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Abstract

Predicting breast cancer risk has long been a goal of medical research in the pursuit of
precision medicine. The goal of this study is to develop novel penalized methods to im-
prove breast cancer risk prediction by leveraging structure information in electronic health
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records. We conducted a retrospective case-control study, garnering 49 mammography de-
scriptors and 77 high-frequency/low-penetrance single-nucleotide polymorphisms (SNPs)
from an existing personalized medicine data repository. Structured mammography reports
and breast imaging features have long been part of a standard electronic health record
(EHR), and genetic markers likely will be in the near future. Lasso and its variants are
widely used approaches to integrated learning and feature selection, and our methodologi-
cal contribution is to incorporate the dependence structure among the features into these
approaches. More specifically, we propose a new methodology by combining group penalty
and `p (1 ≤ p ≤ 2) fusion penalty to improve breast cancer risk prediction, taking into
account structure information in mammography descriptors and SNPs. We demonstrate
that our method provides benefits that are both statistically significant and potentially
significant to people’s lives.

Keywords: structure information, breast cancer risk prediction, mammography descrip-
tors, genetic variants, personalized medicine

1. Introduction

Breast cancer is the most common non-skin malignancy affecting women, with approxi-
mately 1.67 million cases diagnosed annually worldwide (Ferlay et al., 2013). If an individ-
ual’s risk of breast cancer could be predicted, then screening, prevention, and treatment
strategies could be targeted toward those women to maximize survival benefit and minimize
harm. Risk prediction models are important tools to improve breast cancer care by lever-
aging multi-dimensional electronic health data. Traditional breast cancer risk prediction
models use demographic risk factors to estimate breast cancer risk, but they demonstrate
only limited discriminatory power. In clinical practice, mammography is the most com-
mon breast cancer screening test, and the only imaging modality supported by randomized
trials demonstrating reduction in mortality rate. However, its effectiveness is not univer-
sally accepted (Freedman et al., 2004). Recent advances in genome-wide association studies
(GWAS) have revitalized the quest for genetic variants (single-nucleotide polymorphisms—
SNPs) in risk prediction. However, the optimism of these studies has been tempered by
disappointment and caution (Gail, 2008, 2009; Wacholder et al., 2010).

Although many breast cancer risk prediction models have been developed, current ap-
plications of these models are inadequate in the following respects: (1) due to the rare
occurrence of breast cancer, many seemingly ‘large’ studies have small effective sample size
to adequately model a large number of variables; (2) even for large studies, investigators
often fail to systematically model risk factor interactions to avoid overly complicated models
which are hard to interpret; and (3) they do not take available structure information into
consideration. For example, there are five descriptors for mass margins in mammogram:
circumscribed, microlobulated, obscured, indistinct, and spiculated, with an order of in-
creasing probability of malignancy. However, few models utilize this structure information
(group structure and dependence structure) to improve predictive performance. The quest
for novel breast cancer risk prediction models is motivated to address these shortcomings.

In this paper, we propose to develop novel penalized methods to improve breast cancer
risk prediction by incorporating unique structure information embedded in electronic health
record data. Regularization is a common technique used in regression and classification
problems. The lasso (Tibshirani, 1996) is one of the most popular penalized method and
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has achieved great success in various fields. However, lasso does not take into account the
prior structure information among features. The group lasso (Yuan and Lin, 2006) is a
natural extension of the lasso by taking advantage of the underlying group structure of
features. It leads to the selection for groups of features and can improve the predictive
performance in many real applications such as microarray data analysis (Ma et al., 2007)
and GWAS (Liu et al., 2013). To incorporate the dependence structure of features, fused
lasso (Tibshirani et al., 2005; Tibshirani and Wang, 2008) is introduced by penalizing the `1

norm of both the coefficients and their successive differences. To the best of our knowledge,
no breast cancer prediction models utilize group penalty and within-group `p fusion penalty
simultaneously to improve risk prediction by leveraging structure information.

The rest of the paper is organized as follows. Section 2 describes our data, proposed
methods, and study design. Section 3 presents the results. The conclusions are described
in Section 4.

2. Materials and Methods

The main purpose of this paper is to take into account both the group structure and the
dependence structure within each group of features by imposing both group penalty and `p

fusion penalty simultaneously.

2.1 Data

The Marshfield Clinic Institutional Review Board approved the use of Marshfield Clinic’s
Personalized Medicine Research Project (PMRP) (McCarty et al., 2005) cohort in our study.

