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Abstract

The Restricted Boltzmann Machine (RBM) has proved to be a powerful tool in machine
learning, both on its own and as the building block for Deep Belief Networks (multi-layer
generative graphical models). The RBM and Deep Belief Network have been shown to be
universal approximators for probability distributions on binary vectors. In this paper we
prove several similar universal approximation results for two variations of the Restricted
Boltzmann Machine with time dependence, the Temporal Restricted Boltzmann Machine
(TRBM) and the Recurrent Temporal Restricted Boltzmann Machine (RTRBM). We show
that the TRBM is a universal approximator for Markov chains and generalize the theorem
to sequences with longer time dependence. We then prove that the RTRBM is a universal
approximator for stochastic processes with finite time dependence. We conclude with a
discussion on efficiency and how the constructions developed could explain some previous
experimental results.

Keywords: TRBM, RTRBM, machine learning, universal approximation

1. Introduction

Modeling temporal sequences has been an important problem in machine learning because
of the natural time dependence in many data sets. The Restricted Boltzmann Machine
(RBM), a type of probabilistic neural network, has become popular as a result of the use of
an efficient learning algorithm called contrastive divergence (Hinton, 2002). In particular,
its use in the construction of Deep Belief Networks (Hinton and Osindero, 2006) has led to
widespread use in a number of machine learning tasks. One major drawback of the basic
model, however, is the difficulty in using these models to capture temporal dependence in a
data set. Several refinements of the model have attempted to combine the efficient statistical
modeling of RBMs with the dynamic properties of Recurrent Neural Networks (Hinton and
Osindero, 2006)(Taylor et al., 2006)(Le Roux and Bengio, 2008). These include the Tempo-
ral Restricted Boltzmann Machine (TRBM), the Recurrent Temporal Restricted Boltzmann
Machine (RTRBM), and the Conditional Restricted Boltzmann Machine (CRBM). Boltz-
mann machines, and RBMs have been shown to be universal approximators for probability
distributions on binary vectors (Freund and Haussler, 1991)(Younes, 1996)(Le Roux and
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Bengio, 2008). Furthermore the related Deep Belief Networks have also been shown to
be universal approximators even when each hidden layer is restricted to a relatively small
number of hidden nodes (Sutskever and Hinton, 2010)(Le Roux and Bengio, 2010)(Montu-
far and Ay, 2011). The universal approximation of CRBMs follows immediately from that
of Boltzmann machines (Montufar et al., 2014). The question we wish to address here is
the universal approximation of stochastic processes by TRBMs and RTRBMs.

1.1 The Restricted Boltzmann Machine

An RBM defines a probability distribution over a set of binary vectors x ∈ {0, 1}n = X as
follows

P (v, h) = exp(v>Wh+ c>v + b>h)/Z

where the set of binary vectors X is partitioned into visible and hidden units X = V ×H
and Z is the normalization factor, in other words Z =

∑
v,h

exp(v>Wh + c>v + b>h). This

distribution is entirely defined by (W, b, c) and is referred to as a Boltzmann Distribution.
We are generally concerned with the marginal distribution of the visible units. When we
refer to the distribution of an RBM we are referring to the marginal distribution of its
visible units. The marginal distribution of a single visible node is given by

P (vi = 1|h) = σ

∑
j

wi,jhj + ci


where σ(x) = 1

1+exp(−x) . A similar equation holds for the hidden units. Variations of the

RBM which use real-valued visible and hidden units (or mixes of the two) exist but will not
be considered here.

1.2 Approximation

In order to measure how well one distribution approximates another we use the Kullback-
Leibler divergence, which for discrete probability distributions is given by

KL(R||P ) =
∑
v

R(v) log

(
R(v)

P (v)

)
,

where v ranges over the sample space of R and P . It can be shown that for any ε > 0, given
a probability distribution R on V there is a Boltzmann Distribution given by an RBM P
such that KL(R||P ) < ε (Le Roux and Bengio, 2008)(Freund and Haussler, 1991). Our goal
now is to prove the same result where R satisfies certain temporal dependency conditions
and P is a TRBM.
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2. Universal Approximation Results for the TRBM

A TRBM defines a probability distribution on a sequence xT = (x(0), ..., x(T−1)), x(i) ∈
{0, 1}n, x(i) = (v(i), h(i)), given by

P (v(t), h(t)|h(t−1)) =
exp(v(t)>Wh(t) + c>v(t) + b>h(t) + h(t)>W ′h(t−1))

Z(h(t−1))
,

P (vT , hT ) =

(
T−1∏
k=1

P (v(k), h(k)|h(k−1))

)
P0(v(0), h(0)).

This distribution is defined by the same parameters as the RBM along with the additional
parameters W ′. The TRBM can be seen as an RBM with a dynamic hidden bias determined
by W ′h(t−1). The initial distribution, P0(v(0), h(0)), is the same as P (v(t), h(t)|h(t−1)) with
h(0)>binit replacing h(t)>W ′h(t−1) for some initial hidden bias binit. Note that W ′ is not
symmetric in general. We call the connections between h(t−1) and h(t) with weights in W ′

temporal connections.

2.1 Universal Approximation Results for the Basic TRBM

Our approximation results will deal with distributions which are time-homogeneous and
have finite time dependence. These distributions can be written in the form

R(vT ) =

(
T−1∏
k=m

R1(v(k)|v(k−1), ..., v(k−m))

)
R0(v(0), ..., v(m−1))

where R1 is the transition probability and R0 is the initial distribution. We first show that
a TRBM can approximate a Markov chain (distributions of the above form with m = 1)
for a finite number of time steps to arbitrary precision. We begin by proving a lemma.
Here Pt is the marginal distribution of P over (v(0), . . . , v(t)). Similarly R0,t is the marginal
distribution of R0 over (v(0), . . . , v(t)).

Lemma 1: Let R be a distribution on a finite sequence of length T of n-dimensional binary
vectors that is time homogeneous with finite time dependence. Given a set of distributions
P on the same sequences, if for every ε > 0 we can find a distribution P ∈ P such that for
every vT ,
KL(R1(·|v(t−1), ..., v(t−m))||Pt(·|v(t−1), ..., v(0))) < ε for m ≤ t < T − 1,
KL(R0,t(·|v(t−1), ..., v(0))||Pt(·|v(t−1), ..., v(0))) < ε for 0 < t < m,
and KL(R0,0(·)||P0(·)) < ε,
then we can find distributions P ∈ P to approximate R to arbitrary precision.
Proof: The proof is given in the appendix.
Now we use this lemma to prove our first universal approximation theorem. In this case P
is the set of distributions given by a TRBM. Note that throughout this paper P will often
be used to refer to a TRBM. When we say P is a TRBM we are referring to the distribution
associated with a set of parameters defining the TRBM.
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Theorem 1: Let R be a distribution over a sequence of length T of binary vectors of
length n that is time homogeneous and satisfies the Markov property. For any ε > 0 there
exists a TRBM defined on sequences of length T of binary vectors of length n with distri-
bution P such that KL(R||P ) < ε.
Proof: By the previous lemma we will be looking for a TRBM that can approximate the
transition probabilities of R along with its initial distribution. The proof will rely on the
universal approximation properties of RBMs. The idea is that given one of the 2n con-
figurations of the visible units, v, there is an RBM with distribution Pv approximating
R1(·|v(t−1) = v) to a certain precision. The universal approximation results for RBMs tell
us that this approximation can be made arbitrarily precise for an RBM with enough hidden
units. Furthermore, this approximation can be done with visible biases set to 0 (Le Roux
and Bengio, 2008). We thus set all visible biases of our TRBM to 0 and include each of
the approximating RBMs without difficulty. We label these RBMs H1, ...,H2n . Given a
specific configuration of the visible nodes v, Hv refers to the RBM chosen to approximate
R1(·|v(t−1) = v).

