Journal of Machine Learning Research 17 (2016) 1-42 Submitted 8/15; Revised 4/16; Published 5/16

Lenient Learning in
Independent-Learner Stochastic Cooperative Games

Ermo Wei EWEIQCS.GMU.EDU
Sean Luke SEAN@CS.GMU.EDU
Department of Computer Science

George Mason University

4400 University Drive MSN A5

Fairfax, VA 22030, USA

Editor: Kevin Murphy

Abstract

We introduce the Lenient Multiagent Reinforcement Learning 2 (LMRL2) algorithm for
independent-learner stochastic cooperative games. LMRL2 is designed to overcome a
pathology called relative overgeneralization, and to do so while still performing well in
games with stochastic transitions, stochastic rewards, and miscoordination. We discuss
the existing literature, then compare LMRL2 against other algorithms drawn from the lit-
erature which can be used for games of this kind: traditional (“Distributed”) Q-learning,
Hysteretic Q-learning, WoLF-PHC, SOoN, and (for repeated games only) FMQ. The re-
sults show that LMRL2 is very effective in both of our measures (complete and correct
policies), and is found in the top rank more often than any other technique. LMRIL2 is also
easy to tune: though it has many available parameters, almost all of them stay at default
settings. Generally the algorithm is optimally tuned with a single parameter, if any. We
then examine and discuss a number of side-issues and options for LMRL2.

Keywords: multiagent learning, reinforcement learning, game theory, lenient learning,
independent learner

1. Introduction

In a cooperative game, as we use the term here, some N > 2 players simultaneously choose
an action from among those actions each is permitted to make, and then each receives the
same (potentially stochastic) reward arising from their joint action. It is this equally-shared
reward that makes the game cooperative: agents succeed or fail together. Such cooperative
games are very common in multiagent systems: for example, a group of robots might work
together to map out a room; a swarm of game agents might collaborate to defeat a hard-
coded Bad Guy; or a team of wireless beacons might work together to form an optimal
ad-hoc routing network.

We are interested in the situation where the agents in question do not know the reward
function over their joint actions and must learn to collaboratively explore this space and
ultimately adapt to the highest-reward joint action. Furthermore, the agents are independent
learners in the sense that they do not know what actions the other agents are performing
(although they may assume that other agents ezist). In a primary alternative, where the

(©2016 Ermo Wei and Sean Luke.

WEI AND LUKE

agents are told the others’ action choices along with the rewards received, the agents are
known as joint-action learners.

From a game theoretic perspective, there are two common types of games in which such
agents may learn to optimize their actions. First, a game may be repeated, meaning that
the agents play the same game over and over again, potentially choosing new actions each
time. Second, there is the so-called stochastic game, where not only does a joint action affect
the reward received, but it also changes the game played next time. In a stochastic game
there is a set of possible sub-games (or states) for the agents to play, each with potentially
different kinds of actions available to the agents, and each with their own reward function.
Furthermore, each joint action in each state is associated with a transition function which
maps joint actions to distributions over states: from the appropriate distribution the next
state will be selected. There is a distinguished initial state for the game, and there may
optionally be a special end state: the game simply terminates when it reaches this state. The
agents know in which state they are playing, but not its reward function nor its transition
functions. A repeated game is just a stochastic game with only one state.

There is significant literature in applying multiagent versions of reinforcement learning,
policy search, or similar methods to repeated and stochastic games. Much of the literature
has focused on general-sum or zero-sum learners, and the remainder has focused nearly en-
tirely on the pathology of miscoordination in cooperative scenarios, as discussed later. But
there is another critical pathology which arises specially in cooperative games, known as
relative overgeneralization. Overcoming relative overgeneralization may require a more ex-
plorative approach than simple epsilon-greedy action selection: indeed as shown by Wiegand
(2004), relative overgeneralization can cause players to not just hill-climb into local optima
but get actively sucked into them despite action selection with a high degree of randomness.
We discuss these pathologies in more detail in Section 3.

Perhaps because relative overgeneralization as a phenomenon necessitates at least three
actions available per player, and ideally more, it has not shown up much in the small
problems common to the multiagent reinforcement learning (MARL) literature, though it
has been studied at some length in the related field of cooperative co-evolutionary algorithms
(Panait, 2006; Panait et al., 2006a, 2008, 2004), which involve very large numbers of actions.
We are interested in solving both relative overgeneralization and miscoordination. To this
end we present and discuss a lenient learning algorithm meant for independent learning in
stochastic cooperative games (and also repeated cooperative games) with any number N > 2
of agents. We call this algorithm Lenient Multiagent Reinforcement Learning 2, or LMRL2
for short. This is a heavy revision of the original LMRL algorithm, which was originally
meant only for repeated games (Panait et al., 2006b).

As we will show, LMRL2 performs well across a spectrum of stochastic and repeated
games when compared to other algorithms from the literature, and is able to deal robustly
with overgeneralization, miscoordination, and high degrees of stochasticity in the reward
and transition functions with relatively little parameter tuning. In this paper we will discuss
issues in MARL which lenient learning is meant to address, then survey previous work and
alternative approaches. We will then detail LMRL2, compare it to other methods, and
discuss various side issues which arise.

LENIENT LEARNING

2. Previous Work

Reinforcement Learning is a popular approach to solving multiagent learning problems (Bu-
soniu et al., 2008), because many such problems may be readily cast into normal-form games,
which themselves map straightforwardly into Markov Decision Processes (MDPs) for which
reinforcement learning is well suited. Use of reinforcement learning in the multiagent context
is, not suprisingly, known as Multiagent Reinforcement Learning, or MARL.

Many MARL methods may be organized according to three different characteristics.
First, there is the reward structure involved: MARL algorithms may be designed for zero-
sum (or constant-sum), cooperative, and general-sum games. Second, there is the type of
information being provided to the algorithms. Here we distinguish between joint action
and independent learner algorithms, following Claus and Boutilier (1998). Third, there is
the game type: some MARL algorithms are meant only for repeated games, while others
are meant for more general stochastic games. LMRL2 itself is an independent learner,
cooperative, stochastic game algorithm.

Joint Action Learners In a joint action learner scenario, after playing a game, each
agent receives a reward, is told which game is to be played next (the next state), and is also
told what actions were chosen by the other agents. There is significant joint action learner
literature.

Only a small portion of the literature focuses on pure zero-sum games. One of the first
zero-sum joint-action-learning algorithms was Minimax-Q (Littman, 1994), which assumes
that the alternative agent is attempting to minimize one’s own reward. Thus, rather than
select the action which with the maximum reward achievable, Minimax-Q uses a minimax
approach: it selects the highest reward achievable assuming that the alternative agent will
select its action so as to minimize that reward. This solution may be determined by solving
a linear program.

There are many general-sum joint-action learners. However, learning in general-sum
games is very complicated due to the wide variety in reward structure. Even the goal of
learning in this kind of game can be hard to define in some cases (Shoham et al., 2004). To
simplify the issue, much of the literature simply aims to converge to an equilibrium of some
sort during self-play (that is, playing against other agents who use the same algorithm as
yourself). The most well-known algorithm of this kind is called Nash Q-Learning (Hu and
Wellman, 2003), which has been proven to converge to the Q-values in some Nash Equi-
librium under very restricted conditions, such as if each state has a global joint optimum.
Other learning algorithms which have been designed to converge to equilibria include Well-
man and Hu (1998); Greenwald et al. (2003); Jafari et al. (2001). Rather than convergence,
some work has instead proposed playing a best response against some restricted classes of
opponents (Weinberg and Rosenschein, 2004; Tesauro, 2004). There has also been work in
combining the two, where the learner converges to Nash Equilibrium in self-play, and plays
a best response when not in self-play (Conitzer and Sandholm, 2007).

Like the zero-sum game literature, the pure cooperative game literature is limited.
Littman (2001b) introduced Team Q-learning, but as it is a straightforward extension of
Q-Learning to cooperative games, it fails to handle miscoordination. To address this Wang
and Sandholm proposed OAL (2002), which is guaranteed to converge to the optimal Nash
Equilibrium in cooperative games: but due to necessary constraints on the reward func-

WEI AND LUKE

tion, converging to the optimal policy is not particularly interesting for joint action learners
in cooperative games. Other work has imported techniques from the reinforcement learn-
ing community to enhance online performance. Notably Chalkiadakis and Boutilier applied
Bayesian Reinforcement Learning to the multiagent scenario (2003). Here, agents have some
prior knowledge on distributions of the game model and also the possible strategies that can
be used by other learners. Each iteration of the game, an agent chooses a best action with
respect to the distributions it is maintaining, and the distributions are then updated based
on the individual actions of the other agents and the results from the joint action. Typical
of Bayesian Reinforcement Learning methods, a bad prior can make the algorithm converge
to a suboptimal policy in some cases, but Bayesian methods in general may help agents
accumulate more reward while learning. Bayesian methods have also been used with policy
search in a MARL context (Wilson et al., 2010), where the distributions are instead over
policy parameters and possible roles of other agents. Unusually, agents here make decisions
sequentially rather than simultaneously, which is rare in the MARL literature.

Another way to incorporate prior knowledge into learning is to construct the policy as a
hierarchy. Hierarchical reinforcement learning has been shown to accelerate learning in the
single agent case by allowing state abstraction and by reusing learned policy (Dietterich,
2000). This has been extended to the multiagent setting (Makar et al., 2001; Ghavamzadeh
et al., 2006) by manually specifying the cooperation task at a higher level in the task
hierarchy. This allows non-cooperative subtasks to be learned separately, and efficiently
as single-agent learning problems. The authors have further used this idea in a setting
where knowing the actions of other agents incurs a communication cost (Ghavamzadeh and
Mahadevan, 2004).

Independent Learners An independent learner scenario differs from a joint action
scenario in that, after playing a game, each agent is not told what action was chosen by
each of the other agents. He is only told the reward he received and the game (state) to
be played next time. This is a much more difficult learning problem. Additionally, because
they are designed for a more general scenario, independent learners may participate in joint
action games, but not the other way around.

Perhaps the best-known example of a general-sum independent learner is WoLF-PHC
(Bowling and Veloso, 2001b, 2002). This algorithm is designed to meet two criteria for
learning in general sum games: first, a learner should learn to play optimally against sta-
tionary opponents, and second, a learner should converge to a Nash Equilibrium when in
self-play. WoLF-PHC is an independent-learning policy search approach which uses one
of two different learning rates depending on whether the player is in some sense “winning”
or “losing”. This “WoLF” (Win or Learn Fast) principle has since been applied to other
algorithms (Bowling and Veloso, 2001a; Banerjee and Peng, 2003; Bowling, 2005).

Other approaches, based on gradient descent, also try to converge to Nash Equilibria
in self play (Abdallah and Lesser, 2008; Zhang and Lesser, 2010). Additionally, Kaisers
and Tuyls linked evolutionary game theory to reinforcement learning to study the dy-
namic of Q-learning in multiagent problems. Their proposed algorithm, Frequency Ad-
justed Q-learning (FAQ), resembles regular Q-learning except that it changes the up-
date method to compensate for the fact that actions are updated at different frequencies
(Kaisers and Tuyls, 2010).

LENIENT LEARNING

Cooperative learning presents a variety of special problems for independent learners as
opposed to joint-action learners. Fulda and Ventura (2007) identified three problematic fac-
tors — “poor individual behavior”, “action shadowing” (related to relative overgeneralization,
as discussed later), and “equilibrium selection” (miscoordination) —and suggested that op-
timal performance might be achieved by solving them. However in their survey, Matignon
et al. (2012) identified at least two more problems, and compared several independent learn-

ers in several games along with different exploration strategies to overcome these problems.

