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Abstract

Policy search methods can allow robots to learn control policies for a wide range of
tasks, but practical applications of policy search often require hand-engineered components
for perception, state estimation, and low-level control. In this paper, we aim to answer
the following question: does training the perception and control systems jointly end-to-
end provide better performance than training each component separately? To this end,
we develop a method that can be used to learn policies that map raw image observations
directly to torques at the robot’s motors. The policies are represented by deep convolutional
neural networks (CNNs) with 92,000 parameters, and are trained using a guided policy
search method, which transforms policy search into supervised learning, with supervision
provided by a simple trajectory-centric reinforcement learning method. We evaluate our
method on a range of real-world manipulation tasks that require close coordination between
vision and control, such as screwing a cap onto a bottle, and present simulated comparisons
to a range of prior policy search methods.

Keywords: Reinforcement Learning, Optimal Control, Vision, Neural Networks

1. Introduction

Robots can perform impressive tasks under human control, including surgery (Lanfranco
et al., 2004) and household chores (Wyrobek et al., 2008). However, designing the perception
and control software for autonomous operation remains a major challenge, even for basic
tasks. Policy search methods hold the promise of allowing robots to automatically learn new
behaviors through experience (Kober et al., 2010b; Deisenroth et al., 2011; Kalakrishnan
et al., 2011; Deisenroth et al., 2013). However, policies learned using such methods often
rely on a number of hand-engineered components for perception and control, so as to present
the policy with a more manageable and low-dimensional representation of observations and
actions. The vision system in particular can be complex and prone to errors, and it is
typically not improved during policy training, nor adapted to the goal of the task.

In this article, we aim to answer the following question: can we acquire more effec-
tive policies for sensorimotor control if the perception system is trained jointly with the
control policy, rather than separately? In order to represent a policy that performs both
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hanger cube hammer bottle

Figure 1: Our method learns visuomotor policies that directly use camera image observa-
tions (left) to set motor torques on a PR2 robot (right).

perception and control, we use deep neural networks. Deep neural network representations
have recently seen widespread success in a variety of domains, such as computer vision and
speech recognition, and even playing video games. However, using deep neural networks for
real-world sensorimotor policies, such as robotic controllers that map image pixels and joint
angles to motor torques, presents a number of unique challenges. Successful applications of
deep neural networks typically rely on large amounts of data and direct supervision of the
output, neither of which is available in robotic control. Real-world robot interaction data
is scarce, and task completion is defined at a high level by means of a cost function, which
means that the learning algorithm must determine on its own which action to take at each
point. From the control perspective, a further complication is that observations from the
robot’s sensors do not provide us with the full state of the system. Instead, important state
information, such as the positions of task-relevant objects, must be inferred from inputs
such as camera images.

We address these challenges by developing a guided policy search algorithm for senso-
rimotor deep learning, as well as a novel CNN architecture designed for robotic control.
Guided policy search converts policy search into supervised learning, by iteratively con-
structing the training data using an efficient model-free trajectory optimization procedure.
We show that this can be formalized as an instance of Bregman ADMM (BADMM) (Wang
and Banerjee, 2014), which can be used to show that the algorithm converges to a locally
optimal solution. In our method, the full state of the system is observable at training time,
but not at test time. For most tasks, providing the full state simply requires position-
ing objects in one of several known positions for each trial during training. At test time,
the learned CNN policy can handle novel, unknown configurations, and no longer requires
full state information. Since the policy is optimized with supervised learning, we can use
standard methods like stochastic gradient descent for training. Our CNNs have 92,000 pa-
rameters and 7 layers, including a novel spatial feature point transformation that provides
accurate spatial reasoning and reduces overfitting. This allows us to train our policies with
relatively modest amounts of data and only tens of minutes of real-world interaction time.

We evaluate our method by learning policies for inserting a block into a shape sorting
cube, screwing a cap onto a bottle, fitting the claw of a toy hammer under a nail with various
grasps, and placing a coat hanger on a rack with a PR2 robot (see Figure 1). These tasks
require localization, visual tracking, and handling complex contact dynamics. Our results
demonstrate improvements in consistency and generalization from training visuomotor poli-
cies end-to-end, when compared to training the vision and control components separately.
We also present simulated comparisons that show that guided policy search outperforms a
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number of prior methods when training high-dimensional neural network policies. Some of
the material in this article has previously appeared in two conference papers (Levine and
Abbeel, 2014; Levine et al., 2015), which we extend to introduce visual input into the policy.

2. Related Work

Reinforcement learning and policy search methods (Gullapalli, 1990; Williams, 1992) have
been applied in robotics for playing games such as table tennis (Kober et al., 2010b), object
manipulation (Gullapalli, 1995; Peters and Schaal, 2008; Kober et al., 2010a; Deisenroth
et al., 2011; Kalakrishnan et al., 2011), locomotion (Benbrahim and Franklin, 1997; Kohl
and Stone, 2004; Tedrake et al., 2004; Geng et al., 2006; Endo et al., 2008), and flight (Ng
et al., 2004). Several recent papers provide surveys of policy search in robotics (Deisenroth
et al., 2013; Kober et al., 2013). Such methods are typically applied to one component of
the robot control pipeline, which often sits on top of a hand-designed controller, such as
a PD controller, and accepts processed input, for example from an existing vision pipeline
(Kalakrishnan et al., 2011). Our method learns policies that map visual input and joint
encoder readings directly to the torques at the robot’s joints. By learning the entire map-
ping from perception to control, the perception layers can be adapted to optimize task
performance, and the motor control layers can be adapted to imperfect perception.

We represent our policies with convolutional neural networks (CNNs). CNNs have a
long history in computer vision and deep learning (Fukushima, 1980; LeCun et al., 1989;
Schmidhuber, 2015), and have recently gained prominence due to excellent results on a
number of vision benchmarks (Ciresan et al., 2011; Krizhevsky et al., 2012; Ciresan et al.,
2012; Girshick et al., 2014a; Tompson et al., 2014; LeCun et al., 2015; He et al., 2015). Most
applications of CNNs focus on classification, where locational information is discarded by
means of successive pooling layers to provide for invariance (Lee et al., 2009). Applications
to localization typically either use a sliding window (Girshick et al., 2014a) or object pro-
posals (Endres and Hoiem, 2010; Uijlings et al., 2013; Girshick et al., 2014b) to localize
the object, reducing the task to classification, perform regression to a heatmap of manually
labeled keypoints (Tompson et al., 2014), requiring precise knowledge of the object posi-
tion in the image and camera calibration, or use 3D models to localize previously scanned
objects (Pepik et al., 2012; Savarese and Fei-Fei, 2007). Many prior robotic applications of
CNNs do not directly consider control, but employ CNNs for the perception component of
a larger robotic system (Hadsell et al., 2009; Sung et al., 2015; Lenz et al., 2015b; Pinto and
Gupta, 2015). We use a novel CNN architecture for our policies that automatically learn
feature points that capture spatial information about the scene, without any supervision
beyond the information from the robot’s encoders and camera.

Applications of deep learning in robotic control have been less prevalent in recent years
than in visual recognition. Backpropagation through the dynamics and the image for-
mation process is typically impractical, since they are often non-differentiable, and such
long-range backpropagation can lead to extreme numerical instability, since the lineariza-
tion of a suboptimal policy is likely to be unstable. This issue has also been observed
in the related context of recurrent neural networks (Hochreiter et al., 2001; Pascanu and
Bengio, 2012). The high dimensionality of the network also makes reinforcement learning
difficult (Deisenroth et al., 2013). Pioneering early work on neural network control used
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small, simple networks (Pomerleau, 1989; Hunt et al., 1992; Bekey and Goldberg, 1992;
Lewis et al., 1998; Bakker et al., 2003; Mayer et al., 2006), and has largely been supplanted
by methods that use carefully designed policies that can be learned efficiently with rein-
forcement learning (Kober et al., 2013). More recent work on sensorimotor deep learning
has tackled simple task-space motions (Lenz et al., 2015a; Lampe and Riedmiller, 2013)
and used unsupervised learning to obtain low-dimensional state spaces from images (Lange
et al., 2012). Such methods have been demonstrated on tasks with a low-dimensional un-
derlying structure: Lenz et al. (2015a) controls the end-effector in 2D space, while Lange
et al. (2012) controls a 2-dimensional slot car with 1-dimensional actions. Our experiments
include full torque control of 7-DoF robotic arms interacting with objects, with 30-40 state
dimensions. In simple synthetic environments, control from images has been addressed with
image features (Jodogne and Piater, 2007), nonparametric methods (van Hoof et al., 2015),
and unsupervised state-space learning (Böhmer et al., 2013; Jonschkowski and Brock, 2014).
CNNs have also been trained to play video games with Q-learning, Monte Carlo tree search,
and stochastic search (Mnih et al., 2013; Koutńık et al., 2013; Guo et al., 2014), and have
been applied to simple simulated control tasks (Watter et al., 2015; Lillicrap et al., 2015).
However, such methods have only been demonstrated on synthetic domains that lack the
visual complexity of the real world, and require an impractical number of samples for real-
world robotic learning. Our method is sample efficient, requiring only minutes of interaction
time. To the best of our knowledge, this is the first method that can train deep visuomotor
policies for complex, high-dimensional manipulation skills with direct torque control.

Learning visuomotor policies on a real robot requires handling complex observations
and high dimensional policy representations. We tackle these challenges using guided pol-
icy search. In guided policy search, the policy is optimized using supervised learning, which
scales gracefully with the dimensionality of the policy. The training set for supervised learn-
ing can be constructed using trajectory optimization under known dynamics (Levine and
Koltun, 2013a,b, 2014; Mordatch and Todorov, 2014) and trajectory-centric reinforcement
learning methods that operate under unknown dynamics (Levine and Abbeel, 2014; Levine
et al., 2015), which is the approach taken in this work. In both cases, the supervision is
adapted to the policy, to ensure that the final policy can reproduce the training data. The
use of supervised learning in the inner loop of iterative policy search has also been pro-
posed in the context of imitation learning (Ross et al., 2011, 2013). However, such methods
typically do not address the question of how the supervision should be adapted to the policy.

The goal of our approach is also similar to visual servoing, which performs feedback
control on feature points in a camera image (Espiau et al., 1992; Mohta et al., 2014; Wilson
et al., 1996). However, our visuomotor policies are entirely learned from real-world data,
and do not require feature points or feedback controllers to be specified by hand. This allows
our method much more flexibility in choosing how to use the visual signal. Our approach
also does not require any sort of camera calibration, in contrast to many visual servoing
methods (though not all – see e.g. Jägersand et al. (1997); Yoshimi and Allen (1994)).

3. Background and Overview

In this section, we define the visuomotor policy learning problem and present an overview
of our approach. The core component of our approach is a guided policy search algorithm
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that separates the problem of learning visuomotor policies into separate supervised learning
and trajectory learning phases, each of which is easier than optimizing the policy directly.
We also discuss a policy architecture suitable for end-to-end learning of vision and control,
and a training setup that allows our method to be applied to real robotic platforms.