The challenge then is to signal the TRBM which of the 2n RBMs should be active at the
next time step. To do this we include 2n additional hidden nodes which we will call control
nodes, each corresponding to a particular configuration of the visible units. Thus we add
2n control nodes, hc,1, ..., hc,2n corresponding to the hidden nodes H1, ...,H2n . Again, given
a particular visible configuration v, we denote the corresponding control node by hc,v. The
set of all control nodes will be denoted Hc. Note that (c, v) is the label of hc,v and weights
involving hc,v will be denoted w(c,v),i or w′j,(c,v). The control nodes will signal which of the
Hi’s should be active at the next time step. To accomplish this we will choose parameters
such that when v is observed at time t− 1, hc,v will be on at time t− 1 with a probability
close to 1 and every other control node will be off at time t − 1 with probability close to
1. Each hc,v will have strong negative temporal connections to every Hv′ with v′ 6= v, in
essence turning off every RBM corresponding to R1(·|v(t−1) = v′), and leaving the RBM
corresponding to R1(·|v(t−1) = v) active (see Fig. 1). We will break the proof down into
four parts and we must be able to choose parameters that satisfy all four conditions.

First, we must be able to choose parameters so that given v(t−1) = v, the probability

that h
(t−1)
c,v = 1 can be made arbitrarily close to 1 and the probability that h

(t−1)
c,v′ = 1 can be

made arbitrarily close to 0. Second, we must have that the control nodes have no impact on
the visible distribution at the same time step so the transition probabilities of the TRBM
will still approximate R1(·|v(t−1) = v). Third, we must be able to choose parameters so

that given h
(t−1)
c,v = 1 and h

(t−1)
c,v′ = 0, the probability that any nodes in Hv′ are on at time t

can be made arbitrarily close to 0 for v′ 6= v. Finally, we must be able to approximate the
initial distribution R0.

Note in the TRBM temporal data cannot flow directly from the visible nodes to the hidden
nodes at the next time step. In contrast, by using the visible nodes at time t as input and
the visible nodes at time t+1 as output, in the CRBM there is a direct relationship between
the visible nodes at time t and the hidden nodes at time t+ 1. The CRBM is known to be
a universal approximator (Montufar et al., 2014). The main challenge for the TRBM is to
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encode the visible state in the control unit so that information can be passed to the hidden
nodes at the next time step without the encoding changing the visible distribution. This is
covered in Steps 1 and 2. Step 3 verifies that the correct distribution can be recovered from
the encoding and Step 4 shows we can simulate the initial distribution without changing
the rest of the machine.

hc,2n

hc,1

H2n

H1

H0

V

...

...

hc,2n

hc,1

H2n

H1

H0

V

...
...

t t+ 1

Figure 1: Interactions between sets of nodes within and between time steps:
each hc,v turns off every Hv′ : v 6= v′ in the subsequent time step. hc,v will only be
on if v is observed at time t and collectively the control nodes Hc have negligible
effect on the visible distribution. H0 is an additional set of hidden units that
will be used to model the initial distribution.

To choose temporal connections, define w′j,(c,v) to be −α if hj ∈ Hv′ where v′ 6= v and 0

otherwise. Let every other w′i,j = 0. In particular, remembering that W ′ is not necessarily
symmetric, we have w′(c,v),j = 0 for all hj . The only parameters left to define are the bi-

ases and visible-hidden connections of Hc. Let b(c,v) = −(k − 0.5)β where k is the number
of visible nodes on in v. Finally, define the connections from the visible units to hc,v by
wi,(c,v) = β if vi is on in the configuration v and −β otherwise. Here the parameters of the
control nodes are completely determined by α and β. We will proceed by showing that all
necessary conditions are satisfied when α and β are large enough.

A note on notation. Throughout the proof H will denote the set of hidden nodes and

H(t) will denote the set of configurations of hidden nodes at time t. Similarly H
(t)
v will

denote the set of configurations of the hidden nodes in which h
(t)
i = 0 if hi 6∈ Hv. Similar

conventions are used for Hc. (H\Hc)
(t) then denotes the set of configurations of non-control

nodes. This is used in scenarios where we want to sum over a certain subset of hidden nodes
and ignore the others, which is equivalent to simply setting all other nodes to 0. H

(t)
c,v de-

notes the set of configurations of h(t) with h
(t)
c,v = 1 and h

(t)
c,v′ = 0 for v 6= v′. H̄

(t)
c,v denotes

the set of configurations H(t)\H(t)
c,v. See Appendix A for a partial list of relevant notation.
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Step 1:

For this step we show that as β → ∞ we have P (H
(t)

c,v(t)
|v(t), . . . , v(0)) → 1. Note that

given the visible state at time t, the state of the control nodes at time t is conditionally
independent of all other previous states. With this in mind, we can write the probability
of a control node being on at time t as

P (h(t)
c,v = 1|v(t), ..., v(0)) = σ

(∑
i

v
(t)
i wi,(c,v) + b(c,v)

)
,

where σ is the logistic function. Note that for all v(t) ∈ {0, 1}n and v ∈ {0, 1}n,
∑
i
v

(t)
i wi,(c,v) =

aβ − bβ where a is the number of nodes on in both v and v(t) and b is the number of
nodes on in v(t) but off in v. Since b(c,v) = −(k − 0.5)β if v 6= v(t), then either a < k,

in which case
∑
i
v

(t)
i wi,(c,v) + b(c,v) ≤ −0.5β, or a = k and b ≥ 1, which again implies∑

i
v

(t)
i wi,(c,v) + b(c,v) ≤ −0.5β. If v = v(t) then aβ − bβ + b(c,v) = kβ − (k − 0.5)β = 0.5β.

Thus if v = v(t),

σ

(∑
i

v
(t)
i wi,(c,v) + b(c,v))

)
= σ(0.5β).

Otherwise

σ

(∑
i

v
(t)
i wi,(c,v) + b(c,v)

)
≤ σ(−0.5β).