Some work has been done in cooperative games. Lauer and Riedmiller introduced Dis-
tributed Q-learning (2000), which addresses two major problems mentioned in (Fulda and
Ventura, 2007). It tackles relative overgeneralization problem by only updating using the
maximum Q-value —an approach we will develop further with LMRL2 —and it tackles the
miscoordination problem by only changing the policy when the Q-value is updated. How-
ever this learner is vulnerable to games with stochastic rewards or transitions. Building
on Distributed Q-learning, Hysteretic Q-learning (Matignon et al., 2007) uses two differ-
ent learning rates to address stochasticity. One study (Bloembergen et al., 2010) adds our
concept of leniency into FAQ, using a slightly different approach from what we do here.
Leniency seems to help FAQ solve initial miscoordination difficulties in cooperative games.

Instead of changing the update procedure, researchers have also investigated the possibil-
ity of using different exploration strategies. Frequency Maximum Q-Value heuristic (FMQ),
meant only for repeated games, used a form version of Boltzmann action selection where the
Q-value was substituted by an expectation (Kapetanakis and Kudenko, 2002). FMQ was
modified by Matignon et al. to handle stochasticity in repeated games (2008) and stochastic
games (2009). The latter version of this algorithm was called Swing between Optimistic or
Neutral, or SOoN.

Learners Based on the Nature of the Other Agents Most of the literature dis-
cussed so far focuses on learning in a certain kind of game. However, instead of making
assumptions about the nature of a game, some methods are based on the nature of the
other agents. In so-called Friend-or-Foe Q-learning (Littman, 2001a), the learner is essen-
tially a mixture of two different Q-learners: one which updates the Q-table like a regular
Q-learner if the other agent is thought to be a friend, and one which updates the Q-table
using Minimax-Q if the agent is thought to be an opponent. Asymmetric Q-learning (Kéno-
nen, 2004), distinguishes between “leaders” and “followers” in the game, where a “leader”
knows what action a “follower” will choose can guide the action selection of the “follower”
(see also the leader-follower reward shaping in Babes et al. 2008). CMLeS provides different
performance guarantees depending on different set of agents in the game (Chakraborty and
Stone, 2013a,b). Specifically, if the agents are doing self-play, the algorithm will achieve a
Nash Equilibrium joint policy; if the alternative agents are opponents with limited memory,
the algorithm can guarantee a near-optimal response in polynomial time steps; and in other
cases, the algorithm will play similarly to Minimax-Q.

Another area of research has studied adaptation to arbitrary agents of unknown type.
Sullivan et al. (2006) studied FMQ and Lenient Learners in non-self play scenarios, and
showed that while these learners could easily converge to an optimal Nash Equilbrium in
self-play for various games, it was difficult for them to do so when paired with learners from
entirely different algorithms. Stone et al. (2010) consider ad-hoc teams of multiple agents

WEI AND LUKE

reward(i,j)

Figure 1: The relative overgeneralization pathology in multiagent learning. The axes ¢
and j are the various actions that agents A; and A; may perform, and the axis
reward(i, j) is the joint reward received by the agents from a given joint action
(1,7). Higher rewards are better. Joint action M has a higher reward than joint
action N. However, the average (or sum) of all possible rewards for action iy,
of agent A; is lower than the average of all possible rewards for action iy. To
illustrate this, bold lines show the set of outcomes from pairing 7y; or iy instead
with other possible actions in j.

with different capabilities whose goals and utilities are aligned but which have had no prior
coordination. They give a method to evaluate the performance of an agent in this scenario,
and provide theoretical approaches to building a perfect ad hoc team. Additional follow-on
methods have since been suggested (Stone and Kraus, 2010; Agmon et al., 2014; Genter
et al., 2015; Barrett and Stone, 2015).

3. Lenient Learning

The notion of lenient learning, and the pathology it is meant to tackle, did not start in mul-
tiagent reinforcement learning research, but rather in an unexpected but surprisingly related
topic: cooperative coevolutionary algorithms (CCEAs) (Potter and De Jong, 1994). CCEAs
are multiagent stochastic optimization procedures and exhibit nearly identical pathologies
to those found in repeated games.

Relative Overgeneralization Lenient learning was originally designed to combat a
particular pathology in repeated games and CCEAs called relative overgeneralization (Wie-
gand, 2004). Relative overgeneralization occurs when a suboptimal Nash Equilibrium in the
joint space of actions is preferred over an optimal Nash Equilibrium because each agents’
action in the suboptimal equilibrium is a better choice when matched with arbitrary actions
from the collaborating agents. Consider Figure 1, showing the reward over the joint action
space for a two-agent game for agents A; and A;. Here, the joint candidate solution labeled
M should clearly be preferred over another one, N. However if one assessed the quality of
individual actions based on the sum or average reward received when paired with all possible
other actions from the collaborating agent, then agent A;’s portion of the joint action N

LENIENT LEARNING

(called in) would be preferred over its portion of the joint action M (called ips). That is,
quality(ins) = >, reward(ing, j) < quality(iy) = >_;reward(iy,j). We will call such an
approach an average-based algorithm.

This situation can easily arise in cooperative, repeated games for independent learners.
Here is an example of relative overgeneralization in a repeated game:

Agent 2
a b ¢
T oa |10 0 O
Sb|0 5 6
S c| 0 6 7

In this game, though (a, a) is clearly the best joint move for the two agents, if the agents
sampled their actions randomly and based decisions on the average reward, action a would
have the worst score, action ¢ would have the best score, and b would be in the middle.
Thus the agents would tend to converge to {(c,c).

The obvious alternative this is to base the quality of a solution not on its average reward,
but rather on its best reward when paired with various other actions. That is, quality(iys) =
max; reward(zps, j). In this case, a would be the best action, c¢ the next highest, and b the
worst. Thus the agents would tend to converge to the proper equilibrium, (a,a). We call
this a maximum-based approach.

Relative overgeneralization is a specific and problematic subcase of the slightly more
general notion of action shadowing, occasionally used by the MARL community, but has
only been relatively recently studied (Panait et al., 2006b; Panait, 2006; Fulda and Ventura,
2007; Panait et al., 2008). One possible reason for this might be that common MARL test
problems are relatively low in number of actions, and relative overgeneralization can only
arise if each agent has at least three actions available, ideally many more. In contrast, in
CCEAs the number of “actions”, so to speak, is very high and often infinite, and so the
pathology is a common occurrence there.

Stochastic Rewards and Lenient Learners Some reinforcement learning methods,
so-called optimistic methods (Matignon et al., 2012), are generally maximum-based learners,
or at least prefer superior results, for example, updating superior results with a higher
learning rate. In a repeated game with deterministic rewards, these techniques are likely to
perform very well. However, games with stochastic rewards will mislead such learners, since
the highest rewards they see will often be due to noise. This problem isn’t likely to occur
with average-based learners.

Our approach instead begins with a maximum-reward learner and gradually shifts to
an average-reward learner. The idea here is that early on none of the agents have a good
understanding of their best joint actions, and so each agent must initially be lenient to the
foolish and arbitrary actions being made by its collaborators. Later on, each agent focuses
more on average reward, which helps escape the trap laid by stochastic rewards. We call
this approach a lenient multiagent reinforcement learning algorithm.

Miscoordination Another common pathology which appears in repeated games is
miscoordination, where two or more equivalent equilibria are offset in such a way that agents,
each selecting what appears to be an optimal action, wind up with poor joint actions. For

WEI AND LUKE

example, in the game below, both actions a and b are reasonable for each agent. But if one
agent chooses a while the other agent chooses b, they receive a low reward.

Agent 2
a b
T all0 0
S
g b 0 10
<

Stochastic Games and Deception Stochastic games add some new wrinkles to the
above pathologies, because, at least for temporal difference learners, Q-values come partly
from accumulated reward and partly from the backed-up rewards from follow-on states. This
means that both miscoordination and relative overgeneralization, among other challenges,
can arrive via backed-up rewards as well as immediate rewards.

The probabilistic transitions common in stochastic games present an additional hurdle
for lenient learners, since such learners may consider only the highest backed-up rewards,
even if they are very unlikely to occur. As was the case for probabilistic rewards, probabilistic
transitions are largely overcome by the learner’s gradual shift from being maximum-based
to being average-based.

This hurdle leads to deception, another pathology which can arise in stochastic games.
A deceptive game is one in which certain states have a high local reward but lead ultimately
to states with poor future rewards: this is also known as the delayed reward problem. This
creates a garden-path scenario where greedy agents are deceptively led away from the truly
high-performing states.

4. The LMRL2 Algorithm

In (Panait et al., 2006b, 2013) we demonstrated a lenient learning algorithm, LMRL, for
repeated games with independent learners, comparing it favorably to the FMQ algorithm
(Kapetanakis and Kudenko, 2002) for variations of the Climb and Penalty games (Claus
and Boutilier, 1998). We begin here with a slight modification of the algorithm, LMRL2,
which is the degenerate case (for repeated games) of the full LMRL2 algorithm for stochastic
games. We will then extend it to the stochastic game scenario.

LRML2 is a modified version of Q-learning which maintains per-action temperatures
which are slowly decreased throughout the learning process. An action’s temperature af-
fects two things. First, it affects the degree of randomness of action selection: with high
temperatures, action selection is largely random, and with low temperatures, action selec-
tion is greedily based on the actions with the highest Q-values. To do this, LRML2 applies
a temperature-based Boltzmann Selection common in other algorithms in the literature.
However, when the average temperature drops below a certain minimum temperature, and
LRMIL2’s action selection will suddenly become purely greedy. This minimum temperature
was originally added to avoid floating point overflows common in Boltzmann Selection; but
we have found that it also is beneficial for nearly all games.

Second, temperature affects the lenience of the algorithm: high temperatures cause
LRML2 to be lenient, and so only mix rewards into Q-values if they are better than or
equal to the current Q-value. With a low temperature LRML2 mixes all rewards into the

LENIENT LEARNING

Q-values no matter what. Unlike action selection, lenience is not affected by the minimum
temperature bound.

Repeated Games LRML2 for repeated games relies on the following parameters. Except
for 6 and w, all of them will be fixed to the defaults shown, and will not be modified:

a < 0.1 learning rate
v 4+ 0.9 discount for infinite horizon
6 + 0.995 temperature decay coefficient
MazTemp <— 50.0 maximum temperature
MinTemp <— 2.0 minimum temperature
w >0 action selection moderation factor (by default 1.0)

6 >0 lenience moderation factor (by default 1.0)

The a and v parameters are standard parameters found in Q-learning, and their values
here are typical settings from the literature. The parameters MaxTemp, 6, and MinTemp
are also generally constants. The parameter w determines the degree to which temperature
affects the randomness of the Boltzmann action selection. In all cases but two (discussed
later) we set this to 1.0. Finally and crucially, the 6§ parameter determines the degree
to which temperature affects the dropoff in lenience. This parameter is the primary, and
usually only, parameter which must be tuned, as different problems require different amounts
of lenience.

LMRL2 maintains two tables: @), a table of Q-values per action a, and T, a table of
temperatures per-action. Initially Va:

Q(a) « initialize(a) < See discussion below
T(a) < MaxTemp

In lenient learning, the choice of initial QQ values is important to the operation of the
algorithm. Consider if Va : Q(a) = 0 initially. What if a game consisted only of negative
rewards? The lenient learner, at least during its high-temperature period, would refuse to
merge any of them into the Q-values because they are too small. We have two strategies for
initializing Q:

e Initialize to Infinity Va : Q(a) = oo. This signals to LMRL2 to later reinitialize
each Q value to the first reward received. Furthermore, as long as one or more action
has an infinite Q-value, LRML2 will only select among such actions. This forces the
algorithm to try every action at least once initially in order to initialize them. The
disadvantage of this initialization approach is that if the game has stochastic rewards,
and first reward received is high, LMRL2 will be locked to this high reward early on.

e Initialize to Minimum Va : Q(a) = the minimum possible reward over any action
the game. The disadvantage of this approach is that it requires that LMRL2 know the
minimum reward beforehand.

We will by default initialize to the minimum possible reward in the game.