3.1 Definitions and Problem Formulation

In policy search, the goal is to learn a policy πθ(ut|ot) that allows an agent to choose
actions ut in response to observations ot to control a dynamical system, such as a robot.
The policy comes from some parametric class parameterized by θ, which could be, for
example, the weights of a neural network. The system is defined by states xt, actions
ut, and observations ot. For example, xt might include the joint angles of the robot, the
positions of objects in the world, and their time derivatives, ut might consist of motor
torque commands, and ot might include an image from the robot’s onboard camera. In
this paper, we address finite horizon episodic tasks with t ∈ [1, . . . , T ]. The states evolve in
time according to the system dynamics p(xt+1|xt,ut), and the observations are, in general,
a stochastic consequence of the states, according to p(ot|xt). Neither the dynamics nor the
observation distribution are assumed to be known in general. For notational convenience,
we will use πθ(ut|xt) to denote the distribution over actions under the policy conditioned on
the state. However, since the policy is conditioned on the observation ot, this distribution
is in fact given by πθ(ut|xt) =

∫
πθ(ut|ot)p(ot|xt)dot. The dynamics and πθ(ut|xt) together

induce a distribution over trajectories τ = {x1,u1,x2,u2, . . . ,xT ,uT }:

πθ(τ) = p(x1)
T∏
t=1

πθ(ut|xt)p(xt+1|xt,ut).

The goal of a task is given by a cost function `(xt,ut), and the objective in policy search is
to minimize the expectation Eπθ(τ)[

∑T
t=1 `(xt,ut)], which we will abbreviate as Eπθ(τ)[`(τ)].

A summary of the notation used in the paper is provided in Table 1.

3.2 Approach Summary

Our methods consists of two main components, which are illustrated in Figure 3. The first is
a supervised learning algorithm that trains policies of the form πθ(ut|ot) = N (µπ(ot),Σ

π(ot)),
where both µπ(ot) and Σπ(ot) are general nonlinear functions. In our implementation,
µπ(ot) is a deep convolutional neural network, while Σπ(ot) is an observation-independent
learned covariance, though other representations are possible. The second component is a
trajectory-centric reinforcement learning (RL) algorithm that generates guiding distribu-
tions pi(ut|xt) that provide the supervision used to train the policy. These two components
form a policy search algorithm that can be used to learn complex robotic tasks using only a
high-level cost function `(xt,ut). During training, only samples from the guiding distribu-
tions pi(ut|xt) are generated by running rollouts on the physical system, which avoids the
need to execute partially trained neural network policies on physical hardware.

Supervised learning will not, in general, produce a policy with good long-horizon per-
formance, since a small mistake on the part of the policy will place the system into states
that are outside the distribution in the training data, causing compounding errors. To
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symbol definition example/details

xt
Markovian system state at time step t ∈
[1, T ]

joint angles, end-effector pose, object posi-
tions, and their velocities; dimensionality:
14 to 32

ut control or action at time step t ∈ [1, T ]
joint motor torque commands; dimensional-
ity: 7 (for the PR2 robot)

ot observation at time step t ∈ [1, T ]
RGB camera image, joint encoder readings
& velocities, end-effector pose; dimensional-
ity: around 200,000

τ
trajectory:
τ = {x1,u1,x2,u2, . . . ,xT ,uT }

notational shorthand for a sequence of states
and actions

`(xt,xt) cost function that defines the goal of the task
distance between an object in the gripper
and the target

p(xt+1|xt,ut) unknown system dynamics
physics that govern the robot and any ob-
jects it interacts with

p(ot|xt) unknown observation distribution
stochastic process that produces camera im-
ages from system state

πθ(ut|ot)
learned nonlinear global policy parameter-
ized by weights θ

convolutional neural network, such as the
one in Figure 2

πθ(ut|xt)
∫
πθ(ut|ot)p(ot|xt)dot

notational shorthand for observation-based
policy conditioned on state

pi(ut|xt)
learned local time-varying linear-Gaussian
controller for initial state xi1

time-varying linear-Gaussian controller has
form N (Ktixt + kti,Cti)

πθ(τ)
trajectory distribution for πθ(ut|xt):
p(x1)

∏T
t=1 πθ(ut|xt)p(xt+1|xt,ut)

notational shorthand for trajectory distribu-
tion induced by a policy

Table 1: Summary of the notation frequently used in this article.

avoid this issue, the training data must come from the policy’s own state distribution (Ross
et al., 2011). We achieve this by alternating between trajectory-centric RL and supervised
learning. The RL stage adapts to the current policy πθ(ut|ot), providing supervision at
states that are iteratively brought closer to the states visited by the policy. This is for-
malized as a variant of the BADMM algorithm (Wang and Banerjee, 2014) for constrained
optimization, which can be used to show that, at convergence, the policy πθ(ut|ot) and the
guiding distributions pi(ut|xt) will exhibit the same behavior. This algorithm is derived
in Section 4. The guiding distributions are substantially easier to optimize than learning
the policy parameters directly (e.g., using model-free reinforcement learning), because they
use the full state of the system xt, while the policy πθ(ut|ot) only uses the observations.
This means that the method requires the full state to be known during training, but not
at test time. This makes it possible to efficiently learn complex visuomotor policies, but
imposes additional assumptions on the observability of xt during training that we discuss
in Section 4.

When learning visuomotor tasks, the policy πθ(ut|ot) is represented by a novel convo-
lutional neural network (CNN) architecture, which we describe in Section 5.2. CNNs have
enjoyed considerable success in computer vision (LeCun et al., 2015), but the most popular
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Figure 2: Visuomotor policy architecture. The network contains three convolutional lay-
ers, followed by a spatial softmax and an expected position layer that converts pixel-wise
features to feature points, which are better suited for spatial computations. The points are
concatenated with the robot configuration, then passed through three fully connected layers
to produce the torques.

architectures rely on large datasets and focus on semantic tasks such as classification, often
intentionally discarding spatial information. Our architecture, illustrated in Figure 2, uses
a fixed transformation from the last convolutional layer to a set of spatial feature points,
which form a concise representation of the visual scene suitable for feedback control. Our
network has 7 layers and around 92,000 parameters, which presents a major challenge for
standard policy search methods (Deisenroth et al., 2013).

initial
controllers

requires robot

automatically 
collect visual 
pose data

train pose CNN
3 channels 64 filters

5x5 conv
ReLU

conv1 conv2

5x5 conv
ReLU

32 filters

conv3

32 distributions

spatial softmax

expected
 2D position

feature
points

64

fully
connected

9

linear

RGB image

7x7 conv

ReLU

32 filters

109
109

stride 2

109
109

113
113

117
117240

240

target pose
(3 points in 3D)

learn initial
local
controllers

train global 
policy       to match
local controllers

initial
visual features

Guided Policy Search

optimize local 
controllers

collect samples
from pi

pi pi
πθ

{τ ji }

Figure 3: Diagram of our ap-
proach, including the main guided
policy search phase and initializa-
tion phases.

To reduce the amount of experience needed to train
visuomotor policies, we also introduce a pretraining
scheme that allows us to train effective policies with
a relatively small number of iterations. The pretraining
steps are illustrated in Figure 3. The intuition behind
our pretraining is that, although we ultimately seek to
obtain sensorimotor policies that combine both vision
and control, low-level aspects of vision can be initialized
independently. To that end, we pretrain the convolu-
tional layers of our network by predicting elements of xt
that are not provided in the observation ot, such as the
positions of objects in the scene. We also initially train
the guiding trajectory distributions pi(ut|xt) indepen-
dently of the convolutional network until the trajecto-
ries achieve a basic level of competence at the task, and
then switch to full guided policy search with end-to-end
training of πθ(ut|ot). In our implementation, we also
initialize the first layer filters from the model of Szegedy
et al. (2014), which is trained on ImageNet (Deng et al.,
2009) classification. The initialization and pretraining
scheme is described in Section 5.2.

4. Guided Policy Search with BADMM

Guided policy search transforms policy search into a supervised learning problem, where
the training set is generated by a simple trajectory-centric RL algorithm. This algorithm
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optimizes linear-Gaussian controllers pi(ut|xt), and is described in Section 4.2. We refer
to the trajectory distribution induced by pi(ut|xt) as pi(τ). Each pi(ut|xt) succeeds from
different initial states. For example, in the task of placing a cap on a bottle, these initial
states correspond to different positions of the bottle. By training on trajectories for multiple
bottle positions, the final CNN policy can succeed from all initial states, and can generalize
to other states from the same distribution.

run each
pi(ut|xt)
on robot

samples
{τ ji }

optimize πθ
w.r.t. Lθ

fit
dynamics

optimize each pi(τ)
w.r.t. Lp

inner
loop

outer
loop

The final policy πθ(ut|ot) learned with guided policy search
is only provided with observations ot of the full state xt, and
the dynamics are assumed to be unknown. A diagram of
this method, which corresponds to an expanded version of the
guided policy search box in Figure 3, is shown on the right. In
the outer loop, we draw sample trajectories {τ ji } for each ini-
tial state on the physical system by running the corresponding
controller pi(ut|xt). The samples are used to fit the dynamics
pi(xt+1|xt,ut) that are used to improve pi(ut|xt), and serve as
training data for the policy. The inner loop alternates between
optimizing each pi(τ) and optimizing the policy to match these trajectory distributions.
The policy is trained to predict the actions along each trajectory from the observations
ot, rather than the full state xt. This allows the policy to directly use raw observations
at test time. This alternating optimization can be framed as an instance of the BADMM
algorithm (Wang and Banerjee, 2014), which converges to a solution where the trajectory
distributions and the policy have the same state distribution. This allows greedy supervised
training of the policy to produce a policy with good long-horizon performance.

4.1 Algorithm Derivation

Policy search methods minimize the expected cost Eπθ [`(τ)], where τ = {x1,u1, . . . ,xT ,uT }
is a trajectory, and `(τ) =

∑T
t=1 `(xt,ut) is the cost of an episode. In the fully observed case,

the expectation is taken under πθ(τ) = p(x1)
∏T
t=1 πθ(ut|xt)p(xt+1|xt,ut). The final policy

πθ(ut|ot) is conditioned on the observations ot, but πθ(ut|xt) can be recovered as πθ(ut|xt) =∫
πθ(ut|ot)p(ot|xt)dot. We will present the derivation in this section for πθ(ut|xt), but we

do not require knowledge of p(ot|xt) in the final algorithm. As discussed in Section 4.3, the
integral will be evaluated with samples from the real system, which include both xt and ot.
We begin by rewriting the expected cost minimization as a constrained problem:

min
p,πθ

Ep[`(τ)] s.t. p(ut|xt) = πθ(ut|xt) ∀xt,ut, t, (1)

where we will refer to p(τ) as a guiding distribution. This formulation is equivalent to the
original problem, since the constraint forces the two distributions to be identical. However,
if we approximate the initial state distribution p(x1) with samples xi1, we can choose p(τ)
to be a class of distributions that is much easier to optimize than πθ, as we will show later.
This will allow us to use simple local learning methods for p(τ), without needing to train
the complex neural network policy πθ(ut|ot) directly with reinforcement learning, which
would require a prohibitive amount of experience on real physical systems.