So as β → ∞, P (H
(t)

c,v(t)
|v(t), ..., v(0)) → 1. In other words, for all v(t), ..., v(0) and all

ε0 > 0 there exists some β0 such that β > β0 implies |1 − P (H
(t)

c,v(t)
|v(t), ..., v(0))| =

P (H̄
(t)

c,v(t)
|v(t), ..., v(0)) < ε0.

Step 2:
Here we show that by making β large enough we can make the effect of the control nodes
on the visible distribution at the same time step negligible. Take any v(t), for all h(t−1), we
have

P (v(t)|h(t−1)) =
P (v(t)|h(t−1))∑

v(t)
P (v(t)|h(t−1))

=

∑
h(t)∈H(t)

c,v(t)

P (v(t), h(t)|h(t−1)) +
∑

h(t)∈H̄(t)

c,v(t)

P (v(t), h(t)|h(t−1))

∑
v(t)

∑
h(t)∈H(t)

c,v(t)

P (v(t), h(t)|h(t−1)) +
∑
v(t)

∑
h(t)∈H̄(t)

c,v(t)

P (v(t), h(t)|h(t−1))
. (1)

We also have that P (v(t), h(t)|h(t−1)) = P (h(t)|v(t), h(t−1))P (v(t)|h(t−1)) for all h(t), v(t) and
by definition∑

h(t)∈H̄(t)

c,v(t)

P (h(t)|v(t), h(t−1))P (v(t)|h(t−1)) = P (H̄
(t)

c,v(t)
|v(t), h(t−1))P (v(t)|h(t−1)).
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By Step 1, there exists a β0 such that for any β > β0 we have P (H̄
(t)

c,v(t)
|v(t), ..., v(0)) < ε0

for all v(t), ..., v(t−1). Since the only connections going to a control node are from the
visible units, given v(t), the state of the control nodes are conditionally independent of
v(t−1), ..., v(0) and h(t−1) . Since P (v(t)|h(t−1) < 1, we have that β > β0 implies that

P (H̄
(t)

c,v(t)
|v(t), h(t−1))P (v(t)|h(t−1) < ε0, giving us that for β > β0 and all v(t),∑

h(t)∈H̄(t)

c,v(t)

P (v(t), h(t)|h(t−1)) < ε0. (2)

Note that this inequality is independent of α. Increasing α has no effect on P (H̄
(t)

c,v(t)
|v(t), h(t−1))

and P (v(t)|h(t−1)) is bounded above by 1 so even after increasing α arbitrarily the in-
equality will hold with the same choice of β. Looking back to equation (1), as β →
∞ the right hand terms in both the numerator and denominator go to 0. Consider∑
h(t)∈H(t)

c,v(t)

P (v(t), h(t)|h(t−1)). For all v(t), this is bounded above by 1 and since we are

summing over h(t) ∈ H(t)

c,v(t)
, Step 1 tells us this is strictly increasing in β. This tells us that

limit of the numerator and denominator of (1) are both finite and non-zero giving us that

lim
β→∞

P (v(t)|h(t−1)) = lim
β→∞

∑
h(t)∈H(t)

c,v(t)

P (v(t), h(t)|h(t−1))

∑
v(t)

∑
h(t)∈H(t)

c,v(t)

P (v(t), h(t)|h(t−1))
.

Define

P̃ (v(t)|h(t−1)) :=

∑
h(t)∈H(t)

c,v(t)

P (v(t), h(t)|h(t−1))

∑
v(t)

∑
h(t)∈H(t)

c,v(t)

P (v(t), h(t)|h(t−1))

=

∑
h(t)∈H(t)

c,v(t)

exp

( ∑
i,j:hj∈(H\Hc)

v
(t)
i h

(t)
j wi,j +

∑
j:hj∈(H\Hc)

bjh
(t)
j + 0.5β +

∑
i,j
h

(t)
i h

(t−1)
j w′i,j

)

∑
v(t)

∑
h(t)∈H(t)

c,v(t)

exp

( ∑
i,j:hj∈(H\Hc)

v
(t)
i h

(t)
j wi,j +

∑
j:hj∈(H\Hc)

bjh
(t)
j + 0.5β +

∑
i,j
h

(t)
i h

(t−1)
j w′i,j

)

=

∑
h(t)∈H(t)

c,v(t)

exp

( ∑
i,j:hj∈(H\Hc)

v
(t)
i h

(t)
j wi,j +

∑
j:hj∈(H\Hc)

bjh
(t)
j +

∑
i,j
h

(t)
i h

(t−1)
j w′i,j

)

∑
v(t)

∑
h(t)∈H(t)

c,v(t)

exp

( ∑
i,j:hj∈(H\Hc)

v
(t)
i h

(t)
j wi,j +

∑
j:hj∈(H\Hc)

bjh
(t)
j +

∑
i,j
h

(t)
i h

(t−1)
j w′i,j

) ,
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but this is just the probability of v(t) when we remove the control nodes. Thus for
any v(t) and ε1 > 0 there exists a β0 such that β > β0 implies that for all h(t−1),
|P (v(t)|h(t−1))− P̃ (v(t)|h(t−1))| < ε1. Furthermore, this is unchanged by increasing α.

Step 3:
In this step, remembering that Pv is the distribution of the RBM corresponding toR1(·|v(t−1) =

v), we show that as α and β are increased to infinity, if h(t−1) ∈ H(t−1)
c,v then P (v(t)|h(t−1))→

Pv(v
(t)) for all v(t). First note that since the states of any two hidden nodes at time t are

independent, P (h
(t)
j = 1|v(t), h(t−1)) = P̃ (h

(t)
j = 1|v(t), h(t−1)). Here P̃ is the system without

control nodes, defined in the previous step. Take any v(t) and consider some configuration

h(t−1) ∈ H(t−1)
c,v . We have h

(t−1)
c,v′ = 0 for all v′ 6= v and wj,(c,v) = 0 for hj ∈ Hv, giving us

P̃ (h
(t)
j = 1|v(t), h(t−1)) = σ

(∑
i

v
(t)
i wi,j + bj

)
.

This is Pv(h
(t)
j = 1|v(t)). Now take a hidden unit hj ∈ Hv′ with v′ 6= v. Since v′ 6= v and

h(t−1) ∈ H(t−1)
c,v , then h

(t−1)
c,v = 1 and wj,(c,v) = −α. This gives us

P̃ (h
(t)
j = 1|v(t), h(t−1)) = σ

(∑
i

v
(t)
i wi,j + bj − α

)
.