WEI AND LUKE

LMRL2 then iterates for some n times through the following four steps. First, it com-
putes a mean temperature T. Second, using this mean temperature it selects an action to
perform. Third, it performs the action and receives a reward resulting from the joint actions
of all agents (all agents perform this step simultaneously and synchronously). Fourth, it
updates the Q and T tables. This iteration is:

1. Compute the mean temperature as: T < mean, T(a)

2. Select a as follows. If T < MinTemp, or if max, Q(a) = oo, select argmax, Q(a),
breaking ties randomly. Otherwise use Boltzmann Selection:

Q(a)
(a) Compute the action selection weights as: Va : W, < e T

(b) Normalize to the action selection probabilities as: Va : P, < Z‘j/gvi

(c) Use the probability distribution P to select action a.
3. The agent does action a and receives reward r.
4. Update Q(a) and T'(a) only for the performed action a as:

Rand + random real value between 0 and 1

r if Q(a) = o0 (initialization was to infinity)
Q(a) < ¢ (1 —a)Q(a) + ar else if Q(a) <7 or (Rand < 1 — eﬁ)
Q(a) else

T(a) + 6T (a)
5. Go to 1.

Note that each action has its own separate temperature which is decreased only when
that action is selected. This allows LMRL2 to keep temperatures high for actions which
have not been visited much and still require lenience and exploration, while permitting
other actions to cool down.

Stochastic Games In stochastic games, the agents are at any particular time in some
state s; and after performing their joint action, receive a reward r and transition to some
new state s’. Accordingly, the extension of LMRL2 to stochastic games is largely the same
as the repeated game version, except that the Q(a) and T'(a) tables are modified to include
the current state s: that is, they are now defined as Q(s,a) and T'(s, a) respectively.

The iteration is largely the same, except in how Q(s,a) and T'(s,a) are updated. First,
Q(s,a) is updated in standard Q-learning style to incorporate both the reward and expecta-
tion of future utility, as r +ymax, Q(s’,a’). However, if not all actions have been explored
in &', then max, Q(s',a’) will still be infinite, in which case it is ignored and Q(s,a) just
incorporates 7.

Second and more interestingly, not only do we decrease T'(s,a), but we also fold into it
some portion 7 of the mean temperatures found for s’. 7 is a new constant, fixed like a
to 0.1. The idea is as follows: in many games (particularly episodic ones), early states are
often explored much more than later states, and thus cool down faster. We want to keep

10

LENIENT LEARNING

these early states hot long enough that propagation of future rewards from the later states
will inform the Q-values of the early states before they are set in stone as the temperature
falls. To do this, we take some of the temperature s’ of the later state and back it up into s.

Because stochastic games can terminate, we wrap the entire process in an outer loop to
repeatedly play the game:

Parameters:

a < 0.1 learning rate
v < 0.9 discount for infinite horizon
74 0.1 temperature diffusion coefficient
0 < 0.995 temperature decay coefficient
MazTemp < 50.0 maximum temperature
MinTemp <— 2.0 minimum temperature
w >0 action selection moderation factor (by default 1.0)

6 >0 lenience moderation factor (by default 1.0)

Initially Vs, a:

Q(s,a) < initialize(s, a) < See Previous Discussion

T(s,a) < MazxTemp

Repeat:

1. Current state s < initial state.
2. Repeat until the current state s is the end state (if any):

(a) Compute the mean temperature for current state s as: T'(s) + mean, T'(s,a)

(b) Select a as follows. If T(s) < MinTemp, or if max,Q(s,a) = oo, select
argmax, Q(s, a), breaking ties randomly. Otherwise use Boltzmann Selection:

Q(s,a)

i. Compute the action selection weights in current state s as: Va : W, < e «T()

ii. Normalize to the action selection probabilities in current state s as:

Va: P, + z%vi

iii. Use the probability distribution P to select action a.

(c) The agent, in current state s, does action a, receives reward r, and transitions to
new state s’.

11

WEI AND LUKE

(d) Update Q(s,a) and T'(s,a) only for the performed action a as:

Rand + random real value between 0 and 1

R A7 if maxy Q(s',a") = o0
r+ymaxy Q(s',a’) else
R if Q(s,a) = oo (initialization was to infinity)
Q(s,a) < ¢ (1 —a)Q(s,a) +aR else if Q(s,a) < R or (Rand < 1 — e"Tzslv@)
Q(s,a) else

(1 —7)T(s,a) + 7T (s") if s’ is not the end state (if any)
(s,a) else

T(s,a) < § x {

(e) s« &

If we defined a repeated game as consisting of an initial state s which always transitions
to the end state as ', this algorithm degenerates to the repeated version of LMRL2 discussed
earlier.

5. Comparison with Other Methods

We begin with a comparison of LMRL2 against six other independent-learner algorithms
in self-play in several cooperative test problems. The algorithms are standard (classic)
Q-Learning, Distributed Q-Learning, Hysteretic Q-Learning, WoLF-PHC, SOoN (Swing
between Optimistic or Neutral), and FMQ. The different techniques use a variety of param-
eters and have several action selection methods as options. We note that WoLF-PHC is a
general-sum algorithm rather than strictly a cooperative one, and that FMQ can only be
applied to repeated games. In a MARL context, standard Q-Learning is sometimes known
as Decentralized Q)-Learning. We briefly discuss all except for standard Q-Learning below.

Distributed Q-Learning We believe that Distributed Q-Learning (Lauer and Ried-
miller, 2000) was the earliest independent-learner algorithm specifically designed for coop-
erative multiagent learning scenarios. In Distributed Q-Learning, each learner has a Q-table
and a policy table. Unlike the regular Q-Learning, where a value in the Q-table is updated by
combining it with some portion of the reward and follow-on utility, in Distributed Q-Learn-
ing the Q-value is completely replaced by the new reward and follow-on utility (that is, the
learning rate is effectively 1.0), but only if doing so would increase it. This makes Distributed
Q-Learning a maximum-based learner; and it is intended to address relative overgeneraliza-
tion. Because it is highly optimistic, the algorithm has problems with stochasticity: indeed
Lauer and Riedmiller (2000) acknowledged that this was still an open question.

To deal with miscoordination, Distributed Q-Learning has another trick up its sleeve: its
policy is only updated when the Q-value of the policy’s chosen action is no longer the highest
such value. At this point a new action for the policy is chosen at random among those with
the highest Q-values. The idea here is to cause agents to lock onto the earliest-discovered
good action (and Nash Equilibrium) even when other equivalent Equilibria exist. Through
this implicit agreement among agents, miscoordination can be avoided.

12

LENIENT LEARNING

Hysteretic Learning Matignon et al. (2007) proposed Hysteretic Learning to address
Distributed Q-Learning’s vulnerability to stochasticity. Hysteretic Learning is not a fully
maximum-based learner: rather, if updating the Q-value would reduce it, it is reduced with
a smaller learning rate than when it would be if it were increased. Hysteretic Learning does
not attempt to solve miscoordination explicitly, but experiments suggest that the algorithm
is very robust to miscoordination issues, in part due to the randomization in its exploration
strategy (Matignon et al., 2012).

FMQ Rather than change the update strategy, as is done in the previous two meth-
ods, the Frequency Maximum Q-Value (FMQ) heuristic instead tries changing the action-
selection (exploration) strategy (Kapetanakis and Kudenko, 2002). FMQ is only meant for
repeated games. FMQ uses a modified version of Boltzmann exploration, similar to the one
used in LMRL2 as discussed later: the value produced via Boltzmann is sometimes called
the expected reward or estimated value. However, this alone is not sufficiently informative
to deal with relative overgeneralization. Thus, FMQ adds an additional term to its Q-value
when using it during action selection. This additional term is the product of the highest
reward seen so far when selecting that action, the frequency of getting that reward, and a
weighting factor ¢ which controls how much this term affects action selection: that is, how
much action selection is based on the “average” reward versus typical “high” rewards.

FMQ are designed to deal with stochasticity in relative overgeneralization problems, but
its learned policy can still be wrong if the variance of the reward function is high.

SOoN SOoN may be thought as a heavily modified FMQ. First, the frequency term
is broken into two terms. The myopic frequency is the the same frequency term in original
FMQ algorithm, and the farsighted frequency is used to deal with deception in games. Both
frequency values are updated using temporal-difference style methods rather than a simple
average. Additionally, the estimated value is computed as a linear interpolation between an
Optimistic Q-value (the Q-value in Distributed Q-Learning) and an Average Q-value (the
classical Q-Learning value). The algorithm introduces two new parameters, oy and ag, to
replace the weighting factor ¢ in FMQ to control the impact of the frequency terms.

WoLF-PHC Given its notoriety, we chose WoLF-PHC as our exemplar general-sum
algorithm to compare against. WoLF-PHC is a policy hill-climbing algorithm and so is
somewhat different from the various Q-Learning methods (Bowling and Veloso, 2001b).
WOLF-PHC compares the expected value of current policy with the expected value of the
average policy. If the former is lower, then the agent is “losing”, else it is “winning”. WoLF-
PHC then uses one of two different learning rates depending on whether it is winning or
losing (the “winning” learning rate is higher). As it is meant for general-sum games, WoLF-
PHC can be straightforwardly applied to cooperative games: but obviously since it is more
general-purpose, a comparison against it is somewhat unfair.

5.1 Test Problems

We tested against twelve games, either from the literature or of our own devising. This
collection was meant to test a diverse array of situations, including: stochastic and repeated
games, recurrent and episodic games, deterministic and stochastic rewards, deterministic
and stochastic state transition functions, deceptive problems, miscoordination, and relative

13

WEI AND LUKE

overgeneralization. The games are defined in Appendix ??, but their various features are
summarized here.

We tested with four repeated-game test problems from the literature. The widely used
Climb and Penalty games (Claus and Boutilier, 1998) are designed to test some degree of
relative overgeneralization and miscoordination. We also included versions of the Climb
game with partially stochastic and fully stochastic rewards, here designated Climb-PS and
Climb-FS respectively (Kapetanakis and Kudenko, 2002). In these versions, the reward for
a joint action was potentially one of two different values with certain probabilities; though
the expected reward was always the same as in the original Climb game. Stochasticity
greatly complicates the problem: we noticed that no existing algorithm can completely
solve Climb-FS.

We also tested against several stochastic games. The Boutilier game (Boutilier, 1999)
was a repeated game with deterministic transitions which distributed a miscoordination
situation among several stages. The Common Interest game (Vrancx et al., 2008) is also
recurrent, but with stochastic transitions and some miscoordination. This game is notable
in that its rewards are unusually close to zero compared to other games; this is the reason
that LMRL2 required a modification of its w parameter to perform well in this game.

The remaining games are of our own design. The Gradient 1 game is a deterministic
episodic game designed to be highly deceptive and to cause miscoordination. Gradient 2
is similar, except that it incorporates fully stochastic rewards. The Heaven and Hell game
also causes miscoordination and deception, but is recurrent. This game has a high-reward
state (“heaven”), a low-reward state (“hell”), and two medium (“purgatory”) states of dif-
ferent levels of reward. Choice of a high-reward action will deceptively transition to a
lower-reward future state, and the converse is also true. The Relative Overgeneralization 1
game (or RO 1) causes miscoordination and relative overgeneralization not in local rewards
but in propagated utilities from later states. Relative Overgeneralization 2 (or RO 2) causes
relative overgeneralization in both local rewards and in propagated utilities. Finally Rela-
tive Overgeneralization 3 (or RO 3) causes miscoordination and relative overgeneralization
from propagated utilities, but does so entirely through a stochastic transition function. We
summarize the properties of each game in Table 1.

5.2 Parameters

All the techniques had a variety of tunable parameters, and many of them could apply dif-
ferent action selection methods. We considered two such methods, epsilon-greedy selection
and Boltzmann selection. Epsilon-greedy selection is characterized by an initial random
action selection probability € which is optionally reduced each timestep by multiplying it
by a cut-down factor v. The version of Boltzmann selection was the one we employed in
the LMRL2 algorithm, and so was characterized by the MaxTemp, MinTemp, 6, and w
parameters. Boltzmann selection could be feasibly used by LMRL2, Q-Learning, and Hys-
teretic Q-Learning, though usually only LMRL2 benefitted from it (other learners generally
worked better with Epsilon-greedy). FMQ used its own algorithmic-specific version of Boltz-
mann selection. Table 2 shows the default (baseline) parameter settings we set for each of
the techniques.

