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Abstract

Structured prediction models have been found to learn effectively from a few large examples—
sometimes even just one. Despite empirical evidence, canonical learning theory cannot
guarantee generalization in this setting because the error bounds decrease as a function of
the number of examples. We therefore propose new PAC-Bayesian generalization bounds
for structured prediction that decrease as a function of both the number of examples and
the size of each example. Our analysis hinges on the stability of joint inference and the
smoothness of the data distribution. We apply our bounds to several common learning
scenarios, including max-margin and soft-max training of Markov random fields. Under
certain conditions, the resulting error bounds can be far more optimistic than previous
results and can even guarantee generalization from a single large example.
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1. Introduction

Many important applications of machine learning require making multiple interdependent
predictions whose dependence relationships form a graph. In some cases, the number of
inputs and outputs can be enormous. For instance, in natural language processing, a doc-
ument may contain thousands of words to be assigned a part-of-speech tag; in computer
vision, a digital image may contain millions of pixels to be segmented; and in social network
analysis, a relational graph may contain millions of users to be categorized. Obtaining fully
annotated examples can be time-consuming and expensive, due to the number of variables.
It is therefore common to train a structured predictor on far fewer examples than are used
in the unstructured setting. In the extreme (yet not atypical) case, the training set consists
of a single example, with large internal structure. A central question in statistical learning
theory is generalization; that is, whether the expected error at test time will be reasonably
close to the empirical error measured during training. Canonical learning-theoretic results
for structured prediction (e.g., Taskar et al., 2004; Bartlett et al., 2005; McAllester, 2007)
only guarantee generalization when the number of training examples is high. Yet, this pes-
simism contradicts a wealth of experimental results (e.g., Taskar et al., 2002; Tsochantaridis
et al., 2005), which indicate that training on a few large examples is sufficient. In this work,
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we address the question of when generalization is possible in this setting. We derive new
generalization bounds for structured prediction that are far more optimistic than previous
results. When sufficient conditions hold, our bounds guarantee generalization from a few
large examples—even just one.

The intuition behind our analysis is motivated by a common practice known alterna-
tively as templating or parameter-tying. At a high level, templating shares parameters
across substructures (e.g., nodes, edges, etc.) with identical local structure. (Templating
is explained in detail in Section 2.2.2.) Originally proposed for relational learning as a way
of dealing with non-uniformly-structured examples, templating has an additional benefit in
that it effectively limits the complexity of the hypothesis class by reducing the number of
parameters to be learned. Each instance of a substructure within an example acts as a kind
of “micro example” of a template. Since each example may contain many micro examples,
it is plausible that generalization could occur from even a single example.

Part of the difficulty when formalizing this intuition is that the micro examples are
interdependent. Like all statistical arguments, generalization bounds must show that the
empirical error concentrates around the expected error, and analyzing the concentration of
functions of dependent random variables is nontrivial. Moreover, inference in a structured
predictor is typically formulated as a global optimization over all outputs simultaneously.
Due to model-induced dependencies, changes to one input may affect many of the outputs,
which affects the loss differently than in binary or multiclass prediction. Thus, this problem
cannot be viewed as simply learning from interdependent data, which has been studied
extensively (e.g., Usunier et al., 2006; Mohri and Rostamizadeh, 2010; Ralaivola et al.,
2010).

We therefore have two obstacles: the dependence in the data distribution and the depen-
dence induced by the the predictor. We characterize the former dependence using concepts
from measure concentration theory (Kontorovich and Ramanan, 2008), and we view the
latter dependence through the lens of algorithmic stability. Unlike previous literature (e.g.,
Bousquet and Elisseeff, 2002), we are not interested in the stability of the learning algo-
rithm; rather, we examine the stability of inference (more specifically, a functional of the
predictions) with respect to perturbations of the input. In prior work (London et al., 2013,
2014), we used the term collective stability to describe the stability of the predictions, guar-
anteeing collective stability for predictors whose inference objectives are strongly convex.
In this work, we propose a form of stability that generalizes collective stability by analyzing
the loss function directly. Our new definition accommodates a broader range of loss func-
tions and predictors, and eliminates our previous reliance on strong convexity. Moreover,
we support functions that are locally stable over some subset of their domain, and random
functions that are stable with high probability.

This probabilistic notion of stability lends itself nicely to the PAC-Bayes framework,
in which prediction proceeds by drawing a random hypothesis from a distribution on the
hypothesis class. For this and other technical reasons, we use PAC-Bayesian analysis to
derive our generalization bounds. When certain conditions are met by the distributions on
the data and hypothesis class, our bounds can be as tight as Õ (1/

√
mn), where m is the

number of examples, and n is the size of each example. Note that this expression decreases
as either m or n increase. This rate is much tighter than previous results, which only
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guarantee Õ (1/
√
m). From our bounds, we conclude that it is indeed possible to generalize

from a few large examples—potentially even just one.

1.1 Related Work

One of the earliest explorations of generalization in structured prediction is by Collins
(2001), who developed risk bounds for language parsers using various classical tools, such as
the Vapnik-Chervonenkis dimension and margin theory. In Taskar et al.’s (2004) landmark
paper on max-margin Markov networks, the authors use covering numbers to derive risk
bounds for their proposed class of models. Bartlett et al. (2005) improved this result using
PAC-Bayesian analysis.1 McAllester (2007; 2011) provided a comprehensive PAC-Bayesian
study of various structured losses and learning algorithms. Recently, Hazan et al. (2013)
proposed a PAC-Bayes bound with a form often attributed to Catoni (2007), which can be
minimized directly using gradient descent. Giguère et al. (2013) used PAC-Bayesian analysis
to derive risk bounds for the kernel regression approach to structured prediction. In a similar
vein as the above literature, yet taking a significantly different approach, Bradley and
Guestrin (2012) derived finite sample complexity bounds for learning conditional random
fields using the composite likelihood estimator.

All of the above works have approached the problem from the traditional viewpoint,
that the generalization error should decrease proportionally to the number of examples. In
a previous publication (London et al., 2013), we proposed the first bounds that decrease
with both the number of examples and the size of each example (given suitably weak de-
pendence within each example). We later refined these results using PAC-Bayesian analysis
(London et al., 2014). Our current work builds upon this foundation to derive similarly
optimistic generalization bounds, while accommodating a broader range of loss functions
and hypothesis classes.

From a certain perspective, our work fits into a large body of literature on learning from
various types of interdependent data. Most of this is devoted to “unstructured” prediction.
Usunier et al. (2006) and Ralaivola et al. (2010) used concepts from graph coloring to ana-
lyze generalization in learning problems that induce a dependency graph, such as bipartite
ranking. In this case, the training data contains dependencies, but prediction is localized
to each input-output pair. Similarly, Mohri and Rostamizadeh (2009, 2010) derived risk
bounds for φ-mixing and β-mixing temporal data, using an “independent blocking” tech-
nique due to Yu (1994). The hypotheses they consider predict each time step independently,
which makes independent blocking possible. Since we are interested in hypotheses (and loss
functions) that perform joint inference, which may not decompose over the outputs, we
cannot employ techniques such as graph coloring and independent blocking.

A related area of research is learning to forecast time series data. In this setting, the
goal is to predict the next (or, some future) value in the series, given (a moving window of)
previous observations. The generalization error of time series forecasting has been studied
extensively by McDonald et al. (e.g., 2012) in the β-mixing regime. Similarly, Alquier and
Wintenburger (2012) derived oracle inequalities for φ-mixing conditions.

1. PAC-Bayesian analysis is often accredited to McAllester (1998, 1999), and has been refined by a number
of authors (e.g., Herbrich and Graepel, 2001; Langford and Shawe-Taylor, 2002; Seeger, 2002; Ambroladze
et al., 2006; Catoni, 2007; Germain et al., 2009; Lever et al., 2010; Seldin et al., 2012).
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The idea of learning from one example is related to the “one-network” learning paradigm,
in which data is generated by a (possibly infinite) random field, with certain labels observed
for training. The underlying model is estimated from the partially observed network, and
the learned model is used to predict the missing labels, typically with some form of joint
inference. Xiang and Neville (2011) examined maximum likelihood and pseudo-likelihood
estimation in this setting, proving that are asymptotically consistent. Note that this is
a transductive setting, in that the network data is fixed (i.e., realized), so the learned
hypothesis is not expected to generalize to other network data. In contrast, we analyze
inductive learning, wherein the model is applied to future draws from a distribution over
network data.

Connections between stability and generalization have been explored in various forms.
Bousquet and Elisseeff (2002) proposed the stability of a learning algorithm as a tool for
analyzing generalization error. Wainwright (2006) analyzed the stability of marginal prob-
abilities in variational inference, identifying the relationship between stability and strong
convexity (similar to our work in London et al., 2013, 2014). He used this result to show that
an inconsistent estimator, which uses approximate inference during training, can asymptot-
ically yield lower regret (relative to the optimal Bayes least squares estimator) than using
the true model with approximate inference. Honorio (2011) showed that the Bayes error
rate of various graphical models is related to the stability of their log-likelihood functions
with respect to changes in the model parameters.

1.2 Our Contributions

Our primary contribution is a new PAC-Bayesian analysis of structured prediction, pro-
ducing generalization bounds that decrease when either the number of examples, m, or the
size of each example, n, increase. Under suitable conditions, our bounds can be as tight as
Õ (1/

√
mn). Our results apply to any composition of loss function and hypothesis class that

satisfies our local stability conditions, which includes a broad range of modeling regimes
used in practice. We also propose a novel view of PAC-Bayesian “derandomization,” based
on the principle of stability, which provides a general proof technique for converting a gen-
eralization bound for a randomized structured predictor into a bound for a deterministic
structured predictor.

As part of our analysis, we derive a new bound on the moment-generating function of
a locally stable functional. The tightness of this bound (hence, our generalization bounds)
hinges on a measure of the aggregate dependence between the random variables within each
example. Our bounds are meaningful when the dependence is sub-logarithmic in the number
of variables. We provide two examples of stochastic processes for which this condition holds.
These results, and their implications for measure concentration, are of independent interest.

We apply our PAC-Bayes bounds to several common learning scenarios, including max-
margin and soft-max training of (conditional) Markov random fields. To demonstrate the
benefit of local stability analysis, we also consider a specific generative process that induces
unbounded stability in certain predictors, given certain inputs. These examples suggest
several factors to be considered when modeling structured data, in order to obtain the fast
generalization rate: (1) templating is crucial; (2) the norm of the parameters contributes
to the stability of inference, and should be controlled via regularization; and (3) limiting
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local interactions in the model can improve stability, hence, generalization. All of these
considerations can be summarized by the classic tension between representational power
and overfitting, applied to the structured setting. Most importantly, these examples confirm
that generalization from limited training examples is indeed possible for many structured
prediction techniques used in practice.

1.3 Organization

The remainder of this paper is organized as follows. Section 2 introduces the notation used
throughout the paper and reviews some background in structured prediction, templated
Markov random fields, generalization error and PAC-Bayesian analysis. In Section 3, we
propose general properties that characterize the local stability of a generic functional (e.g.,
the composition of a loss function and hypothesis). In Section 4, we introduce the statis-
tical quantities and inequalities used in our analysis, as well as some examples of “nice”
dependence conditions. Section 5 presents our main results: new PAC-Bayes bounds for
structured prediction. We also propose a general proof technique for derandomizing the
bounds using stability. In Section 6, we apply our bounds to a number of common learning
scenarios. Specifically, we examine learning templated Markov random fields in the max-
margin and soft-max frameworks, under various assumptions about the data distribution.
Section 7 concludes our study with a discussion of the results and their implications for
practitioners of structured prediction.

2. Preliminaries

This section introduces the notation and background used in this paper. We begin with
notational conventions. We then formally define structured prediction and review some
background on templated Markov random fields, a general class of probabilistic graphical
models commonly used in structured prediction. Finally, we review the concept of general-
ization and discuss the PAC-Bayes framework, which we use to state our main results.

2.1 Notational Conventions

Let X ⊆ Rk denote a domain of observations, and let Y denote a finite set of discrete labels.
Let Z , X × Y denote the cross product of the two, representing input-output pairs.

Let Z , (Zi)
n
i=1 denote a set of n random variables, with joint distribution D on a

sample space Zn. We denote realizations of Z by z ∈ Zn. We use PrZ∼D{ · } to denote
the probability of an event over realizations of Z, distributed according to D. Similarly,
we use EZ∼D[ · ] to specify an expectation over Z. When it is clear from context which
variable(s) and distribution the probability (or expectation) is taken over, we may omit the
subscript notation. We will occasionally employ the shorthand D(S) to denote the measure
of a subset S ⊆ Zn under D; i.e., D(S) = PrZ∼D{Z ∈ S}. With a slight abuse of notation,
which should be clear from context, we also use D(Zi:j |E) to denote the distribution of
some subset of the variables, (Zi, . . . , Zj), conditioned on an event, E.

For a graph G , (V, E), with nodes V and edges E , we use |G| , |V|+ |E| to denote the
total number of nodes and edges in G.
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2.2 Structured Prediction

At its core, structured prediction (sometimes referred to as structured output prediction or
structured learning) is about learning concepts that have a natural internal structure. In
the framework we consider, each example of a concept contains n interdependent random
variables, Z , (Zi)

n
i=1, with joint distribution D. Each Zi , (Xi, Yi) is an input-output

pair, taking values in Z = X ×Y.2 Each example is associated with an implicit dependency
graph, G , (V, E), where V , {1, . . . , n} indexes Z, and E captures the dependencies in
Z. Unless otherwise stated, assume that the edge structure is given a priori. The edge
structure may be obvious from context, or may be inferred beforehand. To simplify our
analysis, we assume that each example uses the same structure.

The prediction task is to infer Y , (Yi)
n
i=1, conditioned on X , (Xi)

n
i=1. A hypoth-

esis, h, maps X n to Yn, using some internal parametric representation that incorporates
the structure of the problem (an example of which is given in Section 2.2.1). We are in-
terested in hypotheses that perform joint reasoning over all variables simultaneously. We
therefore assume that computing h(X) implicitly involves a global optimization that does
not decompose over the outputs, due to dependencies.

2.2.1 Markov Random Fields

To better understand structured prediction, it will help to consider a specific hypothesis
class. One popular class is that of Markov random fields (MRFs), a broad family of undi-
rected graphical models that generalizes many models used in practice, such as relational
Markov networks (Taskar et al., 2002), conditional random fields (Lafferty et al., 2001), and
Markov logic networks (Richardson and Domingos, 2006). In this section, we review some
background on MRFs.

Recall that each example is associated with a dependency graph, G , (V, E). We
assume that the edge set is undirected. This does not limit the applicability of our analysis,
since there exists a straightforward conversion from directed models (Koller and Friedman,
2009). The parameters of an MRF are organized according to the cliques (i.e., complete
subgraphs), C, contained in G. For each clique, c ∈ C, we associate a real-valued potential
function, θc(y |x; w), parameterized by a vector of weights, w ∈ Rd, for some d ≥ 1. This
function indicates the score for Yc being in state yc, conditioned on the observation X = x.
The potentials define a log-linear conditional probability distribution,

p (Y = y |X = x; w) , exp

(∑
c∈C

θc(y |x; w)− Φ(x; w)

)
,

where

Φ(x; w) , ln
∑

y′∈Yn
exp

(∑
c∈C

θc(y
′ |x; w)

)
is a normalizing function known as the log-partition.

For convenience, we represent the label space, Y, by the set of |Y| standard basis (i.e.,
“one-hot”) vectors, e1, . . . , e|Y|. Thus, the joint state of a clique, c, is represented by a

2. To minimize bookkeeping, we have assumed a one-to-one correspondence between input and output
variables, and that the Zi variables have identical domains, but these assumptions can be relaxed.
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vector, yc =
⊗

i∈c yi, of length |Yc| , |Y||c|. With a slight abuse of notation, we overload

the potential functions so that θc(x; w) ∈ R|Yc| denotes a vector of potentials, and

θc(y |x; w) = θc(x; w) · yc.

Thus, with

θ(x; w) , (θc(x; w))c∈C and ŷ , (yc)c∈C ,

we have that ∑
c∈C

θc(y |x; w) = θ(x; w) · ŷ.

We refer to ŷ as the full representation of y.