Since hj is not a control node, wi,j is fixed for all vi. Thus as α → ∞, P̃ (h
(t)
j =

1|v(t), h(t−1)) → 0. So for any ε0 > 0 there exists α0 such that α > α0 implies that if

hj ∈ Hv′ with v 6= v′, |P̃ (h
(t)
j = 1|v(t), h(t−1))| < ε0. Now we have

P̃ (v(t)|h(t−1)) =
∑

h(t)∈(H\Hc)(t)

P̃ (v(t), h(t)|h(t−1))

=
∑

h(t)∈H(t)
v

P̃ (v(t), h(t)|h(t−1)) +
∑

h(t)∈(H\Hc)(t)\H(t)
v

P̃ (v(t), h(t)|h(t−1)). (3)

Note that P̃ (v(t), h(t)|h(t−1)) = P̃ (h(t)|v(t), h(t−1))P̃ (v(t)|h(t−1)), h
(t)
j and h

(t)
i are indepen-

dent for all i, j, and P̃ (v(t)|h(t−1)) < 1. Thus we have that α > α0 implies that if

h(t) ∈ (H\Hc)
(t)\H(t)

v , then P̃ (h(t)|v(t), h(t−1))P̃ (v(t)|h(t−1)) < ε0. So as α → ∞, the right
hand term of (3) goes to 0. So for any ε1 there exists an α1 such that α > α1 implies
|P̃ (v(t)|h(t−1))−

∑
h(t)∈H(t)

v

P̃ (v(t), h(t)|h(t−1))| < ε1. Note that since there are a finite number

of configurations, v(t), we can take α large enough so that this is true for all v(t). So for any
ε1 we can choose α > α1 so that∣∣∣∣∣∣∣∣P̃ (v(t)|h(t−1))−

∑
h(t)∈H(t)

v

P̃ (v(t), h(t)|h(t−1))

∑
v(t),h(t)∈H(t)

v

P̃ (v(t), h(t)|h(t−1))

∣∣∣∣∣∣∣∣ < ε1,
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but we have

∑
h(t)∈H(t)

v

P̃ (v(t), h(t)|h(t−1))

∑
v(t),h(t)∈H(t)

v

P̃ (v(t), h(t)|h(t−1))
=

∑
h(t)∈H(t)

v

exp

(∑
i,j
v

(t)
i h

(t)
j wi,j +

∑
j
bjh

(t)
j

)
∑

v(t),h(t)∈H(t)
v

exp

(∑
i,j
v

(t)
i h

(t)
j wi,j +

∑
j
bjh

(t)
j

)

= Pv(v
(t)).

To summarize, Step 3 tells us that for any given v(t) and all h(t−1) ∈ H(t−1)
c,v and any ε1 > 0,

there exists α1 such that α > α1 implies that |P̃ (v(t)|h(t−1))− Pv(v(t))| < ε1.

Step 4:
Finally, we must also be able to approximate the initial distribution R0 to arbitrary pre-
cision. We know there is an RBM H0 with visible biases 0 whose Boltzmann distribution
can approximate R0 to a certain precision. Include this machine in our TRBM. Now we
define the initial biases. Let bi,init = γ for every hi ∈ H0 and bc,v,init = 0 for all (c, v). Set
bi,init = −γ for all other hidden nodes. Add −γ to the biases of H0. Call the distribution
of this modified machine P̂ . By Step 2, for any v(t), and any ε0 > 0, there exists β0 such

that β > β0 implies |P̂0(v(0), h(0))− ˜̂
P0(v(0), h(0))| < ε0. If hk ∈ Hv for some v, we have

˜̂
P0(h

(0)
k = 1|v(0)) = σ

(∑
i

v
(0)
i wi,k + bk − γ

)
,

and for hj ∈ H0 we have

˜̂
P0(h

(0)
j = 1|v(0)) = σ

(∑
i

v
(0)
i wi,j + bj

)
.

Note that
˜̂
P0 does not depend on α or β. Following the same logic as in Step 3, for any

ε0 > 0, there exists γ0 such that γ > γ0 implies
˜̂
P0(v(0), h(0) < ε0 if h(0) ∈ (H\Hc)

(t)\H(t)
0 for

some Hv. So for all v(t), P̂0(v(0)) can be made arbitrarily close to the probability of v(0) in
the Boltzmann distribution of H0, which by construction approximates R0. At subsequent

time steps, for each hj ∈ H0 we have P (h
(t)
j = 1|h(t−1), v(t)) = σ(

∑
i
wi,jv

(t)
i + bj − γ). This

can be made arbitrarily close to 0 by making γ arbitrarily large, so P (h
(t)
j = 1, v(t)|h(t−1))

can be made arbitrarily close to 0. Thus for any ε0 > 0 there exists γ1 such that γ > γ1

implies

|P̂ (v(t)|h(t−1))−
∑

h(t) 6∈H(t)
0

P̂ (v(t)h(t)|h(t−1))| < ε0. (4)

But since γ does not appear anywhere else for t > 0,
∑

h(t) 6∈H(t)
0

P̂ (v(t)h(t)|h(t−1)) = P (v(t)|h(t−1)).

Note that this construction allows the control nodes to be active in the first time step and
to transmit temporal data without disturbing the initial distribution.

9
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Now we put the four steps together. Given an arbitrary 0 < t < T , we can write each
P (v(t)|v(t−1), ..., v(0)) as ∑

h(t−1)

P (v(t), h(t−1)|v(t−1), ..., v(0))

=
∑
h(t−1)

P (v(t)|h(t−1), v(t−1), ..., v(0))P (h(t−1)|v(t−1), ..., v(0))

=
∑
h(t−1)

P (v(t)|h(t−1))P (h(t−1)|v(t−1), ..., v(0)).

Step 1 tells us that if h(t−1) 6∈ H(t−1)

c,v(t−1) , then lim
β→∞

P (h(t−1)|v(t−1), ..., v(0)) = 0. Step 2 tells

us that lim
β→∞

P (v(t)|h(t−1)) = P̃ (v(t)|h(t−1)). Since P is continuous in terms of β, for any ε1,

there exists β0 such that β > β0 implies

|
∑
h(t−1)

P (v(t)|h(t−1))P (h(t−1)|v(t−1), ..., v(0))−

∑
h(t−1)∈H(t−1)

c,v(t−1)

P̃ (v(t)|h(t−1))P (h(t−1)|v(t−1), ..., v(0))| < ε1.
(5)

Step 3 tells us that for any ε0 > 0, there exists an α0 such that for all h(t−1) ∈ H(t−1)

c,v(t−1) , if

α > α0 we have |P̃ (v(t)|h(t−1)) − Pv(t−1)(v(t))| < ε0. So for any ε1, there exists an α0 such
that α > α0 implies

|
∑

h(t−1)∈H(t−1)

c,v(t−1)

P̃ (v(t)|h(t−1))P (h(t−1)|v(t−1), ..., v(0))−

Pv(t−1)(v(t))
∑

h(t−1)∈H(t−1)

c,v(t−1)

P (h(t−1)|v(t−1), ..., v(0))| < ε1.
(6)

Again by Step 1, as β goes to infinity,
∑

h(t−1)∈H
c,v(t−1)

P (h(t−1)|v(t−1), ..., v(0))→ 1, so for any

ε1 there exists β1 such that β > β1 implies that

|P (t−1)
v (v(t))

∑
h(t−1)∈H(t−1)

c,v(t−1)

P (h(t−1)|v(t−1), ..., v(0))− P (t−1)
v (v(t))| < ε1. (7)