The constrained problem can be solved by a dual descent method, which alternates
between minimizing the Lagrangian with respect to the primal variables, and incrementing
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the Lagrange multipliers by their subgradient. Minimization of the Lagrangian with respect
to p(τ) and θ is done in alternating fashion: minimizing with respect to θ corresponds to
supervised learning (making πθ match p(τ)), and minimizing with respect to p(τ) consists of
one or more trajectory optimization problems. The dual descent method we use is based on
BADMM (Wang and Banerjee, 2014), a variant of ADMM (Boyd et al., 2011) that augments
the Lagrangian with a Bregman divergence between the constrained variables. We use the
KL-divergence as the Bregman constraint, which is particularly convenient for working
with probability distributions. We will also modify the constraint p(ut|xt) = πθ(ut|xt) by
multiplying both sides by p(xt), to get p(ut|xt)p(xt) = πθ(ut|xt)p(xt). This constraint is
equivalent, but has the convenient property that we can express the Lagrangian in terms of
expectations. The BADMM augmented Lagrangians for θ and p are therefore given by

Lθ(θ, p) =
T∑
t=1

Ep(xt,ut)[`(xt,ut)] + Ep(xt)πθ(ut|xt)[λxt,ut ]− Ep(xt,ut)[λxt,ut ] + νtφ
θ
t (θ, p)

Lp(p, θ) =
T∑
t=1

Ep(xt,ut)[`(xt,ut)] + Ep(xt)πθ(ut|xt)[λxt,ut ]− Ep(xt,ut)[λxt,ut ] + νtφ
p
t (θ, p),

where λxt,ut is the Lagrange multiplier for state xt and action ut at time t, and φθt (θ, p) are
φpt (θ, p) are expectations of the KL-divergences:

φpt (p, θ) = Ep(xt)[DKL(p(ut|xt)‖πθ(ut|xt))]
φθt (θ, p) = Ep(xt)[DKL(πθ(ut|xt))‖p(ut|xt)].

Dual descent with alternating primal minimization is then described by the following steps:

θ ← arg min
θ

T∑
t=1

Ep(xt)πθ(ut|xt)[λxt,ut ] + νtφ
θ
t (θ, p)

p← arg min
p

T∑
t=1

Ep(xt,ut)[`(xt,ut)− λxt,ut ] + νtφ
p
t (p, θ)

λxt,ut ← λxt,ut + ανt(πθ(ut|xt)p(xt)− p(ut|xt)p(xt)).

This procedure is an instance of BADMM, and therefore inherits its convergence guarantees.
Note that we drop terms that are independent of the optimization variables on each line.
The parameter α is a step size. As with most augmented Lagrangian methods, the weight
νt is set heuristically, as described in Appendix A.1.

The dynamics only affect the optimization with respect to p(τ). In order to make this
optimization efficient, we choose p(τ) to be a mixture of N Gaussians pi(τ), one for each
initial state sample xi1. This makes the action conditionals pi(ut|xt) and the dynamics
pi(xt+1|xt,ut) linear-Gaussian, as discussed in Section 4.2. This is a reasonable choice
when the system is deterministic, or the noise is Gaussian or small, and we found that this
approach is sufficiently tolerant to noise for use on real physical systems. Our choice of p
also assumes that the policy πθ(ut|ot) is conditionally Gaussian. This is also reasonable,
since the mean and covariance of πθ(ut|ot) can be any nonlinear function of the observations
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ot, which themselves are a function of the unobserved state xt. In Section 4.2, we show how
these assumptions enable each pi(τ) to be optimized very efficiently. We will refer to pi(τ)
as guiding distributions, since they serve to focus the policy on good, low-cost behaviors.

Aside from learning pi(τ), we must choose a tractable way to represent the infinite set
of constraints p(ut|xt)p(xt) = πθ(ut|xt)p(xt). One approximate approach proposed in prior
work is to replace the exact constraints with expectations of features (Peters et al., 2010).
When the features consist of linear, quadratic, or higher order monomial functions of the
random variable, this can be viewed as a constraint on the moments of the distributions. If
we only use the first moment, we get a constraint on the expected action: Ep(ut|xt)p(xt)[ut] =
Eπθ(ut|xt)p(xt)[ut]. If the stochasticity in the dynamics is low, as we assumed previously, the
optimal solution for each pi(τ) will have low entropy, making this first moment constraint
a reasonable approximation. The KL-divergence terms in the augmented Lagrangians will
still serve to softly enforce agreement between the higher moments. While this simplification
is quite drastic, we found that it was more stable in practice than including higher moments,
likely because these higher moments are harder to estimate accurately with a limited number
of samples. The alternating optimization is now given by

θ ← arg min
θ

T∑
t=1

Ep(xt)πθ(ut|xt)[u
T
t λµt] + νtφ

θ
t (θ, p) (2)

p← arg min
p

T∑
t=1

Ep(xt,ut)[`(xt,ut)− uT
t λµt] + νtφ

p
t (p, θ) (3)

λµt ← λµt + ανt(Eπθ(ut|xt)p(xt)[ut]− Ep(ut|xt)p(xt)[ut]),

where λµt is the Lagrange multiplier on the expected action at time t. In the rest of
the paper, we will use Lθ(θ, p) and Lp(p, θ) to denote the two augmented Lagrangians in
Equations (2) and (3), respectively. In the next two sections, we will describe how Lp(p, θ)
can be optimized with respect to p under unknown dynamics, and how Lθ(θ, p) can be
optimized for complex, high-dimensional policies. Implementation details of the BADMM
optimization are presented in Appendix A.1.

4.2 Trajectory Optimization under Unknown Dynamics

Since the Lagrangian Lp(p, θ) in the previous section factorizes over the mixture elements
in p(τ) =

∑
i pi(τ), we describe the trajectory optimization method for a single Gaussian

p(τ). When there are multiple mixture elements, this procedure is applied in parallel to each
pi(τ). Since p(τ) is Gaussian, the conditionals p(xt+1|xt,ut) and p(ut|xt), which correspond
to the dynamics and the controller, are time-varying linear-Gaussian, and given by

p(ut|xt) = N (Ktxt + kt,Ct) p(xt+1|xt,ut) = N (fxtxt + futut + fct,Ft).

This type of controller can be learned efficiently with a small number of real-world samples,
making it a good choice for optimizing the guiding distributions. Since a different set of time-
varying linear-Gaussian dynamics is fitted for each initial state, this dynamics representation
can model any continuous deterministic system that can be locally linearized. Stochastic
dynamics can violate the local linearity assumption in principle, but we found that in
practice this representation was well suited for a wide variety of noisy real-world tasks.
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The dynamics are determined by the environment. If they are known, p(ut|xt) can be
optimized with a variant of the iterative linear-quadratic-Gaussian regulator (iLQG) (Li and
Todorov, 2004; Levine and Koltun, 2013a), which is a variant of DDP (Jacobson and Mayne,
1970). In the case of unknown dynamics, we can fit p(xt+1|xt,ut) to sample trajectories
sampled from the trajectory distribution at the previous iteration, denoted p̂(τ). If p̂(τ) is
too different from p(τ), these samples will not give a good estimate of p(xt+1|xt,ut), and
the optimization will diverge. To avoid this, we can bound the change from p̂(τ) to p(τ) in
terms of their KL-divergence by a step size ε, producing the following constrained problem:

min
p(τ)∈N (τ)

Lp(p, θ) s.t. DKL(p(τ)‖p̂(τ)) ≤ ε.

This type of policy update has previously been proposed by several authors in the con-
text of policy search (Bagnell and Schneider, 2003; Peters and Schaal, 2008; Peters et al.,
2010; Levine and Abbeel, 2014). In the case when p(τ) is Gaussian, this problem can be
solved efficiently using dual gradient descent, while the dynamics p(xt+1|xt,ut) are fitted
to samples gathered by running the previous controller p̂(ut|xt) on the robot. Fitting a
global Gaussian mixture model to tuples (xt,ut,xt+1) and using it as a prior for fitting the
dynamics p(xt+1|xt,ut) serves to greatly reduce the sample complexity. We describe the
dynamics fitting procedure in detail in Appendix A.3.

Note that the trajectory optimization cost function Lp(p, θ) also depends on the policy
πθ(ut|xt), while we only have access to πθ(ut|ot). In order to compute a local quadratic
expansion of the KL-divergence term DKL(p(ut|xt)‖πθ(ut|xt)) inside Lp(p, θ) for iLQG, we
also estimate a linearization of the mean of the conditionally Gaussian policy πθ(ut|ot) with
respect to the state xt, using the same procedure that we use to linearize the dynamics. The
data for this estimation consists of tuples {xit, Eπθ(ut|oit)[ut]}, which we can obtain because

both the states xit and the observations oit are available for all of the samples evaluated on
the real physical system.

This constrained optimization is performed in the “inner loop” of the optimization
described in the previous section, and the KL-divergence constraint DKL(p(τ)‖p̂(τ)) ≤ ε
imposes a step size on the trajectory update. The overall algorithm then becomes an
instance of generalized BADMM (Wang and Banerjee, 2014). Note that the augmented
Lagrangian Lp(p, θ) consists of an expectation under p(τ) of a quantity that is independent of
p. We can locally approximate this quantity with a quadratic by using a quadratic expansion
of `(xt,ut), and fitting a linear-Gaussian to πθ(ut|xt) with the same method we used for the
dynamics. We can then solve the primal optimization in the dual gradient descent procedure
with a standard LQR backward pass. This is significantly simpler and much faster than
the forward-backward dynamic programming procedure employed in previous work (Levine
and Abbeel, 2014; Levine and Koltun, 2014). This improvement is enabled by the use of
BADMM, which allows us to always formulate the KL-divergence term in the Lagrangian
with the distribution being optimized as the first argument. Since the KL-divergence is
convex in its first argument, this makes the corresponding optimization significantly easier.
The details of this LQR-based dual gradient descent algorithm are derived in Appendix A.4.

We can further improve the efficiency of the method by allowing samples from multiple
trajectories pi(τ) to be used to fit a shared dynamics p(xt+1|xt,ut), while the controllers
pi(ut|xt) are allowed to vary. This makes sense when the initial states of these trajectories
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are similar, and they therefore visit similar regions. This allows us to draw just a single
sample from each pi(τ) at each iteration, allowing us to handle many more initial states.