14

LENIENT LEARNING

Repeated Episodic Stochastic Stochastic Relative Over-
Test Problem | Game Game Deception Transitions Rewards generalization Miscoordination

Boutilier X X
Common Interest X X X
Gradient 1 X X X
Gradient 2 X X X X
Heaven and Hell X X

RO1 X X X

RO2 X X X
RO3 X X X X X

Climb X X X

Climb-PS X X X X

Climb-FS X X X X
Penalty X X X

Table 1: Properties of each test problem

Test Problem | Default Parameters

LMRL2 | «:0.1, v:0.9, 7:0.1, 6 :0.995, MaxTemp : 50, MinTemp : 2, w: 1, 0 : 1, Boltzmann
Q| a:0.1, v:0.9, €:0.1, v: 1.0, Epsilon-greedy
Distributed Q v:0.9, €:0.1, v: 1.0, Epsilon-greedy

Hysteretic Q | a: 0.1, v:0.9, €:0.1, v: 1.0, 8:0.01, Epsilon-greedy
WOLF-PHC | a:0.1, v:0.9, €:0.1, v: 1.0, &y :0.03, &; : 0.06, Epsilon-greedy
SOoN | a:0.1, v:0.9, €:0.1, af:0.05, ag4: 0.3, Epsilon-greedy
FMQ | a:0.1, v:0.9, ¢: 10, MaxTemp : 500, MaxMove : 2000, FMQ-specific Boltzmann

Table 2: Default Parameter Settings for each technique.

To make the comparison as fair as possible, we then optimized the above parameter
settings and action selection method choices on a per-problem, per-technique basis, through
a combination of manual tuning and automated hill-climbing. Table 3 shows the resulting
optimized parameter changes.

5.3 Comparison

We compared all the aforementioned techniques using all appropriate test problems (FMQ
was included only for repeated games). We considered two possible measures of successful
convergence on a problem. First, a technique may converge to the correct policy for a given
game, meaning that it is optimal if it follows this policy. Second, a technique may converge
to the more general complete policy, meaning that it determines the correct joint action
for every state, even ones which would never be visited if it followed a correct policy. For
some games (all repeated games, and games with fully stochastic transitions) correct and
complete policies are the same.

One might imagine that the superior technique would be the one which converged to
the complete policy the most often. However what if in doing so it also converged to a
great many entirely wrong policies? Consider the following exaggerated scenario. Technique
A converged to 2 complete policies, 98 correct policies, and no incorrect policies; while
technique B converged to 3 complete policies but 97 incorrect policies. Would we then

15

WEI AND LUKE

Test
Problem | LMRL2 Q-Learning Distributed Q Hysteretic Q WoLF-PHC SOoN FMQ
Boutilier | — a:0.05 — — v:0.997 —
v:0.8
Common | w:0.1 «:0.03 €:0.2 £:0.02 — «:0.05
Interest v:0.9 ayr:0.3
€:0.05
Gradient 1 | 6:107 :0.15 €:0.4 €:0.4 «a:0.15 ag:0.05
v:1 v:1 ayr:0.1
€:0.35 6;:0.05 €:0.3
€:0.5
Gradient 2 | — :0.95 €:0.01 £:0.15 «:0.15 0g:0.1
€:0.3 MinTemp:0.015 ~y:1 ayr:0.3
MaxTemp:500 €:0.4 €:0.05
§:0.999
Boltzmann
Heaven | 6:107 a:0.15 — «:0.15 :0.2 ag:0.05
and Hell ~:0.7 £:0.03 ~v:0.8 ayr:0.03
~v:0.7 €:0.2
RO 1 | 0:10° :0.15 €:0.15 £:0.0001 0 :0.06 ay:0.02
v:1 €:0.2 0;:0.12
€:0.13 €:0.01
RO 2 | 6:10° €:0.25 €:0.4 «:0.3 0 :0.06 ay:0.01
£:0.0001 0;:0.12
v:1 €:0.01
€:0.5
RO 3 | w:0.3 «:0.13 €:0 £:0.0001 0w :0.06 «:0.05
€:0.13 €:0.05 6;:0.12 0g:0.03
af10.03
Climb | 6:107 €:0.0 €:0.1 £3:0.0001 8,:0.21 — —
€:0.01
Climb-PS | 6:10% €:0.01 €:0 £:0.01 0;:0.21 agy:02 —
MinTemp: 2 €:0.01 ay:0.05
MaxTemp:40 €:0.05
§:0.99
Boltzmann
Climb-FS | 6:10 «:0.05 €:0.01 £:0.001 0;:0.18 ay:0.2 ¢:200
7:0.8 v:0.99 €:0.01 ar:0.3
:0.03
Penalty | — «:0.05 €:0.1 £:0.01 €:0.28 — —
€:0.35 €:0.12

Table 3: Tuned Parameter Settings. Shown are deviations from the default settings (in
Table 2) for each method when tuned to perform best on a given problem.

16

LENIENT LEARNING

Test Problem | Iterations Complete Correct
Boutilier 30000 L QD HWS LQDHW S
Common Interest 40000 HLWQ S D
Gradient 1 40000 DHS QLW LDSHQW
Gradient 2 40000 WS QL HD LSQWHD
Heaven and Hell 40000 DLWH S Q LDHW S Q
RO 1 30000 DHSL QW LDHS QW
RO 2 30000 LSHD QW LHSD QW
RO 3 30000 LQSWHD LQSWHD
Climb 15000 DHSLF QW
Climb-PS 15000 S LFHDOQW
Climb-FS 15000 L SFDHOQW
Penalty 15000 DHF S L QW
L=LMRL2 Q=Q-Learning D=Distributed Q H=Hysteretic Q W=WoLF-PHC S=SOoN F=FMQ

Table 4: Summary of Statistically Significant differences among methods for complete and
correct solution counts on different test problems. Techniques are ordered left
to right in decreasing performance. Overbars group together settings with no
statistically significant differences among them. In the Common Interest, Penalty,
and various Climb games, correct solutions are by definition complete. Also shown
is the number of iterations run on each test problem.

really consider Technique B to be superior? For this reason, we must consider both of these
approaches as comparison measures.

Our interest is not in convergence time so much as quality of the converged result.
As such we ran each technique for until both the value function stabilized and the policy
remained unchanged. We used the largest iteration number required among all learners
for our formal experiments. This often benefitted LMRL2: being based on a temperature
schedule, LMRL2 converges more slowly than other (greedier) techniques. However, it also
benefitted other methods which occasionally needed large numbers of iterations and small
settings of € to produce good results. Not surprisingly, the number of iterations needed was
closely correlated to the maximum path length of the game.

Because the results are from Bernoulli trials, we needed a large number of runs to do
proper statistical comparison. We chose 10,000 iterations up front, and compared differ-
ences in complete or correct solution counts. Statistical significance was verified using the
Marasquilo procedure for x2. We used p = 0.05 for the entire experiment, Bonferroni-
corrected to p = 0.0026315789 per problem.

5.4 Results

Table 4 summarizes the rank order among the methods and statistically significant differ-
ences. Table 5 shows the actual results.

e LMRL2 fell in the top statistical significance tier for “complete” eight times, two times
more than the next-best method (Distributed Q-Learning).

17

Test Problem

LMRL2

WEI AND LUKE

Q-Learning Distributed Q Hysteretic Q

WoLF-PHC

SOoN FMQ

Boutilier
Common Interest
Gradient 1
Gradient 2
Heaven and Hell
RO 1

RO 2

RO 3

Climb

Climb-PS
Climb-FS
Penalty

10000/10000
9971

*8407/10000
548/ 9997
9991,/10000

19368,/10000
9999/10000
7332/ 7332
9999

9930

9016

9999

10000/10000
9942
8609,/ 8695
2430/ 5995
8289/ 9942
3350/ 3350
2/ 514
5337/ 5337
1661
1820
1763
9997

10000/10000

2080

9999,/ 9999
0/ 1266

10000/10000

10000/10000

9258/ 9258

2272/ 2272

10000

2821

3874

10000

10000,/10000

9990

9925/ 9926
157/ 5609

9848,/10000

10000,/10000

9897,/10000

2737/ 2737

10000

7454

2558

10000

9998,/ 9998

9968

2329/ 2335

5147/ 5897

9954,/10000

1943/ 2280
2/ 512

2769/ 2769

387

391

676

9951

9996/ 9996
9896
8966/ 9986
3329/ 6770
9530,/ 9975
9877,/10000
9924,/10000
5171/ 5171
10000
9995
8723
10000

9956
9857
3894
10000

* With o = 0.05 this value rose to 9207. This changed the ranking of “complete” results such that
LMRL2 moved from worse than Q-Learning to better than Q-Learning (both statistically significant

differences).

1t With a = 0.05 this value rose to 9750, but did not change any ranking.

Table 5: Complete/Correct solution counts among methods on various test problems. Bold-
face values indicate methods which were not statistically significantly different with
the highest-performing method for a given problem. Note that in the Common
Interest, Penalty, and various Climb games, correct solutions are by definition
complete.

e LMRIL2 fell in the top statistical significance tier for “correct” eleven times, three times
more than the next-best method (Swing between Optimistic or Neutral).

e LMRL2 was uniquely statistically significantly best in RO 1 and Climb-FS.

e SOoN was uniquely statistically significantly best in Climb-PS.

e The Gradient 2 game proved very challenging to all methods. Yet WoLF-PHC, which
often failed in other games, was statistically significantly best at Gradient 2 in “com-
plete”. LMRL2 underperformed WoLF-PHC on Gradient 2 in “complete”, but outper-
formed it (and all others) in “correct”.

e Changing o improved LMRL2 twice, and once statistically significantly, but not by
much.

e All methods easily solved the Boutilier game.

In short, LMRL2 performed very well. It often did not reach 100%, but it was usually
easily close enough to fall in the top statistical significance tier for “complete”, and almost

always in the top tier for “correct”.

No other method was as consistent across games.

Furthermore, LMRL2 did so with very few changes to its default parameters: in all cases
at most one parameter needed to be tuned. We are particularly interested in the fact that

while LMRL2 performed very well in RO 2 and RO 3—games which exhibit the relative
overgeneralization pathology for which LMRL2 was designed —it underperformed in RO 1!

18

LENIENT LEARNING

Probability
1.0

0.8}
0.6+

0.4}

0.2

10 20 30 20 5o emperature
---------- 107 107" 10° 10

Figure 2: Probability that LMRL2 will accept poor results, by current temperature, for
various # values.

6. Analysis and Discussion

We have experimented with a number of variations of LMRL2 and have examined different
issues which arise when using it. In the following section, we discuss five of these issues.
First, we discuss the critical issue of initialization of Q-values and its impact on LMRL2’s
success. Second, we discuss how LMRL2 deals with issues in miscoordination. Third, we
examine the disadvantages of Boltzmann selection and compare alternatives. Fourth, we
consider the impact of latching, whereby temperature is propagated to earlier states only
when it is hotter than those states. Finally, we examine what happens when LMRL2 is
paired with other techniques in non-self-play, and so consider if, so to speak, two heads are
better than one.

6.1 Lenience and @-value Initialization

We first consider how 6 affects lenience. LMRL2 (initially), Hysteretic Q-learning, and
Distributed Q-learning are all optimistic learners, meaning that they unilaterally update
the Q-values to more closely reflect new results if the new results are superior: but they are
more conservative when the new results are inferior. That is, they incorporate some portion
of maximum-based learning. More specifically: LMRL2 updates to inferior results only with
a certain probability (which increases over time). Hysteretic Q-learning updates to inferior
results at a fixed, slower rate. And Distributed Q-learning never updates to inferior results.