Now take any ε2 > 0 and take ε1 < ε2/4 with corresponding β0, β1, α0 so that the inequalities
in (5), (6) and (7) hold. Then from Step 4 there exist γ0, β2 such that γ > γ0 and β > β2 im-
plies that (4) holds. Then taking β > max(β0, β1, β2), α > α0, γ > γ0 and applying the tri-

angle inequality to (4), (5), (6), and (7) we have that |P̂ (v(t)|v(t−1), ..., v(0))−P (t−1)
v (v(t))| <

ε2. Since there are a finite number of configurations v(t), v(t−1), ..., v(0), we can choose α, β, γ
so that this holds for all v(t), v(t−1), ..., v(0) and by construction, KL(R(·|v(t−1))||Pv(t−1)) < ε

10
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for some arbitrarily chosen ε. Since the KL-divergence as a function of α, β, and γ is
continuous, for any ε′ > 0 we can find α1, β2, γ1 such that α > α1, β > β2, γ > γ1

implies that |KL(R(·|v(t−1))||P (·|v(t−1), ..., v(0))) − KL(R(·|v(t−1))||Pv(t−1)))| < ε′. And
KL(R(·|v(t−1))||Pv(t−1))) < ε for some arbitrarily chosen ε. So we can choose parame-
ters such that KL(R(·|v(t−1))||P (·|v(t−1), ..., v(0))) < ε. By the same argument, Step 4 tells
us that we can choose parameters so that KL(R0||P0) < ε. Thus by Lemma 1 the result
holds.

Note that following the remark after the proof of Lemma 1, if we have a TRBM which
approximates R over T time steps to a certain precision, it also approximates R over t < T
time steps to at least the same precision since the construction satisfies the conditions of
Lemma 1.

2.2 The Generalized TRBM

The TRBM used in the previous section is a restricted instance of a more generalized model
described by Sutskever et al. (2006). In the full model we allow explicit long-term hidden-
hidden connections as well as long-term visible-visible connections. In this paper we will
not consider models with visible-visible temporal interaction. From a practical standpoint
any learning algorithm operating on a class of models with visible-visible interactions would
be able to make those connections arbitrarily small if it helped, so in practice the class of
models with visible-visible temporal connections is bigger than the one without any. The
generalized TRBM is given by

P (v(t), h(t)|h(t−1), ..., h(0))

=
exp(v(t)>Wh(t) + c>v(t) + b>h(t) + h(t)>W (1)h(t−1) + ...+ h(t)>W (m)h(t−m))

Z(h(t−1), ..., h(t−m))
,

where we have a finite number of weight matrices W (i) used to determine the bias at time

t. We replace W (k)h(t−k) with an initial bias b
(k)
init if k > t. The distribution P (vT , hT ) is

then given by

P (vT , hT ) =

(
T−1∏
t=m

P (v(t), h(t)|h(t−1), ..., h(t−m))

)(
m−1∏
t=1

P (v(t), h(t)|h(t−1), ..., h(0))

)

×P0(v(0), h(0)).

If we drop the restriction that R be a Markov chain we can generalize the previous theorem
so that R is any distribution homogeneous in time with a finite time dependence.
Theorem 2: Let R be a distribution over a sequence of length T of binary vectors of length
n that is time homogeneous and has finite time dependence. For any ε > 0 there exists a
generalized TRBM, P, such that KL(R||P ) < ε.
Proof: The initial part of the proof is identical to the proof of Theorem 1. Let m be the time
dependence of R. Then for each visible sequence v(t−1), ..., v(t−m) we construct a TRBM
P by adding sets of hidden units Hv(t−1),...,v(t−m) with parameters chosen to approximate

R1(·|v(t−1), ..., v(t−m)). Note that although the indicies here are written as v(t−1), ..., v(t−m),

11
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they do not depend on the time step t. Rather, there is one set of hidden nodes added for
each configuration of an m-length sequence of visible nodes. The superscripts are added
to distinguish different vectors in the sequence as well as emphasize how the connections
should be made.

For each visible configuration v we add a control unit hc,v with the same bias and visible-
hidden connections (determined by a parameter β) as in the construction for Theorem 1. If

i ≤ m, define the i-step temporal connections as w
(i)
(c,v),j = −α if hj ∈ Hv(t−1),...,v(t−i),...,v(t−m)

with v(t−i) 6= v and 0 otherwise. All other temporal connections are set to 0. Then repeat-
ing Step 1, Step 2, and Step 3 in Theorem 1, by making α and β sufficiently large we can
make KL(R1(·|v(t−1), ..., v(t−m))||P (·|v(t−1), ..., v(0))) arbitrarily small for all vT .

To finish the proof we must modify the machine to approximate the m initial distribu-
tions as well. In practice, one could train an RBM with the first m time steps as input in
order to simulate the initial distribution. In this case the remainder of the proof is identical
to step 4 of Theorem 1. The proof for the general TRBM as defined above is more intri-

cate. In order to simulate the initial distributions with the general TRBM, First set b
(k)
init

to −γ for each node h ∈ Hv(t−1),...,v(t−m) and all k, and set b
(k)
init to 0 for every control node.

Now for each sequence v(i−1), ..., v(0) with i < m add a set of hidden units Hv(i−1),...,v(0) to

approximate R0,i(·|v(i−1), ..., v(0)) to a certain precision. For each i, call the set of all of
these hidden units H(i). Connect each of these sets to the control nodes in the same way

as done previously. In other words if hj ∈ Hv(i−1),...,v(0) then w
(l)
j,(c,v) = −α if v(i−l) 6= v and

0 otherwise. Add −γ to the bias of each hj if hj ∈ H(i) for some i. For each hj ∈ H(i) let

b
(l)
init = −γ for l 6= i and b

(i)
init = (m− i+ 2)γ.

Start by choosing β so that |P (v(i)|v(i−1), ..., v(0)) − P̃ (v(i)|v(i−1), ..., v(0))| < ε0. This can
be done for any ε0 > 0 by the argument in Theorem 1 Step 2. Now for time l < m, for

any non-control node hj /∈ H(l), and all h(l−1), ..., h(0), P̃ (h
(l)
j = 1|v(l), h(l−1), ..., h(0)) ≤

σ(
∑
wi,jv

(l)
i + bj − γ). This tends to 0 as γ → ∞. So for any ε1 > 0, the argument in

Theorem 1 Step 3 tells us we can choose γ large enough so that

|P̃ (v(l)|v(l−1), ..., v(0))−
∑

h(l)∈H(l)
(l)

P̃ (v(l), h(l)|v(l−1), ..., v(0))| < ε1. (8)

Furthermore if hj ∈ H(l) then

P̃ (h
(l)
j = 1|v(l), h(l−1), ..., h(0))

= σ

(∑
i

wi,jv
(l)
i + bj + (m− i+ 2)γ − (m− i+ 2)γ +

∑
i

w
(1)
i,j h

(l−1)
i + ...+

∑
i

w
(l)
i,jh

(0)
j

)

= σ

(∑
wi,jv

(l)
i + bj +

∑
i

w
(1)
i,j h

(l−1)
i + ...+

∑
i

w
(l)
i,jh

(0)
j

)
.
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So
∑

h(l)∈H(l)
(l)

P̃ (v(l), h(l)|v(l−1), ..., v(0)) does not depend on γ. Using the same argument as in

Step 3 of Theorem 1, for all ε1 > 0 there exists α0 so that α > α0 implies that

|
∑

h(l)∈H(l)
(l)

P̃ (v(l), h(l)|v(l−1), ..., v(0))−
∑

h(l)∈H
v(l−1),...,v(0)

P̃ (v(l), h(l)|v(l−1), ..., v(0))| < ε1.