4.3 Supervised Policy Optimization

Since the policy parameters θ participate only in the constraints of the optimization problem
in Equation (1), optimizing the policy corresponds to minimizing the KL-divergence between
the policy and trajectory distribution, as well as the expectation of λT

µtut. For a conditional
Gaussian policy of the form πθ(ut|ot) = N (µπ(ot),Σ

π(ot)), the objective is

Lθ(θ, p)=
1

2N

N∑
i=1

T∑
t=1

Epi(xt,ot)
[
tr[C−1

ti Σπ(ot)]−log |Σπ(ot)|

+(µπ(ot)−µpti(xt))C
−1
ti (µπ(ot)−µpti(xt)) + 2λT

µtµ
π(ot)

]
,

where µpti(xt) is the mean of pi(ut|xt) and Cti is the covariance, and the expectation is eval-
uated using samples from each pi(τ) with corresponding observations ot. The observations
are sampled from p(ot|xt) by recording camera images on the real system. Since the input
to µπ(ot) and Σπ(ot) is not the state xt, but only an observation ot, we can train the policy
to directly use raw observations. Note that Lθ(θ, p) is simply a weighted quadratic loss on
the difference between the policy mean and the mean action of the trajectory distribution,
offset by the Lagrange multiplier. The weighting is the precision matrix of the conditional
in the trajectory distribution, which is equal to the curvature of its cost-to-go function
(Levine and Koltun, 2013a). This has an intuitive interpretation: Lθ(θ, p) penalizes de-
viation from the trajectory distribution, with a penalty that is locally proportional to its
cost-to-go. At convergence, when the policy πθ(ut|ot) takes the same actions as pi(ut|xt),
their Q-functions are equal, and the supervised policy objective becomes equivalent to the
policy iteration objective (Levine and Koltun, 2014)

In this work, we optimize Lθ(θ, p) with respect to θ using stochastic gradient descent
(SGD), a standard method for neural network training. The covariance of the Gaussian
policy does not depend on the observation in our implementation, though adding this de-
pendence would be straightforward. Since training complex neural networks requires a
substantial number of samples, we found it beneficial to include sampled observations from
previous iterations into the policy optimization, evaluating the action µpti(xt) at their corre-
sponding states using the current trajectory distributions. Since these samples come from
the wrong state distribution, we use importance sampling and weight them according to
the ratio of their probability under the current distribution p(xt) and the one they were
sampled from, which is straightforward to evaluate under the estimated linear-Gaussian
dynamics (Levine and Koltun, 2013b).

4.4 Comparison with Prior Guided Policy Search Methods

We presented a guided policy search method where the policy is trained on observations,
while the trajectories are trained on the full state. The BADMM formulation of guided
policy search is new to this work, though several prior guided policy search methods based
on constrained optimization have been proposed. Levine and Koltun (2014) proposed a
formulation similar to Equation (1), but with a constraint on the KL-divergence between
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p(τ) and πθ. This results in a more complex, non-convex forward-backward trajectory
optimization phase. Since the BADMM formulation solves a convex problem during the
trajectory optimization phase, it is substantially faster and easier to implement and use,
especially when the number of trajectories pi(τ) is large.

The use of ADMM for guided policy search was also proposed by Mordatch and Todorov
(2014) for deterministic policies under known dynamics. This approach requires known, de-
terministic dynamics and trains deterministic policies. Furthermore, because this approach
uses a simple quadratic augmented Lagrangian term, it further requires penalty terms on
the gradient of the policy to account for local feedback. Our approach enforces this feed-
back behavior due to the higher moments included in the KL-divergence term, but does not
require computing the second derivative of the policy.

5. End-to-End Visuomotor Policies

Guided policy search allows us to optimize complex, high-dimensional policies with raw
observations, such as when the input to the policy consists of images from a robot’s onboard
camera. However, leveraging this capability to directly learn policies for visuomotor control
requires designing a policy representation that is both data-efficient and capable of learning
complex control strategies directly from raw visual inputs. In this section, we describe
a deep convolutional neural network (CNN) model that is uniquely suited to this task.
Our approach combines a novel spatial soft-argmax layer with a pretraining procedure that
provides for flexibility and data-efficiency.

5.1 Visuomotor Policy Architecture

Our visuomotor policy runs at 20 Hz on the robot, mapping monocular RGB images and
the robot configurations to joint torques on a 7 DoF arm. The configuration includes the
angles of the joints and the pose of the end-effector (defined by 3 points in the space of the
end-effector), as well as their velocities, but does not include the position of the target ob-
ject or goal, which must be determined from the image. CNNs often use pooling to discard
the locational information that is necessary to determine positions, since it is an irrelevant
distractor for tasks such as object classification (Lee et al., 2009). Because locational in-
formation is important for control, our policy does not use pooling. Additionally, CNNs
built for spatial tasks such as human pose estimation often also rely on the availability of
location labels in image-space, such as hand-labeled keypoints (Tompson et al., 2014). We
propose a novel CNN architecture capable of estimating spatial information from an image
without direct supervision in image space. Our pose estimation experiments, discussed in
Section 5.2, show that this network can learn useful visual features using only 3D position
information provided by the robot, and no camera calibration. Further training the network
with guided policy search to directly output motor torques causes it to acquire task-specific
visual features. Our experiments in Section 6.4 show that this improves performance beyond
the level achieved with features trained only for pose estimation.

Our network architecture is shown in Figure 2. The visual processing layers of the
network consist of three convolutional layers, each of which learns a bank of filters that
are applied to patches centered on every pixel of its input. These filters form a hierarchy
of local image features. Each convolutional layer is followed by a rectifying nonlinearity of
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the form acij = max(0, zcij) for each channel c and each pixel coordinate (i, j). The third
convolutional layer contains 32 response maps with resolution 109 × 109. These response
maps are passed through a spatial softmax function of the form scij = eacij/

∑
i′j′ e

aci′j′ .
Each output channel of the softmax is a probability distribution over the location of a
feature in the image. To convert from this distribution to a coordinate representation
(fcx, fcy), the network calculates the expected image position of each feature, yielding a
2D coordinate for each channel: fcx =

∑
ij scijxij and fcy =

∑
ij scijyij , where (xij , yij)

is the image-space position of the point (i, j) in the response map. Since this is a linear
operation, it corresponds to a fixed, sparse fully connected layer with weights Wcix = xij and
Wcjy = yij . The combination of the spatial softmax and expectation operator implement a
kind of soft-argmax. The spatial feature points (fcx, fcy) are concatenated with the robot’s
configuration and fed into two fully connected layers, each with 40 rectified units, followed
by linear connections to the torques. The full network contains about 92,000 parameters,
of which 86,000 are in the convolutional layers.

The spatial softmax and the expected position computation serve to convert pixel-wise
representations in the convolutional layers to spatial coordinate representations, which can
be manipulated by the fully connected layers into 3D positions or motor torques. The
softmax also provides lateral inhibition, which suppresses low, erroneous activations, only
keeping strong activations that are more likely to be accurate. This makes our policy
more robust to distractors, providing generalization to novel visual variation. We compare
our architecture with more standard alternatives in Section 6.3 and evaluate robustness to
visual distractors in Section 6.4. However, the proposed architecture is also in some sense
more specialized for visuomotor control, in contrast to more general standard convolutional
networks. For example, not all perception tasks require information that can be coherently
summarized by a set of spatial locations.

5.2 Visuomotor Policy Training

The guided policy search trajectory optimization phase uses the
full state of the system, though the final policy only uses the
observations. This type of instrumented training is a natural
choice for many robotics tasks, where the robot is trained under
controlled conditions, but must then act intelligently in uncon-
trolled, real-world situations. In our tasks, the unobserved vari-
ables are the pose of a target object (e.g. the bottle on which a
cap must be placed). During training, this target object is typi-
cally held in the robot’s left gripper, while the robot’s right arm
performs the task, as shown to the right. This allows the robot
to move the target through a range of known positions. The
final visuomotor policy does not receive this position as input,
but must instead use the camera images. Due to the modest
amount of training data, distractors that are correlated with task-relevant variables can
hamper generalization. For this reason, the left arm is covered with cloth to prevent the
policy from associating its appearance with the object’s position.
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While we can train the visuomotor policy entirely from scratch, the algorithm would
spend a large number of iterations learning basic visual features and arm motions that
can more efficiently be learned by themselves, before being incorporated into the policy.
To speed up learning, we initialize both the vision layers in the policy and the trajectory
distributions for guided policy search by leveraging the fully observed training setup. To
initialize the vision layers, the robot moves the target object through a range of random
positions, recording camera images and the object’s pose, which is computed automatically
from the pose of the gripper. This dataset is used to train a pose regression CNN, which
consists of the same vision layers as the policy, followed by a fully connected layer that
outputs the 3D points that define the target. Since the training set is still small (we use
1000 images collected from random arm motions), we initialize the filters in the first layer
with weights from the model of Szegedy et al. (2014), which is trained on ImageNet (Deng
et al., 2009) classification. After training on pose regression, the weights in the convolutional
layers are transferred to the policy CNN. This enables the robot to learn the appearance of
the objects prior to learning the behavior.

To initialize the linear-Gaussian controllers for each of the initial states, we take 15
iterations of guided policy search without optimizing the visuomotor policy. This allows
for much faster training in the early iterations, when the trajectories are not yet successful,
and optimizing the full visuomotor policy is unnecessarily time consuming. Since we still
want the trajectories to arrive at compatible strategies for each target position, we replace
the visuomotor policy during these iterations with a small network that receives the full
state, which consisted of two layers with 40 rectified linear hidden units in our experiments.
This network serves only to constrain the trajectories and avoid divergent behaviors from
emerging for similar initial states, which would make subsequent policy learning difficult.

requires robot

collect visual
pose data

pretrain
trajectories

train pose
CNN

initial visual
features

initial
trajectories

end-to-end
training

policy

After initialization, we train the full visuomotor policy with
guided policy search. During the supervised policy optimiza-
tion phase, the fully connected motor control layers are first
optimized by themselves, since they are not initialized with pre-
training. This can be done very quickly because these layers are
small. Then, the entire network is further optimized end-to-end.
We found that first training the upper layers before end-to-end
optimization prevented the convolutional layers from forgetting
useful features learning during pretraining, when the error sig-
nal due to the untrained upper layers is very large. The entire
pretraining scheme is summarized in the diagram on the right.
Note that the trajectories can be pretrained in parallel with the
vision layer pretraining, which does not require access to the physical system. Further-
more, the entire initialization procedure does not use any additional information that is not
already available from the robot.

6. Experimental Evaluation

In this section, we present a series of experiments aimed at evaluating our approach and
answering the following questions:
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1. How does the guided policy search algorithm compare to other policy search methods
for training complex, high-dimensional policies, such as neural networks?

2. Does our trajectory optimization algorithm work on a real robotic platform with
unknown dynamics, for a range of different tasks?

3. How does our spatial softmax architecture compare to other, more standard convolu-
tional neural network architectures?

4. Does training the perception and control systems in a visuomotor policy jointly end-
to-end provide better performance than training each component separately?

Evaluating a wide range of policy search algorithms on a real robot would be extremely
time consuming, particularly for methods that require a large number of samples. We
therefore answer question (1) by using a physical simulator and simpler policies that do not
use vision. This also allows us to test the generality of guided policy search on tasks that
include manipulation, walking, and swimming. To answer question (2), we present a wide
range of experiments on a PR2 robot. These experiments allow us to evaluate the sample
efficiency of our trajectory optimization algorithm. To address question (3), we compare
a range of different policy architectures on the task of localizing a target object (the cube
in the shape sorting cube task). Since localizing the target object is a prerequisite for
completing the shape sorting cube task, this serves as a good proxy for evaluating different
architectures. Finally, we answer the last and most important question (4) by training
visuomotor policies for hanging a coat hanger on a clothes rack, inserting a block into a
shape sorting cube, fitting the claw of a toy hammer under a nail with various grasps, and
screwing on a bottle cap. These tasks are illustrated in Figure 8.