The canonical inference problems for MRFs are maximum a posteriori (MAP) inference,
which computes the mode of the distribution,

arg max
y∈Yn

p (Y = y |X = x; w) ,

and marginal inference, which computes the marginal distribution of a subset of the vari-
ables. In general, both tasks are intractable—MAP inference is NP-hard and marginal
inference is #P-hard (Roth, 1996)—though there are some useful special cases for which
inference is tractable, and many approximation algorithms for the general case. In this
work, we assume that an efficient (approximate) inference algorithm is given.

2.2.2 Templating

An important property of the above construction is that the same vector of weights, w, is
used to parameterize all of the potential functions. One could imagine that w contains a
unique subvector, wc, for every clique. However, one could also bin the cliques by a set
of templates—such as singletons (nodes), pairs (edges) or triangles (hyperedges)—then use
the same weights for each template. This technique is alternatively referred to as templating
or parameter-tying.

With templating, one can define general inductive rules to reason about datasets of
arbitrary size and structure. Because of this flexibility, templating is used in many relational
models, such as relational Markov networks (Taskar et al., 2002), relational dependency
networks (Neville and Jensen, 2004), and Markov logic networks (Richardson and Domingos,
2006).

A templated model implicitly assumes that all groundings (i.e., instances) of a tem-
plate should be modeled identically, meaning location within the graph is irrelevant. A
non-templated model is location-aware and therefore has higher representational power.
However, without templating, the dimensionality of w scales with the number of cliques;
whereas, with templating, the dimensionality of w is constant. Thus, we find the classic
tension between representational power and overfitting. To mitigate overfitting, one must
restrict model complexity. Yet, too little expressivity will hamper predictive performance.
This consideration is critical to the application of our generalization bounds.

In practice, templated models typically consist of unary and pairwise templates. We
refer to these as pairwise models. Higher-order templates (i.e., cliques of three or more)
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can capture certain inductive rules that pairwise models cannot. For example, for a binary
relation r, the transitive closure r(A,B) ∧ r(B,C) =⇒ r(A,C) requires triadic templates.
Rules like this are sometimes used for link prediction and entity resolution. Of course, this
additional expressivity comes at a cost, as will become apparent later.

2.2.3 Defining the Potential Functions

In many applications of MRFs, the potentials are defined as multilinear functions of (w,x,y).
For example, assuming each node i has local observations xi ∈ X and label yi ∈ Y, we can
define a vector of local features,

fi(x,y) , xi ⊗ yi,

using the Kronecker product (since yi is a standard basis vector). Similarly, for each edge
{i, j} ∈ E , let

fij(x,y) ,
1

2

[
xi
xj

]
⊗ (yi ⊗ yj).

Here, we have defined the edge features using a concatenation of the local observations,
though this need not be the case. In general, the edge features can be arbitrary func-
tions of the observations, such as kernels or similarity functions. Or, we could eschew the
observations altogether and just use yi ⊗ yj , which is typical in practice.

The potential functions are then defined as weighted feature functions. For the following,
we will assume that the weights are templated, as described in Section 2.2.2. For each node,
we associate a set of singleton weights, ws ∈ Rds , and for each edge, a set of pairwise weights,
wp ∈ Rdp , where ds and dp denote the respective lengths of the node and edge features.
Then,

θi(y |x; w) , ws · fi(x,y) and θij(y |x; w) , wp · fij(x,y);

and, with

w ,

[
ws

wp

]
and f(x,y) ,

[ ∑
i∈V fi(x,y)∑

{i,j}∈E fij(x,y)

]
,

we have that

θ(x; w) · ŷ = w · f(x,y).

In Section 6, we apply our generalization bounds to the above construction of a tem-
plated MRF, consisting of singleton and pairwise linear potentials (with or without edge
features).

2.3 Learning and Generalization

Given a set of m training examples, Ẑ , (Z(l))ml=1, drawn independently and identically
from D, the goal of learning is to produce a hypothesis from a specified class, denoted
H ⊆ {h : X n → Yn}. We do not assume that the data is generated according to some
target concept in H, so H may be misspecified.

Hypotheses are evaluated using a loss function of the form L : H × Zn → R+, which
may have access to the internal representation of the hypothesis. For a given loss function,
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L, let L(h) , EZ∼D[L(h,Z)] denote the expected loss over realizations of an example. This
quantity, known as the risk, corresponds to the error h will incur on future predictions. Let

L̂(h, Ẑ) ,
1

m

m∑
l=1

L(h,Z(l))

denote the average loss on the training set, Ẑ. Most learning algorithms minimize (an upper
bound on) L̂(h, Ẑ), since it is an empirical estimate of the risk.

The goal of our analysis is to upper-bound the difference of the expected and empirical
risks, L(h) − L̂(h, Ẑ)—which we refer to as the generalization error3—thereby yielding
an upper bound on the risk. As is typically done in generalization analysis, we show
that, with high probability over draws of a training set, the generalization error is upper-
bounded by a function of certain properties of the domain, hypothesis class and learning
algorithm, which decreases as the (effective) size of the training set increases. Note that
small generalization error does not necessarily imply small risk, since the empirical risk may
be large. Nonetheless, small generalization error implies that the empirical risk will be a
good estimate of the risk, thus motivating empirical risk minimization.

2.3.1 PAC-Bayes

PAC-Bayes is a framework for analyzing the risk of a randomized predictor. One begins by
fixing a prior distribution, P, on the hypothesis space, H. Then, given some training data,
one constructs a posterior distribution, Q, the parameters of which are typically learned
from the training data. For example, when H is a subset of Euclidean space, a common
PAC-Bayesian construction is a standard multivariate Gaussian prior with an isotropic
Gaussian posterior, centered at the learned hypothesis. To make a prediction on an input,
x, one draws a hypothesis, h ∈ H, according to Q, then computes h(x).

Since prediction is randomized, the risk quantities are defined over draws of h, which
we denote by

L̂(Q, Ẑ) , E
h∼Q

[
L̂(h, Ẑ)

]
and L(Q) , E

h∼Q

[
L(h)

]
.

The goal of PAC-Bayesian analysis is to upper-bound some measure of discrepancy between
these quantities. The discrepancy is sometimes defined as the KL divergence between error
rates, or the squared difference. In this work, we upper-bound the difference, L(Q)−L̂(Q, Ẑ),
which is the PAC-Bayesian analog of the generalization error.

3. Stability

A key component of our analysis is the stability of the loss function. In this section, we
introduce some definitions of stability and relate them to other forms found in the literature.
Broadly speaking, stability ensures that changes to the input result in proportional changes
in the output. In structured prediction, where inference is typically a global optimization
over many interdependent variables, changing any single observation may affect many of
the inferred values. The structured loss functions we consider implicitly require some form

3. Our definition of generalization error differs from some literature, in which the term is used to refer to
the expected loss.
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of joint inference; therefore, their stability is nontrivial. In this chapter, we introduce some
definitions of stability and relate them to other forms found in the literature.

The following definitions will make use of the Hamming distance. For vectors z, z′ ∈ Zn,
denote their Hamming distance by

Dh(z, z′) ,
n∑
i=1

1{zi 6= z′i}.

3.1 Uniform and Local Stability

Throughout this section, let F , {ϕ : Zn → R} denote an arbitrary class of functionals; e.g.,
F could be a structured loss function composed with a class of hypotheses. The definitions
in this section describe notions of stability that hold either uniformly over the domain of
F (for each ϕ ∈ F), or locally over some subset of the domain (for some subset of F).

Definition 1. We say that a function ϕ ∈ F is β-uniformly stable if, for any inputs
z, z′ ∈ Zn, ∣∣ϕ(z)− ϕ(z′)

∣∣ ≤ β Dh(z, z′). (1)

Similarly, the class F is β-uniformly stable if every ϕ ∈ F is β-uniformly stable.

Equation 1 means that the change in the output should be proportional to the Hamming
distance between the inputs. Put differently, a uniformly stable function is Lipschitz under
the Hamming norm.

Uniform stability over the entire domain can be a strong requirement. Sometimes,
stability only holds for a certain subset of inputs, such as points contained in a Euclidean
ball of a certain radius. We refer to the set of inputs for which stability holds as the
“good” set; all other inputs are “bad.” The precise meaning of good and bad depends on
the hypothesis class. Given some delineation of good and bad, we obtain the following
localized notion of stability.

Definition 2. For a subset BZ ⊆ Zn, we say that a function ϕ ∈ F is (β,BZ)-locally stable
if Equation 1 holds for all z, z′ /∈ BZ . The class F is (β,BZ)-locally stable if every ϕ ∈ F
is (β,BZ)-locally stable.

Definition 2 has an alternate probabilistic interpretation. If D is a distribution on Zn,
then Equation 1 holds with some probability over draws of z, z′ ∼ D. If the bad set BZ
has measure D(BZ) ≤ ν, then (β,BZ)-local stability is similar to, though slightly weaker
than, the strongly difference-bounded property proposed by Kutin (2002). If ϕ is strongly
difference-bounded, then Equation 1 must hold for any z /∈ BZ and z′ ∈ Zn (which could
be in BZ). All functions that are strongly difference-bounded are locally stable, but the
converse is not true.

The notion of probabilistic stability can be extended to distributions on the function
class. For any stability parameter β (and bad inputs BZ), the function class is partitioned
into functions that satisfy Equation 1, and those that do not. Therefore, for any distribution
Q on F , uniform (or local) stability holds with some probability over draws of ϕ ∼ Q. This
idea motivates the following definition.
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Definition 3. Fix some β ≥ 0 and BZ ⊆ Zn, and let BF ⊆ F denote the subset of functions
that are not (β,BZ)-locally stable. We say that a distribution Q on F is (β,BZ , η)-locally
stable if Q(BF ) ≤ η.

Note the taxonomical relationship between these definitions. Definition 1 is the strongest
condition, since it implies Definitions 2 and 3. Clearly, if F is β-uniformly stable, then it is
(β, ∅)-locally and (β, ∅, 0)-locally stable. Definition 2 extends Definition 1 by accommodat-
ing broader domains. Definition 3 extends this even further, by accommodating classes in
which only some functions satisfy local stability.

Definition 3 is particularly interesting in the PAC-Bayes framework, in which a predictor
is selected at random according to a (learned) posterior distribution. With prior knowledge
of the hypothesis class (and data distribution), a posterior can be constructed so as to
place low mass on predictors that do not satisfy uniform or local stability. As we show in
Section 6, this technique lets us relax certain restrictions on the hypothesis class.

Stability measures the change in the output relative to the change in the inputs. A
related property is that the change in the output is bounded—i.e., the function has bounded
range.

Definition 4. We say that ϕ ∈ F is α-uniformly range-bounded if, for any z, z′ ∈ Zn,∣∣ϕ(z)− ϕ(z′)
∣∣ ≤ α.

Range-boundedness is implied by stability, but the range constant, α, may be smaller than
the upper bound implied by stability. Our analysis uses range-boundedness as a fall-back
property when “good” stability does not hold.

3.2 Connections to Other Notions of Stability

In the learning theory literature, the word “stability” has traditionally been associated with
a learning algorithm, rather than an inference algorithm. A learning algorithm is said to be
stable with respect to a loss function if the loss of a learned hypothesis varies by a bounded
amount upon replacing (or deleting) examples from the training set. This property has
been used to derive generalization bounds (e.g., Bousquet and Elisseeff, 2002), similar to
the way we use stability of inference. The key idea is that stability enables concentration
of measure, which is central to generalization. That said, learning stability is distinct from
inference stability, and neither property implies the other. Indeed, a learning algorithm
might return hypotheses with drastically different losses for slightly different training sets,
even if each hypothesis, composed with the loss function, is uniformly stable. Likewise, a
stable learning algorithm might produce hypotheses with unstable loss.

Our definition of stability should also be contrasted with sensitivity analysis. Since the
terms are often used interchangeably, we distinguish the two as follows: stability measures
the amount of change induced in the output of a function upon perturbing its input within
a certain range, and sensitivity analysis measures the amount of perturbation one can apply
to the input such that its output remains within a certain range. By these definitions, one
is the dual of the other. In the context of probabilistic inference, sensitivity analysis has
been used to determine the maximum amount one can perturb the model parameters (or
evidence) such that the likelihood of a query stays within a given tolerance, or such that
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the most likely assignment does not change (Chan and Darwiche, 2005, 2006). Stability
measures how much the likelihood or most likely assignment changes.

Our first generalization bounds for structured prediction (London et al., 2013) crucially
relied on a property we referred to as uniform collective stability. A class of vector-valued
functions, G ,

{
g : Zn → RN

}
, has β-uniform collective stability if, for any g ∈ G, and any

z, z′ ∈ Zn, ∥∥g(z)− g(z′)
∥∥

1
≤ β Dh(z, z′).

We later relaxed this requirement to various non-uniform definitions of collective stability
(London et al., 2014). Because collective stability implicitly involves the maximizing argu-
ment of a high-dimensional global optimization (i.e., a vector of predictions), we restricted
our previous analyses to predictors with strongly convex inference objectives. Strong con-
vexity let us bound the collective stability of a predictor, hence, the stability of its output
composed with an admissible4 loss function. Our new definitions involve the output of a
functional (i.e., a scalar-valued function of multiple inputs), which essentially means that we
are interested in the stability of the loss, instead of the collective stability of the predictions.
In our new analysis, the loss function has access to the model and may use it for inference.
However, the loss function may not require the same inference used for prediction. (For
example, the losses considered in Section 6 use the maximum of the inference objective
instead of the maximizing argument.) This framework lets us analyze a broad range of
structured losses, without requiring strongly convex inference. Further, it can be shown
that any predictor with “good” collective stability (such as one with a strongly convex in-
ference objective), composed with an admissible loss function, satisfies our new definitions
of stability. Therefore, our new definitions are strictly more general than collective stability.

4. Statistical Tools

Reasoning about the concentration of functions of dependent random variables requires
sophisticated statistical machinery. In this section, we review some supporting definitions
and introduce a quantity to summarize the amount of dependence in the data distribution.
We use this quantity in a new moment-generating function inequality for locally stable
functions of dependent random variables. We then provide some example conditions under
which dependence is suitably bounded, thereby supporting improved generalization bounds.

4.1 Quantifying Dependence

For probability measures P and Q on a σ-algebra (i.e., event space) Σ, the total variation
distance is

‖P−Q‖tv , sup
A∈Σ
|P(A)−Q(A)| .

As a special case, when the sample space, Ω, is finite,

‖P−Q‖tv =
1

2

∑
ω∈Ω

|P(ω)−Q(ω)| .

4. See (London et al., 2013, 2014) for a precise definition of loss admissibility.
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Let π be a permutation of [n] , {1, . . . , n}, where π(i) denotes the ith element in the
sequence and π(i : j) denotes a subsequence of elements i through j. Used to index variables
Z , (Zi)

n
i=1, denote by Zπ(i) the ith variable in the permutation and Zπ(i:j) the subsequence

(Zπ(i), . . . , Zπ(j)).

Definition 5. We say that a sequence of permutations, π , (πi)
n
i=1, is a filtration if, for

i = 1, . . . , n− 1,
πi(1 : i) = πi+1(1 : i).

Let Π(n) denote the set of all filtrations for a given n.

The following data structure quantifies the dependence between subsets of variables
defined by a filtration.

Definition 6. Let Z , (Zi)
n
i=1 denote random variables with joint distribution D on Zn.

Fix a filtration, π ∈ Π(n), and a set of inputs, BZ ⊆ Zn. Let B denote the event Z /∈ BZ .
For i ∈ [n], let Z iπ,B denote the subset of Z i such that, for every z ∈ Z iπ,B , Zπi(1:i) = z is

consistent with B. With a slight abuse of notation, for z ∈ Z i−1
π,B , let Z iπ,B(z) denote the

subset of Z such that, for any z ∈ Z iπ,B(z), Zπi(1:i) = (z, z) is consistent with B. Then, for

i ∈ [n], j > i, z ∈ Zi−1
π,B and z, z′ ∈ Ziπ,B(z), we define the ϑ-mixing coefficients5 as

ϑπij(z, z, z
′) ,

∥∥D (Zπi(j:n) | B,Zπi(1:i) = (z, z)
)
− D

(
Zπi(j:n) | B,Zπi(1:i) = (z, z′)

)∥∥
tv
.