2.1.1 Subjects

The population-based PMRP cohort, details of which have been previously published (Mc-
Carty et al., 2005), was used in this study. Though the details of this population have
been described previously (Burnside et al., 2015), we will summarize here, in brief, for the
convenience of the reader. Women with an available DNA sample, a mammogram, and
a breast biopsy within 12 months after the mammogram were included in the study. For
this case/control study, cases were defined as women having a confirmed diagnosis of breast
cancer obtained from the institutional cancer registry. Controls were confirmed through the
Marshfield Clinic electronic medical records as never having had a breast cancer diagnosis
(and absence from cancer registry).

We identified 362 cases and 376 controls (738 in total) who have both genetics and
mammogram data available. The majority of mammograms were performed between 1993
and 2005 (Burnside et al., 2015). The age range for the subjects in this study was 29 to
90 years of age, with mean 62 and standard deviation 12.8. Among the cases, there were
358 Caucasians, three non-Caucasians and one case whose race information was unknown.
Among the controls, there were 372 Caucasians and four non-Caucasians. These race dis-
tributions are consistent with that of the general population in this area. For the family
history of breast cancer, we observed a considerably larger proportion of people with family
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history in the case group (45.30%) than in the control group (33.51%), which demonstrated
the family aggregation of breast cancer (Table 1).

Family history Cases Controls All

Yes 164(45.30%) 126(33.51%) 290(39.30%)

No 188(51.93%) 236(62.77%) 424(57.45%)

N/A 10(2.77%) 14(3.72%) 24(3.25%)

Table 1: Family aggregation of breast cancer.

Figure 1: Mammography descriptors described in BI-RADS lexicon.

2.1.2 Mammography features

Mammography features are recorded in the Breast Imaging Reporting and Data System
(BI-RADS) lexicon (BI-RADS, 2014) developed by the American College of Radiology.
The BI-RADS lexicon consists of 49 descriptors, including the characteristics of masses and
microcalcifications, breast composition and other associated findings (Figure 1). In this
study, mammography data was recorded as free text reports in the electronic health record,
from which we used a parser to extract these mammography features (Nassif et al., 2009).
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SNP Chr SNP Chr

rs616488 1 rs11814448 10

rs11249433 1 rs7072776 10

rs1550623 2 rs7904519 10

rs16857609 2 rs2981582 10

rs2016394 2 rs10995190 10

rs4849887 2 rs2380205 10

rs1045485 2 rs2981579 10

rs13387042 2 rs704010 10

rs17468277 2 rs11820646 11

rs4666451 2 rs3903072 11

rs12493607 3 rs3817198 11

rs6762644 3 rs2107425 11

rs4973768 3 rs614367 11

rs6828523 4 rs12422552 12

rs9790517 4 rs17356907 12

rs10472076 5 rs6220 12

rs1353747 5 rs10771399 12

rs1432679 5 rs1292011 12

rs10941679 5 rs11571833 13

rs889312 5 rs2236007 14

rs30099 5 rs2588809 14

rs981782 5 rs941764 14

rs10069690 5 rs999737 14

rs11242675 6 rs13329835 16

rs204247 6 rs17817449 16

rs2046210 6 rs3803662 16

rs2180341 6 rs12443621 16

rs17530068 6 rs8051542 16

rs3757318 6 rs6504950 17

rs720475 7 rs1436904 18

rs11780156 8 rs527616 18

rs2943559 8 rs3760982 19

rs6472903 8 rs4808801 19

rs9693444 8 rs8170 19

rs13281615 8 rs2284378 20

rs10759243 9 rs2823093 21

rs1011970 9 rs132390 22

rs865686 9 rs6001930 22

rs11199914 10

Table 2: The 77 SNPs identified to be associated with breast cancer
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2.1.3 Genetic variants

We decided to focus on high-frequency/low-penetrance SNPs that affect breast cancer risk
as opposed to low frequency SNPs with high penetrance or intermediate penetrance. We
consolidated a list of 77 common genetic variants (Table 2) which were identified by recent
large-scale GWAS studies or used to generate published predictive models (Liu et al., 2014).
The list included 41 SNPs identified by COGS through a meta-analysis of 9 GWAS studies
(Michailidou et al., 2013). Recently, a similar set of 77 breast cancer-associated SNPs is
also studied for risk prediction (Mavaddat et al., 2015).