6.1 Simulated Comparisons to Prior Policy Search Methods

In this section, we compare our method against prior policy search techniques on a range of
simulated robotic control tasks. These results previously appeared in our conference paper
that introduced the trajectory optimization procedure with local linear models (Levine and
Abbeel, 2014). In these tasks, the state xt consists of the joint angles and velocities of each
robot, and the actions ut consist of the torques at each joint. The neural network policies
used one hidden layer and soft rectifier nonlinearities of the form a = log(1 + exp(z)). Since
these policies use the state as input, they only have a few hundred parameters, far fewer
than our visuomotor policies. However, even this number of parameters can pose a major
challenge for prior policy search methods (Deisenroth et al., 2013).

Experimental tasks. We simulated 2D and 3D peg insertion, octopus arm control, and
planar swimming and walking. The difficulty in the peg insertion tasks stems from the need
to align the peg with the slot and the complex contacts between the peg and the walls, which
result in discontinuous dynamics. Octopus arm control involves moving the tip of a flexible
arm to a goal position (Engel et al., 2005). The challenge in this task stems from its high
dimensionality: the arm has 25 degrees of freedom, corresponding to 50 state dimensions.
The swimming task requires controlling a three-link snake, and the walking task requires
a seven-link biped to maintain a target velocity. The challenge in these tasks comes from
underactuation. Details of the simulation and cost for each task are in Appendix B.1.
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Figure 4: Results for learning linear-Gaussian controllers for 2D and 3D insertion, octopus
arm, and swimming. Our approach uses fewer samples and finds better solutions than prior
methods, and the GMM further reduces the required sample count. Images in the lower-
right show the last time step for each system at several iterations of our method, with red
lines indicating end effector trajectories.

Prior methods. We compare to REPS (Peters et al., 2010), reward-weighted regression
(RWR) (Peters and Schaal, 2007; Kober and Peters, 2009), the cross-entropy method (CEM)
(Rubinstein and Kroese, 2004), and PILCO (Deisenroth and Rasmussen, 2011). We also
use iLQG (Li and Todorov, 2004) with a known model as a baseline, shown as a black
horizontal line in all plots. REPS is a model-free method that, like our approach, enforces
a KL-divergence constraint between the new and old policy. We compare to a variant
of REPS that also fits linear dynamics to generate 500 pseudo-samples (Lioutikov et al.,
2014), which we label “REPS (20 + 500).” RWR is an EM algorithm that fits the policy
to previous samples weighted by the exponential of their reward, and CEM fits the policy
to the best samples in each batch. With Gaussian trajectories, CEM and RWR only differ
in the weights. These methods represent a class of RL algorithms that fit the policy to
weighted samples, including PoWER and PI2 (Kober and Peters, 2009; Theodorou et al.,
2010; Stulp and Sigaud, 2012). PILCO is a model-based method that uses a Gaussian
process to learn a global dynamics model that is used to optimize the policy. We used the
open-source implementation of PILCO provided by the authors. Both REPS and PILCO
require solving large nonlinear optimizations at each iteration, while our method does not.
Our method used 5 rollouts with the Gaussian mixture model prior, and 20 without. Due
to its computational cost, PILCO was provided with 5 rollouts per iteration, while other
prior methods used 20 and 100. For all prior methods with free hyperparameters (such as
the fraction of elites for CEM), we performed hyperparameter sweeps and chose the most
successful settings for the comparison.

Gaussian trajectory distributions. In the first set of comparisons, we evaluate only the
trajectory optimization procedure for training linear-Gaussian controllers under unknown
dynamics to determine its sample-efficiency and applicability to complex, high-dimensional
problems. The results of this comparison for the peg insertion, octopus arm, and swimming
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Figure 5: Comparison on neural network policies. For insertion, the policy was trained to
search for an unknown slot position on four slot positions (shown above). Generalization
to new positions is graphed with dashed lines. Note how the end effector (red) follows the
surface to find the slot, and how the swimming gait is smoother due to the stationary policy.

tasks appears in Figure 4. The horizontal axis shows the total number of samples, and
the vertical axis shows the minimum distance between the end of the peg and the bottom
of the slot, the distance to the target for the octopus arm, or the total distance travelled
by the swimmer. Since the peg is 0.5 units long, distances above this amount correspond
to controllers that cannot perform an insertion. Our method learned much more effective
controllers with fewer samples, especially when using the Gaussian mixture model prior.
On 3D insertion, it outperformed the iLQG baseline, which used a known model. Contact
discontinuities cause problems for derivative-based methods like iLQG, as well as methods
like PILCO that learn a smooth global dynamics model. We use a time-varying local
model, which preserves more detail, and fitting the model to samples has a smoothing effect
that mitigates discontinuity issues. Prior policy search methods could servo to the hole,
but were unable to insert the peg. On the octopus arm, our method succeeded despite
the high dimensionality of the state and action spaces.1 Our method also successfully
learned a swimming gait, while prior model-free methods could not initiate forward motion.
PILCO also learned an effective gait due to the smooth dynamics of this task, but its GP-
based optimization required orders of magnitude more computation time than our method,
taking about 50 minutes per iteration. In the case of prior model-free methods, the high
dimensionality of the time-varying linear-Gaussian controllers likely caused considerable
difficulty (Deisenroth et al., 2013), while our approach exploits the structure of linear-
Gaussian controllers for efficient learning.

1. The high dimensionality of the octopus arm made it difficult to run PILCO, though in principle, such
methods should perform well on this task given the arm’s smooth dynamics.
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Neural network policies. In the second set of comparisons, shown in Figure 5, we
compare guided policy search to RWR and CEM2 on the challenging task of training high-
dimensional neural network policies for the peg insertion and locomotion tasks. The vari-
ant of guided policy search used in this comparison differs somewhat from the version
described in Section 4, in that it used a simpler dual gradient descent formulation, rather
than BADMM. In practice, we found the performance of these methods to be very similar,
though the BADMM variant was substantially faster and easier to implement.

On swimming, our method achieved similar performance to the linear-Gaussian case,
but since the neural network policy was stationary, the resulting gait was much smoother.
Previous methods could only solve this task with 100 samples per iteration, with RWR
eventually obtaining a distance of 0.5m after 4000 samples, and CEM reaching 2.1m after
3000. Our method was able to reach such distances with many fewer samples. Following
prior work (Levine and Koltun, 2013a), the walker trajectory was initialized from a demon-
stration, which was stabilized with simple linear feedback. The RWR and CEM policies
were initialized with samples from this controller to provide a fair comparison. The graph
shows the average distance travelled on rollouts that did not fall, and shows that only our
method was able to learn walking policies that succeeded consistently.

On peg insertion, the neural network was trained to insert the peg without precise
knowledge of the position of the hole, resulting in a partially observed problem. The holes
were placed in a region of radius 0.2 units in 2D and 0.1 units in 3D. The policies were
trained on four different hole positions, and then tested on four new hole positions to
evaluate generalization. The hole position was not provided to the neural network, and the
policies therefore had to search for the hole, with only joint angles and velocities as input.
Only our method could acquire a successful strategy to locate both the training and test
holes, although RWR was eventually able to insert the peg into one of the four holes in 2D.

These comparisons show that training even medium-sized neural network policies for
continuous control tasks with a limited number of samples is very difficult for many prior
policy search algorithms. Indeed, it is generally known that model-free policy search meth-
ods struggle with policies that have over 100 parameters (Deisenroth et al., 2013). In
subsequent sections, we will evaluate our method on real robotic tasks, showing that it can
scale from these simulated tasks all the way up to end-to-end learning of visuomotor control.

6.2 Learning Linear-Gaussian Controllers on a PR2 Robot

In this section, we demonstrate the range of manipulation tasks that can be learned using
our trajectory optimization algorithm on a real PR2 robot. These experiments previously
appeared in our conference paper on guided policy search (Levine et al., 2015). Since
performing trajectory optimization is a prerequisite for guided policy search to learn effective
visuomotor policies, it is important to evaluate that our trajectory optimization can learn
a wide variety of robotic manipulation tasks under unknown dynamics. The tasks in these
experiments are shown in Figure 6, while Figure 7 shows the learning curves for each task.
For all robotic experiments in this article, the tasks were learned entirely from scratch,

2. PILCO cannot optimize neural network policies, and we could not obtain reasonable results with REPS.
Prior applications of REPS generally focus on simpler, lower-dimensional policy classes (Peters et al.,
2010; Lioutikov et al., 2014).
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(a) (b)

(c) (d) (e) (f) (g) (h) (i)

Figure 6: Tasks for linear-Gaussian controller evaluation: (a) stacking lego blocks on a fixed
base, (b) onto a free-standing block, (c) held in both gripper; (d) threading wooden rings
onto a peg; (e) attaching the wheels to a toy airplane; (f) inserting a shoe tree into a shoe;
(g,h) screwing caps onto pill bottles and (i) onto a water bottle.
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Figure 7: Distance to target point during
training of linear-Gaussian controllers. The
actual target may differ due to perturbations.
Error bars indicate one standard deviation.

with the initialization of the controllers
p(ut|xt) described in Appendix B.2. The
number of samples required to learn each
controller is around 20-25, substantially
lower than many prior policy search meth-
ods in the literature (Peters and Schaal,
2008; Kober et al., 2010b; Theodorou et al.,
2010; Deisenroth et al., 2013). Total learn-
ing time was about ten minutes for each
task, of which only 3-4 minutes involved sys-
tem interaction. The rest of the time was
spent resetting the robot to the initial state
and on computation.

The linear-Gaussian controllers are optimized for a specific condition – e.g., a specific
position of the target lego block. To evaluate their robustness to errors in the specified
target position, we conducted experiments on the lego block and ring tasks where the target
object (the lower block and the peg) was perturbed at each trial during training, and then
tested with various perturbations. For each task, controllers were trained with Gaussian
perturbations with standard deviations of 0, 1, and 2 cm in the position of the target object,
and each controller was tested with perturbations of radius 0, 1, 2, and 3 cm. Note that
with a radius of 2 cm, the peg would be placed about one ring-width away from the expected
position. The results are shown in Table 2. All controllers were robust to perturbations of
1 cm, and would often succeed at 2 cm. Robustness increased slightly when more noise was
injected during training, but even controllers trained without noise exhibited considerable
robustness, since the linear-Gaussian controllers themselves add noise during sampling. We
also evaluated a kinematic baseline for each perturbation level, which planned a straight
path from a point 5 cm above the target to the expected (unperturbed) target location. This
baseline was only able to place the lego block in the absence of perturbations. The rounded
top of the peg provided an easier condition for the baseline, with occasional successes at
higher perturbation levels. Our controllers outperformed the baseline by a wide margin.

