorithm and the quadratic penalty
algorithm with various loss and penalty functions is available at GitHub (https://github.
com/ChongWu-Biostat/prclust) and CRAN (http://cran.r-project.org).
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Appendix A.

Proof of Theorem 1. The finite termination property of DC-ADMM follows from the
following three facts. First, since (2) is closed, proper and convex and the augmented
Lagrangian (4) has a saddle point, the standard ADMM converges (Boyd et al., 2011).
Second, by construction of S(m)(µ, θ), for each m ∈ N ,

0 ≤ S(µ̂(m), θ̂(m)) = S(m+1)(µ̂(m), θ̂(m)) ≤ S(m)(µ̂(m), θ̂(m))

≤ S(m)(µ̂(m−1), θ̂(m−1)) = S(µ̂(m−1), θ̂(m−1)),

implying that S(µ̂(m), θ̂(m)) decreases in m; otherwise the algorithm stops. Note that
(µ̂(m), θ̂(m)) is the limiting point of the ADMM iterations in (5). Third, since S(m+1)(µ, θ)

depends on m only through that on the indicator functions I(||θ̂(m)
ij ||2 < τ), which can be

either 1 or 0, S(m+1)(µ, θ) has only a finite set of possible functional forms across all m,
leading to a finite number of its possible and distinct minimal values. These facts imply
that DC-ADMM terminates in a finite number of iterations.

To show that (µ̂(m∗), θ̂(m∗)) is a KKT point of S(µ, θ), we check if the solution satisfies
a local optimality of S(µ, θ). Since the subgradient of S(µ, θ) and Sm(µ, θ) are the same at
the minimizer (Rockafellar, 2015), we verify the following requirement:

xi + ρ
∑
j>i

(µj + θij + uij) + ρ
∑
j<i

(µj − θji − uij)− (1 + ρ(n− 1))µi = 0; (13)

λbijθij/||θij ||2 + ρ(θij − (µi − µj) + uij) = 0; (14)

θij − µi − µj = 0, (15)

where bij is the regular subdifferential of min(||θij ||2, τ) at ||θij ||2. Easily, (15) is the hard

constraint in the DC-ADMM and is met at convergence. Note that (µ̂(m∗), θ̂(m∗), û(m∗)) =
(µ̂(m∗−1), θ̂(m∗−1), û(m∗−1)) at termination. Then (13) is satisfied with (µ, θ, u) = (µ̂(m∗−1),
θ̂(m∗−1), û(m∗−1)). For (14), consider three cases.

• If ||θ̂(m∗−1)
ij ||2 > τ , the θ̂

(m∗−1)
ij = µ̂

(m∗)
i − µ̂(m∗)

j − u(m∗)
ij , implying θij = θ̂

(m∗)
ij since

bij = 0.

• If 0 < ||θ̂(m∗)
ij ||2 < τ and ||µ̂(m∗)

i − µ̂(m∗)
j − û(m∗)

ij ||2 > λ/ρ, then

θ̂
(m∗)
ij =

(
||µ̂(m∗)

i − µ̂(m∗)
j − û(m∗)

ij ||2 −
λ

ρ

)
µ̂

(m∗)
i − µ̂(m∗)

j − û(m∗)
ij

||µ̂(m∗)
i − µ̂(m∗)

j − û(m∗)
ij ||2

,

hence that ||θ̂(m∗)
ij ||2 = ||µ̂(m∗)

i −µ̂(m∗)
j −û(m∗)

ij ||2− λ
ρ . Then (14) is met when θij = θ̂

(m∗)
ij

since bij = 1.

• If 0 < ||θ̂(m∗)
ij ||2 < τ and ||µ̂(m∗)

i − µ̂(m∗)
j − û(m∗)

ij ||2 < λ/ρ, then ||θ̂(m∗)
ij ||2 = 0, which

contradicts to the fact that 0 < ||θ̂(m∗)
ij ||2 < τ .
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This completes the proof. �

Lemma 1. Given n observations xi ∈ Rp, 1 ≤ i ≤ n, let the number of ways of
constructing K clusters that satisfies disjoint condition (assumption A0) with the minimal
disjoint centering number m be cn,K,m. Then

cn,K,m ≤ (n−Km)K
K∏
k=1

(
n− (k − 1)m

m

)
.