In LMRL2, optimism is controlled by 6. Figure 2 shows the probability curves of doing a
Q-value update corresponding to different 8 values and different temperatures. We can see
that, with some given initial temperature (perhaps 50), a higher 6 value has two effects: a
higher initial probability of doing Q-value updates and a different probability curve shape.
With very high 6, the curve approaches the maximum-learner rule employed by Distributed
Q-learning. On the other hand, with a very low 8 value, the curve approaches the averaging-
learner rule employed by standard Q-learning. We note that a similar relationship can also
be made with Hysteretic Q-learning. In Hysteretic Q-learning, improved results are updated

19

WEI AND LUKE

0.85F
0.80}

0.75}

30 50 ~10 10 20 3‘Olnitial Q-value
Figure 3: Rate of complete solutions for the LMRL2 in the Climb game, by various initial
Q-values. Each point reflects the average of 1000 independent runs.

using « as usual, but worse results are updated using a smaller learning rate 8 < «. If 5 =0,
Hysteretic Q-learning more or less degenerates to regular Q-learning.

As a lenient learner, LMRL2’s optimism is also tempered by the current temperature. As
can be seen in Figure 2, the initial temperature has a significant effect on the progression
of lenience in the system: and indeed if the temperature is infinity, LMRL2 becomes fairly
similar to Distributed Q-learning.

In Section 4 we spent significant time discussing Q-value initialization options: this is
because optimistic learners, and the like, are very sensitive to initialization. If the Q-values
are initialized too high, then these learners have no easy way to adjust them to correct
settings: indeed Distributed Q-learning may be completely unable to learn at all. Because
in traditional average-based Q-learning the initial estimate of Q-value is less of a concern for
proper convergence (Jaakkola et al., 1994), many algorithms simply ignore the discussion of
initialization, setting the initial value to 0.

LMRL2 is initially highly optimistic, and so poor initialization can severely hinder it.
If the Q-value is greater than the actual feedback, initially the lenient learner will largely
refuse to update the Q-value, and so the Q-value won’t change, and LMRL2 will thus just
pick randomly from among actions during action selection. The temperature of all of the
actions then will drop roughly the same rate. Only when the temperature drops enough
that LMRL2 shifts to an average-based mode will it start to properly update the Q-values
at all. Figure 3 shows how strongly the choice of initial QQ values can effect performance:
here LMRL2 quickly drops off in performance when the initial value rises to above 10.

6.2 Miscoordination

To solve the miscoordination problem, an algorithm must break the symmetry among the
various optimal equilibria. One way to do this is to always e-greedily select the action
with best Q-value, (crucially) breaking ties by selecting the action used last time. This is
the approach used in Distributed Q-learning: but this method will only work in self-play.
Another way to break symmetry is via different convergence times, which we will talk about
in Section 6.5. LMRL2 at present simply relies on the fact that miscoordination is unstable,
and that with enough random action, it will likely eventually work its way out.

20

LENIENT LEARNING

Q value Q value
10

Iteration Iteration

i 4000 6000 8000 6000 8000
-5}
-10 -10
Action a of agent one Action ¢ of agentone - Action a of agenttwo — — Action ¢ of agent two
(a) Agent One (b) Agent Two

Figure 4: Q-values of two agents in the Penalty game with § = 0.1

Q value Q value
TO oo : 10f s
i’ e J‘\' ,,,,,,,,,,,
5 5 it
f
lteration ! lteration
2000 4000 6000 8000 (2000 4000 6000 8000
-5 -5
-10 -10
- Action a of agent one Action ¢ of agentone - Action a of agenttwo — — Action c of agent two
(a) Agent One (b) Agent Two

Figure 5: Q-values of two agents in the Penalty game with § = 107

Miscoordination is primarily a problem for a lenient learner early on, when miscoordi-
nated actions both appear to have the same Q-values due to the use of maximum-based
learning. However at some point one action will randomly have a slightly higher Q-value
than the other, and as the temperature drops, action selection will increasingly choose that
action. We have found that this tends to create a sudden collapse to one equilibrium or an-
other. What often happens is that one agent starts using a given action more often, which
quickly makes the miscoordinated action a bad deal for the other agent.

Figure 4 shows the Q-value of two LMRL2 agents playing the Penalty game, which has
two miscoordinated equillibria, (a,a) and (¢, ¢). During the first several hundred iterations,
the Q-value of both actions increases due to lenience, though neither reaches the actual value
of 10, due to a low lenience factor (§ = 0.1). Thereafter, the Q-value of both actions for
both agents start to drop, as lenience starts to wear off. At some point, action « is slightly
preferred by at least one agent, which at this point is sufficient to quickly lock the agents
into the equilibrium (a, a).

If learners are being lenient for a very long time, this lock-in could also take a long
time: but it will eventually happen. In our experiments, we have found that low lenience
is not necessary: even with a high value of 0, lock-in to a given equilibrium will occur at
some point. We experimented with 6 values of 1, 10, 100, 1000, 10,000, and 100,000 on the
Penalty game: in every case, LMRL2 worked around miscoordination and found the correct
policy in 1000 out of 1000 runs.

21

WEI AND LUKE

Probability
100 ——

0.9
0.8
07
06

05 — — —

Q-value

Figure 6: Given two actions A and B, with Q-values Q4 > @ p, the probability of selecting
action A over B using Boltzmann Selection, for various settings of Q4. The
different lines reflect the ratio of Q4 : @p, that is, how much larger @ 4 is compared

to @p.

Here is a typical example. Figure 5 shows the Q-values of the agent in the same game
but with extreme lenience level # = 107. In this run, both miscoordinated equilibria have
converged to near 10, and stay like this for a long time, but at about 6500 iterations, Agent
1 suddenly collapses to action a. This then forces Agent 2 to collapse to action a about 250
iterations later.

6.3 Exploration Strategy

A reinforcement learner may be roughly divided into two parts, the learning policy (or action
selection) and the update rule (Singh et al., 2000). When applied to cooperative MARL,
significant effort has been expended in the literature on the update rule, but the learning
policy has received less attention; but coordination among learners involves both parts. Here
we examine LMRL2’s choices of learning policy as part of its exploration strategy.

LMRL2 begins using a modified version of Boltzmann Selection (Kaelbling et al., 1996),
but when the temperature drops below some minimum value, it suddenly jumps to a fully
greedy strategy (that is, e = 0). Our original reason to have LMRL2 do this was that
with low temperatures, Boltzmann Selection is subject to floating-point overflow problems.
However we have found that this scheme also happens to perform quite well compared to a
traditional Boltzmann Selection algorithm. We begin here with an analysis of Boltzmann
Selection as used in LMRL2, and particularly with the use of the w action-selection tuning
parameter. We then go on to some analysis of why jumping to a fully greedy strategy later
on seems to be an effective mechanism.

Boltzmann Selection Strategy In two of the games, LMRL2 must adjust the pa-
rameter w to achieve good performance. One of the difficulties with Boltzmann Selection is
that when Q-values are close (and importantly, when they are all small), Boltzmann Selec-
tion does not distinguish among them well (Kaelbling et al., 1996). For example, Figure 6
shows a simple repeated game with two actions A and B, where the Q value of action A

22

LENIENT LEARNING

Complete policy rate
1000

950
900
850

800

R
20 40 60 80 100 °"9®

Figure 7: Rate of complete solutions for the LMRL2 in the Common Interest game, using
Ranked Boltzmann Selection with values of n ranging from 1 to 100. Each point
reflects the average of 1000 independent runs.

Test Problem | Original LMRL2 Results LRML2 with Ranked Boltzmann Selection
Boutilier 10000,/10000 10000,/10000
Common Interest 9971 9968
Gradient 1 8407/10000 9983,/10000
Gradient 2 548/ 9997 502/ 9431
Heaven and Hell 9991,/10000 9996,/ 9997
RO 1 9368,/10000 8593,/10000
RO 2 9999,/10000 5267/ 6390
RO 3 7332/ 7332 1739/ 1739
Climb 9999 9971
Climb-PS 9930 9990
Climb-FS 9016 9217
Penalty 9999 9993

Table 6: Comparison of original results from Table 5 with Ranked Boltzmann Selection using
w = 10. Boldface values indicate methods which were not statistically significantly
different with the highest-performing method for a given problem.

is some n times that of B (that is, the ratio between the two is n : 1). We note that even
for large ratio differences between the two actions, as the Q-values become relatively small,
Boltzmann quickly approaches uniform selection (0.5 probability for each). We believe this
explains the necessity to change w for LMRL2 in the Common Interest game: it has very
small rewards, hence very small Q-values.

To experiment with this, we designed a new version of Boltzmann Selection called Ranked
Boltzmann Selection. Here, when selecting an action, we first rank-ordered the possible ac-
tions by their current Q-values, breaking ties arbitrarily. We then stretched the rank order-
ings uniformly under some maximum value w. For example, if there were four actions, their
values would be set to 1/4w, 1/2w, 3/4w, and w. We then performed Boltzmann Selection
using these resulting values. The point of Ranked Boltzmann Selection is that, given a value
of m, it is insensitive to the exact Q-values in question, and thus to “close” Q-values among
actions. w is essentially a rigorous, tunable replacement for w in the ranked case.

23

WEI AND LUKE

Q-values Q-values
15 15

Iteration Iteration

6000 8000

8000

——————— Actiona ------ Action b Action ¢ ~w Actiona ------ Action b Action ¢

(a) Agent One (b) Agent Two

Figure 8: Q-values of actions of two agents using Boltzmann Selection in the Fully Stochastic
Climb game, with no minimum temperature. Note that optimal joint action (a, a)
is abandoned at about step 2500 in favor of suboptimal joint action (c,c).

We tested this procedure on the Common Interest game for various values of w from 1
to 100, with 1000 trials each. Figure 7 shows the average rate of complete policy solutions.
As can be seen, the algorithm performed much better for certain values than others: and
for sufficiently low values of w it performed poorly.

We hoped that Ranked Boltzmann Selection might permit us to eliminate w entirely as
a parameter, since with a good selection of w it would be insensitive to variations among
Q-values. To this end, we chose the highest-performing setting from the previous experiment
(w = 10) and applied it to every test problem. Table 6 compares this against the original
results from Table 5. Unfortunately, although some games saw an improvement, many others
dropped significantly in performance. Indeed for RO3, which also required a tuned w value,
Ranked Boltzmann Selection performed quite poorly.

Uncoordinated Exploration and Greedy Strategies Uncoordinated exploration
in independent learners occurs when one or more agents is selecting an explorative action
while the remaining agents are selecting exploitative (greedy) actions. As a result, exploita-
tive agents may receive misleadingly poor reward due to other agents’ exploration. As the
number of agents increases, this becomes much more likely. For example, with an e-greedy
strategy, with n agents in the game, the probability that all agents are exploit is (1 — €)™,
and the probability that all the agents are explore is €”. As n increases, these probabilities
become exponentially smaller.

Besides posing a scaling problem, uncoordinated exploration can also cause a difficulty we
call optimal policy destruction. Here, the agents have found and converged to the optimal
policy, but because certain agents then choose to do exploration, the learning process is
destabilized and the agents as a whole wind up re-converging to some inferior solution. This
may be particularly easy in relative overgeneralization scenarios, and in strongly stochastic
games, where optimal solutions can be made to look bad by a single wayward agent or
random reward.

Figure 8 shows a situation like this. Here we used a pure Boltzmann Selection strategy
(that is, no minimum temperature) in the Fully Stochastic Climb game. We can see that at

24

LENIENT LEARNING

Q-values

10/ 5

Iteration

-10

-20

---------- Actiona ------ Actionb Action ¢

Figure 9: Q-values of actions of one LMRL2 agent in the Fully Stochastic Climb game. The
vertical bar indicates where the agent commits to a fully greedy selection strategy,
even though the optimal action (a) has not yet been discovered.

" Iteration

5UbO

---------- Actiona ------ Actionb Action ¢

Figure 10: Q-values of actions of one LMRL2 agent in the Fully Stochastic Climb game. The
vertical bar indicates where the agent commits to a fully greedy selection strategy.

around 2000 steps, Action a has the highest Q-value for both agents ((a, a) is the optimal
joint solution). If we switched to fully greedy selection at this point, the agent would stick
with this optimal policy. But in this experimental run, the Q-value then decreases enough
that it can never recover, and the agents reconverge to (c,c). The only plausible source
of this optimal policy destruction phenomenon is the uncoordinated exploration from the
Boltzmann Selection strategy.