All of the robotic experiments discussed in this section may be viewed in the corre-
sponding supplementary video, available online: http://rll.berkeley.edu/icra2015gps.
A video illustration of the visuomotor policies, discussed in the following sections, is also
available: http://sites.google.com/site/visuomotorpolicy.
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test perturbation
lego block ring on peg

0 cm 1 cm 2 cm 3 cm 0 cm 1 cm 2 cm 3 cm

tr
a
in

in
g

p
er

tu
rb

. 0 cm 5/5 5/5 3/5 2/5 5/5 5/5 0/5 0/5
1 cm 5/5 5/5 3/5 2/5 5/5 5/5 3/5 0/5
2 cm 5/5 5/5 5/5 3/5 5/5 5/5 3/5 0/5
kinematic baseline 5/5 0/5 0/5 0/5 5/5 3/5 0/5 0/5

Table 2: Success rates of linear-Gaussian controllers under target object perturbation.

6.3 Spatial Softmax CNN Architecture Evaluation

In this section, we evaluate the neural network architecture that we propose in Section 5.1
in comparison to more standard convolutional networks. To isolate the architectures from
other confounding factors, we measure their accuracy on the pose estimation pretraining
task described in Section 5.2. This is a reasonable proxy for evaluating how well the network
can overcome two major challenges in visuomotor learning: the ability to handle relatively
small datasets without overfitting, and the capability to learn tasks that are inherently
spatial. We compare to a network where the expectation operator after the softmax is
replaced with a learned fully connected layer, as is standard in the literature, a network
where both the softmax and the expectation operators are replaced with a fully connected
layer, and a version of this network that also uses 3 × 3 max pooling with stride 2 at the
first two layers. These alternative architectures have many more parameters, since the fully
connected layer takes the entire bank of response maps from the third convolutional layer
as input. Pooling helps to reduce the number of parameters, but not to the same degree as
the spatial softmax and expectation operators in our architecture.

The results in Table 3 indicate that using the softmax and expectation operators im-
proves pose estimation accuracy substantially. Our network is able to outperform the more
standard architectures because it is forced by the softmax and expectation operators to
learn feature points, which provide a concise representation suitable for spatial inference.
Since most of the parameters in this architecture are in the convolutional layers, which ben-
efit from extensive weight sharing, overfitting is also greatly reduced. By removing pooling,
our network also maintains higher resolution in the convolutional layers, improving spatial
accuracy. Although we did attempt to regularize the larger standard architectures with
higher weight decay and dropout, we did not observe a significant improvement on this
dataset. We also did not extensively optimize the parameters of this network, such as fil-
ter size and number of channels, and investigating these design decisions further would be
valuable to investigate in future work.

network architecture test error (cm)

softmax + feature points (ours) 1.30 ± 0.73

softmax + fully connected layer 2.59 ± 1.19

fully connected layer 4.75 ± 2.29

max-pooling + fully connected 3.71 ± 1.73

Table 3: Average pose estimation accuracy and standard deviation with various architec-
tures, measured as average Euclidean error for the three target points in 3D, with ground
truth determined by forward kinematics from the left arm.
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(a) hanger (b) cube (c) hammer (d) bottle

Figure 8: Illustration of the tasks in our visuomotor policy experiments, showing the vari-
ation in the position of the target for the hanger, cube, and bottle tasks, as well as two of
the three grasps for the hammer, which also included variation in position (not shown).

6.4 Deep Visuomotor Policy Evaluation

In this section, we present an evaluation of our full visuomotor policy training algorithm on
a PR2 robot. The aim of this evaluation is to answer the following question: does training
the perception and control systems in a visuomotor policy jointly end-to-end provide better
performance than training each component separately?

Experimental tasks. We trained policies for hanging a coat hanger on a clothes rack,
inserting a block into a shape sorting cube, fitting the claw of a toy hammer under a nail with
various grasps, and screwing on a bottle cap. The cost function for these tasks encourages
low distance between three points on the end-effector and corresponding target points, low
torques, and, for the bottle task, spinning the wrist. The equations for these cost functions
and the details of each task are presented in Appendix B.2. The tasks are illustrated in
Figure 8. Each task involved variation of 10-20 cm in each direction in the position of the
target object (the rack, shape sorting cube, nail, and bottle). In addition, the coat hanger
and hammer tasks were trained with two and three grasps, respectively. The current angle
of the grasp was not provided to the policy, but had to be inferred from observing the
robot’s gripper in the camera images. All tasks used the same policy architecture and
model parameters.

Experimental conditions. We evaluated the visuomotor policies in three conditions: (1)
the training target positions and grasps, (2) new target positions not seen during training
and, for the hammer, new grasps (spatial test), and (3) training positions with visual
distractors (visual test). A selection of these experiments is shown in the supplementary
video.3 For the visual test, the shape sorting cube was placed on a table rather than held in

3. The video can be viewed at http://sites.google.com/site/visuomotorpolicy
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the gripper, the coat hanger was placed on a rack with clothes, and the bottle and hammer
tasks were done in the presence of clutter. Illustrations of this test are shown in Figure 9.

Comparison. The success rates for each test are shown in Figure 9. We compared to
two baselines, both of which train the vision layers in advance for pose prediction, instead
of training the entire policy end-to-end. The features baseline discards the last layer of the
pose predictor and uses the feature points, resulting in the same architecture as our policy,
while the prediction baseline feeds the predicted pose into the control layers. The pose
prediction baseline is analogous to a standard modular approach to policy learning, where
the vision system is first trained to localize the target, and the policy is trained on top of it.
This variant achieves poor performance. As discussed in Section 6.3, the pose estimate is
accurate to about 1 cm. However, unlike the tasks in Section 6.2, where robust controllers
could succeed even with inaccurate perception, many of these tasks have tolerances of just
a few millimeters. In fact, the pose prediction baseline is only successful on the coat hanger,
which requires comparatively little accuracy. Millimeter accuracy is difficult to achieve even
with calibrated cameras and checkerboards. Indeed, prior work has reported that the PR2
can maintain a camera to end effector accuracy of about 2 cm during open loop motion
(Meeussen et al., 2010). This suggests that the failure of this baseline is not atypical,
and that our visuomotor policies are learning visual features and control strategies that
improve the robot’s accuracy. When provided with pose estimation features, the policy
has more freedom in how it uses the visual information, and achieves somewhat higher
success rates. However, full end-to-end training performs significantly better, achieving
high accuracy even on the challenging bottle task, and successfully adapting to the variety
of grasps on the hammer task. This suggests that, although the vision layer pretraining is
clearly beneficial for reducing computation time, it is not sufficient by itself for discovering
good features for visuomotor policies.

Visual distractors. The policies exhibit moderate tolerance to distractors that are visu-
ally separated from the target object. This is enabled in part by the spatial softmax, which
has a lateral inhibition effect that suppresses non-maximal activations. Since distractors
are unlikely to activate each feature as much as the true object, their activations are there-
fore suppressed. However, as expected, the learned policies tend to perform poorly under
drastic changes to the backdrop, or when the distractors are adjacent to or occluding the
manipulated objects, as shown in the supplementary video. A standard solution to this
issue to expose the policy to a greater variety of visual situations during training. This
issue could also be mitigated by artificially augmenting the image samples with synthetic
transformations, as discussed in prior work in computer vision (Simard et al., 2003), or even
incorporating ideas from transfer and semi-supervised learning.

6.5 Features Learned with End-to-End Training

The visual processing layers of our architecture automatically learn features points using
the spatial softmax and expectation operators. These feature points encapsulate all of the
visual information received by the motor layers of the policy. In Figure 10, we show the
features points discovered by our visuomotor policy through guided policy search. Each
policy learns features on the target object and the robot manipulator, both clearly relevant
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coat hanger training (18) spatial test (24) visual test (18)
end-to-end 100% 100% 100%
pose features 88.9% 87.5% 83.3%
pose prediction 55.6% 58.3% 66.7%

shape cube training (27) spatial test (36) visual test (40)
end-to-end 96.3% 91.7% 87.5%
pose features 70.4% 83.3% 40%
pose prediction 0% 0% n/a

toy hammer training (45) spatial test (60) visual test (60)
end-to-end 91.1% 86.7% 78.3%
pose features 62.2% 75.0% 53.3%
pose prediction 8.9% 18.3% n/a

bottle cap training (27) spatial test (12) visual test (40)
end-to-end 88.9% 83.3% 62.5%
pose features 55.6% 58.3% 27.5%

Success rates on training positions, on novel test positions, and
in the presence of visual distractors. The number of trials per
test is shown in parentheses.

Figure 9: Training and visual test scenes as seen by the policy (left), and experimental
results (right). The hammer and bottle images were cropped for visualization only.

to task execution. The policy tends to pick out robust, distinctive features on the objects,
such as the left pole of the clothes rack, the left corners of the shape-sorting cube and
the bottom-left corner of the toy tool bench. In the bottle task, the end-to-end trained
policy outputs points on both sides of the bottle, including one on the cap, while the pose
prediction network only finds points on the right edge of the bottle.

In Figure 11, we compare the feature points learned through guided policy search to
those learned by a CNN trained for pose prediction. After end-to-end training, the policy
acquired a distinctly different set of feature points compared to the pose prediction CNN
used for initialization. The end-to-end trained model finds more feature points on task-
relevant objects and fewer points on background objects. This suggests that the policy
improves its performance by acquiring goal-driven visual features that differ from those
learned for object localization.

The feature point representation is very simple, since it assumes that the learned features
are present at all times, and only one instance of each feature is ever present in the image.
While this is a drastic simplification, both the pose predictor and the policy still achieve good
results. A more flexible architecture that still learns a concise feature point representation
could further improve policy performance. We hope to explore this in future work.

6.6 Computational Performance and Sample Efficiency

We used the Caffe deep learning library (Jia et al., 2014) for CNN training. Each visuomotor
policy required a total of 3-4 hours of training time: 20-30 minutes for the pose prediction
data collection on the robot, 40-60 minutes for the fully observed trajectory pretraining on
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(a) hanger (b) cube (c) hammer (d) bottle

Figure 10: Feature points tracked by the policy during task execution for each of the four
tasks. Each feature point is displayed in a different random color, with consistent coloring
across images. The policy finds features on the target object and the robot gripper and
arm. In the bottle cap task, note that the policy correctly ignores the distractor bottle in
the background, even though it was not present during training.

(a) hanger (b) cube (c) hammer (d) bottle

Figure 11: Feature points learned for each task. For each input image, the feature points
produced by the policy are shown in blue, while the feature points of the pose prediction
network are shown in red. The end-to-end trained policy tends to discover more feature
points on the target object and the robot arm than the pose prediction network.
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the robot and offline pose pretraining (which can be done in parallel), and between 1.5 and
2.5 hours for end-to-end training with guided policy search. The coat hanger task required
two iterations of guided policy search, the shape sorting cube and the hammer required
three, and the bottle task required four. Only about 15 minutes of the training time
consisted of executing trials on the robot. Since training was dominated by computation,
we expect significant speedup from a more efficient implementation. The number of samples
for training each policy is shown in Table 4. Each trial was five seconds in length, and the
numbers do not include the time needed to collect about 1000 images for pretraining the
visual processing layers of the policy.

number of trials

task trajectory pretraining end-to-end training total

coat hanger 120 36 156

shape cube 90 81 171

toy hammer 150 90 240

bottle cap 180 108 288

Table 4: Total number of trials used for learning each visuomotor policy.