Proof of Lemma 1. Without loss of generality, we fix the first km points and form K

disjoint subsets Sk = {x(k−1)m+1, . . . , xkm} ⊂ {x1, . . . , xn}, k ≤ K. Let r
(k)
i = d(x

(k)
m , xi),

km + 1 ≤ i ≤ n with x
(k)
m =

∑km
j=(k−1)m+1 xj/m and r̃

(k)
i be an ordered sequence of r

(k)
i

that satisfies r̃
(k)
km+1 ≤ · · · ≤ r̃

(k)
n . Then a possible way of constructing a subset Ck based

on Sk is including Sk and all the points within distance r̃
(k)
i . For a subset Ck, the number

of constructing ways is n − Km at most. Hence, the number of ways of constructing K
subsets Ck, k ≤ K based on Sk is (n−Km)K at most.

Note that the number of ways of fixing possible K disjoint subsets Sk, k ≤ K is∏K
k=1

(
n−(k−1)m

m

)
. Hence the total number of ways of constructing K subsets along to

the way described above is (n − Km)K
∏K
k=1

(
n−(k−1)m

m

)
at most. Note that any clus-

ter partition with K clusters that satisfies disjoint structure condition with the minimal
disjoint centering number m can be constructed via the ways described above. Hence
cn,K,m ≤ (n−Km)K

∏K
k=1

(
n−(k−1)m

m

)
. This completes the proof. �

Proof of Theorem 2. On the set B̃ = {µ : C(µ) = C(µ∗)} ⊂ {µ : J (µ) ≤ J (µ∗)}, we
have µ̂L0 = supµ∈B̃ L(µ) = µ̂o = supC(µ)=C(µ∗) L(µ). Let the parameter space of interest be
B = {µ : C(µ) 6= C(µ∗),J (µ) ≤ J (µ∗)}. Since J (µ) ≤ J (µ∗) implies |C(µ)| ≤ K∗, we have
B ⊂ {µ : C(µ) 6= C(µ∗), |C(µ)| ≤ K∗} ⊂ ∪K∗k=1 ∪C∈Ck BC , where BC = {µ : C(µ) = C} and
Ck = {C ∈ C : C 6= C(µ∗), |C| = k}. Hence, using L(µ̂o) ≥ L(µ∗), we have

P
(
µ̂L0 6= µ̂o

)
≤ P ∗

(
sup
µ∈B
{L(µ)− L(µ̂o)} > 0

)

≤ P ∗
(

sup
µ∈B
{L(µ)− L(µ∗)} > 0

)

≤
K∗∑
k=1

∑
C∈Ck

P ∗

(
sup
µ∈BC

{L(µ)− L(µ∗)} > 0

)
,

where P ∗ is the outer probability. Now we apply Theorem 1 of Wong and Shen (1995) to
bound each term. For any µ ∈ BC and C ∈ Ck, h2

a(fµ, fµ∗) ≥ kCmin(µ∗), there exists a
constant c2 > 0 such that

P ∗

(
sup
µ∈BC

{L(µ)− L(µ∗)} > 0

)
≤ 4 exp (−c2nkCmin(µ∗)) ,
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provided that the local entropy conditions are satisfied as follows: there exist constants
c3 > 0 and c4 > 0 such that

∫ 21/2ε

ε2/28

H1/2(t/c3,FC)dt ≤ c4n
1/2ε2 (16)

for any ε2 ≥ kCmin(µ∗). Let ε2n = 2d0 log(c3)m log(n)/c2
4n. Under (A1), εn solves the

inequality

max
k≤K∗

sup
C∈Ck

∫ 21/2ε

ε2/28

H1/2(t/c3,FC)dt ≤ (d0m log(n))1/2(21/2ε)(log(c3))1/2 ≤ c4n
1/2ε2

with respect to ε provided that εn < ε. Hence, (16) follows if Cmin(µ∗) ≥ ε2n, and from (A2),
this holds when d1 ≥ 2d0 log(c3)m/c2

4. From Lemma 1, |Ck| ≤ (n−km)k
∏k
j=1

(
n−(j−1)m

m

)
≤

nk+mk. Hence,

P
(
µ̂L0 6= µ̂o

)
≤

K∗∑
k=1

4 exp (−c2nkCmin(µ∗) + k(m+ 1) log(n))

≤ 4R (exp(−c2nCmin(µ∗) + (m+ 1) log(n))

≤ 5 exp (−c2nCmin(µ∗) + (m+ 1) log(n))

≤ exp (−c2nCmin(µ∗) + (m+ 1) log(n) + 2) ,

where R(x) = x/(1− x) is exponentiated logistic function.