But the second term is just the probability of v(l) under the Boltzmann distribution of
Hv(l−1),...,v(0) , so using continuity of the KL-divergence along with the triangle inequality
gives us the second and third condition for Lemma 1. Finally note that for t ≥ m, if hj ∈ H(l)

for any l and all h(t−1), ..., h(t−m), P (h
(t)
j = 1|v(t), h(t−1), ..., h(t−m)) ≤ σ(

∑
wi,jv

(l)
i + bj−γ).

So for any ε1, we can take γ large enough such that

|P̃ (v(t)|v(t−1), ..., v(0))−
∑

h(t)∈(H\Hc\H(l))
(l)

P̃ (v(t), h(t)|v(t−1), ..., v(0))| < ε1. (9)

Since for t ≥ m, γ does not appear anywhere in the second term, this leaves us with the
machine described in the first part of the proof, thus the first condition for Lemma 1 also
holds.

3. Universal Approximation Results for the Recurrent Temporal
Restricted Boltzmann Machines

The TRBM gives a nice way of using a Boltzmann Machine to define a probability distri-
bution that captures time dependence in data, but it turns out to be difficult to train in
practice (Sutskever et al., 2008). To fix this, a slight variation of the model, the RTRBM,
was introduced. The key difference between the TRBM and the RTRBM is the use of
deterministic real values denoted h(t). We will denote the probabilistic binary hidden units
at time t by h′(t). The distribution defined by an RTRBM, Q, is

Q(vT , h′T ) =

(
T−1∏
k=1

Q(v(k), h′(k)|h(k−1))

)
Q0(v(0), h

′(0)).

Here Q(v(t), h′(t)|h(t−1)) is defined as

Q(v(t), h′(t)|h(t−1)) =
exp(v(t)>Wh′(t) + c>v(t) + b>h

′(t) + h′(t)>W ′h(t−1))

Z(h(t−1))
,

and hT is a sequence of real-valued vectors defined by

h(t) = σ(Wv(t) +W ′h(t−1) + b),

h(0) = σ(Wv(0) + binit + b),
(10)

where σ is the logistic function and binit is an initial bias. Q0 is once again an initial dis-
tribution defined as a Boltzmann Distribution with bias b + binit. The difference between
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the RTRBM and the TRBM is the use of the sequence of real valued vectors hT for the
temporal connections. At each time step each hidden node hi takes on two values, a deter-

ministic h
(t)
i and a probabilistic h

′(t)
i . The fact that the temporal parameters are calculated

deterministically makes learning more tractable in these machines (Sutskever et al., 2008).

Theorem 3: Let R be a distribution over a sequence of length T of binary vectors of
length n that is time homogeneous and has finite time dependence. For any ε there exists
an RTRBM, Q, such that KL(R||Q) < ε.
Proof: As in Theorem 2, for each configuration v(t−1), ..., v(t−m), include hidden units
Hv(t−1),...,v(t−m) with parameters so that the KL distance between the visible distribution of
the Boltzmann machine given by Hv(t−1),...,v(t−m) with these parameters and the distribution

R1(·|v(t−1), ..., v(t−m)) is less than ε′. Now for each possible visible configuration v add the
control node hc,v with the same biases and visible-hidden weights as in Theorems 1 and 2
(determined entirely by parameter β). In Theorem 2, hc,v had i-step temporal connections
from hc,v to every Hv(t−1),...,v(t−m) with v(t−i) 6= v. The proof will proceed by showing that
each of these i-step temporal connections can instead be given by a chain of nodes in the
RTRBM. We wish to show that we can add i hidden units connecting hc,v to every hidden
node in Hv(t−1),...,v(t−m) such that if hc,v is on at time t − i, it will have the same effect
on the distribution of a node in Hv(t−1),...,v(t−m) as it does in the general TRBM, and the
i additional hidden units do not effect the visible distribution. If we can achieve this then
the same proof will hold for the RTRBM. This will be done as follows.

For each hc,v and each 1 ≤ k < m, add an additional hidden unit with 0 bias and no
visible-hidden connections. For each hc,v, label these m− 1 hidden units g(v,1), ..., g(v,m−1).
Since these nodes have no visible-hidden connections they have no effect on the visible
distribution at the current time step. For 1 < k < m − 1, let w′(v,k),(v,k+1) = 1. Let

w′(c,v),(v,1) = 1 and w′(v,k),j = −α if hj ∈ Hv(t−1),...,v(t−k−1),...,v(t−m) with v(t−k−1) 6= v, and

w′(v,k),j = 0 otherwise (see Fig. 2). Given a sequence v(t−1), ..., v(t−m), consider the prob-

ability that h
′(t)
j = 1 for some hidden unit hj ∈ Hv(t−1)′ ,...,v(t−m)′ where v(t−k)′ 6= v(t−k) for

some k. Then by construction there is some hidden node gk−1 with w′(v,k−1),j = −α. The

value of g
(t−1)
k−1 is calculated recursively by g

(t−1)
k−1 = σ(g

(t−2)
k−2 ) = σk−1(h

(t−k)

c,v(t−k)) = σk(0.5β).

Since k is bounded, by making β arbitrarily large we make gk−1 arbitrarily close to 1 and

thus make h
(t)′

j w′(v,k−1),jg
(t−1)
k−1 arbitrarily close to −α.

Now suppose we have h
(t)′

j = 1 for some hidden unit in Hv(t−1),...,v(t−m) . Then every temporal

connection is −α, and g
(t−1)
(v,k) = σk(−0.5β) for every g(v,k), so again by making β arbitrarily

large we make the temporal terms arbitrarily close to 0. Thus as β → ∞, the temporal

terms from h
(t−i)
c,v are either −α or 0 as needed.