We use these to define the upper-triangular dependency matrix, Γπ
B ∈ Rn×n, with entries

γπij ,


1 for i = j,

supz∈Zi−1

π,B
, z,z′∈Zi

π,B
(z) ϑ

π
ij(z, z, z

′) for i < j,

0 for i > j.

When BZ = ∅, we simply omit the subscript notation.

Each ϑ-mixing coefficient measures the influence of some variable, Zπi(i), on some subset,
Zπi(j:n), given some assignment to the variables, Zπi(1:i−1), that preceded Zπi(i) in the
filtration; γπij measures the maximal influence of Zπi(i) conditioned on any assignment to
Zπi(1:i−1). Thus, to summarize the amount of dependence in the data distribution, we use
the induced matrix infinity norm of Γπ

B , denoted

∥∥Γπ
B

∥∥
∞ , max

i∈[n]

n∑
j=1

∣∣γπij∣∣ ,
which effectively measures the maximal aggregate influence of any single variable, given
the filtration. Observe that, if (Z1, . . . , Zn) are mutually independent, then Γπ

B is the
identity matrix and

∥∥Γπ
B

∥∥
∞ = 1. At the other extreme, if (Z1, . . . , Zn) are deterministically

dependent, then the top row of Γπ
B is n, so

∥∥Γπ
B

∥∥
∞ = n.

5. The ϑ-mixing coefficients were introduced by Kontorovich and Ramanan (2008) as η-mixing and are
related to the maximal coupling coefficients used by Chazottes et al. (2007).
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Viewed through the lens of stability,
∥∥Γπ
B

∥∥
∞ can be interpreted as measuring the sta-

bility of the data distribution. From this perspective, distributions with strong, long-range
dependencies (when

∥∥Γπ
B

∥∥
∞ is big) are unstable, whereas distributions with weak, local-

ized dependence (when
∥∥Γπ
B

∥∥
∞ is small) are stable. Intuitively, the same can be said for

inference in MRFs; potentials that emphasize interactions between adjacent variables cre-
ate long-range dependencies, which causes instability, whereas potentials that emphasize
local signal make adjacent variables more independent, which promotes stability. Thus,
dependence and stability are two sides of the same coin.

The filtration used to define Γπ
B can have a strong impact on

∥∥Γπ
B

∥∥
∞. Since we do not

assume that Z corresponds to a temporal process, there may not be an obvious ordering of
the variables. However, the types of stochastic processes we are interested in are typically
endowed with a topology. If the topology is a graph, the filtration can be determined by
traversing the graph. For instance, for a Markov tree process, Kontorovich (2012) ordered
the variables via a breadth-first traversal from the root; for an Ising model on a lattice,
Chazottes et al. (2007) ordered the variables with a spiraling traversal from the origin.
(Both of these examples used a static permutation of the variables, not a filtration.) If
the filtration is determined by graph traversal, the ϑ-mixing coefficients can be viewed as
measuring the strength of dependence as a function of graph distance. Viewed as such,∥∥Γπ
B

∥∥
∞ effectively captures the slowest decay of dependence along any traversal from a

given set of traversals.

The aforementioned works (Kontorovich, 2012; Chazottes et al., 2007) showed that,
for Markov trees and grids, under suitable contraction or temperature regimes,

∥∥Γπ
B

∥∥
∞ is

bounded independently of n (i.e.,
∥∥Γπ
B

∥∥
∞ = O(1)). By exploiting filtrations, we can show

that the same holds for Markov random fields of any bounded-degree structure, provided
the distribution exhibits suitable mixing. We discuss these conditions in Section 4.3.

4.2 A Moment-Generating Function Inequality for Local Stability

With the supporting definitions in mind, we now present a new moment-generating function
inequality for locally stable functions of dependent random variables. The proof is provided
in Appendix A.3.

Proposition 1. Let Z , (Zi)
n
i=1 denote random variables with joint distribution D on Zn.

Fix a set of “bad” inputs, BZ ⊆ Zn, and let B denote the event Z /∈ BZ . Let ϕ : Zn → R
denote a measurable function with (β,BZ)-local stability. Then, for any τ ∈ R and filtration
π ∈ Π(n),

E
Z∼D

[
eτ(ϕ(Z)−E[ϕ(Z) | B]) | B

]
≤ exp

(
τ2

8
nβ2

∥∥Γπ
B

∥∥2

∞

)
.

This bound yields a novel concentration inequality for uniformly stable functions of depen-
dent random variables, which we discuss in Appendix A.4. Though we will not use this
corollary in our analysis, it may be of independent interest.

Proposition 1 builds on work by Samson (2000), Chazottes et al. (2007) and Kontorovich
and Ramanan (2008). Our analysis differs from theirs in that we accommodate functions
that are not uniformly stable. In this respect, our analysis is similar to that of Kutin (2002)
and Vu (2002), though these works assume independence between variables. Because we
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allow interdependence—as well as other technical challenges, related to our definitions of
local stability—we do not use the same proof techniques as the aforementioned works.

4.3 Bounded Dependence Conditions

The infinity norm of the dependency matrix has a trivial upper bound,
∥∥Γπ
B

∥∥
∞ ≤ n. How-

ever, we are interested in bounds that are sub-logarithmic in (or, even better, independent
of) n. In this section, we describe some general settings in which

∥∥Γπ
B

∥∥
∞ has a nontrivial

upper bound.
For the remainder of this section, let Z , (Zi)

n
i=1 denote random variables with joint

distribution D on Zn. Assume that D is associated with a graph, G , (V, E), where V , [n]
indexes Z.

We use the following notion of distance-based dependence. For simplicity of exposition,
we assume that BZ = ∅, so we can omit B from the following notation.

Definition 7. For any two subsets, S, T ⊆ V, we define their graph distance, Dg(S, T ), as
the length of the shortest path from any node in S to any node in T . We then define the
distance-based ϑ-mixing coefficients as

ϑ(k) , sup
S⊆V, i∈S

T ⊆V\S:Dg(i,T )≥k
z∈Z|S|−1, z,z′∈Z

∥∥D (ZT |ZS = z, Zi = z)− D
(
ZT |ZS = z, Zi = z′

)∥∥
tv
,

where ϑ(0) , 1.

The distance-based ϑ-mixing coefficients upper-bound the maximum influence exerted
by any subset of the variables on any other subset that is separated by graph distance at
least k. The sequence (ϑ(0), ϑ(1), ϑ(2), . . .) roughly measures how dependence decays with
graph distance. Note that ϑ(k) uniformly upper-bounds ϑπij when Dg(πi(i), πi(j : n)) ≥ k.
Therefore, for each upper-triangular entry of Γπ, we have that

γπij ≤ ϑ (Dg (πi(i), πi(j : n))) .

Using the distance-based ϑ-mixing coefficients, we now show that, for certain Markov
random fields, it is possible to upper-bound

∥∥Γπ
B

∥∥
∞ independently of n.

Proposition 2. Suppose D is defined by an MRF, such that its graph, G, has maximum
degree ∆G. For any positive constant ε > 0, if D admits a distance-based ϑ-mixing sequence
such that, for all k ≥ 1, ϑ(k) ≤ (∆G + ε)−k, then there exists a filtration π such that

‖Γπ‖∞ ≤ 1 + ∆G/ε.

The proof is provided in Appendix A.5.
Uniformly geometric distance-based ϑ-mixing may seem like a restrictive condition.

However, our analysis is overly pessimistic, in that it ignores the structure of the MRF
beyond simply the maximum degree of the graph. Further, it does not take advantage of
the actual conditional independencies present in the distribution. Nevertheless, there is a
natural interpretation of the above conditions that follows from considering the mixing co-
efficients at distance 1: for the immediate neighbors of a node—i.e., its Markov blanket—its
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ϑ-mixing coefficient must be less than 1/∆G. This loosely means that the combination of all
incoming influence must be less than 1, implying that there is sufficiently strong influence
from local observations.

Another important setting is when the graph is a chain. Chain-structured stochastic
processes (usually temporal) under various mixing assumptions have been well-studied (see
Bradley, 2005 for a comprehensive survey). It can be shown that any contracting Markov
chain has ‖Γπ‖∞ = O(1) (Kontorovich, 2012). Here, we provide an alternate condition,
using distance-based ϑ-mixing, under which the dependency matrix of a Markov chain has
suitably low norm. The key property of a chain graph is that the number of nodes at
distance k from any starting node is constant. We can therefore relax the assumption of
geometric decay used in the previous result.

Proposition 3. Suppose D is an undirected Markov chain (i.e., chain-structured MRF)
of length n. For any constants ε > 0 and p ≥ 1, if D admits a distance-based ϑ-mixing
sequence such that, for all k ≥ 1, ϑ(k) ≤ εk−p, then there exists a filtration, π, such that

‖Γπ‖∞ ≤

{
1 + ε (1 + ln(n− 1)) if p = 1,

1 + ε ζ(p) if p > 1,

where ζ(p) ,
∑∞

j=1 j
−p is the Riemann zeta function.

The proof is provided in Appendix A.6.
For p > 1, the Riemann function converges to a constant. For example, ζ(2) = π2/6 ≈

1.645. However, even p = 1 yields a sufficiently low growth rate. In the following section, we
prove generalization bounds of the form O (‖Γπ‖∞ /

√
mn), which still converges if ‖Γπ‖∞ =

O(lnn), albeit at a slower rate.

5. PAC-Bayes Bounds

We now present some new PAC-Bayes generalization bounds using the stability definitions
from Section 3. The first theorem is stated for a given stability parameter, β. We then
generalize this result to hold for all β simultaneously, meaning β can depend on the posterior.
We conclude this section with a general technique for derandomizing the bounds based on
stability.

It will help to begin with a high-level sketch of the analysis, which we specialize to
various settings in Sections 5.1 and 5.2. It will help to view the composition of the loss
function, L, and the hypothesis class, H, as a family of functions, L◦H = {L(h, ·) : h ∈ H}.
If Q is a distribution on H, it is also a distribution on L ◦ H. Each member of L ◦ H is a
random function, determined by the draw of h ∼ Q. Further, when L(h, ·) is composed with
a training set Ẑ ∼ Dm in L̂(h, ·), the generalization error, L(h)−L̂(h, Ẑ), becomes a centered
random variable. Part of our analysis involves bounding the moment-generating function
of this random variable, and to do so requires the notions of stability from Section 3. The
stability of L(h, ·) is determined by h, so the “bad” members of L ◦H are in fact the “bad”
hypotheses (for the given loss function).

Let Ẑ , (Z(l))ml=1 denote a training set of m structured examples, distributed according
to Dm. Fix some β ≥ 0 and a set of bad inputs BZ , with measure ν , D(BZ). Implicitly, the
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pair (β,BZ) fixes a set of hypotheses BH ⊆ H for which L(h, ·) does not satisfy Equation 1
with β′ , β/n and BZ . For the time being, BH is independent of Q. Fix a prior P and
posterior Q on H. (We will later consider all posteriors.) We define a convenience function,

φ̃(h, Ẑ) ,

{
EZ∼D

[
L(h,Z) | B

]
− L̂(h, Ẑ) if h /∈ BH,

0 otherwise,

where B denotes the event Z /∈ BZ . First, for any uniformly bounded random variable, with
|X| ≤ b, and some event, E,

E [X] = E [X 1{E}] + E [X 1{¬E}] ≤ bPr{E}+ E [X 1{¬E}] .

We use this identity to show that, if L ◦ H is α-uniformly range-bounded, and Q is
(β/n,BZ , η)-locally stable, then

L(Q)− L̂(Q, Ẑ) ≤ αη + αν + E
h∼Q

[
φ̃(h, Ẑ)

]
.

To bound the Eh∼Q
[
φ̃(h, Ẑ)

]
, we use Donsker and Varadhan’s (1975) change of measure

inequality.

Lemma 1. For any measurable function ϕ : Ω → R, and any two distributions, P and Q,
on Ω,

E
ω∼P

[ϕ(ω)] ≤ Dkl(P‖Q) + ln E
ω∼Q

[
eϕ(ω)

]
.

(McAllester (2003) provides a straightforward proof.) Using Lemma 1, for any free param-
eter u ≥ 0, we have that

E
h∼Q

[
φ̃(h, Ẑ)

]
≤ 1

u

(
Dkl(Q‖P) + ln E

h∼P

[
euφ̃(h,Ẑ)

])
.

Combining the above inequalities yields

L(Q)− L̂(Q, Ẑ) ≤ αη + αν +
1

u

(
Dkl(Q‖P) + ln E

h∼P

[
euφ̃(h,Ẑ)

])
.

The remainder of the analysis concerns how to bound Eh∼P
[
euφ̃(h,Ẑ)

]
and how to optimize

u. For the first task, we combine Markov’s inequality with the moment-generating function
bound from Section 4.2. Optimizing u takes some care, since we would like the bounds to
hold simultaneously for all posteriors. We therefore adopt a discretization technique (Seldin
et al., 2012) that approximately optimizes the bound for all posteriors. We use a similar
technique to obtain bounds that hold for all β.

5.1 Fixed Stability Bounds

In the following theorem, we derive a new PAC-Bayes bound for posteriors with local
stability, with β fixed. Fixing β means that the set of “bad” hypotheses is determined by
the characteristics of the hypothesis class independently of the posterior.
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Theorem 1. Fix m ≥ 1, n ≥ 1, π ∈ Π(n), δ ∈ (0, 1), α ≥ 0 and β ≥ 0. Fix a distribution,
D, on Zn. Fix a set of bad inputs, BZ , with ν , D(BZ). Let Γπ

B denote the dependency
matrix induced by D, π and BZ . Fix a prior, P, on a hypothesis class, H. Fix a loss
function, L, such that L ◦ H is α-uniformly range-bounded. Then, with probability at least
1 − δ −mν over realizations of a training set, Ẑ , (Z(l))ml=1, drawn according to Dm, the

following hold: 1) for all l ∈ [m], Z(l) /∈ BZ ; 2) for all η ∈ [0, 1] and posteriors Q with
(β/n,BZ , η)-local stability,

L(Q) ≤ L̂(Q, Ẑ) + α(η + ν) + 2β
∥∥Γπ
B

∥∥
∞

√
Dkl(Q‖P) + ln 2

δ

2mn
. (2)

To interpret the bound, suppose α = O(1), β = O(1), and that the data distribution is
weakly dependent, with ‖Γπ‖∞ = O(1). We would then have that the generalization error
decreases at a rate of O

(
η + ν + (mn)−1/2

)
. Since η is a function of the posterior, we can

reasonably assume that η = O
(
(mn)−1/2

)
. (Section 6 provides examples of this.) However,

while ν may be proportional to n, it is unreasonable to believe that ν will decrease with m,
since D is almost certainly agnostic to the number of training examples. Thus, Theorem 1
is interesting when either ν is negligible, or when m is a small constant.

It can be shown that any hypothesis class with collective stability, composed with a
suitable loss function, satisfies the conditions of the bound. Thus, Theorem 1 is strictly
more general than our prior PAC-Bayes bounds (London et al., 2014). Moreover, Theorem 1
easily applies to compositions with uniform stability, since Q(BH) = 0 for all posteriors.
This insight yields the following corollary.

Corollary 1. Suppose L◦H is (β/n)-uniformly stable. Then, with probability at least 1− δ
over realizations of Ẑ, for all Q,

L(Q) ≤ L̂(Q, Ẑ) + 2β ‖Γπ‖∞

√
Dkl(Q‖P) + ln 2

δ

2mn
. (3)

As we show in Section 6.1.2, Corollary 1 is useful when the hypothesis class and instance
space are uniformly bounded. Even when this property does not hold, we obtain an identical
bound for all posteriors with (β/n, ∅, 0)-local stability, meaning the support of the posterior
is (β/n)-uniformly stable. However, this condition is less useful, since it is assumed that the
posterior construction puts nonzero density on a learned hypothesis, which may not satisfy
uniform stability for a fixed β.

It is worth noting that, if the hypothesis class does not use joint inference—for ex-
ample, if a global prediction, h(X), is in fact a set of independent, local predictions,
(h(X1), . . . , h(Xn))—and the loss function decomposes over the labels, then uniform stabil-
ity is trivially satisfied. In this case, Corollary 1 produces a PAC-Bayes bound for learning
traditional predictors from interdependent data. If we further have that (Z1, . . . , Zn) are
independent and identically distributed (i.i.d.)—for instance, if they represent “micro ex-
amples” drawn independently from some target distribution—then Corollary 1 reduces to
standard PAC-Bayes bounds for learning from i.i.d. data (e.g., McAllester, 1999).