Now (A) follows from P
(
C(µ̂L0 6= C(µ∗)

)
≤ P

(
µ̂L0 6= µ∗

)
and d1 > 1/c2. For the risk

property, using h2
a(µ̂

L0 , µ∗) ≤ 1,

E
[
h2
a(µ̂

L0 , µ∗)
]
≤ E

[
h2
a(µ̂

o, µ∗)
]

+ E
[
h2
a(µ̂

L0 , µ∗)I(µ̂L0 6= µ̂o)
]

≤ E
[
h2
a(µ̂

o, µ∗)
]

+ P (µ̂L0 6= µ̂o)

≤ (1 + o(1))E
[
h2
a(µ̂

o, µ∗)
]

provided that exp (−c2nCmin(µ∗)) /Eh2
a(µ̂

o, µ∗) = o(1), and then (B) established. This com-
pletes the proof. �

Proof of Proposition 1. It suffices to show that (12) is a sufficient condition for As-
sumption (A2). First, we give a lower bound of the Hellinger metric between φµi,αmin and
φµ∗i ,αmin

for a given µ ∈ B = {µ : C(µ) 6= C(µ∗),J (µ) ≤ J (µ∗)}. Let

Aαmin = {z : ‖z‖22 ≤ αmin/4} and Aµi,αmin = {z : ‖z − µi‖22 < αmin/4}, 1 ≤ i ≤ n.
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Given µi 6= µ∗i with ‖µi − µ∗i ‖22 ≤ αmin, let ∆∗i = µi − µ∗i then we have

h2(φµi,αmin , φµ∗i ,αmin
)2

=h2(φαmin , φ∆∗,αmin)2

=
1

2

∫ (
φ1/2
αmin

(z)− φ1/2
∆∗i ,αmin

(z)
)2
dz

=
1

2χ2
p(αmin/4)

(∫
Aαmin

φ(z)dz +

∫
A∆∗

i
,αmin

φ∆∗i
(z)dz − 2

∫
Aαmin∩A∆∗

i
,αmin

φ(z)1/2φ∆∗(z)
1/2dz

)

=
1

χ2
p(αmin/4)

(∫
Aαmin

φ(z)dz −
∫
Aαmin∩A∆∗

i
,αmin

φ(z)1/2φ∆∗(z)
1/2dz

)
.

Let B∆∗i ,αmin
= {z : ‖z −∆∗i ‖22 ≤ α/4− ‖∆∗i ‖22/4} then it is easy to see that

Aαmin ∩A∆∗i ,αmin
⊂ B∆∗i ,αmin

.

By using the equality,

φ(z)1/2φ∆∗i
(z)1/2 = (2π)−p/2 exp(−‖z −∆∗i /2‖22/2− ‖∆∗‖22/8) = exp(−‖∆∗i ‖22/8)φ∆∗i /2

(z),

we have∫
Aαmin∩A∆∗

i
,αmin

φ(z)1/2φ∆∗(z)
1/2dz ≤ exp(−‖∆∗i ‖22/8)

∫
B∆∗

i
,αmin

φ∆∗i /2
(z)dz

= exp(−‖∆∗i ‖22/8)χp(αmin/4− ‖∆∗i ‖22/4)

≤χp(αmin/4− ‖∆∗i ‖22/4).

According to the mean value theorem,

h2(φµi,αmin , φµ∗i ,αmin
)2 ≥

χp(αmin/4)− χp(αmin/4− ‖∆∗i ‖22/4)

χ2
p(αmin/4)

≥ rαmin‖µi − µ∗i ‖22, (17)

where rαmin = {infµ∈B infαmin−‖∆∗i ‖22≤t≤αmin
χp(t/4)}/4χp(αmin/4). Next, we find a lower

bound of Cmin(µ∗). From (17), the inequality h2
a(fµ, fµ∗) ≥

∑n
i=1 h

2(fµi , fµ∗i )/n implies

nCmin(µ∗) = n inf
µ∈B

h2
a(fµ, fµ∗)/|C(µ)| ≥ nrα∗ inf

µ∈B
‖µ− µ∗‖22/|C(µ)|. (18)

It is easy to see that infµ∈{µ:|C(µ)|<K∗} ‖µ− µ∗‖22/|C(µ)| ≥ infµ∈{µ:|C(µ)|=K∗} ‖µ− µ∗‖22/K∗,
since the sum of within cluster variances, ‖µ− µ∗‖22 =