This lock-in would naturally occur when agents are no longer very lenient, but are
still fairly explorative. We believe this is the reason that jumping to fully greedy selection
strategy is effective in LMRL2: it occurs at the point where optimal policy destruction often
shows up. It’s possible to converge to the correct solution even when lock-in has occurred
before discovery of the solution. If the agents lock into suboptimal actions, repeated play may
still bring the Q-values low enough that greedy selection then selects a different joint action.
This “optimism in the face of uncertainty” (Kaelbling et al., 1996) technique is widely used
in many RL algorithms. Figure 9 shows an example run where has this occurred. Action

25

WEI AND LUKE

Rate
500

400
300
200

100

Minimum Temperature

05 10 15 20 25 30
---------- Optimal policy destruction Wrong policy

Figure 11: Optimal policy destruction and wrong-policy rates (out of 1000 runs) for different
minimum temperature settings. Results shown are the average of ten 1000-run
trials.

a is the optimal action. After the greedy selection began, only the action with the highest
Q-value is updated (and this is presently not a). Eventually the other actions worsen to the
point that a is then tried.

However, this greedy selection lock-in is not a silver bullet for two reasons. First, agents
will not adopt the greedy strategy simultaneously: one will become greedy while the other is
still exploring. Second, occasionally when the reward function of the optimal Nash Equilib-
rium has a very large variance, or punishment for uncoordinated behavior is very high, the
Q-value of the optimal action can also accidentally be pulled down irrevocably. Figure 10
shows an example. Here we see that the Q-value of action a drops several times after the
greedy selection begins, eventually causing other actions to be preferred.

However, generally the greedy strategy usually helps to reduce the rate of optimal policy
destruction, particularly when the right minimum temperature is chosen (hence the right
lock-in time). Figure 11 shows the optimal policy destruction and incorrect-policy rates, out
of 1000 runs, for different minimum temperatures. It is clear that the two rates are strongly
linked, and with a suitable minimum temperature (here 2.0), by reducing optimal policy
destruction we think we can also eliminate most incorrect policies.

We also studied optimal policy destruction under different combinations of decay rate
and minimum temperature. Figure 12 shows the resulting optimal policy destruction and
wrong-policy rates. We note that many of the plots form partially bowl-shaped curves, which
suggests that there is reasonable range of temperature decay for various minimum tempera-
tures: often this is somewhere around 0.996—-0.998. This can be seen as the complement to
Figure 11, where we had a range of good minimum temperatures for a fixed decay. However
with very low minimum temperatures, the “lowest” points on curve simply slide towards the
minimum temperature decay rate. This is expected, since a lower minimum temperature
means later lock-in time, and thus a smaller decay rate is preferred. We also note that the
difference between the optimal policy destruction and wrong-policy rates can become large,
but will rapidly converge after reaching the “lowest” point on the curve. We think the reason
for this is that the lower temperature decay rate drops the temperature too rapidly, thus
the “optimal action” cannot reach its “optimum” given the short lenience period.

26

LENIENT LEARNING

Rate
420
400
380
360
340
320
0.992 0.994 0.996 0.998 Decay Rate
---------- Optimal policy destruction Wrong policy
(a) minimum temperature = 0.5
Rate
200}
150[
B
50}
n n n n D H 1t
0.992 0.994 0.996 0.998 ecay nate
———————— Optimal policy destruction Wrong policy
(a) minimum temperature = 1.5
Rate
200
150}
10f e T
50
0.992 0.994 0.996 Oogs Decay Rate
---------- Optimal policy destruction Wrong policy

(a) minimum temperature = 2.5

Rate
500

400

300

100
0.992 0.994 0.996 o.geg Deca Rate
———————— Optimal policy destruction Wrong policy
(b) minimum temperature = 1.0
Rate
200
150
B
50
0.992 0.994 0.996 ogeg Deca Rate
——————— Optimal policy destruction Wrong policy
(b) minimum temperature = 2.0
Rate
200
1o
e
140
120 y
‘ 0.992 0.994 0.996 ogeg Decay Rate
————————— Optimal policy destruction Wrong policy

(b) minimum temperature = 3.0

Figure 12: Optimal policy destruction and wrong-policy rates (out of 1000 runs) for different
minimum temperature settings with different temperature decay rate. Results
shown are the average of ten 1000-run trials.

27

WEI AND LUKE

Test Problem | Without Latching With Latching

Boutilier 10000,/10000 10000,/10000
Common Interest 9971 9955

Gradient 1 8407/10000 7851/ 9834

Gradient 2 548/ 9997 374/ 8775

Heaven and Hell 9991,/10000 10000,/10000

RO 1 9368,/10000 9507/10000

RO 2 9999 /10000 9999/10000

RO 3 7332/ 7332 767/ 767

Table 7: Learning result of using latching in games with same parameter settings.

6.4 Latching

One of the critical features of LMRL?2 is its propagation of temperatures from state to state,
notionally in order to keep earlier states “hot” long enough to be lenient to late propagated
utilities. Given a previous state s, action a, and next state s’, this is done as:

T(s,0) ¢ 6 x (1 —=7)T(s,a) + Tmeany T(s',a’) if s’ is not the end state (if any)
(s,a) else
This can not only heat up states, but cool them down as well, which would seem to be
an undesirable quality. We have considered an alternative (called latching), where states
can only be heated up:

(1 —7)T(s,a) + Tmean, T(s',a’) if s’ is not the end state (if any)
T(s,a) < § x and T'(s, a) < mean T(s',a’)
T(s,a) else ¢

It turns out that this method does not work particularly well. Table 7 compares LMRL2
with and without latching on the various stochastic games from our testbed (latching is
irrelevant to repeated games). This is a very counterintuitive result. Our experiment shows
that latching only does better in two cases, and considerably worse in the Gradient games
and in RO 3. (Note that in Table 7 we purposely maintained the same (difficult) level
of Bonferroni correction to be consistent with other results in the paper). Finer-grained
examination on a per-state basis (not reported here) did not reveal a conclusive reason as
to why.

6.5 Non-self play

Last, we were interested in knowing how well LMRL2 performed when faced with a learning
method of some other kind (that is, not in self-play). This is a follow-on to similar work we
did using LMRL (Sullivan et al., 2006). To test the performance of LMRL2 when paired
with some other learner, we re-ran all the test problems where LMRL2 was paired with some
other algorithm. As we wanted to see what would happen to LMRL2 if simply faced with a
different kind of learner, and so we did not re-tune the parameters of the other agents, but
rather kept them at their default settings (from Table 2).

28

LENIENT LEARNING

Alternative Learner

Test Problem LMRL2 Q-Learning Distributed Q Hysteretic Q WoLF-PHC SOoN
Boutilier | 10000/10000 10000/10000 10000/10000 10000/10000 10000/10000 10000,/10000
Common Interest | 9971 9888 9997 9867 9977 9889
Gradient 1| 8407/10000 574/ 1387 7458/ 8266 602/ 1383 63/ 85 1778/ 8601
Gradient 2 548/ 9997 39/ 691 7/ 1119 46/ 706 30/ 376 94/ 2186

Heaven and Hell | 9991/10000 9838/ 9999 9981/10000 9830/ 9996 9787/ 9999 9855/10000
RO 1| 9368/10000 8031/ 9625 9998/ 9998 7970/ 9617 6554/ 6931 5307/ 7786

RO 2| 9999/10000 0/ 1 6004/10000 0/ 0 0/ 0 0/ 14

RO 3| 7332/ 7332 899/ 899 2817/ 2817 884/ 884 530/ 530 542/ 542

Climb | 9999 27 9933 7 0 31
Climb-PS | 9930 3 56 6 1 26
Climb-FS| 9016 7 2 24 22 25
Penalty | 9999 8475 10000 8514 9417 9999

Table 8: LMRL2 performance when paired with an alternative learning algorithm. Results
shown are Complete/Correct solution counts for various test problems. Note that
in the Common Interest, Penalty, and various Climb games, correct solutions are
by definition complete.

As shown in Table 8, for most of the games and most of the learners, LMRL2 performed
best when in self-play. There was one chief exception: for two problems (RO1 and Common
Interest), the combination of LMRL2 and Distributed Q-learning outperformed LMRL2 in
self-play by a statistically significant margin. To understand why Distributed Q-learning
would help LMRL2 in some cases, we plotted the Q-values for the two learners in State 1
of the Common Interest game. State 1 is the state that LMRL2 would normally fail. In
State 1, there are two optimal Nash Equilibria, (a,b) and (b, a), and the primary difficulty
in avoiding miscoordination, which which our lenient learner sometimes fails at due to the
sensitivity of Boltzmann selection.

The Q-values are shown in Figure 13. It is easy to see that Distributed Q-learning
converges much faster than LMRL2. After it has converged, we are effectively dealing with
single-agent rather than multiagent reinforcement learning: LMRL2 is just trying to get the
best result it can in an essentially fixed environment. This fast convergence doesn’t restrict
LMRL2’s ability to find an optimal Nash Equilibrium, however, since it will converge to
which ever Equilibrium Distributed Q-learning has chosen. Here, Distributed Q-learning
has effectively forced LMRL2 into its decision.

This result reveals another way we might solve miscoordination. The way Distributed
Q-learning normally approaches the miscoordination problem is to make an implicit deal
that agents will stick with the first Nash Equilibrium they have chosen. But an alternative
would be for one learner to converge to a Nash Equilibrium faster than the other learner,
forcing the second learner to adopt its decision.

7. Conclusions

We have introduced LMRL2, a reinforcement learning algorithm for stochastic cooperative
independent-learner games, and which can also be used for repeated games. LMRL2 is

29

WEI AND LUKE

Test Problem | LRML2 (Self Play) Distributed Q (Self Play) LRML2 + Distributed Q
Boutilier 10000,/10000 10000,/10000 10000,/10000
Common Interest 9971 2080 9997
Gradient 1 8407/10000 9999/ 9999 7458/ 8266
Gradient 2 548/ 9997 0/ 1266 7/ 1119
Heaven and Hell 9991,/10000 10000,/10000 9981,/10000
RO 1 9368,/10000 10000,/10000 9998/ 9998
RO 2 9999 /10000 9258/ 9258 6004,/10000
RO 3 7332/ 7332 2272/ 2272 2817/ 2817
Climb 9999 10000 9933
Climb-PS 9930 2821 56
Climb-FS 9016 3874 2
Penalty 9999 10000 10000

Table 9: Comparison of LMRL2 in self play, Distributed Q-Learning in Self-Play, and the
scenario where LMRL2 controls one agent and Distributed Q-Learning controls
the other. Results shown are Complete/Correct solution counts for various test
problems. Note that in the Common Interest, Penalty, and various Climb games,
correct solutions are by definition complete.

particularly meant to overcome the relative overgeneralization pathology which can appear
in cooperative multiagent games of three or more actions per agent, and to do so successfully
in the face of stochasticity in the reward or transition function. The algorithm is an extension
of an earlier version of ours, LMRL, which was meant only for repeated games.

We compared LMRL2 against several other algorithms which may be applied to cooper-
ative independent-learner games, both stochastic and repeated. This comparison was done
over a collection of test problems drawn from the literature and our own devising, and meant
to test a wide variety of scenarios and pathologies. Our results have shown that LRML2
is an effective and robust learner, generally outperforming the other algorithms on the test
problems in several different ways. LMRL2 placed in the top statistical significance tier
for “complete” policies for eight problems, two more times than other algorithms. Further,
it placed in the top tier for “correct” policies for eleven problems, three more times than
other algorithms. And LMRL2 was uniquely best for two problems. And unlike some other
methods, it did so with only a small amount of tuning: though LMRL2 has many available
parameters, it performs well even when almost all of them are fixed to default values.