We now prove Theorem 1.
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Proof (Theorem 1) We begin by defining two convenience functions,

φ(h, Ẑ) , L(h)− L̂(h, Ẑ) (4)

and φ̃(h, Ẑ) ,

{
EZ∼D

[
L(h,Z) | B

]
− L̂(h, Ẑ) if h /∈ BH,

0 otherwise,
(5)

If L ◦ H is α-uniformly range-bounded (Definition 4), then, for any h ∈ H,

φ(h, Ẑ) =
1

m

m∑
l=1

L(h)− L(h,Z(l))

≤ 1

m

m∑
l=1

sup
z∈Zn

∣∣∣L(h, z)− L(h,Z(l))
∣∣∣

≤ 1

m

m∑
l=1

α = α. (6)

It follows that

φ(h, Ẑ) = E
Z∼D

[
L(h,Z)− L̂(h, Ẑ)

]
= E

Z∼D

[(
L(h,Z)− L̂(h, Ẑ)

)
1{Z /∈ BZ}

]
+ E

Z∼D

[(
L(h,Z)− L̂(h, Ẑ)

)
1{Z ∈ BZ}

]
≤ E

Z∼D

[(
L(h,Z)− L̂(h, Ẑ)

)
1{Z /∈ BZ}

]
+ α E

Z∼D
[1{Z ∈ BZ}]

≤ E
Z∼D

[(
L(h,Z)− L̂(h, Ẑ)

)
1{Z /∈ BZ}

]
+ αν

= Pr
Z∼D
{Z /∈ BZ}

(
E

Z∼D

[
L(h,Z) | B

]
− L̂(h, Ẑ)

)
+ αν

≤ E
Z∼D

[
L(h,Z) | B

]
− L̂(h, Ẑ) + αν. (7)

Moreover, for any posterior Q with (β/n,BZ , η)-local stability,

L(Q)− L̂(Q, Ẑ) = E
h∼Q

[
φ(h, Ẑ)

]
= E

h∼Q

[
φ(h, Ẑ)1{h ∈ BH}

]
+ E
h∼Q

[
φ(h, Ẑ)1{h /∈ BH}

]
≤ α E

h∼Q
[1{h ∈ BH}] + E

h∼Q

[
φ(h, Ẑ)1{h /∈ BH}

]
≤ αη + E

h∼Q

[
φ(h, Ẑ)1{h /∈ BH}

]
≤ αη + αν + E

h∼Q

[
φ̃(h, Ẑ)

]
. (8)

Then, for any u ∈ R, using Lemma 1, we have that

L(Q)− L̂(Q, Ẑ) ≤ αη + αν +
1

u
E
h∼Q

[
u φ̃(h, Ẑ)

]
≤ αη + αν +

1

u

(
Dkl(Q‖P) + ln E

h∼P

[
euφ̃(h,Ẑ)

])
. (9)
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Since u cannot depend on (η,Q), we define it in terms of fixed quantities. For j =
0, 1, 2, . . ., let δj , δ2−(j+1), let

uj , 2j

√√√√ 8mn ln 2
δ

β2
∥∥Γπ
B

∥∥2

∞

, (10)

and define an event,

Ej , 1

{
E
h∼P

[
euj φ̃(h,Ẑ)

]
≥ 1

δj
exp

(
u2
jβ

2
∥∥Γπ
B

∥∥2

∞
8mn

)}
. (11)

Note that uj and Ej are independent of (η,Q), since β (hence, BH) is fixed. Let E ,
⋃∞
j=0Ej

denote the event that any Ej occurs. We also define an event

B ,
m⋃
l=1

1
{

Z(l) ∈ BZ
}
, (12)

which indicates that at least one of the training examples is “bad.” Using the law of total
probability and the union bound, we then have that

Pr
Ẑ∼Dm

{B ∪ E} = Pr
Ẑ∼Dm

{B}+ Pr
Ẑ∼Dm

{E ∩ ¬B}

≤ Pr
Ẑ∼Dm

{B}+ Pr
Ẑ∼Dm

{E | ¬B}

≤
m∑
l=1

Pr
Z(l)∼D

{Z(l) ∈ BZ}+
∞∑
j=0

Pr
Ẑ∼Dm

{Ej | ¬B}

≤ mν +
∞∑
j=0

Pr
Ẑ∼Dm

{Ej | ¬B}. (13)

The last inequality follows from the definition of ν. Then, using Markov’s inequality, and
rearranging the expectations, we have that

Pr
Ẑ∼Dm

{Ej | ¬B} ≤ δj exp

(
−
u2
jβ

2
∥∥Γπ
B

∥∥2

∞
8mn

)
E
h∼P

E
Ẑ∼Dm

[
euj φ̃(h,Ẑ) | ¬B

]
. (14)

Let

ϕ(h,Z) ,

{
1
m

(
EZ′∼D

[
L(h,Z′) | B

]
− L(h,Z)

)
if h /∈ BH,

0 otherwise,
(15)
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and note that φ̃(h, Ẑ) =
∑m

l=1 ϕ(h,Z(l)). Then, since Z(1), . . . ,Z(m) are independent and

identically distributed, we can write the inner expectation over Ẑ as

E
Ẑ∼Dm

[
euj φ̃(h,Ẑ) | ¬B

]
=

m∏
l=1

E
Z(l)∼D

[
eujϕ(h,Z(l)) | ¬B

]
=

m∏
l=1

E
Z(l)∼D

[
eujϕ(h,Z(l)) |Z(l) /∈ BZ

]
=

m∏
l=1

E
Z(l)∼D

[
eujϕ(h,Z(l)) | B

]
. (16)

By construction, ϕ(h, ·) outputs zero whenever h ∈ BH. In these cases, ϕ(h, ·) trivially
satisfies uniform stability, which implies local stability. Further, if Q is (β/n,BZ , η)-locally
stable, then every L(h, ·) : h /∈ BH is (β/n,BZ)-locally stable, and it is easily verified that
ϕ(h, ·) : h /∈ BH is (β/(mn),BZ)-locally stable. Thus, ϕ(h, ·) : h ∈ H is (β/(mn),BZ)-
locally stable. Since EZ∼D[ϕ(h,Z) | B] = 0, we therefore apply Proposition 1 and have, for
all h ∈ H,

E
Z(l)∼D

[
eujϕ(h,Z(l)) | B

]
≤ exp

(
u2
jβ

2
∥∥Γπ
B

∥∥2

∞
8m2n

)
. (17)

Combining Equations 14, 16 and 17, we have that

Pr
Ẑ∼Dm

{Ej | ¬B} ≤ δj exp

(
−
u2
jβ

2
∥∥Γπ
B

∥∥2

∞
8mn

)
E
h∼P

[
m∏
l=1

E
Z(l)∼D

[
eujϕ(h,Z(l)) | B

]]

≤ δj exp

(
−
u2
jβ

2
∥∥Γπ
B

∥∥2

∞
8mn

)
E
h∼P

[
m∏
l=1

exp

(
u2
jβ

2
∥∥Γπ
B

∥∥2

∞
8m2n

)]

= δj exp

(
−
u2
jβ

2
∥∥Γπ
B

∥∥2

∞
8mn

)
exp

(
u2
jβ

2
∥∥Γπ
B

∥∥2

∞
8mn

)
= δj . (18)

Then, combining Equations 13 and 18, and using the geometric series identity, we have that

Pr
Ẑ∼Dm

{B ∪ E} ≤ mν +
∞∑
j=0

δj = mν + δ
∞∑
j=0

2−(j+1) = mν + δ.

Thus, with probability at least 1 − δ − mν over realizations of Ẑ, every l ∈ [m] satisfies
Z(l) /∈ BZ , and every uj satisfies

E
h∼P

[
euj φ̃(h,Ẑ)

]
≤ 1

δj
exp

(
u2
jβ

2
∥∥Γπ
B

∥∥2

∞
8mn

)
. (19)

We now show how to select j for any particular posterior Q. Let

j? ,

⌊
1

2 ln 2
ln

(
Dkl(Q‖P)

ln(2/δ)
+ 1

)⌋
, (20)
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and note that j? ≥ 0. For all v ∈ R, we have that v − 1 ≤ bvc ≤ v, and 2ln v = vln 2. We
apply these identities to Equation 20 to show that

1

2

√
Dkl(Q‖P)

ln(2/δ)
+ 1 ≤ 2j

? ≤

√
Dkl(Q‖P)

ln(2/δ)
+ 1,

implying √√√√2mn
(
Dkl(Q‖P) + ln 2

δ

)
β2
∥∥Γπ
B

∥∥2

∞

≤ uj? ≤

√√√√8mn
(
Dkl(Q‖P) + ln 2

δ

)
β2
∥∥Γπ
B

∥∥2

∞

. (21)

Further, by definition of δj? ,

Dkl(Q‖P) + ln
1

δj?
= Dkl(Q‖P) + ln

2

δ
+ j? ln 2

≤ Dkl(Q‖P) + ln
2

δ
+

ln 2

2 ln 2
ln

(
Dkl(Q‖P)

ln(2/δ)
+ 1

)
= Dkl(Q‖P) + ln

2

δ
+

1

2
ln

(
Dkl(Q‖P) + ln

2

δ

)
− 1

2
ln ln

2

δ

≤ Dkl(Q‖P) + ln
2

δ
+

1

2

(
Dkl(Q‖P) + ln

2

δ

)
. (22)

The last inequality uses the identity v− ln ln(2/δ) ≤ v+ 1 ≤ ev, for all v ∈ R and δ ∈ (0, 1).
It can be shown that this bound is approximately optimal, in that it is at most twice what
it would be for a fixed posterior.

Putting it all together, we now have that, with probability at least 1 − δ − mν, the
approximately optimal (uj? , δj?) for any posterior Q satisfies

L(Q)− L̂(Q, Ẑ) ≤ α(η + ν) +
1

uj?

(
Dkl(Q‖P) + ln E

h∼P

[
euj? φ̃(h,Ẑ)

])
≤ α(η + ν) +

1

uj?

(
Dkl(Q‖P) + ln

1

δj?
+
u2
j?β

2
∥∥Γπ
B

∥∥2

∞
8mn

)

≤ α(η + ν) +
3
(
Dkl(Q‖P) + ln 2

δ

)
2uj?

+
uj?β

2
∥∥Γπ
B

∥∥2

∞
8mn

≤ α(η + ν) + 2β
∥∥Γπ
B

∥∥
∞

√
Dkl(Q‖P) + ln 2

δ

2mn
.

The first inequality substitutes uj? into Equation 9; the second uses Equation 19; the third
is from Equation 22; and the last uses the lower and upper bounds from Equation 21.

5.2 Posterior-Dependent Stability

In Theorem 1, we required β to be fixed a priori, meaning we required the user to pre-specify
a desired stability. In this section, we prove bounds that hold for all β ≥ 1 simultaneously,
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meaning the value of β can depend on the learned posterior. (The requirement of nonneg-
ativity is not restrictive, since stability with β ≤ 1 implies stability with β = 1.)

Theorem 2. Fix m ≥ 1, n ≥ 1, π ∈ Π(n), δ ∈ (0, 1) and α ≥ 0. Fix a distribution, D, on
Zn. Fix a set of bad inputs, BZ , with ν , D(BZ). Let Γπ

B denote the dependency matrix
induced by D, π and BZ . Fix a prior, P, on a hypothesis class, H. Fix a loss function, L,
such that L◦H is α-uniformly range-bounded. Then, with probability at least 1−δ−mν over
realizations of Ẑ , (Z(l))ml=1, drawn according to Dm, the following hold: 1) for all l ∈ [m],

Z(l) /∈ BZ ; 2) for all β ≥ 1, η ∈ [0, 1] and posteriors Q with (β/n,BZ , η)-local stability,

L(Q) ≤ L̂(Q, Ẑ) + α(η + ν) + 4β
∥∥Γπ
B

∥∥
∞

√
Dkl(Q‖P) + ln 4

δ + lnβ

2mn
. (23)

The proof is similar to that of Theorem 1, so we defer it to Appendix B.1.
Theorem 2 immediately yields the following corollary by taking BZ , ∅.

Corollary 2. With probability at least 1− δ over realizations of Ẑ, for all β ≥ 1, η ∈ [0, 1]
and Q with (β/n, ∅, η)-local stability,

L(Q) ≤ L̂(Q, Ẑ) + αη + 4β ‖Γπ‖∞

√
Dkl(Q‖P) + ln 4

δ + lnβ

2mn
. (24)

In Section 6, we apply this corollary to unbounded hypothesis classes, with bounded instance
spaces. Corollary 2 trivially implies a bound for posteriors with (β/n, ∅, 0)-local stability,
such as those with bounded support on an unbounded hypothesis class, where β may depend
on a learned model.

5.3 Derandomizing the Loss using Stability

PAC-Bayes bounds are stated in terms of a randomized predictor. Yet, in practice, one
is usually interested in the loss of a learned, deterministic predictor. Given a properly
constructed posterior distribution, it is possible to convert a PAC-Bayes bound to a gen-
eralization bound for the learned hypothesis. There are various ways to go about this for
unstructured hypotheses; however, many of these methods fail for structured predictors,
since the output is not simply a scalar, but a high-dimensional vector. In this section, we
present a generic technique for derandomizing PAC-Bayes bounds for structured prediction
based on the idea of stability. An attractive feature of this technique is that it obviates
margin-based arguments, which often require a free-parameter for the margin.

We first define a specialized notion of local stability that measures the difference in loss
induced by perturbing a given hypothesis. For the following, we view the posterior Q as a
function that, given a hypothesis h ∈ H, returns a distribution Qh on H.

Definition 8. Fix a hypothesis class, H, a set of inputs, BZ ⊆ Zn, a loss function, L,
and a posterior, Q. We say that the pair (L,Q) has (λ,BZ , η)-local stability if, for any
h ∈ H and z /∈ BZ , there exists a set BH(h, z) ⊆ H such that Qh(BH(h, z)) ≤ η and, for all
h′ /∈ BH(h, z), ∣∣L(h, z)− L(h′, z)

∣∣ ≤ λ. (25)
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This form of stability is a slightly weaker condition than the previous definitions, in that
each input, (h, z), has its own “bad” set, BH(h, z). This distinction means that “badness”
is relative, whereas, in Definitions 2 and 3, it is absolute.

Proposition 4. Fix a hypothesis class, H, a set of inputs, BZ ⊆ Zn, with ν , D(BZ),
and a loss function, L, such that, for any z ∈ Zn, L(·, z) is α-uniformly range-bounded.
Let Q denote a posterior function on H. If (L,Q) has (λ,BZ , η)-local stability, then, for all
h ∈ H, ∣∣L(h)− L(Qh)

∣∣ ≤ α(η + ν) + λ, (26)

and, for all ẑ , (z(l))ml=1 such that, ∀l ∈ [m], z(l) /∈ BZ ,∣∣∣L̂(h, ẑ)− L̂(Qh, ẑ)
∣∣∣ ≤ αη + λ. (27)

Proof Define a convenience function

ϕ(h, h′, z) ,
∣∣L(h, z)− L(h′, z)

∣∣ .
For any z /∈ BZ , using the range-boundedness and stability assumptions, we have that

E
h′∼Qh

[
ϕ(h, h′, z)

]
= E

h′∼Qh

[
ϕ(h, h′, z)1{h′ ∈ BH(h, z)}

]
+ E
h′∼Qh

[
ϕ(h, h′, z)1{h′ /∈ BH(h, z)}

]
≤ αη + λ.

Therefore, if, ∀l ∈ [m], z(l) /∈ BZ , by linearity of expectation and the triangle inequality,∣∣∣L̂(h, ẑ)− L̂(Qh, ẑ)
∣∣∣ =

∣∣∣∣∣ 1

m

m∑
l=1

E
h′∼Qh

[
L
(
h, z(l)

)
− L

(
h′, z(l)

)]∣∣∣∣∣
≤ 1

m

m∑
l=1

E
h′∼Qh

[
ϕ
(
h, h′, z(l)

)]
≤ αη + λ.

thus proving Equation 27. Furthermore,∣∣L(h)− L(Qh)
∣∣ =

∣∣∣∣ E
Z∼D

E
h′∼Qh

[
L(h,Z)− L(h′,Z)

]∣∣∣∣
≤ E

Z∼D
E

h′∼Qh

[
ϕ(h, h′,Z)

]
= E

Z∼D
E

h′∼Qh

[
ϕ(h, h′,Z)1{Z ∈ BZ}

]
+ E

Z∼D
E

h′∼Qh

[
ϕ(h, h′,Z)1{Z /∈ BZ}

]
≤ αν + αη + λ,

which proves Equation 26.

