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Abstract

Structured tasks are distinctive: each task has its own measure of performance, such as
the word error rate in speech recognition, the BLEU score in machine translation, the
NDCG score in information retrieval, or the intersection-over-union score in visual object
segmentation. This paper presents StructED, a software package for learning structured
prediction models with training methods that aimed at optimizing the task measure of
performance. The package was written in Java and released under the MIT license. It can
be downloaded from http://adiyoss.github.io/StructED/.
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1. Introduction

Ultimately the objective of discriminative training is to learn the model parameters so as to
optimize a desired measure of performance. In binary classification, the objective is to find
a prediction function that assigns a binary label to a single object, and minimizes the error
rate (0-1 loss) on unseen data. In structured prediction, however, the goal is to predict
a structured label (e.g., a graph, a sequence of words, a human pose, etc.), which often
cannot be evaluated using the binary error rate, but rather with a task-specific measure
of performance, generally called here task loss. There is a voluminous amount of work
on training procedures for maximizing the BLEU score in machine translation, minimizing
word/phone error rate in speech recognition or maximizing NDCG in information retrieval.

The most common approaches to learning parameters for structured prediction, namely
structured perceptron, structural support vector machine (SSVM) and conditional random
fields (CRF) do not directly minimize the task loss. The structured perceptron (Collins,
2002) solves a feasibility problem, which is independent of the task loss. The surrogate
loss of SSVM (Joachims et al., 2005) is the structured hinge loss, a convex upper bound to
the task loss, which is based on a generalization of the binary SVM hinge loss. However,
while the binary SVM is strongly consistent, namely, converges to the error rate of the
optimal linear predictor in the limit of infinite training data, the structured hinge loss is
not consistent and does not converge to the expected task loss, i.e., the risk, of the optimal
linear predictor even when the task loss is the 0-1 loss (McAllester, 2006). The objective of
CRF is the log loss function, which is independent of the task loss (Lafferty et al., 2001).
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Several structured prediction libraries already exist, such as CRF++ (Kudo, 2005),
CRFsuite (Okazaki, 2007), Dlib (King, 2009), PyStruct (Müller and Behnke, 2014), and
SVM-Struct (Joachims et al., 2009). All provide a general framework for training a model
with either structured perceptron, CRF, or SSVM using several optimization techniques.
Nevertheless, CRF++ and CRFsuite were not designed to support discriminative training
with a task-specific evaluation metric, but rather use the binary error rate as their task loss
function; whereas SVM-Struct, PyStruct, and Dlib support the training of structural SVM
with a user-defined task loss function, but do not include, in their current phase, other
training methods that are directly aimed at minimizing the task loss.

In this work we present StructED , a software package that is focused on training
methods for structured prediction models that are aimed at minimizing a given task loss.
The package provides several interfaces to define and implement a structured task, and
allows the user to estimate the model parameters with several different training methods.
The goal is not to provide several optimization alternatives to the structured hinge loss
or the log loss as was already done in the previous packages, but rather to propose an
implementation of a variety of surrogate loss functions that were designed to minimize the
task loss and were theoretically motivated (McAllester and Keshet, 2011).

Note that most training methods require the task loss function to be decomposable in
the size of the output label. Decomposable task loss functions are required in order to solve
the loss-augmented inference that is used within the training procedure (Ranjbar et al.,
2013), and evaluation metrics like intersection-over-union or word error rate which are not
decomposable need to be approximated when utilized in SSVM, for example. Our package
provides an implementation of methods (structured probit and orbit loss) that do not expect
the task loss to be decomposable and can handle it directly without being approximated.

2. Structured Prediction and Risk Minimization

Consider a supervised learning setting with input instances x ∈ X and target labels y ∈ Y,
which refers to a set of objects with an internal structure. We assume a fixed mapping
φ : X × Y → Rd from the set of input objects and target labels to a real vector of length
d, where we call the elements of this mapping feature functions. Also, consider a linear
decoder with parameters w ∈ Rd, such that ŷw is a good approximation to the true label
of x, as follows:

ŷw(x) = argmax
y∈Y

w>φ(x,y) (1)

Ideally, the learning algorithm finds w such that the prediction rule optimizes the expected
desired measure of preference or evaluation metric on unseen data. We define the task loss
function, `(y, ŷw), to be a non-negative measure of error when predicting ŷw instead of y
as the label of x. Our goal is to find the parameter vector w that minimizes this function.
When the desired evaluation metric is a utility function that needs to be maximized (like
BLEU or NDCG), we define the task loss to be 1 minus the evaluation metric.