Future Work Because it works on a temperature schedule, LMRL2 is not a partic-
ularly fast algorithm. It often takes rather more time to converge than other more greedy
methods. Because we are more interested in the converged result than in the speed of learn-
ing, this was not a vital issue for us: but as future work, we wish to examine how to speed up
LMRL2’s convergence without hurting its performance. We also want to investigate other
possible stable exploration methods which achieve coordinated exploration: while LMRL2’s
current exploration strategy is generally fixed, it is nonetheless overcomplicated.

We have also been surprised by our latching results. We would have expected to get
better performance by restricting pushed-back temperature to only those situations where
it would heat up the earlier states, but the results are mixed and disappointing. We intend
to examine this more carefully as future work.

30

LENIENT LEARNING

Q value
10+

8

6

Iteration

2000 4000 5000 8000

---------- Action a of Lenient Learner

— — Action b of Distribute Q-learner

Figure 13: Q-values of two learners in State 1 of Common Interest game

Finally, we note that while the work in this paper reflects somewhat larger and more
complex games than are found in much of the MARL literature, it does not scale beyond
the literature in important ways. For example, while the algorithm works for any N > 2
number of agents, the test problems presented are for N = 2. In future work, we will extend
the research to more complex and more practical domains, scaling both in terms of agent
numerosity and heterogeneity, and involving continuous state and action spaces. To this
end, we wish to adapt lenience with function approximation and policy gradient methods.

Acknowledgments

The authors thank the reviewers for their feedback. The work presented in this paper is
supported by NSF NRI grant 1317813.

Appendix A. Game Defintions

Below we provide tables defining each game in this study, accompanied by illustrations.
Each table shows a state S, two agent actions A; and As, a resulting joint reward, and a
resulting transition to new state S’.

Actions Actions may be explicitly labeled, such as b or ¢, or they may have the word
any, meaning “any action”, or (for agent 2) they may have the word same, meaning “the
same action that agent 1 selected”, or they may have the word other, meaning “a different
action than agent 1 selected”. Boldface actions indicate members of a complete policy.
Boldface actions shown in circled states (such as@) indicate members of a correct policy.

States, Rewards, and Transitions The start state is always state 1. The absorbing
end state (if any) is indicated with the word “end”. All other states are numbered. If
indicated with a single number (or “end”), then rewards and transitions are deterministic.
Otherwise, a distribution is shown. For example, 1 (10%), 2 (90%) means “10% of the time
choose 1, 90% of the time choose 2”.

31

Illustrations

WEI AND LUKE

Tables are accompanied by illustrations, which show the games as finite-

state automata. States are shown by their numbers: the start state is 1. The absorbing state,
if any, is [End]. Each state has a two-player game reward matrix corresponding to the actions

(a, a)l(a, b)

(b, a)|(b,b)

or

(a,a)

(a,b)

(a,c)

(b, a)

(b,0)

(b, ¢)

(c,a)

(c,b)

{e;¢)

actions for players (A, Ag) respectively. Values in the matrices

indicate rewards for joint actions. If the values are of the form xz/y, this indicates that
50% of the time value x is rewarded, and 50% of the time y is rewarded. Boldface values
indicate joint actions which are part of correct policies. Some states have their state number
circled: boldface values in these states are part of complete policies. Directed transition
edges between states are labeled with the joint actions which trigger those transitions. In
some cases a joint action will trigger a transition with a certain probability, else it will trigger
some other transition. Transitions may also be labeled (any, any), indicating that all joint
actions trigger that transition.

Boutilier
From (Boutilier, 1999).

S A 1 A2 Reward S / State
<a, a>
D a any 0 2 <b,b> 10 | 10
b any 0 3 "1 10 | 10
o) any same 0 4 <aas 5 <ab> 5
any other 0 5 <ab> L 0 |<ba> _| -10 | -10
3 any any 0 6 State State 2 o S(éﬁe -1 o 1 o
@ any any 10 1 0 0 ZEE: | o 0 |<ayay>| 5 5
5 any any -10 1 o o T o 0 T 5 5
6 any any 5 1 A <any, any >
Common Interest
From (Vrancx et al., 2008).
S A Ay Reward S’ <aa> 90%
a a 0.5 1 (10%), 2 (90%) Sl (fom
@D any other 0.6 1(10%), 2 (90%) ! T Tos 1001 N T
b b 0.7 1(90%), 1 (10%) —— "~
0.6 0.7 [« 05 0
a a 0 1(10%), 2 (90%) <a.a> 0%
<a,b> %
o @ b 1.0 1 (10%), 2 (90%) <z a> 10% <b,a> 10% <2 a> 90%
b 05 1 (10%), 2 (90%) Sl S0 aon
b b 0 1 (90%)’ 1 (10%) <b,b> 90% <b,b> 10%

32

Heaven and Hell

S A A, Reward S’
a a 20 2
D any other 10 1
b b 15 3
a a 0 4
9 any other -10 1
b b -5 2
a a 10 4
3 any other 0 1
b b 5 2
a a -10 4
4 any other -20 3
b b -15 2

LENIENT LEARNING

State

20

<a,b>
<b,a>

Relative Overgeneralization 1 (RO 1)

S A A, Reward S’
a a 0 2

a b 0 3

a [¢ 0 3

b a 0 3

D b b 0 4
b ¢ 0 4

[¢ a 0 3

[¢ b 0 4

[¢ ¢ 0 5

o) a other 5 end
b other 0 end

3 any any 0 end
4 a other 3 end
b other 0 end

5 a other 4 end
b other 0 end

State

33

<b,b>
State
2
<aa>
» 0 -10
10 S <a,a>
<ab> State
b, a
= > <b,b>
10 |« 10 -20
15 ~ab> -20 -15
<a,b> St <Ea>
<b,a> 3)
10 0 <aa>
<a,a>
<b,b> > 0 5
<b,b>
State
2
<a, a> _ 5 0 <any, any >
<a,b> 0 5
<a c> State
<c,a>
<cb> 0 0 <any, any >
0 | o | o o [o A/
0 0 0 a | End
0 0 0 _ 3 0 7y
<b,b> T 3 <any, any >
<bc> State
<c,b>
| 4 0
<c,c> = 0 4 <any, any >

WEI AND LUKE

Relative Overgeneralization 2 (RO 2)

2

S

B

As Reward

T Wk W WwwN

end

¢}
=}
(oW

end
end
end
end @
end 2

end <a,a> <any, any >

end

end State
end <ac> 5 0 0

<c,a>
end @ “:," 5 3 5 Lsewany>
\ 4

end 5 0 0
end 0 3 3 o End

end 0 3 4 6 0 0 \
end <b.b> |—> 0 4 4 any any>
end <b,c> 0 4 5

end 5

end 7 0 0
end <c,c> > o 5 5 IS any, any >
end 0 5 6
end
end
end
end
end
end

end
end
end
end
end
end
end
end
end

w
0O 0 0 T oTo® 000 gToT® Y YI000ggoToe 000 g oToT® Yy |I000g0goToe
O T 0 g 0T 0T ® 0T 0o |00 00 0o |60 0o 600|060 o
DU O NN U O OO N|U O R PR OODOD (R WOWWOODOUIITDH OO OOO X (WO wWwwo o o o

34

LENIENT LEARNING

Relative Overgeneralization 3 (RO3 3)

S A; As Reward S’
a a 0 2 (50%), 3 (50%)
a b 0 3
a c 0 3 <a,a>50% <b,¢>30% (‘s
<a,b>0% <c,a>0%
b a 0 3 sge <a,c>0% <Cb>80% 10 0 <any, any >
D b b 0 2 (30%), 3 (70%) 0 0 0 :g:gzgzﬁ% <¢c>40% M) 10
b C 0 2 (30%), 3 (70%) 0 0 0 sae L »| Eng
c a 0 3 o [o [o Jeapzite Soazitmls
c b 0 2 (30%), 3 (70%) <a c>100% <c,b>30% 0 0 [<awany>
c 0_2 (40%), 3 (60%) Szl e
) a other 10 end
b other 0 end
3 any any 0 end

Climb, Climb Partially Stochastic, and Climb Fully Stochastic
Climb is from (Claus and Boutilier, 1998). Climb Partially Stochastic and Climb Fully
Stochastic are from (Kapetanakis and Kudenko, 2002).

Climb
Reward
1 [30 [o
Climb Climb o | 7 P LY
S A1 Az Climb Partially Stochastic Fully Stochastic S’ o o s
a a 11 11 10 (50%), 12 (50%) end
a b -30 30 5 (50%), -65 (50%) end , , ‘
a ¢ 0 0 8 (50%), -8 (50%) end Climb Partially Stochastic
b a -30 -30 5 (50%), -65 (50%) end Sie
@ b b 7 14 (50%), 0 (50%) 14 (50%), 0 (50%) end] @ | o
b ¢ 6 6 12 (50%), 0 (50%) end 20 |14/0| 6 223 Eng
c a 0 0 5 (50%), -5 (50%) end 0 0 5
c b 0 0 5 (50%), -5(50%) end
c c 5 5 10 (50%), 0 (50%) end

Climb Fully Stochastic

State

10/12|5/-65| 8/-8
5/-65| 14/0 | 12/0

Penalty 5/5 | 5/5 | 10/0
From (Claus and Boutilier, 1998).

<any, any >=

End

S A1 As Reward S’
a a 10 end
a b 0 end
a [¢ -10 end Sie
b a 0 end 10 0 -10
D b b 2 end 0 2 0 VS Eng
b [¢ 0 end -10 0 10
[¢ a -10 end
¢ b 0 end
c c 10 end

35

WEI AND LUKE

Gradient 1, Gradient 2

Reward

S A As Gradient 1 Gradient 2 S’
a a 0 1(50%), -1(50%) 2

@ any other 1 2(50%), 0 (50%) 3
b b 2 4 (50%), 0 (50%) 4

a 0 1 (50%), -1 (50%) 5

@ any other 1 2(50%), 0 (50%) 6
b b 2 4 (50%), 0 (50%) 7

N 1 2 (50%), 0(50%) 8

3 any other 2 4 (50%), 0 (50%) 9
b b 3 6 (50%), 0 (50%) 10

a a 2 (50%), 0 (50%) 11

4 any other 4 8(50%), 0 (50%) 12
b b 8 16 (50%), 0 (50%) 13

@ any same 30 32 (50%), 28 (50%) end
any other 0 32 (50%),-32 (50%) end

g any same 3 6 (50%), 0(50%) end
any other 0 3(50%), -3 (50%) end

; ~any same 4 8 (50%), 0 (50%) end
any other 0 4 (50%), -4 (50%) end

g any same 5 10 (50%), 0 (50%) end
any other 0 5 (50%), -5(50%) end

g ~any same 6 12 (50%), 0 (50%) end
any other 0 6 (50%), -6 (50%) end

10 any same 7 14 (50%), 0 (50%) end
any other 0 7 (50%), -7 (50%) end

;; @any same 8 16 (50%), 0 (50%) end
any other 0 8(50%), -8 (50%) end

|p any same 9 18 (50%), 0 (50%) end
any other 0 9(50%), -9 (50%) end

|3 any same 10 20 (50%), 0 (50%) end
any other 0 10 (50%), -10 (50%) end

36

(Figures on following page)

LENIENT LEARNING

Gradient 1 siae
<aa> _ 30 0 <any, any >
[o | 30
State State
2 <ab> 6
<a,a> | 0 1 [<ba> | 3 0 |<any any>
T 2 T o 3
State
7
_ 4 0 <any, any >
<b,b> T o 4
State
<a,a> _ 5 0 <any, any >
0 5
State State State
1 <ab> 3 <ab> 9 A 4
0 1 <b,a> 1 2 [<ba> 6 0 <any, any >
> > »| End
1 2 2 3 0 6
State
10 4
|7 0 <any, any >
<b,b> = 0 7
State
1
<aa> _ 8 0 <any, any >
T o 8
State State
4 <ab> 12
| 2 4 [<ba> |9 0 <any, any >
<b,b> s 8 T o 9
State
13
_ 10 0 <any, any >
<b,b> T o 10
Gradient 2 sae
<aa> _ [32/28]32/-32| <any, any >
32/-32(32/28
State State
2 <a,b> 6
<a,a> | 1/-1] 2/0 |<ba> [6/0 [3/-3 |<anyany>
270 | 4s0 “[sis]6r0
State
7
8/0 | 4/-4 |<any, any>
<b,b> "l ara]8r0
State
<a,a> _|10/0] 5/-5 | <any,any >
|55 [10/0
State State State
<ab> 3 <ab> 9 Y
1/-1| 2/0 |<ba> 2/0 | 4/0 [<ba> 12/0| 6/-6 | <any,any>
> > »| End
2/0 4/0 4/0 6/0 6/-6 |12/0
State
10 4
_ 14/0| 7/-7 |<any,any>
<bb> 717 1470
State
<aa> _[16/0] 8/-8 | <any,any>
8/-8 |16/0
State State
<a,b> 12
| 470 8/0 <b,a> _|18/0] 9/-9 | <any,any>
<b,b> [80 [1670 [e/ [1870
State
13
_|20/0|10/-10| <any, any >
<bb> 10/-10/20/0

37

WEI AND LUKE

References

Sherief Abdallah and Victor Lesser. A multiagent reinforcement learning algorithm with
non-linear dynamics. Journal of Artificial Intelligence Research, 33:521-549, 2008.