Proposition 4 can easily be combined with the PAC-Bayes bounds from the previous
sections to obtain derandomized generalization bounds. We analyze some examples in
Section 6.
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5.3.1 Normed Vector Spaces

When the hypothesis class is a normed vector space (as is the case in all of the examples in
Section 6), Definition 8 can be decomposed into properties of the loss function and posterior
separately.

Definition 9. Fix a hypothesis class, H, equipped with a norm, ‖ · ‖. Fix a set of inputs,
BZ ⊆ Zn. We say that a loss function, L, has (λ,BZ)-local hypothesis stability if, for all
h, h′ ∈ H and z /∈ BZ , ∣∣L(h, z)− L(h′, z)

∣∣ ≤ λ ∥∥h− h′∥∥ .
Definition 10. Fix a hypothesis class, H, equipped with a norm, ‖ · ‖. We say that
a posterior, Q, has (β, η)-local hypothesis stability if, for any h ∈ H, there exists a set
BH(h) ⊆ H such that Qh(BH(h)) ≤ η and, for all h′ /∈ BH(h), ‖h− h′‖ ≤ β.

When both of these properties hold, we have the following.

Proposition 5. Fix a hypothesis class, H, equipped with a norm, ‖ · ‖. Fix a set of inputs,
BZ ⊆ Zn. If a loss function, L, has (λ,BZ)-local hypothesis stability, and a posterior, Q,
has (β, η)-local hypothesis stability, then (L,Q) has (λβ,BZ , η)-local stability.

The proof is provided in Appendix B.2.

6. Example Applications

To illustrate how various learning algorithms and modeling decisions affect the general-
ization error, we now apply our PAC-Bayes bounds to the class of pairwise MRFs with
templated, linear potentials (described in Section 2.2.3). We derive generalization bounds
for two popular training regimes, max-margin and soft-max learning, under various as-
sumptions about the instance space and feature functions. The bounds in this section are
stated in terms of a deterministic predictor, meaning we use the PAC-Bayes framework as
an analytic tool only. That said, one could easily adapt our analysis to obtain bounds for
a randomized predictor by skipping the derandomization step.

6.1 Max-Margin Learning

For classification tasks, the goal is to output the labeling that is closest to the true labeling,
by some measure of closeness. This is usually measured by the Hamming loss,

Lh(h,x,y) ,
1

n
Dh (y, h(x)) .

The Hamming loss can be considered the structured equivalent of the 0-1 loss. Unfortu-
nately, the Hamming loss is not convex, making it difficult to minimize directly. Thus,
many learning algorithms minimize a convex upper bound.

One such method is max-margin learning. Max-margin learning aims to find the “sim-
plest” model that scores the correct outputs higher than all incorrect outputs by a specified
margin. Though typically formulated as a quadratic program, the learning objective can
also be stated as minimizing a hinge loss, with model regularization.
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Structured predictors learned with a max-margin objective are alternatively referred to
as max-margin Markov networks (Taskar et al., 2004) or StructSVM (Tsochantaridis et al.,
2005), depending on the form of the hinge loss. In this section, we consider the former
formulation, defining the structured hinge loss as

Lh(h,x,y) ,
1

n

(
max
y′∈Yn

Dh(y,y′) + h(x,y′)− h(x,y)

)
, (28)

where
h(x,y) , θ(x; w) · ŷ (29)

is the unnormalized log-likelihood. The Hamming distance, Dh(y,y′), implies that the
margin, h(x,y)− h(x,y′), should scale linearly with the distance between y and y′.

In theory, the structured hinge loss can be defined with any distance function; though, in
practice, the Hamming distance is commonly used. One attractive property of the Hamming
distance is that, when

h(x) , arg max
y∈Yn

h(x,y) = arg max
y∈Yn

p (Y = y |X = x; w) (30)

(i.e., MAP inference), the hinge loss upper-bounds the Hamming loss. Another benefit is
that it decomposes along the unary cliques. Indeed, with δ(y) ,

[
1−y

0

]
(i.e., one minus the

unary clique states, then zero-padded to be the same length as ŷ), observe that Dh(y,y′) =
δ(y) · ŷ′. This identity yields a convenient equivalence:

Lh(h,x,y) =
1

n

(
max
y′∈Yn

(θ(x; w) + δ(y)) · ŷ′ − θ(x; w) · ŷ
)
.

The term θ(x; w)·ŷ is constant with respect to y′, and is thus irrelevant to the maximization.
Therefore, letting

θ̃(x,y; w) , θ(x; w) + δ(y), (31)

computing the hinge loss is equivalent to performing loss-augmented MAP inference with
θ̃(x,y; w). Provided inference can be computed efficiently with the given class of models,
so too can the hinge loss.6

6.1.1 Structured Ramp Loss

Applying our generalization bounds requires a uniformly range-bounded loss function. Since
the hinge loss is not uniformly range-bounded for certain hypothesis classes, we therefore
introduce the structured ramp loss:

Lr(h,x,y) ,
1

n

(
max
y′∈Yn

Dh(y,y′) + h(x,y′)− max
y′′∈Yn

h(x,y′′)

)
,

where h(x,y) is defined in Equation 29. The ramp loss is 1-uniformly range-bounded.
Further, when h(x) performs MAP inference (Equation 30),

Lh(h,x,y) ≤ Lr(h,x,y) ≤ Lh(h,x,y). (32)

6. The results in this section are easily extended to approximate MAP inference algorithms, such as linear
programming relaxations. The bounds are the same, but the semantics of the loss functions change,
since approximate MAP solutions might be fractional.
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Thus, we can analyze the generalization properties of the ramp loss to obtain bounds for the
difference of the expected Hamming loss and empirical hinge loss. To distinguish quantities
of different loss functions, we will use a subscript notation; e.g., Lh is the expected Hamming
loss, and L̂h is the empirical hinge loss.

Using the templated, linear potentials defined in Section 2.2.3, we obtain two technical
lemmas for the structured ramp loss. Proofs are provided in Appendices C.1 and C.2.

Lemma 2. Fix any p, q ≥ 1 such that 1/p + 1/q = 1. Fix a graph, G , (V, E), with
maximum degree ∆G. Assume that supx∈X ‖x‖p ≤ R. Then, for any MRF h with weights
w, and any z, z ∈ Zn, where z = (x,y) and z′ = (x′,y′),∣∣Lr(h, z)− Lr(h, z

′)
∣∣ ≤ 1

n

(
(2∆G + 4)R ‖w‖q + 1

)
Dh(z, z′). (33)

Further, if the model does not use edge observations (i.e., fij(x,y) , yi ⊗ yj), then∣∣Lr(h, z)− Lr(h, z
′)
∣∣ ≤ 1

n

(
4R ‖w‖q + 1

)
Dh(z, z′). (34)

Lemma 3. Fix any p, q ≥ 1 such that 1/p+1/q = 1. Fix a graph, G , (V, E). Assume that
supx∈X ‖x‖p ≤ R. Then, for any example z ∈ Zn, and any two MRFs, h, h′ with weights
w,w′, ∣∣Lr(h, z)− Lr(h

′, z)
∣∣ ≤ 2 |G|R

n

∥∥w −w′
∥∥
q
.

Lemma 3 implies that Lr has (2 |G|R/n, ∅)-local hypothesis stability.

6.1.2 Generalization Bounds for Max-Margin Learning

We now apply our PAC-Bayes bounds to the class of max-margin Markov networks that
perform MAP inference, with the templated, linear potentials defined in Section 2.2.3. We
denote this class by Hm3n. As a warm-up, we first assume that both the observations and
weights are uniformly bounded by the 2-norm unit ball. By Lemma 2, this means that the
ramp loss satisfies uniform stability, meaning we can apply Corollary 1.

Example 1. Fix any m ≥ 1, n ≥ 1, π ∈ Π(n) and δ ∈ (0, 1). Fix a graph, G , (V, E),
with maximum degree ∆G. Assume that supx∈X ‖x‖2 ≤ 1. Then, with probability at least

1− δ over realizations of Ẑ , (Z(l))ml=1, for all h ∈ Hm3n with ‖w‖2 ≤ 1,

Lh(h) ≤ L̂h(h, Ẑ) +
4

mn
+ (4∆G + 10) ‖Γπ‖∞

√
d ln(2m |G|) + ln 2

δ

2mn
.

The proof is given in Appendix C.3. Note that, with the bounded degree assumption,
|G| ≤ n∆G = O(n).

We now relax the assumption that the hypothesis class is bounded. One approach
is to apply a covering argument directly to Example 1. However, it is interesting to see
how other prior/posterior constructions behave. Of particular interest are Gaussian con-
structions, which correspond to 2-norm regularization. Since the support of a Gaussian
is unbounded, this construction requires a non-uniform notion of stability. The following
example illustrates how to use posterior-dependent, local stability.
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Example 2. Fix any m ≥ 1, n ≥ 1, π ∈ Π(n) and δ ∈ (0, 1). Fix a graph, G , (V, E),
with maximum degree ∆G. Assume that supx∈X ‖x‖2 ≤ 1. Then, with probability at least

1− δ over realizations of Ẑ , (Z(l))ml=1, for all h ∈ Hm3n,

Lh(h) ≤ L̂h(h, Ẑ) +
7

mn
+ 4βh ‖Γπ‖∞

√
1
2 ‖w‖

2
2 + d

2 ln (2d(m |G|)2 ln(2dmn)) + ln 4βh
δ

2mn
,

where

βh , (2∆G + 4)

(
‖w‖2 +

1

m |G|

)
+ 1.

Example 2 is only slightly worse than Example 1, incurring a O (ln ln(mn)) term for the
Gaussian construction. Both bounds guarantee generalization when either m or n is large.

The proof of Example 2 uses a concentration inequality for vectors of Gaussian random
variables, the proof of which is given Appendix C.4.

Lemma 4. Let X , (Xi)
d
i=1 be independent Gaussian random variables, with mean vector

µ , (µ1, . . . , µd) and variance σ2. Then, for any p ≥ 1 and ε > 0,

Pr
{
‖X− µ‖p ≥ ε

}
≤ 2d exp

(
− ε2

2σ2d2/p

)
.

For p = 2 and small σ2, this bound can be significantly sharper than Chebyshev’s inequality.

Proof (Example 2) Define the prior, P, as a standard multivariate Gaussian, with zero
mean and unit variance. More precisely, let

p(h) , (2π)−d/2e−
1
2
‖w‖22

denote the density of P. Given a (learned) hypothesis, h, we construct the posterior, Qh,
as an isotropic Gaussian, centered at w, with variance

σ2 ,
(
2d(m |G|)2 ln(2dmn)

)−1

in all dimensions. Its density is

qh(h′) , (2πσ2)−d/2e−
1

2σ2
‖w′−w‖22 .

Note that the support of both distributions is Rd, which is unbounded.
Our proof technique involves four steps. First, we upper-bound the KL divergence

between Qh and P. Then, we identify a βh and η such that Qh is (βh/n, ∅, η)-locally stable.
Combining the first two steps with Corollary 2 yields a PAC-Bayes bound for the randomized
predictor. The final step is to derandomize this bound using Proposition 4.

The KL divergence between Gaussians is well known. Thus, it is easily verified that

Dkl(Qh‖P) =
1

2

[
d
(
σ2 − 1

)
+ ‖w‖22 − d lnσ2

]
=

1

2

[
d

(
1

2d(m |G|)2 ln(2dmn)
− 1

)
+ ‖w‖22 + d ln

(
2d(m |G|)2 ln(2dmn)

)]
≤ 1

2

[
‖w‖22 + d ln

(
2d(m |G|)2 ln(2dmn)

)]
.
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The inequality follows from the fact that σ2 ≤ 1 for all d ≥ 1, m ≥ 1 and n ≥ 1 (implying
|G| ≥ 1).

To determine the local stability of Qh, for any h ∈ Hm3n, we define a “bad” set of
hypotheses,

BHm3n(h) ,

{
h′ ∈ Hm3n :

∥∥w′ −w
∥∥

2
≥ 1

m |G|

}
.

Using Lemma 4,

Qh (BHm3n(h)) = Pr
h′∼Qh

{∥∥w′ −w
∥∥

2
≥ 1

m |G|

}
≤ 2d exp

(
−2d(m |G|)2 ln(2dmn)

2d(m |G|)2

)
=

1

mn
. (35)

Further, for every h′ /∈ BHm3n(h),∥∥w′∥∥
2
− ‖w‖2 ≤

∥∥w′ −w
∥∥

2
≤ 1

m |G|
.

When combined with Lemma 2, with R = 1, we have that∣∣Lr(h, z)− Lr(h, z
′)
∣∣ ≤ 1

n

(
(2∆G + 4)

∥∥w′∥∥
2

+ 1
)
Dh(z, z′)

≤ 1

n

(
(2∆G + 4)

(
‖w‖2 +

1

m |G|

)
+ 1

)
Dh(z, z′)

=
βh
n
Dh(z, z′).

Thus, every Qh is (βh/n, ∅, 1/(mn))-locally stable.
Having established an upper bound on the KL divergence and local stability of all

posteriors, we can now apply one of our PAC-Bayes bounds. Since the definition of βh
depends on the posterior via w, we must use a bound from Section 5.2. In this case, there
are no “bad” inputs, since the observations are bounded in the unit ball, so we can invoke
Corollary 2. Recalling that the ramp loss is 1-uniformly difference bounded, we then have
that, with probability at least 1− δ, every Qh : h ∈ Hm3n satisfies

Lr(Qh) ≤ L̂r(Qh, Ẑ) +
1

mn

+ 4βh ‖Γπ‖∞

√
1
2 ‖w‖

2
2 + d

2 ln (2d(m |G|)2 ln(2dmn)) + ln 4βh
δ

2mn
. (36)

We now derandomize the loss terms in Equation 36. Observe that Hm3n is a normed
vector space, since it consists of weight vectors in Rd. In this case, we will use the 2-
norm. By Equation 35, it is clear that Q has (1/(m |G|), 1/(mn))-local hypothesis stability
(Definition 10), since every h ∈ Hm3n results in the same probability bound. Further, by
Lemma 3, with R = 1, ∣∣Lr(h, z)− Lr(h

′, z)
∣∣ ≤ 2 |G|

n

∥∥w −w′
∥∥

2
, (37)
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meaning Lr has (2 |G| /n, ∅)-local hypothesis stability (Definition 9). Therefore, by Propo-
sition 5, (Lr,Q) has (2/(mn), ∅, 1/(mn))-local stability. It then follows, via Proposition 4
and Equation 32, that

Lh(h) ≤ Lr(h) ≤ Lr(Qh) +
3

mn
, (38)

and

L̂r(Qh, Ẑ) ≤ L̂r(h, Ẑ) +
3

mn
≤ L̂h(h, Ẑ) +

3

mn
. (39)

Combining Equations 36, 38 and 39 completes the proof.

6.2 Soft-Max Learning

A drawback of max-margin learning is that the learning objective is not differentiable ev-
erywhere, due to the hinge loss. Thus, researchers (Gimpel and Smith, 2010; Hazan and
Urtasun, 2010) have proposed a smooth alternative, based on the soft-max function. This
form of learning has been popularized for learning conditional random fields (CRFs).

The soft-max loss, for a given temperature parameter, ε ∈ [0, 1], is defined as

Lsm(h,x,y) ,
1

n
(Φε(x,y; w)− h(x,y)) , (40)

where h(x,y) is the unnormalized log-likelihood (Equation 29) and

Φε(x,y; w) , ε ln
∑

y′∈Yn
exp

(
1

ε

(
Dh(y,y′) + h(x,y′)

))

= ε ln
∑

y′∈Yn
exp

(
1

ε
θ̃(x,y; w) · ŷ′

)
. (41)

is the soft-max function. We purposefully overload the notation of the log-partition function
due to its relationship to the soft-max. Observe that, for ε = 1, the soft-max becomes the
log-partition of the distribution induced by the loss-augmented potentials, and Equation 40
is the corresponding negative log-likelihood, scaled by 1/n. Further, as ε→ 0, the soft-max
approaches the max operator and Equation 40 becomes the hinge loss (Equation 28).