2.2 Logistic Regression

Assume that we have independent and identical distributed subjects {(xi, yi)}ni=1, where the
explanatory variable X ∈ Rd and the binary response variable Y ∈ {−1, 1}. Note that the
conditional probability η(x) = P(Y = 1|X = x) plays an important role in the classification
problem. Denote xi = (xi1, ..., xid)

T , and linear logistic regression model is defined by

log
η(xi)

1− η(xi)
= xTi β, i = 1, ..., n,

where β = (β1, ..., βd)
T is the slope parameter. And the logistic regression estimator β̂ is

given by the minimizer of the negative log-likelihood function

L(β) =
1

n

n∑
i=1

log(1 + exp(−yi · xTi β)). (1)

With β̂, we then estimate the conditional probability η(xi) by

η̂(xi) =
exp(xTi β̂)

1 + exp(xTi β̂)
=

1

1 + exp(−xTi β̂)
.

Then we should predict yi = 1 if η̂(xi) ≥ 0.5 and yi = −1 if η̂(xi) < 0.5.

2.3 Group Penalty and `p Fusion Penalty

Note that there exist natural group structure and dependence structure in mammography
features (Figure 1), which allows us to include the structure information into our risk
prediction models directly. For genetic variants, group structures also exist (Liu et al.,
2012, 2013). In this paper, we apply hierarchical clustering to cluster the 77 SNPs based
on their dissimilarity matrix obtained by computing Spearman’s correlation or Hamming
distance among them. More details are provided in Section 2.5.

Suppose that d features are divided into G groups with dg the number of features in
group g. Define βg ∈ Rdg to be the corresponding coefficient vector in group g. The group
lasso logistic regression (Meier et al., 2008) is defined as the following optimization problem

min
β∈Rd

L(β) + λ1

G∑
g=1

√
dg‖βg‖2

 ,
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where L(β) is defined by (1) and λ1 ≥ 0 is the tuning parameter. It includes lasso as a
special case with G = d.

The fact that there exist dependence structure within each mammography feature group
and each SNP group encourages us to propose the following novel method by combining
group lasso logistic regression and `p fusion penalty.

min
β∈Rd

L(β) +

G∑
g=1

(
λ1
√
dg‖βg‖2 + λ2‖Dgβg‖pp

) , (2)

where Dg is a (dg − 1)× dg sparse matrix with only D[i, i] = 1 and D[i, i+ 1] = −1, λ2 ≥ 0
is the tuning parameter, and 1 ≤ p ≤ 2 is the shrinkage parameter.

Moreover, if the within-group dependence structures are different for groups {1, ..., G1}
and {G1 + 1, ..., G}, we can split the `p fusion penalty into two parts as

min
β∈Rd

L(β) + λ1

G∑
g=1

√
dg‖βg‖2 + λ2

 G1∑
g=1

‖Dgβg‖p1p1 +

G∑
g=G1+1

‖Dgβg‖p2p2

 , (3)

where 1 ≤ p1, p2 ≤ 2 are selected based on cross validation.

The novelty of our method compared to previous works is three-fold: First, it includes
within-group fusion penalty in the model and makes the coefficients of features in the
same group close to each other, which reflects the dependence structure of features and
improves the risk prediction; Second, in breast cancer risk prediction, we find that the
dependence structures are different for mammography features and SNPs, which are actually
two different views of the same data. And the utilization of method (3) will improve
the predictive performance further; At last, we find that genetic variants improve risk
prediction on mammography features, which provides some insight regarding personalized
breast cancer diagnosis.

2.4 Computational Algorithms

Many algorithms have been proposed in the literatures to solve the logistic regression with
fused lasso regularization (Lin, 2015; Yu et al., 2015). In this subsection we adopt the fast
iterative shrinkage thresholding algorithm (Beck and Teboulle, 2009) to solve (2) as

βk+1 = arg min
β∈Rd

L(βk) + 〈β − βk,∇L(βk)〉+
τ

2
‖β − βk‖22 +

G∑
g=1

(
λ1
√
dg‖βg‖2 + λ2‖Dgβg‖pp

)

with β = (β1, · · · , βd)T and τ > 0 the Lipschitz constant of L(·).
And the iteration step is equivalent to solving

min
β∈Rd

1

2
‖β − (βk − 1

τ
∇L(βk))‖22 +

G∑
g=1

(
λ1
√
dg

τ
‖βg‖2 +

λ2
τ
‖Dgβg‖pp

) . (4)
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Therefore, it suffices to solve the following optimization problem within each group

min
βg∈Rdg

{
1

2
‖βg − z‖22 + ρ1‖βg‖2 + ρ2‖Dgβg‖pp

}
, (5)

where z = βkg − 1
τ∇L(βkg ), ρ1 =

λ1
√
dg

τ and ρ2 = λ2
τ .