∑n
i=1 ‖µi − µ∗i ‖22, is minimized when

|C(µ)| = K∗. Hence, we have

inf
µ∈B
‖µ− µ∗‖22/|C(µ)| = infµ∈{µ:|C(µ)|=K∗,C(µ) 6=C(µ∗)} ‖µ− µ∗‖22/K∗. (19)

Let C(µ) = {C1, . . . , CK} and C(µ∗) = {C∗1 , . . . , C∗K∗}. Since C(µ) 6= C(µ∗), without loss of
generality, we may assume that Cs∩C∗t 6= ∅ for s, t = 1, 2. Then the right-hand side of (19)
achieves its minimum when µ ∈ B12 = {µ : Cs ∩ C∗t 6= ∅ for s, t = 1, 2 and µi = µ∗i for i ∈

22



A New Algorithm and Theory for PRclust

∪3≤k≤K∗Ck}. Let µi = νs, i ∈ Cs for s = 1, 2 and similarly let µ∗i = ν∗t , i ∈ C∗t for t = 1, 2.
Then it follows that

inf
µ∈B
‖µ− µ∗‖22 = inf

µ∈B12

∑
t=1,2

(
n1t‖ν1 − ν∗t ‖22 + n2t‖ν2 − ν∗t ‖22

)
= inf

nst,s,t=1,2

∑
t=1,2

(
n1t‖ν̄∗1 − ν∗t ‖22 + n2t‖ν̄∗2 − ν∗t ‖22

)
= inf

nst,s,t=1,2

(
n11n12

n11 + n12
+

n21n22

n21 + n22

)
‖ν∗1 − ν∗2‖22,

where nst = |Cs∩C∗t | for s, t = 1, 2, and ν̄∗1 = (n11ν
∗
1 +n12ν

∗
2)/(n11 +n12) and ν̄∗2 = (n21ν

∗
1 +

n22ν
∗
2)/(n21 +n22) are the weighted means of ν∗1s and ν∗2s in C1 and C2, respectively. From

(A3), nst ≥ m1 for s, t = 1, 2, which implies n11n12/(n11 +n12) = 1/(1/n11 +1/n12) ≥ m1/2
and similarly, n21n22/(n21 + n22) ≥ m1/2. Hence the lower bound becomes

inf
µ∈B
‖µ− µ∗‖22 ≥ m1αmin. (20)

From (18), (19), (20) and definition of Cmin(µ∗), it is easy to see that (A2) is met if
Cmin(µ∗) ≥ rαminm1αmin/nK

∗ ≥ d1m log(n)/n which is equivalent to

rαminαmin ≥ d1mK
∗ log(n)/m1.

This completes the proof. �

Appendix B.

The cost function of PRclust with lasso grouping penalty will be convex, and thus DC-
ADMM is exactly same as ADMM and a global solution will be reached. Note that θij =
(θij1, . . . , θijp)

′
, then the updating formulas can be summarized as follows:

µ̂
(m+1)
i =

xi + ρ
∑
j>i

(
µ̂

(m)
j + θ̂

(m)
ij + û

(m)
ij

)
+ ρ

∑
j<i

(
µ̂

(m+1)
j − θ̂(m)

ji − û
(m)
ij

)
1 + ρ(n− 1)

;

θ̂
(m+1)
ijl = ST

(
µ̂

(m+1)
il − µ̂(m+1)

jl − û(m)
ijl ;λ/ρ

)
û

(m+1)
ij = û

(m)
ij + θ̂

(m+1)
ij − (µ̂

(m+1)
i − µ̂(m+1)

j ), 1 ≤ i < j ≤ n; i, l = 1, 2, . . . , p.

The main difference between TLP and gTLP is that TLP is an element-wise penalty
and the updating formulas (5) for PRclust with TLP can be summarized as follows, while
the other part of DC-ADMM remains unchanged:

µ̂k+1
i =

xi + ρ
∑
j>i

(
µ̂kj + θ̂kij + ûkij

)
+ ρ

∑
j<i

(
µ̂k+1
j − θ̂kji − ûmij

)
1 + ρ(n− 1)

;

θ̂k+1
ijk =

 µ̂k+1
il − µ̂k+1

jl − û
k
ijl if |θ̂(m)

ijl | ≥ τ ;

STL
(
µ̂k+1
il − µ̂k+1

jl − û
k
ijl;λ/ρ

)
if |θ̂(m)

ijl | < τ ;

ûk+1
ij = ûkij + θ̂k+1

ij − (µ̂k+1
i − µ̂k+1

j ), 1 ≤ i < j ≤ n; i, l = 1, 2, . . . , p.
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