The latter equivalence can be illustrated by convex conjugacy. This requires some
additional notation. Let µ ∈ [0, 1]|V||Y|+|E||Y|

2

denote a vector of marginal probabilities for
all cliques and clique states. Let M denote the set of all consistent marginal vectors, often
called the marginal polytope. For every µ ∈ M, there is a corresponding distribution, pµ,
such that µc · yc = pµ(Yc = yc) for every clique, c ∈ C, and clique state, yc. Let Φ∗(µ)
denote the convex conjugate of the log-partition, which, for µ ∈M, is equal to the negative
entropy of pµ.7 With these definitions, the soft-max, like the log-partition, has the following
variational form:

Φε(x,y; w) = max
µ∈M

θ̃(x,y; w) · µ− εΦ∗(µ)

= max
µ∈M

(θ(x,y; w) + δ(y)) · µ− εΦ∗(µ). (42)

7. We omit some details of the conjugate function for simplicity of exposition. See Wainwright and Jordan
(2008) for a precise definition.
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This maximization is equivalent to marginal inference with loss-augmented potentials.8 Let
µu denote the marginals of the unary cliques, and observe that

δ(y) · µ =
1

2
‖y − µu‖1 , D1(y,µ). (43)

With a slight abuse of notation, we define an alternate scoring function for marginals:

hε(x,µ) , θ(x; w) · µ− εΦ∗(µ). (44)

Note that each full labeling, ŷ, corresponds to a vertex of the marginal polytope, so ŷ ∈M.
Further, hε(x, ŷ) = h(x,y), since Φ∗(ŷ) = 0. Thus, combining Equations 42 to 44, we have
that the soft-max loss (Equation 40) is equivalent to

Lsm(h,x,y) =
1

n

(
max
µ∈M

D1(y,µ) + hε(x,µ)− hε(x, ŷ)

)
,

which resembles a smoothed hinge loss for ε ∈ (0, 1).

Like the regular hinge loss, Lsm(h,x,y) is not uniformly range-bounded for certain
hypothesis classes, so it cannot be used with our PAC-Bayes bounds. However, we can use
the ramp loss, with a slight modification:

Lsr(h,x,y) ,
1

n

(
max
µ∈M

D1(y,µ) + hε(x,µ)− max
µ′∈M

hε(x,µ
′)

)
.

We have essentially just replaced the maxes over Zn with maxes over M and used Equa-
tion 44 instead of Equation 29. We refer to this loss as the soft ramp loss. The stability
properties of the regular ramp loss carry over to the soft ramp loss; it is straightforward to
show that Lemmas 2 and 3 hold when Lr(h,x,y) is replaced with Lsr(h,x,y).9

The distance function, D1(y,µ), has a probabilistic interpretation:

D1(y,µ) =
n∑
i=1

1− pµ (Yi = yi |X = x) .

This identity motivates another loss function; with

hε(x) , arg max
µ∈M

hε(x,µ),

let

L1(h,x,y) ,
1

n
D1 (y, hε(x)) =

1

n

n∑
i=1

1− p (Yi = yi |X = x; w) .

Note that

L1(h,x,y) ≤ Lsr(h,x,y) ≤ Lsm(h,x,y).

8. Since marginal inference is often intractable, exact inference could be replaced with a tractable surrogate,
such as the Bethe approximation.

9. The additional εΦ∗(·) term in Equation 44 is canceled out in Equations 55, 56, 58 and 59.
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Marginal inference, hε(x), can be decoded by selecting the labels with the highest
marginal probabilities. This technique is sometimes referred to as posterior decoding. Con-
veniently, because the marginals sum to one, it can be shown that the Hamming loss of the
posterior decoding is at most twice L1.

In the following example, we consider the class of soft-max CRFs, Hcrf. For historical
reasons, these models typically do not use edge observations, which is a common modeling
decision in, e.g., sequence models. We therefore assume that the edge features are simply
fij(x,y) , yi ⊗ yj .

Example 3. Fix any m ≥ 1, n ≥ 1, π ∈ Π(n), δ ∈ (0, 1) and G , (V, E). Assume that
supx∈X ‖x‖2 ≤ 1. Then, with probability at least 1 − δ over realizations of Ẑ , (Z(l))ml=1,
for all h ∈ Hcrf,

L1(h) ≤ L̂sm(h, Ẑ) +
7

mn
+ 4βh ‖Γπ‖∞

√
1
2 ‖w‖

2
2 + d

2 ln (2d(m |G|)2 ln(2dmn)) + ln 4βh
δ

2mn
,

where

βh , 4

(
‖w‖2 +

1

m |G|

)
+ 1.

We omit the proof, since it is almost identical to Example 2. The key difference worth noting
is that, since the model does not use edge observations, the graph’s maximum degree does
not appear in βh.

6.3 Possibly Unbounded Domains

Until now, we have assumed that the observations are uniformly bounded in the unit ball.
This assumption is common in the literature, but it does not quite match what happens in
practice. Typically, one will rescale each dimension of the input space using the minimum
and maximum values found in the training data. While this procedure guarantees a bound
on the observations at training time, the bound may not hold at test time when one rescales
by the limits estimated from the training set. This outcome would violate the preconditions
of the stability guarantees used to prove the previous examples.

Now, suppose we knew that the observations were bounded with high probability. In
the following example, we construct a hypothetical data distribution under which this as-
sumption holds. We combine this with Theorem 2 to derive a variant of Example 2.

Example 4. Fix any m ≥ 1, n ≥ 1, π ∈ Π(n), δ ∈ (0, 1) and G , (V, E). Suppose the data
generating process, D, is defined as follows. For each y ∈ Y, assume there is an associated
isotropic Gaussian over X ⊆ Rk, with mean µy ∈ X : ‖µy‖2 ≤ 1 and variance σ2

y ≤(
2k ln(2kn2)

)−1
. First, Y is sampled according to some arbitrary distribution, conditioned

on G. Then, for each i ∈ [n], conditioned on Yi = yi, a vector of observations, xi ∈ X , is
sampled according to (µyi , σ

2
yi).

Note that, conditioned on the labels, (y1, . . . , yn), the observations, (x1, . . . , xn), are
mutually independent. It therefore does not make sense to model edge observations, so we
use fij(x,y) , yi ⊗ yj . For the following, we abuse our previous notation and let Hm3n

denote the class of max-margin Markov networks that use these edge features.
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Let BZ , {∃i : ‖Xi‖2 ≥ 2} denote a set of “bad” inputs, and let Γπ
B denote the

dependency matrix induced by D, π and BZ . Then, with probability at least 1− δ −m/n
over realizations of Ẑ , (Z(l))ml=1, for all h ∈ Hm3n,

Lh(h) ≤ L̂h(h, Ẑ) +
11

mn
+

2

n
+ 4βh

∥∥Γπ
B

∥∥
∞

√
1
2 ‖w‖

2
2 + d

2 ln (2d(m |G|)2 ln(2dmn)) + ln 4βh
δ

2mn
,

where

βh , 8

(
‖w‖2 +

1

m |G|

)
+ 1.

The proof is provided in Appendix C.5.

Note that the dominating term is 2/n, meaning the bound is meaningful for large n
and small m. This rate follows intuition, since one should not expect η to depend on the
number of training examples; moreover, the probability of drawing a “bad” example should
increase proportionally to the number of independent draws.

7. Discussion

We have proposed new PAC-Bayes bounds for structured prediction that can decrease with
both the number of examples, m, and the size of each example, n, thus proving that general-
ization is indeed possible from a few large examples. Under suitable conditions, our bounds
can be as tight as Õ (1/

√
mn). The bounds reveal the connection between generalization

and the stability of a structured loss function, as well as the role of dependence in the gener-
ating distribution. The stability conditions used in this work generalize our previous work,
thereby accommodating a broader range of structured loss functions, including max-margin
and soft-max learning. We also provide bounds on the norm of the dependency matrix,
which is a result that may be useful outside of this context.

The examples in Section 6 identify several take-aways for practitioners. Primarily, they
indicate the importance of templating (or, parameter-tying). Observe that all of the bounds
depend on d, the number of parameters10, via a term that is Õ(d/n). Clearly, if d scales
linearly with n, the number of nodes, then this term is bounded away from zero as n→∞.
Consequently, one cannot hope to generalize from one example. Though we do not prove
this formally, the intuition is fairly simple: if there is a different wi for each node i, and wij

for each edge {i, j}, then one example provides exactly one “micro example” from which
one can estimate {wi}i∈V and {wij}{i,j}∈E . In this setting, our bounds become Õ(1/

√
m),

which is no better (and no worse) than previous bounds. Thus, templating is crucial to
achieving the fast generalization rate.11

Another observation is that Examples 2 to 4 depend on the norm of the weight vector,
w. Specifically, we used the 2-norm, for its relationship to Gaussian priors; though, one
could substitute any norm, due to the equivalence of norms in finite dimension. Dependence

10. We believe that this dependence is unavoidable when derandomizing PAC-Bayes bounds for structured
prediction. Evidence to support this conjecture is given by McAllester’s (2007) bound, which depends
on the number templates, and the number of parameters is roughly linear in the number of templates.

11. It may be possible to achieve a fast rate without templating if one imposes a sparsity assumption on the
optimal weight vector, but it seems likely that the sparsity would depend on n.
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on the norm of the weights is a standard feature of most generalization bounds. This term is
commonly interpreted as a measure of hypothesis complexity. Weight regularization during
training controls the norm of the weights, thereby effectively limiting the complexity of the
learned model.

We also find that the structure of the the model influences the bounds via ∆G, the
maximum degree of the graph, and |G|, the total number of nodes and edges. (Since the
bounds are sub-logarithmic in G, and 1

n ln |G| ≤ 2
n lnn, one could reasonably argue that ∆G

is the only important structural term.) It is important to note that the edges in the model
need not necessarily correspond to concrete relationships in the data. For example, there
are many ways to define the “influential” neighbors of a user in a social network, though
the user may be connected to nearly everyone in the network; the adjacencies one models
may be a subset of the true adjacencies. Therefore, ∆G and |G| are quantities that one can
control; they become part of the trade-off between representational power and overfitting.
In light of this trade-off, recall that the stability term, βh, partially depends on whether one
conditions on the observations in the edge features; as shown in Examples 3 and 4, βh can
be reduced to O(‖w‖2) if one does not. On the other hand, if observations are modeled in
the edge features, and ∆G = O(

√
n), then the bounds become Õ(1/

√
m). Thus, under this

modeling assumption, controlling the maximum degree is critical.

Our improved generalization rate critically relies on the dependency matrix, Γπ
B , having

low infinity norm. If this condition does not hold—for instance, suppose every variable
has some non-negligible dependence on every other variable, and

∥∥Γπ
B

∥∥
∞ = O(n)—then

our bounds are no more optimistic than previous results and may in fact be slightly looser
than some. However, if the dependence is sub-logarithmic, i.e.,

∥∥Γπ
B

∥∥
∞ = O(lnn), then our

bounds are much more optimistic. In Section 4.3, we examined two settings in which this
assumption holds; these settings can be characterized by the following conditions: strong
local signal, bounded interactions (i.e., degree), and dependence that decays with graph
distance. Since the data distribution is determined by nature, it is not a variable one can
control. There may be situations in which the mixing coefficients can be estimated from
data, as done by McDonald et al. (2011) for β-mixing time series. We leave this as a question
for future research. Identifying weaker sufficient dependence conditions is also of interest.

There are several ways in which our analysis can be refined and extended. In Lemma 2,
which we use to establish the stability of the ramp loss, we used a rather course application of
Hölder’s inequality to isolate the influence of the weights. This technique ignores the relative
magnitudes of the node and edge weights. Indeed, it may be the case that the edge weights
are significantly lower than the node weights. A finer analysis of the weights could improve
Equation 33 and might yield new insights for weight regularization. One could also abstract
the desirable properties of the potential functions to accommodate a broader class than the
linear potentials used in our examples. Finally, we conjecture that our bounds could be
tightened by adapting Germain et al.’s (2009) analysis to bound φ2(h, Ẑ) ,

(
L(h)−L̂(h, Ẑ)

)2
instead of φ(h, Ẑ) , L(Q)−L̂(Q, Ẑ). The primary challenge would be bounding the moment-

generating function, EẐ∼Dm
[
euφ

2(h,Ẑ)
]
, since our martingale-based method would not work.

If successful, this analysis could yield bounds that tighten when the empirical loss is small.
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Appendix A. Proofs from Section 4

This appendix contains the deferred proofs from Section 6. We begin with some supple-
mental background in measure concentration. We then prove Proposition 1, and derive a
concentration inequality implied by the result. We conclude with the proofs of Proposi-
tions 2 and 3.

A.1 The Method of Bounded Differences

Our proof of Proposition 1 follows McDiarmid’s method of bounded differences (McDiarmid,
1989), which uses a construction known as a Doob martingale difference sequence. Let
ϕ : Zn → R denote a measurable function. Let Z , (Zi)

n
i=1 denote a set of random

variables with joint distribution D, and let µ , E[ϕ(Z)] denote the mean of ϕ. For i ∈ [n],
let

Vi , E[ϕ(Z) |Z1:i]− E[ϕ(Z) |Z1:i−1],

where V1 , E[ϕ(Z) |Z1]− µ. The sequence (V1, . . . , Vn) has the convenient property that

n∑
i=1

Vi = ϕ(Z)− µ.

Therefore, using the law of total expectation, we have that, for any τ ∈ R,

E
[
eτ(ϕ(Z)−µ)

]
= E

[
n∏
i=1

eτVi

]

= E

[(
n−1∏
i=1

eτVi

)
E
[
eτVn |Z1:n−1

]]

≤ E

[
n−1∏
i=1

eτVi

]
sup

z∈Zn−1

E
[
eτVn |Z1:n−1 = z

]
...

≤
n∏
i=1

sup
z∈Zi−1

E
[
eτVi |Z1:i−1 = z

]
. (45)

Note that the order in which we condition on variables is arbitrary, and does not necessarily
need to correspond to any spatio-temporal process. The important property is that the
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sequence of σ-algebras generated by the conditioned variables are nested (McDiarmid (1998)
called this a filter), which is guaranteed by the construction of (V1, . . . , Vn).

One can then use Hoeffding’s lemma (Hoeffding, 1963) to bound each term in the above
product.

Lemma 5. If ξ is a random variable, such that E[ξ] = 0 and a ≤ ξ ≤ b almost surely, then
for any τ ∈ R,

E
[
eτξ
]
≤ exp

(
τ2(b− a)2

8

)
.

Clearly, E[Vi |Z1:i−1] = 0. Thus, if, for all i ∈ [n], there exists a value ci ≥ 0 such that

sup
z∈Zi−1

sup
z∈Z

(Vi)− inf
z′∈Z

(Vi) = sup
z∈Zi−1

z,z′∈Z

E [ϕ(Z) |Z1:i = (z, z)]− E
[
ϕ(Z) |Z1:i = (z, z′)

]
≤ ci,

then

E
[
eτ(ϕ(Z)−µ)

]
≤

n∏
i=1

exp

(
τ2c2

i

8

)
= exp

(
τ2

8

n∑
i=1

c2
i

)
.

When Z1, . . . , Zn are mutually independent, and ϕ has β-uniformly stability, upper-bounding
ci is straightforward; it becomes complicated when we relax the independence assumption,
or when ϕ is not uniformly stable. The following section addresses the former challenge.

A.2 Coupling

To analyze interdependent random variables, we use a theoretical construction known as
coupling. For random variables Z1 and Z2, with respective distributions D1 and D2 over a
common sample space Z, a coupling is any joint distribution D̂ over Z × Z such that the
marginal distributions, D̂(Z1) and D̂(Z2), are equal to D1(Z1) and D2(Z2) respectively.

Using a construction due to Fiebig (1993), one can create a coupling of two sequences
of random variables, such that the probability that any two corresponding variables are
different is upper-bounded by the ϑ-mixing coefficients in Definition 6. The following is an
adaptation of this result (due to Samson, 2000) for continuous domains.