The proximity operator (Polson et al., 2015) of a function f is defined as

Pf (z) = arg min
t

{
1

2
‖t− z‖2 + λf(t)

}
.

• For f(t) = |t| and z ∈ R, Pf (z) := S1(z, λ) = sign(z) max{|z| − λ, 0}, which is also
called soft threshold operator.

• For f(t) = |t|p with 1 < p ≤ 2 and z ∈ R, Pf (z) := Sp(z, λ) = sign(z)ξ, where
ξ is the unique nonnegative solution to ξ + pλξp−1 = |ξ|. In particular, we have
S2(z, λ) = z

2λ+1 , S3/2(z, λ) = z+9λ2sign(z)(1−
√

1 + 16|z|/(9λ2))/8 and S4/3(z, λ) =

z + 4λ

32
1
3

((χ− z)1/3 − (χ+ z)1/3) with χ =
√
z2 + 256λ3/729.

• For f(t) = ‖t‖2 and z ∈ Rd, Pf (z) := S2,1(z, λ) = max{1− λ
‖z‖2 , 0} ∗ z.

With the help of these proximity operators and Bregman splitting algorithm (Ye and
Xie, 2011), we can solve (5) by iteratively solving the following procedures:

βk+1 = arg min
βg

1
2‖βg − z‖

2
2 + 〈uk, βg − ak〉+ 〈vk, Dgβg − bk〉

+µ
2‖βg − a

k‖22 + µ
2‖Dgβg − bk‖22

ak+1 = arg min
a
ρ1‖a‖2 + 〈uk, βk+1 − a〉+ µ

2‖β
k+1 − a‖22

bk+1 = arg min
b
ρ2‖b‖pp + 〈vk, Dgβ

k+1 − b〉+ µ
2‖Dgβ

k+1 − b‖22
uk+1 = uk + µ(βk+1 − ak+1)
vk+1 = vk + µ(Dgβ

k+1 − bk+1)

where µ acts like a step size in this algorithm.

Remark 1 The minimization over β, a and b can all be solved in closed form.

• βk+1 = [(µ+ 1)I + µDT
g Dg]

−1[z + µ(ak − uk/µ) + µDT
g (bk − vk/µ)]

• ak+1 = S2,1(β
k+1 + uk/µ, ρ1/µ)

• bk+1 = Sp(Dgβ
k+1 + vk/µ, ρ2/µ)

Note that (µ+ 1)I + µDT
g Dg is a tridiagonal positive definite matrix.

Remark 2 For p = 1, we can solve (5) more efficiently by the algorithm proposed in Zhou
et al. (2012) based on the fact

P‖·‖2+‖Dg(·)‖1 = P‖·‖2 ◦ P‖Dg(·)‖1 .

However, we cannot show this equation for 1 < p ≤ 2.
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Remark 3 For p = 2, since ‖ · ‖22 is Lipschitz continuous, we can rewrite (4) as

min
β∈Rd

1

2

∥∥∥∥∥∥β −
βk − 1

τ̃
(∇L(βk) + 2λ2

G∑
g=1

DT
g Dgβ

k
g )

∥∥∥∥∥∥
2

2

+

G∑
g=1

λ1
√
dg

τ̃
‖βg‖2

 ,

where τ̃ is the Lipschitz constant of L(β)+λ2
∑G

g=1 ‖Dgβg‖22. Then we can solve it efficiently
via the proximity operator of ‖ · ‖2.

2.5 Study Design and Statistical Analysis

We apply the `p fused group lasso logistic regression algorithm to the Marshfield breast
cancer data set. There are 11 groups for 49 mammography features (Figure 1). For SNPs,
we compute the Hamming distances (Wang et al., 2015) of 77 SNPs to get the dissimilarity
matrix and then apply hierarchical clustering to obtain 10 groups.