7. Discussion and Future Work

In this paper, we presented a method for learning robotic control policies that use raw
input from a monocular camera. These policies are represented by a novel convolutional
neural network architecture, and can be trained end-to-end using our guided policy search
algorithm, which decomposes the policy search problem in a trajectory optimization phase
that uses full state information and a supervised learning phase that only uses the obser-
vations. This decomposition allows us to leverage state-of-the-art tools from supervised
learning, making it straightforward to optimize extremely high-dimensional policies. Our
experimental results show that our method can execute complex manipulation skills, and
that end-to-end training produces significant improvements in policy performance compared
to using fixed vision layers trained for pose prediction.

Although we demonstrate moderate generalization over variations in the scene, our
current method does not generalize to dramatically different settings, especially when visual
distractors occlude the manipulated object or break up its silhouette in ways that differ from
the training. The success of CNNs on exceedingly challenging vision tasks suggests that
this class of models is capable of learning invariance to irrelevant distractor features (LeCun
et al., 2015), and in principle this issue can be addressed by training the policy in a variety
of environments, though this poses certain logistical challenges. More practical alternatives
that could be explored in future work include simultaneously training the policy on multiple
robots, each of which is located in a different environment, developing more sophisticated
regularization and pretraining techniques to avoid overfitting, and introducing artificial
data augmentation to encourage the policy to be invariant to irrelevant clutter. However,
even without these improvements, our method has numerous applications in, for example,
an industrial setting where the robot must repeatedly and efficiently perform a task that
requires visual feedback under moderate variation in background and clutter conditions.

Our method takes advantage of a known, fully observed state space during training.
This is both a weakness and a strength. It allows us to train linear-Gaussian controllers
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for guided policy search using a very small number of samples, far more efficiently than
standard policy search methods. However, the requirement to observe the full state during
training limits the tasks to which the method can be applied. In many cases, this limitation
is minor, and the only “instrumentation” required at training is to position the objects in
the scene at consistent positions. However, tasks that require, for example, manipulating
freely moving objects require more extensive instrumentation, such as motion capture. A
promising direction for addressing this limitation is to combine our method with unsuper-
vised state-space learning, as proposed in several recent works, including our own (Lange
et al., 2012; Watter et al., 2015; Finn et al., 2015).

In future work, we hope to explore more complex policy architectures, such as recurrent
policies that can deal with extensive occlusions by keeping a memory of past observations.
We also hope to extend our method to a wider range of tasks that can benefit from visual
input, as well as a variety of other rich sensory modalities, including haptic input from
pressure sensors and auditory input. With a wider range of sensory modalities, end-to-
end training of sensorimotor policies will become increasingly important: while it is often
straightforward to imagine how vision might help to localize the position of an object in
the scene, it is much less apparent how sound can be integrated into robotic control. A
learned sensorimotor policy would be able to naturally integrate a wide range of modalities
and utilize them to directly aid in control.
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Appendix A. Guided Policy Search Algorithm Details

In this appendix, we describe a number of implementation details of our BADMM-based
guided policy search algorithm and our linear-Gaussian controller optimization method.

A.1 BADMM Dual Variables and Weight Adjustment

Recall that the inner loop alternating optimization is given by

θ ←arg min
θ

T∑
t=1

Ep(xt)πθ(ut|xt)[u
T
t λµt] + νtφ

θ
t (θ, p)

p←arg min
p

T∑
t=1

Ep(xt,ut)[`(xt,ut)−uT
t λµt]+νtφ

p
t (p, θ)

λµt ← λµt + ανt(Eπθ(ut|xt)p(xt)[ut]− Ep(ut|xt)p(xt)[ut]).

We use a step size of α = 0.1 in all of our experiments, which we found to be more
stable than α = 1.0. The weights νt are initialized to 0.01 and incremented based on
the following schedule: at every iteration, we compute the average KL-divergence between
p(ut|xt) and πθ(ut|xt) at each time step, as well as its standard deviation over time steps.
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The weights νt corresponding to time steps where the KL-divergence is higher than the
average are increased by a factor of 2, and the weights corresponding to time steps where
the KL-divergence is two standard deviations or more below the average are decreased by
a factor of 2. The rationale behind this schedule is to adjust the KL-divergence penalty
to keep the policy and trajectory in agreement by roughly the same amount at all time
steps. Increasing νt too quickly can lead to the policy and trajectory becoming “locked”
together, which makes it difficult for the trajectory to decrease its cost, while leaving it too
low requires more iterations for convergence. We found this schedule to work well across
all tasks, both during trajectory pretraining and while training the visuomotor policy.

To update the dual variables λµt, we evaluate the expectations over p(xt) by using the
latest batch of sampled trajectories. For each state {xit} along these sampled trajectories,
we evaluate the expectations over ut under πθ(ut|xt) and p(ut|xt), which correspond simply
to the means of these conditional Gaussian distributions, in closed form.

A.2 Policy Variance Optimization

As discussed in Section 4, the variance of the Gaussian policy πθ(ut|ot) does not depend on
the observation, though this dependence would be straightforward to add. Analyzing the
objective Lθ(θ, p), we can write out only the terms that depend on Σπ:

Lθ(θ, p) =
1

2N

N∑
i=1

T∑
t=1

Epi(xt,ot)
[
tr[C−1

ti Σπ]− log |Σπ|
]
.

Differentiating and setting the derivative to zero, we obtain the following equation for Σπ:

Σπ =

[
1

NT

N∑
i=1

T∑
t=1

C−1
ti

]−1

,

where the expectation under pi(xt) is omitted, since Cti does not depend on xt.

A.3 Dynamics Fitting

Optimizing the linear-Gaussian controllers pi(ut|xt) that induce the trajectory distributions
pi(τ) requires fitting the system dynamics pi(xt+1|xt,ut) at each iteration to samples gen-
erated on the physical system from the previous controller p̂i(ut|xt). In this section, we
describe how these dynamics are fitted. As in Section 4, we drop the subscript i, since the
dynamics are fitted the same way for all of the trajectory distributions.

The linear-Gaussian dynamics are defined as p(xt+1|xt,ut) = N (fxtxt+futut+fct,Ft),
and the data that we obtain from the robot can be viewed as tuples {xit,uit,xit+1}. A
simple way to fit these linear-Gaussian dynamics is to use linear regression to determine
fx, fu, and fc, and fit Ft based on the errors. However, the sample complexity of linear
regression scales with the dimensionality of xt. For a high-dimensional robotic system, we
might need an impractically large number of samples at each iteration to obtain a good fit.
However, we can observe that the dynamics at nearby time steps are strongly correlated,
and we can dramatically reduce the sample complexity of the dynamics fitting by bringing
in information from other time steps, and even prior iterations. We will bring in this
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information by fitting a global model to all of the transitions {xit,uit,xit+1} for all t and all
tuples from several prior iterations (we use three prior iterations in our implementation),
and then use this model as a prior for fitting the dynamics at each time step. Note that
this global model does not itself need to be a good forward dynamics model – it just needs
to serve as a good prior to reduce the sample complexity of linear regression.

To make it more convenient to incorporate a data-driven prior, we will first reformulate
this linear regression fit and view it as fitting a Gaussian model to the dataset {xit,uit,xit+1}
at each time step t, and then conditioning this Gaussian to obtain p(xt+1|xt,ut). While
this is equivalent to linear regression, it allows us to easily incorporate a normal-inverse-
Wishart prior on this Gaussian in order to bring in prior information. Let Σ̂ be the empirical
covariance of our dataset, and let µ̂ be the empirical mean. The normal-inverse-Wishart
prior is defined by prior parameters Φ, µ0, m, and n0. Under this prior, the maximum a
posteriori estimates for the covariance Σ and mean µ are given by

Σ =
Φ +N Σ̂ + Nm

N+m(µ̂− µ0)(µ̂− µ0)T

N + n0
µ =

mµ0 + n0µ̂

m+ n0
.

Having obtained Σ and µ, we can obtain an estimate of the dynamics p(xt+1|xt,ut) by
conditioning the distribution N (µ,Σ) on [xt; ut], which produces linear-Gaussian dynamics
p(xt+1|xt,ut) = N (fxtxt + futut + fct,Ft). The parameters of the normal-inverse-Wishart
prior are obtained from the global model of the dynamics which, as described previously, is
fitted to all available tuples {xit,uit,xit+1}.

The simplest prior can be obtained by fitting a Gaussian distribution to vectors [x; u; x′].
If the mean and covariance of this data are given by µ̄ and Σ̄, the prior is given by Φ = n0Σ̄
and µ0 = µ̄, while n0 and m should be set to the number of data points in the datasets. In
practice, settings n0 and m to 1 tends to produce better results, since the prior is fitted to
many more samples than are available for linear regression at each time step. While this
prior is simple, we can obtain a better prior by employing a nonlinear model.

The particular global model we use in this work is a Gaussian mixture model over
vectors [x; u; x′]. Systems of articulated rigid bodies undergoing contact dynamics, such
as robots interacting with their environment, can be coarsely modeled as having piecewise
linear dynamics. The Gaussian mixture model provides a good approximation for such
piecewise linear systems, with each mixture element corresponding to a different linear mode
(Khansari-Zadeh and Billard, 2010). Under this model, the state transition tuple is assumed
to come from a distribution that depends on some hidden state h, which corresponds to
the mixture element identity. In practice, this hidden state might correspond to the type of
contact profile experienced by a robotic arm at step i. The prior for the dynamics fit at time
step t is then obtained by inferring the hidden state distribution for the transition dataset
{xit,uit,xit+1}, and using the mean and covariance of the corresponding mixture elements
(weighted by their probabilities) to obtain µ̄ and Σ̄. The prior parameters can then be
obtained as described above.

In our experiments, we set the number of mixture elements for the Gaussian mixture
model prior such that there were at least 40 samples per mixture element, or 20 total
mixture elements, whichever was lower. In general, we did not find the performance of the
method to be sensitive to this parameter, though overfitting did tend to occur in the early
iterations when the number of samples is low, if the number of mixtures was too high.
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A.4 Trajectory Optimization

In this section, we show how the LQR backward pass can be used to optimize the constrained
objective in Section 4.2. The constrained trajectory optimization problem is given by

min
p(τ)∈N (τ)

Lp(p, θ) s.t. DKL(p(τ)‖p̂(τ)) ≤ ε.