We know from Theorem 2 that we can construct a TRBM with distribution P such that
for t ≥ m and all v(t), |P (v(t)|v(t−1), ..., v(0)) − R(v(t)|v(t−1), ..., v(t−m))| < ε for any ε >
0. The above argument shows that we can construct an RTRBM by replacing the con-

nections w
(i)
(c,v),j in the TRBM with the chain described above so that for any ε′ > 0
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hc,v gv,1 · · · gv,m−1

Hv(1)
′
,...,v(m) Hv(1),v(2)

′
...,v(m) · · · Hv(1),...,v(m)′

1

−α

1 1

−α −α

Figure 2: The temporal connections of a control node. Each gv,i connects to
every Hv(1),...,v(i+1),...,v(m) with v(i+1)′ 6= v and hc,v connects to every Hv(1)

′
,v(2)...,v(m)

with v(1)′ 6= v.

there exist α0, β0 such that α > α0 and β > β0 imply that for all v(t) with t ≥ m,
|Q(v(t)|v(t−1), ..., v(0))−P (v(t)|v(t−1), ..., v(0))| < ε′. Note that since the chains are of length
m, Q only depends on the previous m visible configurations. Then, once again applying the
triangle inequality and continuity of the KL-divergence we can satisfy the first condition of
Lemma 1.

To finish the proof our machine must also be able to approximate the initial m distri-
butions. Again this could be easily done should we choose to use an RBM to approximate
the distribution of the first m time step. Instead we provide a construction to simulate the
first m distributions in the RTRBM using the definition given above. As before we will
use the construction of Theorem 2 and replace the long-term temporal connections with a
chain. To begin, add each H(i) described in Theorem 2 with the temporal connections again
replaced by the chains described in the above step. Now we just need to replace the m initial
biases. First add −γ to the bias of each node in H(i). Add hidden units l0, ..., lm−1 with
connections between them w(l,i),(l,i+1) = δ and biases −δ for l0, l1 and −0.5δ for l2, ..., lm−1.
For every i > 0, define the temporal connections to be 2γ from li to every node in H(i) and

−2γ to every node in Hv(t−1),...,v(t−m) for all v(t−1), ..., v(t−m). Now set the initial biases for
every li to be 0 except for l0. Set this initial bias to be 2δ. Define the initial bias for every
other non-control node to be −δ with the exception of H(0) whose initial bias is 0 (see Fig 3.).

First we calculate the values l
(t)
i . Since l0 has bias of −δ and initial bias of 2δ, we have

l
(0)
0 = σ(δ), and l

(1)
1 = σ(δσ(δ)− δ). Taking the limit as δ →∞ we have l

(0)
0 = 1 and

lim
δ→∞

l
(1)
1 = lim

δ→∞
σ(δ(σ(δ)− 1)) = lim

δ→∞
σ

(
−δ

1 + exp(δ)

)
= σ(0) = 0.5.

Next we calculate the limit of l
(2)
2 as δ →∞:

lim
δ→∞

l
(2)
2 = lim

δ→∞
σ(δl

(1)
1 − 0.5δ) = lim

δ→∞
σ

 δ
1

(l
(1)
1 −0.5)

 = lim
δ→∞

σ

(
−(l

(1)
1 − 0.5)2

d
dδ l

(1)
1

)
.

Note that d
dδ l

(1)
1 is finite and non-zero, so evaluating the limit we get lim

δ→∞
l
(2)
2 = σ(0) = 0.5.

Then by induction l
(i)
i = 0.5 for i > 1. Now we look at the case where j 6= i. For j > 0
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we have l
(j)
0 = σ(−δ), l(j+1)

1 = σ(l
(j)
0 − δ) and l

(j+k)
k = σ(l

(j+k−1)
k−1 − 0.5δ) for k > 1. So

for j > i we have in the limit that l
(j)
i = 0. For j < i, we know l

(0)
j−i ≤ (−0.5δ) so

l
(1)
j−i+1 = σ(l

(0)
j−i − 0.5δ) , etc., so that in the limit we have l

(i)
j = 0. We conclude that

for any ε > 0, there exists δ0 such that δ > δ0 implies that for all i > 0 and all j 6= i,

|l(0)
0 − 1| < ε, |l(i)i − 0.5| < ε, and |l(j)i | < ε.

When l
(0)
0 = 0, l

(i)
i = 0.5, and l

(j)
i = 0, we have that for t < m, if hj ∈ Hv(t−1),...,v(t−m)

or hj ∈ H(i) with i 6= t then the bias is at most bj − γ and if hj ∈ H(t) then the temporal
connections from l1, ..., lm−1 are γ, which cancels the γ subtracted initially so the added
bias is 0. For t ≥ m the temporal connections from li, ..., lm−1 to all Hv(t−1),...,v(t−m) are 0
and the added bias to each node in H(i) is −γ. This is exactly the machine described in the
second part of Theorem 2.

Putting this together, we first note that since each li has no visible connections we can
ignore their binary values much in the same way that we can ignore the chains in the first
part of the proof. Now for t 6= 0 and any ε > 0 and any v(t), first we choose β > β0

so that |Q(v(t)|v(t−1), ..., v(0)) − Q̃(v(t)|v(t−1), ..., v(0))| < ε′, then we choose δ > δ0 so that

|Q̃(v(t)|v(t−1), ..., v(0))− ¯̃Q(v(t)|v(t−1), ..., v(0))| < ε′ where ¯̃Q is the distribution obtained by

replacing l
(0)
0 with 1, l

(i)
i with 0.5 for i > 0, and l

(i)
j with 0. As noted above this distribution

is exactly the construction from the second part of Theorem 2. Finally, by the reasoning of
Theorem 1 Step 4, by making δ large we make the initial distribution arbitrarily close to
H(0) allowing us to approximate the distribution for the first time step. So the first, second
and third conditions of the lemma are satisfied by the same argument used in Theorem 2.

l1 l2 · · · lm

H(1) H(2) · · · H(m)

H

H(0)

−2γ

δ

2γ

δ δ

2γ 2γ

−2γ
−2γ

l0 δ

Figure 3: The temporal connections of the initial chain. H is the machine
defined in the first part of the proof. Each connection from an li to H or H(k)

only goes to non-control nodes in the set (control nodes include the chains
g(v,1), ..., g(v,m)). The li’s have no visible connections.
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4. Conclusion

The proofs above have shown that generalized TRBMs and RTRBMs both satisfy the same
universal approximation condition. In the proof of universal approximation for the RTRBM
we take the weights large enough so that the real-valued hidden sequence becomes approx-
imately binary. This suggests that the same proof could be adapted to the basic TRBM.
However, the TRBM seems to have difficulty modeling distributions with long term time
dependence. After an RTRBM was trained on videos of bouncing balls the machine was
able to model the movement correctly and the hidden units contained chains of length two
as described in the above proof (Sutskever et al., 2008). On the other hand the TRBM did
not have this structure and modeled the motion of balls as a random walk which is what one
might expect for a machine that is unable to use velocity data by modeling two-step time
dependencies. Given the likely equivalence in representational power of the two models,
this discrepancy of results is best explained by the efficiency of the learning algorithm for
the RTRBM in comparison to the TRBM.