We built three prediction models based on different sets of risk factors: the Mammo
model developed by using mammography features only, the SNP77 model developed by us-
ing 77 SNPs only, and the Combined model developed by using both mammography features
and 77 SNPs. We furthermore apply five methods for each model: logistic regression (LR),
lasso in logistic regression (LR+Lasso), `p fused lasso logistic regression (LR+fusedLasso),
group lasso logistic regression (LR+groupLasso), and `p fused group lasso logistic regression
(LR+Structure).

The `p fused group lasso logistic regression method has several parameters. For the
tuning parameters λ1 and λ2, we let them vary among a given set of values, and the
shrinkage parameter p (or p1 and p2) among {1, 4/3, 3/2, 2}. Each combination of these
parameters is evaluated using stratified 5-fold cross-validation, and AUC (the area under
the receiver operating characteristic (ROC) curve) is used as the performance measure. All
738 samples are randomly partitioned into five equal sized folds with approximately equal
proportions of cases and controls. In each iteration (totally five iterations), four folds are
used as training set and the rest one as validation set to compute AUC. And the parameters
with the best average AUC are selected. At last we repeat this process ten times and report
the average AUC. We obtain p-value by performing two-tailed-two-sample t-test when we
compare AUCs.

3. Experimental Results

In this section, we demonstrate the performance of the `p fused group lasso logistic regres-
sion method from three aspects: the significant improvement of AUCs by considering the
structure information, the predictive performance under different p (or p1 and p2), and the
detected important mammography features and SNPs.

3.1 Performance of Fused Group Lasso

The result is summarized in Table 3.
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Models/Methods LR Lasso fusedLasso groupLasso Structure p-value

Mammo 0.700 0.710 0.710 0.716 0.723 < 0.001

SNP77 0.590 0.598 0.676 0.614 0.684 < 0.001

Combined 0.697 0.721 0.754 0.727 0.766 < 0.001

Table 3: Predictive performance of three prediction models by using five different methods.
The p-values represent the differences between AUCs of LR and LR+Structure.

1) The fifth column describes the predictive performance of the three prediction models by
considering structure information in the logistic regression method. We find that the
predictive performance of the three prediction models has been improved respectively,
compared to those described in the first column. For each prediction model, the
difference of the predictive performance is significant between LR+Structure and LR
(p-value < 0.001), which demonstrates that breast cancer prediction models utilizing
structure information can improve risk prediction significantly. We also find that
mammography descriptors demonstrate a significantly higher predictive performance
than 77 SNPs in terms of AUC (0.723 vs. 0.684, p-value < 0.001). The Combined
model demonstrates significant improvement of the prediction performance, compared
to the Mammo model (0.766 vs. 0.723, p-value < 0.001).

2) The first column describes the predictive performance of the three prediction models
by using the logistic regression method. Mammography descriptors demonstrate a
significantly higher predictive performance than 77 SNPs in terms of AUC (0.700
vs. 0.590, p-value< 0.001). We find that the difference of predictive performance
between the Combined model and the Mammo model is negligible (0.697 vs. 0.700,
p-value=0.277).

3) The second column describes the predictive performance of the three prediction mod-
els by using lasso in the logistic regression method. The predictive performance of
the three prediction models has been improved, compared to those without lasso (us-
ing logistic regression method only). Mammography descriptors still demonstrate a
significantly higher predictive performance than 77 SNPs in terms of AUC (0.710
vs. 0.598, p-value< 0.001). However, the Combined model demonstrates modest
improvement of prediction performance, compared to the Mammo model (0.721 vs.
0.710, p-value=0.0057).

4) The third and fourth columns describe the predictive performance of the three prediction
models by considering group structure or dependence structure in the logistic regres-
sion method. For the SNP77 model, fused lasso demonstrates a significantly higher
performance than group lasso in terms of AUC (0.676 vs. 0.614, p-value< 0.001). For
the Mammo model, group lasso plays a more important role than fused lasso (0.716
vs. 0.710, p-value=0.0073). Moreover, both fused lasso and group lasso demonstrate
improved prediction performance compared to lasso.

10



Structure-leveraged methods in breast cancer risk prediction

Figure 2: The AUCs under different values of p by using method (2).

(a) Fix p2 = 1 (b) Fix p2 = 2

(c) Fix p1 = 1 (d) Fix p1 = 2

Figure 3: The AUCs under different values of p1 and p2 by using method (3).

3.2 Performance under Different Values of p

Figure 2 and Figure 3 describe the the pattern of predictive performance for `p fused group
lasso logistic regression over the shrinkage parameter p (or p1 and p2) in terms of AUC.