The augmented Lagrangian Lp(p, θ) consists of an entropy term and an expectation under
p(τ) of a quantity that is independent of p. We can locally approximate this quantity with
a quadratic by using a quadratic expansion of `(xt,ut), and fitting a linear Gaussian to
πθ(ut|xt) with the same method we used for the dynamics. We can then solve the primal
optimization in the dual gradient descent procedure with a standard LQR backward pass.
As discussed in Section 4, Lp(p, θ) can be written as the expectation of some function c(τ)
that is independent of p, such that Lp(p, θ) = Ep(τ)[c(τ)]− νtH(p(τ)). Specifically,

c(xt,ut) = `(xt,ut)− uT
t λµt − νt log πθ(ut|xt)

Writing the Lagrangian of the constrained optimization, we have

L(p) = Ep(τ)[c(τ)− η log p̂(τ)]− (η + νt)H(p(τ))− ηε,

where η is the Lagrange multiplier. Note that L(p) is the Lagrangian of the constrained
trajectory optimization, which is not related to the augmented Lagrangian Lp(τ, θ). Group-
ing the terms in the expectation and omitting constants, we can rewrite the minimization
of the Lagrangian with respect to the primal variables as

min
p(τ)∈N (τ)

Ep(τ)

[
1

η + νt
c(τ)− η

η + νt
log p̂(τ)

]
−H(p(τ)). (4)

Let c̃(τ) = 1
η+νt

c(τ)− η
η+νt

log p̂(τ). The above optimization corresponds to minimizing
Ep(τ)[c̃(τ)] − H(p(τ)). This type of maximum entropy problem can be solved using the
LQR algorithm, and the solution is given by

p(ut|xt) = N (Ktxt + kt;Q
−1
u,ut),

where Kt and kt are the feedback and open loop terms of the optimal linear feedback
controller corresponding to the cost c̃(xt,ut) and the dynamics p(xt+1|xt,ut), and Qu,ut is
the quadratic term in the Q-function at time step t. All of these terms can be obtained
from a standard LQR backward pass (Li and Todorov, 2004), which we summarize below.

Recall that the estimated linear-Gaussian dynamics have the form p(xt+1|xt,ut) =
N (fxtxt + futut + fct,Ft). The quadratic cost approximation has the form

c̃(xt,ut) ≈
1

2
[xt; ut]

Tc̃xu,xut[xt; ut] + [xt; ut]
Tc̃xut + const,

where subscripts denote derivatives, e.g. c̃xut is the gradient of c̃ with respect to [xt; ut],
while c̃xu,xut is the Hessian.4 Under this model of the dynamics and cost function, the

4. We assume that all Taylor expansions here are recentered around zero. Otherwise, the point around
which the derivatives are computed must be subtracted from xt and ut in all of these equations.
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optimal controller can be computed by recursively computing the quadratic Q-function and
value function, starting with the last time step. These functions are given by

V (xt) =
1

2
xT
t Vx,xtxt + xT

t Vxt + const

Q(xt,ut) =
1

2
[xt; ut]

TQxu,xut[xt; ut] + [xt; ut]
TQxut + const

We can express them with the following recurrence, which is computed starting at the last
time step t = T and moving backward through time:

Qxu,xut = c̃xu,xut + fT
xutVx,xt+1fxut

Qxut = c̃xut + fT
xutVxt+1 + fT

xutVx,xt+1fct

Vx,xt = Qx,xt −QT
u,xtQ

−1
u,utQu,xt

Vxt = Qxt −QT
u,xtQ

−1
u,utQut,

and the optimal control law is then given by g(xt) = Ktxt + kt, where Kt = −Q−1
u,utQu,xt

and kt = −Q−1
u,utQut. If, instead of simply minimizing the expected cost, we instead wish to

optimize the maximum entropy objective in Equation (4), the optimal controller is instead
linear-Gaussian, with the solution given by p(ut|xt) = N (Ktxt + kt;Q

−1
u,ut), as shown in

prior work (Levine and Koltun, 2013a).

Appendix B. Experimental Setup Details

In this appendix, we present a detailed summary of the experimental setup for our simulated
and real-world experiments.

B.1 Simulated Experiment Details

All of the simulated experiments used the MuJoCo simulation package (Todorov et al.,
2012), with simulated frictional contacts and torque motors at the joints used for actuation.
Although no control or state noise was added during simulation, noise was injected naturally
by the linear-Gaussian controllers. The linear-Gaussian controllers pi(ut|xt) were initialized
to stay near the initial state x1 using linear feedback based on a proportional-derivative
control law for all tasks, except for the octopus arm, where pi(ut|xt) was initialized to be
zero mean with a fixed spherical covariance, and the walker, which was initialized to track
a demonstration trajectory with proportional-derivative feedback. The walker was the only
task that used a demonstration, as described previously. We describe the details of each
system below.

Peg insertion: The 2D peg insertion task has 6 state dimensions (joint angles and angular
velocities) and 2 action dimensions. The 3D version of the task has 12 state dimensions,
since the arm has 3 degrees of freedom at the shoulder, 1 at the elbow, and 2 at the wrist.
Trials were 8 seconds in length and simulated at 100 Hz, resulting in 800 time steps per
rollout. The cost function is given by

`(xt,ut) =
1

2
wu‖ut‖2 + wp`12(pxt − p?),
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where pxt is the position of the end effector for state xt, p? is the desired end effector
position at the bottom of the slot, and the norm `12(z) is given by 1

2‖z‖
2 +
√
α+ z2, which

corresponds to the sum of an `2 and soft `1 norm. We use this norm to encourage the peg
to precisely reach the target position at the bottom of the hole, but to also receive a larger
penalty when far away. The task also works well in 2D with a simple `2 penalty, though
we found that the 3D version of the task takes longer to insert the peg all the way into the
hole without the `1-like square root term. The weights were set to wu = 10−6 and wp = 1.
Initial states were chosen by moving the shoulder of the arm relative to the hole, with four
equally spaced starting states in a 20 cm region for the 2D arm, and four random starting
states in a 10 cm radius for the 3D arm.

Octopus arm: The octopus arm consists of six four-sided chambers. Each edge of each
chamber is a simulated muscle, and actions correspond to contracting or relaxing the mus-
cle. The state space consists of the positions and velocities of the chamber vertices. The
midpoint of one edge of the first chamber is fixed, resulting in a total of 25 degrees of free-
dom: the 2D positions of the 12 unconstrained points, and the orientation of the first edge.
Including velocities, the total dimensionality of the state space is 50. The cost function
depends on the activation of the muscles and distance between the tip of the arm and the
target point, in the same way as for peg insertion. The weights are set to wu = 10−3 and
wp = 1.

Swimmer: The swimmer consists of 3 links and 5 degrees of freedom, including the global
position and orientation which, together with the velocities, produces a 10 dimensional state
space. The swimmer has 2 action dimensions corresponding to the torques between joints.
The simulation applied drag on each link of the swimmer to roughly simulate a fluid, allowing
it to propel itself. The rollouts were 20 seconds in length at 20 Hz, resulting in 400 time
steps per rollout. The cost function for the swimmer is given by

`(xt,ut) =
1

2
wu‖ut‖t +

1

2
wv‖vxxt − v

?
x‖2

where vxxt is the horizontal velocity, v?x = 2.0m/s, and the weights were wu = 2 · 10−5 and
wv = 1.

Walker: The bipedal walker consists of a torso and two legs, each with three links, for
a total of 9 degrees of freedom and 18 dimensions, with velocity, and 6 action dimensions.
The simulation ran for 5 seconds at 100 Hz, for a total of 500 time steps. The cost function
is given by

`(xt,ut) =
1

2
wu‖ut‖t +

1

2
wv‖vxxt − v

?
x‖2 +

1

2
wh‖pyxt − p

?
y‖2

where vxxt is again the horizontal velocity, pyxt is the vertical position of the root, v?x =

2.1m/s, p?y = 1.1m, and the weights were set to wu = 10−4, wv = 1, and wh = 1.
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B.2 Robotic Experiment Details

All of the robotic experiments were conducted on a PR2 robot. The robot was controlled
at 20 Hz via direct effort control,5 and camera images were recorded using the RGB camera
on a PrimeSense Carmine sensor. The images were downsampled to 240 × 240 × 3. The
learned policies controlled one 7 DoF arm of the robot, while the other arm was used to
move objects in the scene to automatically vary the initial conditions. The camera was
kept fixed in each experiment. Each episode was 5 seconds in length. For each task, the
cost function required placing the object held in the gripper at a particular location (which
might require, for example, to insert a shape into a shape sorting cube). The cost was given
by the following equation:

`(xt,ut) = w`2d
2
t + wlog log(d2

t + α) + wu‖ut‖2,

where dt is the distance between three points in the space of the end-effector and their
target positions,6, and the weights are set to w`2 = 10−3, wlog = 1.0, and wu = 10−2. The
quadratic term encourages moving the end-effector toward the target when it is far, while the
logarithm term encourages placing it precisely at the target location, as discussed in prior
work (Levine et al., 2015). The bottle cap task used an additional cost term consisting of a
quadratic penalty on the difference between the wrist angular velocity and a target velocity.

For all of the tasks, we initialized all of the linear-Gaussian controllers pi(ut|xt) to stay
near the initial state x1, with a diagonal noise covariance. The covariance of the noise was
chosen to be proportional to a diagonal approximation of the inverse effective mass at each
joint, as provided by the manufacturer of the PR2 robot, and the feedback controller was
constructed using LQR, with an approximate linear model obtained from the same diagonal
inverse mass matrix. The role of this initial controller was primarily to avoid dangerous
actions during the first iteration. We discuss the particular setup for each experiment below:

Coat hanger: The coat hanger task required the robot to hang a coat hanger on a clothes
rack. The coat hanger was grasped at one of two angles, about 35◦ apart, and the rack was
positioned at three different distances from the robot during training, with differences of
about 10 cm between each position. The rack was moved manually between these positions
during training. A trial was considered successful if, when the coat hanger was released, it
remained hanging on the rack rather than dropping to the ground.

Shape sorting cube: The shape sorting cube task required the robot to insert a red
trapezoid into a trapezoidal hole on a shape sorting cube. During training, the cube was
positioned at nine different positions, situated at the corners, edges, and middle of a rect-
angular region 16 cm × 10 cm in size. During training, the shape sorting cube was moved
through the training positions by using the left arm. A trial was considered successful if
the bottom face of the trapezoid was completely inside the shape sorting cube, such that if
the robot were to release the trapezoid, it would fall inside the cube.

5. The PR2 robot does not provide for closed loop torque control, but instead supports an effort control in-
terface that directly sets feedforward motor voltages. In practice, these voltages are roughly proportional
to feedforward torques, but are also affected by friction and damping.

6. Three points fully define the pose of the end-effector. For the bottle cap task, which is radially symmetric,
we use only two points.
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Toy hammer: The hammer task required the robot to insert the claw of a toy hammer
underneath a toy plastic nail, placing the claw around the base of the nail. The hammer
was grasped at one of three angles, each 22.5◦ apart, for a total variation of 45◦ degrees, and
the nail was positioned at five positions, at the corners and center of a rectangular region
10 cm × 7 cm in size. During training, the toy tool bench containing the nail was moved
using the left arm. A trial was considered successful if the tip of the claw of the hammer
was at least under the centerline of the nail.

Bottle cap: The bottle cap task required the robot to screw a cap onto a bottle at various
positions. The bottle was located at nine different positions, situated at the corners, edges,
and middle of a rectangular region 16 cm × 10 cm in size, and the left arm was used to
move the bottle through the training positions. A trial was considered successful if, after
completion, the cap could not be removed from bottle simply by pulling vertically.
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