Lemma 6. Let Z(1) , (Z
(1)
i )ni=1 and Z(2) , (Z

(2)
i )ni=1 be random variables with respective

distributions D1 and D2 over a sample space Zn. Then there exists a coupling D̂, with
marginal distributions D̂(Z(1)) = D1(Z(1)) and D̂(Z(2)) = D2(Z(2)), such that, for any i ∈
[n],

Pr
(Z(1),Z(2))∼D̂

{
Z

(1)
i 6= Z

(2)
i

}
≤
∥∥∥D1

(
Z

(1)
i:n

)
− D2

(
Z

(2)
i:n

)∥∥∥
tv
,

where Pr(Z(1),Z(2))∼D̂
{
Z

(1)
i 6= Z

(2)
i

}
denotes the marginal probability that Z

(1)
i 6= Z

(2)
i under

D̂.

Note that the requirement of strictly positive densities is not restrictive, since one can
always construct a positive density from a simply nonnegative one. We defer to Samson
(2000) for details.

We are now equipped with the tools to prove Proposition 1.
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A.3 Proof of Proposition 1

Conditioned on B, every realization of Z is in the “good” set. We define a Doob martingale
difference sequence, using the filtration π:

V π
i , E

[
ϕ(Z) | B,Zπi(1:i)

]
− E

[
ϕ(Z) | B,Zπi(1:i−1)

]
,

where V π
1 , E[ϕ(Z) | B,Zπi(1)]− E[ϕ(Z) | B]. Note that E[V π

i | B] = 0 and, for Z /∈ BZ ,

n∑
i=1

V π
i = ϕ(Z)− E[ϕ(Z) | B].

We therefore have, via Equation 45, that

E
[
eτ(ϕ(Z)−E[ϕ(Z) | B]) | B

]
≤

n∏
i=1

sup
z∈Zi−1

π,B

E
[
eτV

π
i | B,Zπi(1:i−1) = z

]
,

where the supremum over Z i−1
π,B comes from the fact that the expectations are conditioned

on B. Recall that each permutation in π has the same prefix, thus preserving the order of
conditioned variables, and ensuring that the sequence of σ-algebras is nested.

What remains is to show that, for all i ∈ [n],

sup
z∈Zi−1

π,B

sup
z∈Zi

π,B
(z)

(V π
i ) − inf

z′∈Zi
π,B

(z)
(V π
i )

= sup
z∈Zi−1

π,B
z,z′∈Zi

π,B
(z)

E
[
ϕ(Z) | B,Zπi(1:i) = (z, z)

]
− E

[
ϕ(Z) | B,Zπi(1:i) = (z, z′)

]
(46)

is bounded, so as to apply Lemma 5. (Again, the suprema over Z iπ,B(z) stem from con-

ditioning on B.) To do so, we will use the coupling construction from Lemma 6. Fix any

z ∈ Z i−1
π,B and z, z′ ∈ Z iπ,B(z), and let N , n − i. Define random variables ξ(1) , (ξ

(1)
j )Nj=1

and ξ(2) , (ξ
(2)
j )Nj=1, with coupling distribution D̂ such that

D̂
(
ξ(1)
)
, D

(
Zπi(i+1:n) | B,Zπi(1:i) = (z, z)

)
and D̂

(
ξ(2)
)
, D

(
Zπi(i+1:n) | B,Zπi(1:i) = (z, z′)

)
. (47)

In other words, the marginal distributions of ξ(1) and ξ(2) are equal to the conditional
distributions of Zπi(i+1:n) given B and, respectively, Zπi(1:i) = (z, z) or Zπi(1:i) = (z, z′).
Note that we have renumbered the coupled variables according to πi. This does not affect
the distribution, but it does affect how we later apply Lemma 6. Denote by π−1

i the inverse
of πi (i.e., π−1

i (πi(1 : n)) = [n]), and let

ψ(z) = ϕ
(
zπ−1

i (1:n)

)
.

Put simply, ψ inverts the permutation applied to its input, so as to ensure ψ(zπi(1:n)) = ϕ(z).
For convenience, let

∆ψ , ψ
(
z, z, ξ(1)

)
− ψ

(
z, z′, ξ(2)

)
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denote the difference. Using these definitions, we have the following equivalence:

E
[
ϕ(Z) | B,Zπi(1:i) = (z, z)

]
−E

[
ϕ(Z) | B,Zπi(1:i) = (z, z′)

]
= E

[
ψ
(
z, z, ξ(1)

)
− ψ

(
z, z′, ξ(2)

)]
.

Because the expectations are conditioned on B, both realizations, (z, z, ξ(1)) and (z, z′, ξ(2)),
are “good,” in the sense that Equation 1 holds. We therefore have that

E
[
ψ
(
z, z, ξ(1)

)
− ψ

(
z, z′, ξ(2)

)]
≤ β E

[
Dh((z, z, ξ(1)), (z, z′, ξ(2)))

]
≤ β

1 + E

 N∑
j=1

1{ξ(1)
j 6= ξ

(2)
j }


= β

1 +

N∑
j=1

Pr
(Z(1),Z(2))∼D̂

{
ξ

(1)
j 6= ξ

(2)
j

} .

In the second inequality, we assumed that z 6= z′. Recall from Lemma 6 and Definition 6
that

1 +
N∑
j=1

Pr
(Z(1),Z(2))∼D̂

{
ξ

(1)
j 6= ξ

(2)
j

}
≤ 1 +

n∑
j=i+1

∥∥D (Zπi(j:n) | B,Zπi(1:i) = (z, z)
)
− D

(
Zπi(j:n) | B,Zπi(1:i) = (z, z′)

)∥∥
tv

= 1 +
n∑

j=i+1

ϑπij(z, z, z
′)

≤ 1 +
n∑

j=i+1

γπij =
n∑
j=i

γπij .

The above inequalities hold uniformly for all z ∈ Zi−1
π,B and z, z′ ∈ Ziπ,B(z); thus,

sup
z∈Zi−1

π,B

sup
z∈Zi

π,B
(z)

(V π
i ) − inf

z′∈Zi
π,B

(z)
(V π
i ) ≤ β

n∑
j=i

γπij .

Then, since we have identified a uniform upper bound for Equation 46, we apply Lemma 5
and obtain

E
[
eτ(ϕ(Z)−E[ϕ(Z) | B]) | B

]
≤ exp

τ2

8

n∑
i=1

β n∑
j=i

γπij

2
≤ exp

τ2

8
nβ2 max

i∈[n]

 n∑
j=i

γπij

2
= exp

(
τ2

8
nβ2

∥∥Γπ
B

∥∥2

∞

)
,

which completes the proof.
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A.4 A New Concentration Inequality

Proposition 1, implies the following concentration inequality, which may be of independent
interest.

Corollary 3. Let Z , (Zi)
n
i=1 denote random variables with joint distribution D on Zn,

and let ϕ : Zn → R denote a measurable function. If ϕ is β-uniformly stable, then, for any
ε > 0 and π ∈ Π(n),

Pr {ϕ(Z)− E[ϕ(Z)] ≥ ε} ≤ exp

(
−2ε2

nβ2 ‖Γπ‖2∞

)
.

Proof First, note that, for any τ ∈ R,

Pr {ϕ(Z)− E[ϕ(Z)] ≥ ε} = Pr
{
eτ(ϕ(Z)−E[ϕ(Z)]) ≥ eτε

}
,

due to the monotonicity of exponentiation. We then apply Markov’s inequality and obtain

Pr
{
eτ(ϕ(Z)−E[ϕ(Z)]) ≥ eτε

}
≤ 1

eτε
E
[
eτ(ϕ(Z)−E[ϕ(Z)])

]
.

Since ϕ has β-uniform stability, we can apply Proposition 1 by taking BZ , ∅. Thus,

Pr
{
eτ(ϕ(Z)−E[ϕ(Z)]) ≥ eτε

}
≤ 1

eτε
exp

(
τ2

8
nβ2 ‖Γπ‖2∞

)
.

Optimizing with respect to τ , we take τ , 4ε
nβ2‖Γπ‖2∞

to complete the proof.

Corollary 3 extends some current state-of-the-art results (e.g., Kontorovich and Ra-
manan, 2008, Theorem 1.1) by supporting filtrations of the mixing coefficients. Further,
when Z1, . . . , Zn are mutually independent (i.e., ‖Γπ‖∞ = 1), we recover McDiarmid’s
inequality.

A.5 Proof of Proposition 2

We construct the filtration π recursively. We initialize π1 using a breadth-first traversal of
the graph, starting from any node. Then, for i = 2, . . . , n, we set πi(1 : i − 1) , πi−1(1 :
i − 1), and determine πi(i : n) using a breadth-first traversal over the induced subgraph
of πi−1(i : n), starting from πi−1(i − 1). This ensures that nodes closer to πi(i) appear
earlier in the permutation, so that the higher mixing coefficients are not incurred for all
j = i+ 1, . . . , n.

The degree of any node in this induced subgraph is at most the maximum degree of the
whole graph, ∆G, so the number of nodes at distance k from node πi(i) is at most ∆k

G.
Hence, the number of subsets, πi(j : n) : j > i, at distance k from πi(i) is at most ∆k

G.
Therefore,

n∑
j=i

γπij ≤
∞∑
k=0

∆k
G ϑ(k) ≤

∞∑
k=0

(
∆G

∆G + ε

)k
.
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Since ∆G/(∆G + ε) < 1 for ε > 0, this geometric series converges to

1

1−∆G/(∆G + ε)
= 1 + ∆G/ε,

which completes the proof.

A.6 Proof of Proposition 3

For a chain graph, we define each permutation uniformly as πi , [n]. Each upper-triangular
entry of Γπ then satisfies γπij ≤ ϑ(j− i). The number of unconditioned variables at distance
k = j − i is exactly one. Thus, for any row i,

n∑
j=i

γπij ≤ 1 +
n−i∑
k=1

ϑ(k) ≤ 1 + ε
n−i∑
k=1

k−p.

For p = 1, (k−p)∞k=1 is a Harmonic series. Thus, the partial sum,
∑n−i

k=1 k
−p, is the (n− i)th

Harmonic number, which is upper-bounded by ln(n− i) + 1, and maximized at row i = 1.
For p > 1,

1 + ε

n−i∑
k=1

k−p ≤ 1 + ε

∞∑
k=1

k−p = 1 + ζ(p),

by definition.

Appendix B. Proofs from Section 5

This appendix contains the deferred proofs from Section 5.

B.1 Proof of Theorem 2

For i = 0, 1, 2, . . ., let βi , 2i+1. Since Equation 2 fails with probability δ + mν, we could
simply invoke Theorem 1 for each βi with δi , β−1

i (δ+mν). This approach would introduce
an additional O

(
ln(mν)−1

)
term in the numerator of Equation 23. We therefore choose

instead to cover β and u simultaneously. Accordingly, for j = 0, 1, 2, . . ., let

uij , 2j

√√√√8mn ln 2βi
δ

β2
i

∥∥Γπ
B

∥∥2

∞

.

Each βi defines a set of “bad” hypotheses, BiH, which we use in Equation 5 to define a
function φ̃i. Let δij , δβ−1

i 2−(j+1), and define an event

Eij , 1

{
E
h∼P

[
euij φ̃i(h,Ẑ)

]
≥ 1

δij
exp

(
u2
ijβ

2
i

∥∥Γπ
B

∥∥2

∞
8mn

)}
.

Note that none of the above depend on (β, η,Q). Using the event B defined in Equation 12,
we have, via Proposition 1, that

Pr
Ẑ∼Dm

{Eij | ¬B} ≤ δij exp

(
−
u2
ijβ

2
i

∥∥Γπ
B

∥∥2

∞
8mn

)
E
h∼P

E
Ẑ∼Dm

[
euij φ̃i(h,Ẑ) | ¬B

]
≤ δij .
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Then, using the same reasoning as Equation 13, with E ,
⋃∞
i=0

⋃∞
j=0Eij ,

Pr
Ẑ∼Dm

{B ∪ E} ≤ mν +
∞∑
i=0

∞∑
j=0

Pr
Ẑ∼Dm

{Eij | ¬B}

≤ mν +
∞∑
i=0

∞∑
j=0

δij

= mν + δ

∞∑
i=0

β−1
i

∞∑
j=0

2−(j+1)

= mν + δ

∞∑
i=0

2−(i+1)
∞∑
j=0

2−(j+1)

= mν + δ.

Therefore, with probability at least 1− δ−mν, every l ∈ [m] satisfies Z(l) /∈ BZ , and every
(i, j) satisfies

E
h∼P

[
euij φ̃i(h,Ẑ)

]
≤ 1

δij
exp

(
u2
ijβ

2
i

∥∥Γπ
B

∥∥2

∞
8mn

)
. (48)

Observe that (β/n,BZ , η)-local stability implies (βj/n,BZ , η)-local stability for all βj ≥
β. Therefore, for any particular (β, η,Q) such that Q is (β/n,BZ , η)-locally stable, we
select i? ,

⌊
(ln 2)−1 lnβ

⌋
. This ensures that β ≤ βi? , so Q also satisfies (βi?/n,BZ , η)-local

stability. Then, letting

j? ,

⌊
1

2 ln 2
ln

(
Dkl(Q‖P)

ln(2βi?/δ)
+ 1

)⌋
,

we have that

1

2

√√√√√8mn
(
Dkl(Q‖P) + ln 2βi?

δ

)
β2
i?

∥∥Γπ
B

∥∥2

∞

≤ ui?j? ≤

√√√√√8mn
(
Dkl(Q‖P) + ln 2βi?

δ

)
β2
i?

∥∥Γπ
B

∥∥2

∞

. (49)

Moreover,

Dkl(Q‖P) + ln
1

δi?j?
≤ Dkl(Q‖P) + ln

2βi?

δ
+

1

2
ln

(
Dkl(Q‖P)

ln(2βi?/δ)
+ 1

)
≤ Dkl(Q‖P) + ln

2βi?

δ
+

1

2

(
Dkl(Q‖P) + ln

2βi?

δ

)
. (50)
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Thus, with probability at least 1− δ −mν,

L(Q)− L̂(Q, Ẑ) ≤ α(η + ν) +
1

ui?j?

(
Dkl(Q‖P) + ln E

h∼P

[
eui?j? φ̃i? (h,Ẑ)

])
≤ α(η + ν) +

1

ui?j?

(
Dkl(Q‖P) + ln

1

δi?j?
+
u2
i?j?β

2
i?

∥∥Γπ
B

∥∥2

∞
8mn

)

≤ α(η + ν) +
3
(
Dkl(Q‖P) + ln 2βi?

δ

)
2ui?j?

+
ui?j?β

2
i?

∥∥Γπ
B

∥∥2

∞
8mn

≤ α(η + ν) + 2βi?
∥∥Γπ
B

∥∥
∞

√
Dkl(Q‖P) + ln 2βi?

δ

2mn
.

The first inequality uses Equation 9; the second uses Equation 48; the third and fourth use
Equations 49 and 50. Noting that βi? ≤ 2β completes the proof.

B.2 Proof of Proposition 5

Fix any h ∈ H and z /∈ BZ . By Definition 10, there exists a set BH(h) with measure
Qh(BH(h)) ≤ η. For any z /∈ BZ , let BH(h, z) , BH(h), and note that Qh(BH(h, z)) ≤ η as
well. Further, for any h′ /∈ BH(h, z), ‖h− h′‖ ≤ β. Thus, by Definition 9,∣∣L(h, z)− L(h′, z)

∣∣ ≤ λ ∥∥h− h′∥∥ ≤ λβ,
which completes the proof.

Appendix C. Proofs from Section 6

This appendix contains the deferred proofs from Section 6. Certain proofs require the fol-
lowing technical lemmas, which apply to the linear feature functions defined in Section 2.2.3.

Lemma 7. Fix a graph, G , (V, E), with maximum degree ∆G. Suppose X is uniformly
bounded by the p-norm ball with radius R; i.e., supx∈X ‖x‖p ≤ R. Then, for any x,x′ ∈ X n
and y ∈ Yn, ∥∥f(x,y)− f(x′,y)

∥∥
p
≤ (∆G + 2)RDh(x,x′). (51)

Further, if the model does not use edge observations (i.e., fij(x,y) , yi ⊗ yj), then∥∥f(x,y)− f(x′,y)
∥∥
p
≤ 2RDh(x,x′). (52)

Proof We start by considering a pair, x,x′ ∈ X n : Dh(x,x′) = 1, that differ at a single
coordinate, corresponding to a node i. This means that the aggregate features differ at one
local feature, and any edge involving i. Thus, using the triangle inequality, we have that∥∥f(x,y)− f(x′,y)

∥∥
p

=

∥∥∥∥[ fi(x,y)− fi(x′,y)∑
j:{i,j}∈E fij(x,y)− fij(x′,y)

]∥∥∥∥
p

≤
∥∥fi(x,y)− fi(x′,y)

∥∥
p

+
∑

j:{i,j}∈E

∥∥fij(x,y)− fij(x′,y)
∥∥
p
. (53)
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Note that the second term disappears when the model does not use edge observations.