Our goal is to set w so as to minimize the expected task loss (i.e., risk) for predicting
ŷw,

w∗ = argmin
w

E(x,y)∼ρ[`(y, ŷw(x))], (2)

2



StructED : Risk Minimization in Structured Prediction

where the expectation is taken over pairs (x,y) drawn from an unknown probability dis-
tribution ρ. This objective function is hard to minimize directly. A common practice is to
replace the task loss with a surrogate loss function, denoted ¯̀(w,x,y), which is easier to
minimize; and to replace the expectation with a regularized average with respect to a set
of training examples S = {(xi,yi)}mi=1, where each pair (xi,yi) is drawn i.i.d from ρ:

w∗ = argmin
w

1

m

m∑
i=1

¯̀(w,xi,yi) +
λ

2
‖w‖2, (3)

where λ is a trade-off parameter between the loss term and the regularization. Different
training algorithms are defined by different surrogate loss functions, e.g., the surrogate loss
of max-margin Markov model (Taskar et al., 2003) is the structured hinge loss with the
Hamming distance, whereas the one for CRF is the log loss function. These loss functions
are convex in the model parameters, w.

Recently, several works proposed different surrogate loss functions which are closer to
the task loss in some sense: structured ramp-loss (McAllester and Keshet, 2011), structured
probit loss (Keshet et al., 2011), and orbit loss (Karmon and Keshet, 2015). Direct loss
minimization (McAllester et al., 2010) is a perceptron-like method of performing direct
gradient descent on the risk (2) in the case where Y is discrete but X is continuous. All of
the training objectives that were proposed in these works are non-convex functions in the
model parameters, are strongly consistent and perform well in general.

3. Implementation

Implementation of a structured prediction task involves defining a set of feature functions.
Given a trained model, the prediction is performed by finding the output label that max-
imizes the weighted sum of those feature functions according to (1). Such maximization
involves the enumeration over all possible output labels, which is often intractable and
handled by dynamic programming or by approximated inference techniques. As a result,
and in contrast to packages for binary classification, here the user has to write code that
implements the feature functions, the decoder and the evaluation metric.

Currently the implemented training methods are structured perceptron (SP), SSVM,
CRF, structured passive-aggressive (SPA; Crammer et al., 2006), direct loss minimization
(DLM), structured ramp loss (SRL), structured probit loss (SPL), and orbit loss (Karmon
and Keshet, 2015).

The package exposes interfaces for task loss functions, feature extractors, decoding algo-
rithms and training algorithms. In order to train a new model the user has to consider four
interfaces, which correspond to: (i) a set of feature functions, φ(x,y); (ii) a task loss func-
tion1, `(y, ŷ); (iii) a decoder to perform the inference in (1), as well as the loss-augmented
inference (needed by SPA, SRL, DLM, SSVM); and (iv) a training algorithm. The user can
either implement those interfaces or use any of the already implemented interfaces.

The objective in (3) is optimized using stochastic gradient descent (SGD) for both the
convex (SSVM and CRF) and non-convex (SRL, SPL, orbit) surrogate losses. DLM cannot
be expressed as a surrogate loss function in objective (3), and is optimized using SGD as

1. BLUE and NDCG are currently not implemented.
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well. SP and SPA are online algorithms and are implemented as batch algorithms with
averaging of the weight vectors as an online-to-batch conversion (Cesa-Bianchi et al., 2004).

4. Experiments

While the library focuses on different training methods for minimizing a given task loss,
it is important to verify that the implemented algorithms run in an acceptable amount of
time. We compared our implementation of SSVM optimized by SGD to the corresponding
implementation in PyStruct on the MNIST data set of handwritten digits. We got similar
accuracy and training times (StructED : 92.6%, 149 sec; PyStruct: 90.2%, 145 sec).

We conclude the paper by demonstrating the advantage of the package with a simple
structured prediction task of automatic vowel duration measurement. In this task the input
is a speech segment of arbitrary duration that contains a vowel between two consonants (e.g.,
bat, taught, etc.), and the goal is to accurately predict the duration of the vowel. This task is
a required measurement in linguistic studies and is often done manually. The training data
includes speech segments that are labeled with the vowel onset and offset times, denoted yb
and ye, respectively. The task loss is defined as `(y, ŷ) = max{0, |yb−ŷb|−τb}+max{0, |ye−
ŷe|−τe}, where ŷb and ŷe are predicted vowel onset and offset times, respectively, and τb and
τe are parameters (τb=10 msec and τe=15 msec). We had a training set of 90 examples, a
validation set of 20 examples and a test set of 20 examples. We extracted 21 unique acoustic
features every 5 msec, including the confidence of a frame-based phoneme classifier, the first
and the second formants and other acoustic features. We trained all algorithms on this task
and present their performance in terms of task loss (the lower the better) and training
times in Table 1 (training parameters for each of the training methods can be found in the
package’s Examples folder).

Algorithm Task loss [msec] Time [sec]

SP 72.5 13
SSVM 72.0 13
CRF 70.5 31
SPA 69.0 12
SRL 64.5 25
SPL 64.5 617
DLM 63.5 24
Orbit loss 58.5 13

Table 1: Error rate and training times on vowel duration measurement task.

Results suggest that training methods, which are designed to minimize the task loss,
lead to improved performance compared to SP, SSVM, CRF or SPA. It is also evident that
these methods, except orbit loss, take at least twice as much time to train: DLM and SRL
need two inference operations per training iteration and SPL needs hundreds to thousands
of inferences per training iteration.

The implementation of the above example is straightforward and is given in the Ex-
amples section of the package website http://adiyoss.github.io/StructED/ along with
several other usage examples and further details.
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