At first glance the constructions used here seem quite inefficient. For Theorem 1 we require
2n(G(n) + 1) hidden nodes where G is the number of hidden nodes required to approximate
an arbitrary distribution on n nodes with a Restricted Boltzmann Machine. It is important
to note that the number of nodes required here, although large, depends only on the number
of visible units and the process we wish to approximate, not the number of time steps for
which we wish to approximate R. If the required number of hidden nodes had depended
on the number of time steps then the TRBM and RTRBM would be essentially pointless
as the RBM can do the same for any finite number of time steps. In contrast, the CRBM
has a comparatively small lower bound on the number of hidden units required to approx-
imate a set of conditional distributions (Montufar et al., 2014). Nonetheless, the above
proofs are constructive and give only an upper bound on the required number of hidden
units. Furthermore, we made no assumptions about KL(R1(·|v(t−1))||R1(·|v(t−1)′)). Even
if v(t−1) and v(t−1)′ are similar vectors, the resulting distributions may be quite different, so
to guarantee the result in full generality we could need a whole new set of hidden units to
approximate R1 for each pattern v(t−1). With this in mind, we might expect 2n(G(n)) to
be a reasonable lower bound. In practice, similar vectors in the previous time step should
produce similar distributions for the current time step. For example, looking at consecutive
frames in video data, we expect that two similar frames at a certain time step will lead
to similar frames in the next time step. To formalize this we could impose the restriction
KL(R1(·|v(t−1))||R1(·|v(t−1)′)) < f(d(v(t−1), v(t−1)′)), where f is a bounded function and d
is a metric on {0, 1}n. With this condition we could hope to find a more efficient TRBM to
approximate R than the one given in the proof.

Without making this additional assumption, the most obvious way to increase efficiency
is to obtain a better upper bound on G. We know that the bounds given by Le Roux et al.
(2008) are not the lowest possible upper bounds for G (Montufar and Ay, 2011). In prac-
tice, multiple layers of RBMs are often stacked, leading to a Deep Belief Network. Several
papers have investigated the universal approximation properties of Deep Belief Networks
(Sutskever and Hinton, 2010)(Le Roux and Bengio, 2010)(Montufar and Ay, 2011). Re-

17



Odense and Edwards

calling the constructions used in the previous proofs, by replacing the RBMs modeling the
transition probabilities with Deep Belief Networks we end up with a column structure in
which certain control nodes in a column send negative feedback to the other columns. This
structure bears an interesting resemblance to the structure of the visual cortex (Goodhill
and Carreira-Perpinán, 2006) suggesting that perhaps the two are computationally similar.
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Appendix A.

The following table lists notations used for the labels and states for the nodes in the previ-
ous proofs
H0 a set of hidden nodes whose distribution approximates R0

H(i) a set of hidden nodes used to approximate the distribution at time i

Hv Hidden nodes whose distribution approximates R1(·|v(t−1) = v)
hc,v the control node corresponding to the configuration v of the visible units
Hc the set of all control nodes

H
(t)
c,v the set of configurations of the hidden nodes at time t with h

(t)
c,v = 1 and h

(t)
c,v′ = 0

H̄
(t)
c,v the set of configurations of hidden nodes at time t not in H

(t)
c,v

g(v,i) the ith node in a chain connecting h(c,v) to the visible nodes

li the ith node in the initial chain connecting l0 with the rest of the H

Appendix B.

In this appendix we provide a proof for Lemma 1
Proof : For an arbitrary ε > 0, we need to find a P ∈ P such that KL(R||P ) < ε,
where the KL-divergence is

KL(R||P ) =
∑
vT

R(vT ) log

(
R(vT )

P (vT )

)
.

We can write P (vT ) as (
T−1∏
t=1

P (v(t)|v(t−1), ..., v(0))

)
P (v(0)),

and by assumption

R(vT ) =

(
T−1∏
t=m

R1(v(t)|v(t−1), ..., v(t−m))

)
m−1∏
i=1

R0(v(i)|(v(i−1), ..., v(0))R0(v(0)).

Then expanding out the log in the KL-divergence gives us

KL(R||P ) =
∑
vT

T−1∑
t=m

R(vT ) log

(
R1(v(t)|v(t−1), ..., v(t−m))

P (v(t)|v(t−1), ..., v(0))

)

+
∑
vT

m−1∑
t=1

R(vT ) log

(
R0(v(t)|v(t−1), ..., v(0))

P (v(t)|v(t−1), ..., v(0))

)
+
∑
vT

R(vT ) log

(
R0(v(0))

P (v(0))

)
.

We can decompose R(vT ) into R(v(T−1), ..., v(t)|v(t−1), ..., v(0))R(v(t−1), ..., v(0)) so for a given
t we can write ∑

vT

R(vT ) log

(
R1(v(t)|v(t−1), ..., v(t−m))

P (v(t)|v(t−1), ..., v(0))

)
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=
∑

v(t−1),...,v(0)

R(v(t−1), ..., v(0))

×

∑
v(t)

∑
v(T−1),...,v(t+1)

R(v(T−1), ..., v(t)|v(t−1), ..., v(0)) log

(
R1(v(t)|v(t−1), ..., v(t−m))

P (v(t)|v(t−1), ..., v(0))

)
=

∑
v(t−1),...,v(0)

R(v(t−1), ..., v(0))KL(R1(·|v(t−1), ..., v(t−m))||Pt(·|v(t−1), ..., v(0))).

Since R(v(t−1), ..., v(0)) < 1 for all v(t−1), ..., v(0) we have

∑
vT

R(vT ) log

(
R1(v(t)|v(t−1), ..., v(t−m))

P (v(t)|v(t−1), ..., v(0))

)

≤ 2tn
∑
vt

KL(R1(·|v(t−1), ..., v(t−m))||Pt(·|v(t−1), ..., v(0))).

The same logic applies for the cases with t < m.
By hypothesis there exists P ∈ P such that for every vT and every ε′,
KL(R1(·|v(t−1), ..., v(t−m))||Pt(·|v(t−1), ..., v(0))) < ε′ for t ≥ m,
KL(R0,t(·|v(t−1), ..., v(0))||Pt(·|v(t−1), ..., v(0))) < ε′ for every 0 < t < m and
KL(R0||P0) < ε′.
This gives us

KL(R||P ) ≤
T−1∑
t=m

2tn
∑
vt

KL(R1(·|v(t−1), ..., v(t−m))||Pt(·|v(t−1), ..., v(0)))

+

m−1∑
t=1

2tn
∑
vt

KL(R0(·|v(t−1), ..., v(0))||P (·|v(t−1), ..., v(0)))

+KL(R0||P0)

<
T−1∑
t=m

4tnε′ +
m−1∑
t=0

4tnε′.

Then we merely choose an ε′ so that this expression is less than ε and choose a correspond-
ing P ∈ P.

Notice in the proof that T was chosen arbitrarily and in the last line of the proof we
see that decreasing T provides a tighter bound on the KL-divergence so any distribution
which approximates R with a certain upper bound on the KL-divergence for T time steps
will approximate R with at most the same upper bound on the KL-divergence for t < T
time steps.
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