1)The Combined model demonstrates a higher predictive performance for p = 1 compared
to p = 2 in terms of AUC (0.757 vs. 0.745, p-value< 0.001), see Figure 2.

2) Figure 3 describes the prediction performance of method (3) under different values of
p1 for mammography descriptors and p2 for 77 SNPs.

11
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• Fix p2 = 1 or p2 = 2, the fused group lasso with p1 = 2 demonstrates higher
predictive performance compared to p1 = 1, see Figure 3(a) and 3(b).

• Fix p1 = 1 or p1 = 2, the predictive performance of the fused group lasso logistic
regression decreases as p2 increases, see Figure 3(c) and 3(d).

• The fused group lasso logistic regression with p1 = 2 and p2 = 1 demon-
strates higher predictive performance than p1 = p2 = 1 (0.766 vs. 0.757, p-
value=0.0053) and p1 = p2 = 2 (0.766 vs. 0.745, p-value< 0.001).

3.3 Important Features Detected by Fused Group Lasso

To take into account both group and dependence structure information in mammography
features and SNPs, two penalty terms (group penalty and fusion penalty) are introduced
into the logistic regression model. The idea of group penalty is to force the coefficients
of features in the same group to be all zero or nonzero in order to achieve the goal of
selecting features within a group simultaneously. The idea of fusion penalty is to shrink the
successive difference of coefficients of features in the same group in order to take advantage
of the dependence structure information. Applying fusion penalty with p = 1 tends to
result in zero successive difference of coefficients, while p = 2 tends to small but nonzero
successive difference of coefficients.

From a feature selection point of view, we can get the order of feature groups selected
by fused group lasso via choosing the tuning parameters appropriately. We list below the
feature groups selected from high to low in terms of predictive performance.

1) For mammography descriptors, the following features are predictive of malignancy (from
most to least): “Mass Size”, “Mass Margins”, “Mass Shape”, “Architectural Distor-
tion” and “Mass Palpability”, consistent with the literature (BI-RADS, 2014).

2) For 77 SNPs, three groups are selected in order, see Table 4.

Feature Group SNPs

Group 1
rs2016394 rs1432679, rs13281615, rs4666451

rs981782, rs1292011, rs1436904, rs527616

Group 2
rs11249433 rs13387042, rs4973768, rs10069690

rs7904519, rs8051542, rs3760982

Group 3 rs2981579, rs2981582

Table 4: SNP groups selected by fused group lasso.

Remark 4 It verifies that “Mass size”, “Mass Margins” and “Mass Shape” are the most
important mammography descriptors in breast cancer diagnosis. These results are consistent
with previous studies about comparing the importance of mammography features and SNPs
in breast cancer risk prediction(Wu et al., 2013, 2014).
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4. Discussion and Conclusions

This study demonstrates that models utilizing the novel combination of clinically relevant
structure and `p fused group lasso logistic regression can improve breast cancer risk pre-
diction significantly. Our study also shows that both mammography features and SNPs
contribute to this improvement.

The structure information of the mammography features is derived from the BI-RADS
lexicon, which is used widely in breast imaging practice. Thus, our model would likely be
generalizable to other practices. On the other hand, we extracted the structure information
of SNPs by computing Hamming distances (Wang et al., 2015). This method may not
perform as well in small sample sizes, which may affect our results perhaps making our
predictive performance results conservative.

Our methods for SNPs may not take advantage of biological knowledge that currently
exists. For example, it may be possible to utilize the biological information available in
HapMap (which encodes linkage disequilibrium) to more accurately emulate the patterns or
dependence structure of SNPs, as in (Liu et al., 2012). Furthermore, we realize that taking
into account more complicated structure information such as graph or tree structure (Sun
and Wang, 2012) may further improve predictive performance of risk prediction models.
We leave these promising directions for future work.

In conclusion, our results demonstrate that including structure information in the com-
putational methods we test improves breast cancer risk prediction. Our models use diverse
breast cancer risk factors including demographics, genetics, and imaging and leverage struc-
ture found in a standardized lexicon that is universally captured in electronic health records
(EHRs) throughout the US. This information will increasingly be combined in complex
ways. Merging imaging features, clinical notes and genetic data with models that accu-
rately predict disease risk has the potential to provide powerful knowledge to practicing
physicians.
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