Recall that the features are defined using a Kronecker product. For any vectors u,v,
‖u⊗ v‖p = ‖u‖p ‖v‖p. Using this identity, and the fact that each y ∈ Y has ‖y‖1 = 1, we
have that

∥∥fi(x,y)− fi(x′,y)
∥∥
p

=
∥∥(xi − x′i)⊗ yi

∥∥
p

=
∥∥xi − x′i∥∥p ‖yi‖p

≤
(
‖xi‖p +

∥∥x′i∥∥p)× 1

≤ 2R,

and

∥∥fij(x,y)− fij(x′,y)
∥∥
p

=

∥∥∥∥1

2

([
xi
xj

]
−
[
x′i
xj

])
⊗ (yi ⊗ yj)

∥∥∥∥
p

=
1

2

∥∥xi − x′i∥∥p ‖yi‖p ‖yj‖p
≤ 1

2

(
‖xi‖p +

∥∥x′i∥∥p)× 1× 1

≤ R.

Combining these inequalities with Equation 53, and using the fact that i participates in at
most ∆G edges, we have that

∥∥f(x,y)− f(x′,y)
∥∥
p
≤ 2R+

∑
j:{i,j}∈E

R ≤ (2 + ∆G)R.

For no edge observations, the righthand side is simply 2R. Thus, since the bounds hold for
any single coordinate perturbation, Equations 51 and 52 follow from the triangle inequality.

Lemma 8. Fix a graph, G , (V, E), and recall that |G| , |V|+ |E|. Suppose X is uniformly
bounded by the p-norm ball with radius R; i.e., supx∈X ‖x‖p ≤ R. Then, for all x ∈ X n and
y ∈ Yn,

‖f(x,y)‖p ≤ |G|R.
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Proof Invoking the triangle inequality, we have that

‖f(x,y)‖p =

∥∥∥∥[ ∑
i∈V fi(x,y)∑

{i,j}∈E fij(x,y)

]∥∥∥∥
p

≤
∑
i∈V
‖fi(x,y)‖p +

∑
{i,j}∈E

‖fij(x,y)‖p

=
∑
i∈V
‖xi ⊗ yi‖p +

∑
{i,j}∈E

∥∥∥∥1

2

[
xi
xj

]
⊗ (yi ⊗ yj)

∥∥∥∥
p

=
∑
i∈V
‖xi‖p ‖yi‖p +

∑
{i,j}∈E

1

2

∥∥∥∥[xixj
]∥∥∥∥

p

‖yi‖p ‖yj‖p

≤
∑
i∈V
‖xi‖p ‖yi‖p +

∑
{i,j}∈E

1

2

(
‖xi‖p + ‖xj‖p

)
‖yi‖p ‖yj‖p

≤
∑
i∈V

R× 1 +
∑
{i,j}∈E

1

2
(R+R)× 1× 1

= (|V|+ |E|)R = |G|R,

which completes the proof.

Note that Lemmas 7 and 8 hold when discrete labels are replaced with marginals, since
each clique’s marginals sum to one. This adaptation enables the proof of Example 3.

C.1 Proof of Lemma 2

To simplify notation, let:

y1 , arg max
u∈Yn

Dh(y,u) + h(x,u); y2 , arg max
u∈Yn

h(x,u);

y′1 , arg max
u∈Yn

Dh(y′,u) + h(x′,u); y′2 , arg max
u∈Yn

h(x′,u).

Using this notation, we have that

n
∣∣Lr(h, z)− Lr(h, z

′)
∣∣

=
∣∣(Dh(y,y1) + h(x,y1)− h(x,y2))−

(
Dh(y′,y′1) + h(x′,y′1)− h(x′,y′2)

)∣∣
≤
∣∣(Dh(y,y1) + h(x,y1))−

(
Dh(y′,y′1) + h(x′,y′1)

)∣∣+
∣∣h(x,y2)− h(x′,y′2)

∣∣ , (54)

using the triangle inequality.
Focusing on the second absolute difference, we can assume, without loss of generality,

that h(x,y2) ≥ h(x′,y′2), meaning∣∣h(x,y2)− h(x′,y′2)
∣∣ = h(x,y2)− h(x′,y′2)

≤ h(x,y2)− h(x′,y2)

= w ·
(
f(x,y2)− f(x′,y2)

)
≤ ‖w‖q

∥∥f(x,y2)− f(x′,y2)
∥∥
p

≤ ‖w‖q (∆G + 2)RDh(x,x′). (55)
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The first inequality uses the optimality of y′2, implying −h(x′,y′2) ≤ −h(x′,y2); the second
inequality uses Hölder’s inequality; the third inequality uses Lemma 7 (Equation 51). Note
that we obtain the same upper bound if we assume that h(x,y2) ≤ h(x′,y′2), since we can
reverse the terms inside the absolute value and proceed with y′2 instead of y2.

We now return to the first absolute difference. To reduce clutter, it will help to use the
loss-augmented potentials, θ̃(x,y; w), from Equation 31. Recall that δ(y) denotes the loss
augmentation vector for y. We then have that∣∣(Dh(y,y1) + h(x,y1))−

(
Dh(y′,y′1) + h(x′,y′1)

)∣∣ =
∣∣∣θ̃(x,y; w) · ŷ1 − θ̃(x′,y′; w) · ŷ′1

∣∣∣ .
If we assume (without loss of generality) that θ̃(x,y; w) · ŷ1 ≥ θ̃(x′,y′; w) · ŷ′1, then∣∣∣θ̃(x,y; w) · ŷ1 − θ̃(x′,y′; w) · ŷ′1

∣∣∣ = θ̃(x,y; w) · ŷ1 − θ̃(x′,y′; w) · ŷ′1
≤ θ̃(x,y; w) · ŷ1 − θ̃(x′,y′; w) · ŷ1

=
(
θ(x; w) + δ(y)− θ(x′; w)− δ(y′)

)
· ŷ1

= w ·
(
f(x,y1)− f(x′,y1)

)
+
(
δ(y)− δ(y′)

)
· ŷ1

≤ ‖w‖q (∆G + 2)RDh(x,x′) +
(
δ(y)− δ(y′)

)
· ŷ1

≤ ‖w‖q (∆G + 2)RDh(x,x′) +Dh(y,y′). (56)

The first inequality uses the optimality of y′1; the second inequality uses Hölder’s inequality
and Lemma 7 again; the last inequality uses the fact that(

δ(y)− δ(y′)
)
· ŷ1 = Dh(y,y1)−Dh(y′, ŷ1) ≤ Dh(y,y′).

The upper bound in Equation 56 also holds when θ̃(x′,y′; w) · ŷ′1 ≥ θ̃(x,y; w) · ŷ1.
Combining Equations 55 to 57, we then have that

n
∣∣Lr(h, z)− Lr(h, z

′)
∣∣ ≤ 2(∆G + 2)R ‖w‖q Dh(x,x′) +Dh(y,y′)

≤ 2(∆G + 2)R ‖w‖q Dh(z, z′) +Dh(z, z′).

Dividing both sides by n yields Equation 33. To obtain Equation 34, we use Lemma 7’s
Equation 52 in Equations 55 and 56, which reduces the term (∆G + 2) to just 2.

C.2 Proof of Lemma 3

The proof proceeds similarly to that of Lemma 2. Let

y1 , arg max
u∈Yn

Dh(y,u) + h(x,u); y2 , arg max
u∈Yn

h(x,u);

y′1 , arg max
u∈Yn

Dh(y,u) + h′(x,u); y′2 , arg max
u∈Yn

h′(x,u).

Using this notation, we have that

n
∣∣Lr(h, z)− Lr(h

′, z)
∣∣

≤
∣∣(Dh(y,y1) + h(x,y1))−

(
Dh(y,y′1) + h′(x,y′1)

)∣∣+
∣∣h(x,y2)− h′(x,y′2)

∣∣ , (57)
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via the triangle inequality. Assuming h(x,y2) ≥ h′(x,y′2), we have that

∣∣h(x,y2)− h′(x,y′2)
∣∣ = h(x,y2)− h′(x,y′2)

≤ h(x,y2)− h′(x,y2)

= (w −w′) · f(x,y2)

≤
∥∥w −w′

∥∥
q
‖f(x,y2)‖p

≤
∥∥w −w′

∥∥
q
|G|R, (58)

via Lemma 8. Further, using the loss-augmented potentials, and assuming θ̃(x,y; w) · ŷ1 ≥
θ̃(x,y; w′) · ŷ′1, we have that

∣∣(Dh(y,y1) + h(x,y1))−
(
Dh(y,y′1) + h′(x,y′1)

)∣∣ = θ̃(x,y; w) · ŷ1 − θ̃(x,y; w′) · ŷ′1
≤ θ̃(x,y; w) · ŷ1 − θ̃(x,y; w′) · ŷ1

=
(
θ(x; w) + δ(y)− θ(x; w′)− δ(y)

)
· ŷ1

= (w −w′) · f(x,y1)

≤
∥∥w −w′

∥∥
q
‖f(x,y1)‖p

≤
∥∥w −w′

∥∥
q
|G|R. (59)

Combining the inequalities and dividing by n completes the proof.

C.3 Proof of Example 1

Since the weights are uniformly bounded, we define the prior, P, as a uniform distribution on
the d-dimensional unit ball. Given a (learned) hypothesis, h, with weights w, we construct
a posterior, Qh, as a uniform distribution on a d-dimensional ball with radius ε, centered at
w, and clipped at the boundary of the unit ball; i.e., its support is {w′ ∈ Rd : ‖w′ −w‖2 ≤
ε, ‖w′‖2 ≤ 1}. We let ε , (m |G|)−1, meaning the radius of the ball should decrease as the
size of the training set increases.

For a uniform distribution, U, with support supp(U) ⊆ H, we denote its volume by

vol(U) ,
∫
H
1{h ∈ supp(U)} dh.

The probability density function of U is the inverse of its volume. The volume of P is the
volume of a unit ball, which is proportional to 1. Similarly, the volume of Qh is at least
the volume of a d-dimensional ball with radius ε/2 (due to the intersection with the unit
ball), which is proportional to (ε/2)d.12 Therefore, using p and qh to denote their respective

12. We withhold the precise definitions for simplicity of exposition. It will suffice to recognize their relative
proportions, since the withheld constant depends only on d, and is thereby canceled out in the KL
divergence.
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densities, we have that

Dkl(Qh‖P) =

∫
H
qh(h′) ln

qh(h′)

p(h′)
dh′

=

∫
H
qh(h′) ln

vol(P)

vol(Qh)
dh′

≤
∫
H
qh(h′) ln(2/ε)d dh′

= d ln(2m |G|).

By assumption, every allowable hypothesis has a weight vector w with ‖w‖2 ≤ 1. We
also assume that supx∈X ‖x‖2 ≤ 1. Therefore, with R = 1 and β , (2∆G+4)+1, Lemma 2
immediately proves that Lr ◦ {h ∈ Hm3n : ‖w‖2 ≤ 1} is (β/n)-uniformly stable. Invoking
Corollary 1, we then have that, with probability at least 1−δ, every Qh : ‖w‖2 ≤ 1 satisfies

Lr(Qh) ≤ L̂r(Qh, Ẑ) + 2 ((2∆G + 4) + 1) ‖Γπ‖∞

√
d ln(2m |G|) + ln 2

δ

2mn
. (60)

By construction, every h′ ∼ Qh satisfies ‖w′ −w‖2 ≤ (m |G|)−1, so Q has (1/(m |G|), 0)-
local hypothesis stability. As demonstrated in Equation 37, Lr has (2 |G| /n, ∅)-local hy-
pothesis stability. Thus, via Proposition 5, (Lr,Q) has (2/(mn), ∅, 0)-local stability. Then,
via Proposition 4 and Equation 32, we have that

Lh(h) ≤ Lr(h) ≤ Lr(Qh) +
2

mn
, (61)

and

L̂r(Qh, Ẑ) ≤ L̂r(h, Ẑ) +
2

mn
≤ L̂h(h, Ẑ) +

2

mn
. (62)

Combining Equations 60 to 62 completes the proof.

C.4 Proof of Lemma 4

We begin with a fundamental property of the normal distribution, which is used to prove
the concentration inequality.

Fact 1. If X is a Gaussian random variable, with mean µ and variance σ2, then, for any
ε > 0,

Pr {|X − µ| ≥ ε} ≤ 2 exp

(
− ε2

2σ2

)
. (63)

Observe that, if ‖X− µ‖p ≥ ε, then there must exist at least one coordinate i ∈ [d] such

that |Xi − µi| ≥ ε/d1/p; otherwise, we would have

‖X− µ‖p =

(
d∑
i=1

|Xi − µi|p
)1/p

<
(
d
( ε

d1/p

)p)1/p
= ε.
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We therefore have that

Pr
{
‖X− µ‖p ≥ ε

}
≤ Pr

{
∃i : |Xi − µi| ≥

ε

d1/p

}
≤

d∑
i=1

Pr
{
|Xi − µi| ≥

ε

d1/p

}
≤

d∑
i=1

2 exp

(
− ε2

2σ2d2/p

)
.

The second inequality uses the union bound; the last uses Fact 1. Summing over i = 1, . . . , d
completes the proof.

C.5 Proof of Example 4

We first show that D(BZ) ≤ 1/n. Then, the rest of the proof is a simple modification of the
previous analyses.

Observe that, for any x and µy,

‖x‖2 − 1 ≤ ‖x‖2 − ‖µy‖2 ≤ ‖x− µy‖2 .

So, if ‖x‖2 ≥ 2, then ‖x− µy‖2 ≥ 1. Therefore, using the union bound, and Lemma 4, we
can upper-bound the measure of BZ as follows:

D(BZ) = Pr
Z∼D
{∃i : ‖Xi‖2 ≥ 2}

≤ sup
y∈Yn

Pr
X∼D
{∃i : ‖Xi‖2 ≥ 2 |Y = y}

= sup
y∈Yn

n∑
i=1

Pr
Xi∼D

{‖Xi‖2 ≥ 2 |Yi = yi}

≤ sup
y∈Yn

n∑
i=1

Pr
Xi∼D

{
‖Xi − µyi‖2 ≥ 1 |Yi = yi

}
≤ sup

y∈Yn

n∑
i=1

2k exp

(
− 1

2kσ2
yi

)

≤
n∑
i=1

2k exp

(
−2k ln(2kn2)

2k

)
=

1

n
.

Conditioned on Z /∈ BZ , we have that Lemmas 7 and 8 hold for R = 2; hence, so do
Lemmas 2 and 3. With P, Qh and BHm3n(h) constructed identically to Example 2, this means
that Qh is (βh/n,BZ , 1/(mn))-locally stable. Further, Lr has (4 |G| /n,BZ)-local hypothesis
stability, and Q has (1/(m |G|), 1/(mn))-local hypothesis stability; by Proposition 5, this
means that (Lr,Q) has (4/(mn),BZ , 1/(mn))-local stability. Thus, invoking Theorem 2
and Proposition 4, with ν = 1/n, we have that, with probability at least 1 − δ −m/n, all
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l ∈ [m] satisfy Z(l) /∈ BZ , and all h ∈ Hm3n satisfy

Lh(h) ≤ Lr(Qh) +
5

mn
+

1

n

≤ L̂r(Qh, Ẑ) +
6

mn
+

2

n

+ 4βh
∥∥Γπ
B

∥∥
∞

√
1
2 ‖w‖

2
2 + d

2 ln (2d(m |G|)2 ln(2dmn)) + ln 4βh
δ

2mn
.

Further, since none of the training examples in the sample are “bad,” we also have that

L̂r(Qh, Ẑ) ≤ L̂r(h, Ẑ) +
5

mn
≤ L̂h(h, Ẑ) +

5

mn
.

Combining these inequalities completes the proof.
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