Noa Agmon, Samuel Barrett, and Peter Stone. Modeling uncertainty in leading ad hoc teams.
In International Conference on Autonomous Agents and Multiagent Systems (AAMAS),
pages 397-404, 2014.

Monica Babes, Munoz Enrique Cote De, and Michael L. Littman. Social reward shap-
ing in the prisoner’s dilemma. In International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), volume 3, pages 1389-1392, 2008.

Bikramjit Banerjee and Jing Peng. Adaptive policy gradient in multiagent learning. In In-
ternational Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages
686-692, 2003.

Samuel Barrett and Peter Stone. Cooperating with unknown teammates in complex do-
mains: A robot soccer case study of ad hoc teamwork. In AAAI Conference on Artificial
Intelligence, 2015.

Daan Bloembergen, Michael Kaisers, and Karl Tuyls. Lenient frequency adjusted Q-learning.
In Beneluzx Conference on Artificial Intelligence (BNAIC), 2010.

Craig Boutilier. Sequential optimality and coordination in multiagent systems. In Inter-
national Joint Conference on Artificial Intelligence (IJCAI), volume 1, pages 478485,
1999.

Michael Bowling. Convergence and no-regret in multiagent learning. In Advances in Neural
Information Processing Systems (NIPS), volume 17, pages 209-216, 2005.

Michael Bowling and Manuela Veloso. Convergence of gradient dynamics with a variable
learning rate. In International Conference on Machine Learning (ICML), pages 27-34,
2001a.

Michael Bowling and Manuela Veloso. Rational and convergent learning in stochastic games.
In International Joint Conference on Artificial Intelligence (IJCAI), volume 2, pages
1021-1026, 2001b.

Michael Bowling and Manuela Veloso. Multiagent learning using a variable learning rate.
Artificial Intelligence, 136(2):215-250, 2002.

Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey of mul-
tiagent reinforcement learning. IEFE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, 38(2):156-172, 2008.

Doran Chakraborty and Peter Stone. Cooperating with a markovian ad hoc teammate.
In International Conference on Autonomous Agents and Multiagent Systems (AAMAS),
pages 1085-1092, 2013a.

38

LENIENT LEARNING

Doran Chakraborty and Peter Stone. Multiagent learning in the presence of memory-
bounded agents. Autonomous Agents and Multiagent Systems, 2013b.

Georgios Chalkiadakis and Craig Boutilier. Coordination in multiagent reinforcement learn-
ing: A Bayesian approach. In International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS), pages 709-716, 2003.

Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in cooperative
multiagent systems. In National Conference on Artificial Intelligence, pages 746-752,
1998.

Vincent Conitzer and Tuomas Sandholm. AWESOME: A general multiagent learning algo-
rithm that converges in self-play and learns a best response against stationary opponents.
Machine Learning, 67(1-2):23-43, 2007.

Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function
decomposition. Journal of Artificial Intelligence Research, 13(1):227-303, November 2000.

Nancy Fulda and Dan Ventura. Predicting and preventing coordination problems in coop-
erative Q-learning systems. In International Joint Conference on Artificial Intelligence

(IJCAI), pages 780-785, 2007.

Katie Genter, Tim Laue, and Peter Stone. The robocup 2014 SPL drop-in player compe-
tition: Encouraging teamwork without pre-coordination. In International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pages 1745-1746, 2015.

Mohammad Ghavamzadeh and Sridhar Mahadevan. Learning to communicate and act using
hierarchical reinforcement learning. In International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), volume 3, pages 1114-1121, 2004.

Mohammad Ghavamzadeh, Sridhar Mahadevan, and Rajbala Makar. Hierarchical multi-

agent reinforcement learning. Autonomous Agents and Multiagent Systems, 13(2):197-229,
2006.

Amy Greenwald, Keith Hall, and Roberto Serrano. Correlated Q-learning. In AAAI Spring
Symposium, volume 3, pages 242-249, 2003.

Junling Hu and Michael P. Wellman. Nash Q-learning for general-sum stochastic games.
Journal of Machine Learning Research, 4:1039-1069, 2003.

Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. On the convergence of stochastic
iterative dynamic programming algorithms. Neural Computation, 6:1185-1201, 1994.

Amir Jafari, Amy Greenwald, David Gondek, and Gunes Ercal. On no-regret learning,
fictitious play, and Nash equilibrium. In International Conference on Machine Learning
(ICML), volume 1, pages 226233, 2001.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew M. Moore. Reinforcement learning;:
A survey. Journal of Artificial Intelligence Research, 4(1):237-285, 1996.

39

WEI AND LUKE

Michael Kaisers and Karl Tuyls. Frequency adjusted multi-agent Q-learning. In International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), volume 1, pages
309-316, 2010.

Spiros Kapetanakis and Daniel Kudenko. Reinforcement learning of coordination in co-
operative multi-agent systems. In National Conference on Artificial Intelligence, pages
326-331, 2002.

Ville Kénoénen. Asymmetric multiagent reinforcement learning. Web Intelligence and Agent
Systems, 2:105-121, 2004.

Martin Lauer and Martin Riedmiller. An algorithm for distributed reinforcement learning
in cooperative multi-agent systems. In International Conference on Machine Learning
(ICML), pages 535-542, 2000.

Michael L. Littman. Markov games as a framework for multi-agent reinforcement learning.
In International Conference on Machine Learning (ICML), volume 94, pages 157-163,
1994.

Michael L. Littman. Friend-or-foe Q-learning in general-sum games. In International Con-
ference on Machine Learning (ICML), volume 1, pages 322-328, 2001a.

Michael L. Littman. Value-function reinforcement learning in markov games. Cognitive
Systems Research, 2(1):55-66, 2001b.

Rajbala Makar, Sridhar Mahadevan, and Mohammad Ghavamzadeh. Hierarchical multi-
agent reinforcement learning. In Proceedings of the 5th International Conference on Au-
tonomous Agents (AGENT), pages 246253, 2001.

Lagtitia Matignon, Guillaume J. Laurent, and Nadine Le Fort-Piat. Hysteretic Q-learning:
an algorithm for decentralized reinforcement learning in cooperative multi-agent teams. In
IEEE International Conference on Intelligent Robots and Systems (IROS), pages 64—69.
IEEE, 2007.

Laétitia Matignon, Guillaume J. Laurent, and Nadine Le Fort-Piat. A study of FMQ heuris-
tic in cooperative multi-agent games. In Workshop on Multi-Agent Sequential Decision
Making in Uncertain Multi-Agent Domains (at AAMAS), volume 1, pages 77-91, 2008.

Lagtitia Matignon, Guillaume J. Laurent, and Nadine Le Fort-Piat. Coordination of inde-
pendent learners in cooperative markov games. Technical report, Institut FEMTO-ST,
UniversitPé de Franche-Comté, https://hal.archives-ouvertes.fr /hal-00370889 /document,
2009.

Laétitia Matignon, Guillaume J. Laurent, and Nadine Le Fort-Piat. Independent reinforce-
ment learners in cooperative Markov games: a survey regarding coordination problems.
The Knowledge Engineering Review, 27(01):1-31, 2012.

Liviu Panait. The Analysis and Design of Concurrent Learning Algorithms for Cooperative
Multiagent Systems. PhD thesis, George Mason University, Fairfax, Virginia, 2006.

40

LENIENT LEARNING

Liviu Panait, R. Paul Wiegand, and Sean Luke. A sensitivity analysis of a cooperative co-
evolutionary algorithm biased for optimization. In Genetic and Evolutionary Computation
Conference (GECCO), pages 587-584, 2004.

Liviu Panait, Sean Luke, and R. Paul Wiegand. Biasing coevolutionary search for optimal
multiagent behaviors. IEEE Transactions on Evolutionary Computation, 10(6):629-645,
2006a.

Liviu Panait, Keith Sullivan, and Sean Luke. Lenient learners in cooperative multiagent
systems. In International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), 2006b.

Liviu Panait, Karl Tuyls, and Sean Luke. Theoretical advantages of lenient learners: an
evolutionary game theoretic perspective. Journal of Machine Learning Research, 9:423—
457, March 2008.

Liviu Panait, Keith Sullivan, and Sean Luke. Lenience towards teammates helps in co-
operative multiagent learning. Technical Report GMU-CS-TR-2013-2, Department of
Computer Science, George Mason University, 4400 University Drive MSN 4A5, Fairfax,
VA 22030-4444 USA, 2013.

Mitchell A. Potter and Kenneth A. De Jong. A cooperative coevolutionary approach to
function optimization. In Yuval Davidor, Hans-Paul Schwefel, and Reinhard Méanner,
editors, Parallel Problem Solving from Nature III (PPSN), volume 866 of Lecture Notes
in Computer Science, pages 249-257, 1994.

Yoav Shoham, Rob Powers, and Trond Grenager. On the agenda(s) of research on multi-
agent learning. In AAAT Fall Symposium on Artificial Multiagent Learning, 2004.

Satinder P. Singh, Tommi Jaakkola, Michael L. Littman, and Csaba Szepesvéari. Convergence
results for single-step on-policy reinforcement-learning algorithms. Machine Learning, 38
(3):287-308, 2000.

Peter Stone and Sarit Kraus. To teach or not to teach?: Decision making under uncertainty
in ad hoc teams. In International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), volume 1, pages 117-124, 2010.

Peter Stone, Gal A. Kaminka, Sarit Kraus, and Jeffrey S. Rosenschein. Ad hoc autonomous
agent teams: Collaboration without pre-coordination. In AAAI Conference on Artificial
Intelligence, 2010.

Keith Sullivan, Liviu Panait, Gabriel Balan, and Sean Luke. Can good learners always
compensate for poor learners? In International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 804-806, 2006.

Gerald Tesauro. Extending Q-learning to general adaptive multi-agent systems. In Advances
in Neural Information Processing Systems (NIPS), 2004.

41

WEI AND LUKE

Peter Vrancx, Karl Tuyls, and Ronald Westra. Switching dynamics of multi-agent learning.
In International Conference on Autonomous Agents and Multiagent Systems (AAMAS),
volume 1, pages 307-313, 2008.

Xiaofeng Wang and Tuomas Sandholm. Reinforcement learning to play an optimal nash
equilibrium in team Markov games. In Advances in Neural Information Processing Systems
(NIPS), pages 1571-1578, 2002.

Michael Weinberg and Jeffrey S. Rosenschein. Best-response multiagent learning in non-
stationary environments. In International Conference on Autonomous Agents and Multi-
agent Systems (AAMAS), volume 3, pages 506513, 2004.

Michael P. Wellman and Junling Hu. Conjectural equilibrium in multiagent learning. Ma-
chine Learning, 33(2-3):179-200, 1998.

Rudolph Paul Wiegand. An Analysis of Cooperative Coevolutionary Algorithms. PhD thesis,
Department of Computer Science, George Mason University, 2004.

Aaron Wilson, Alan Fern, and Prasad Tadepalli. Bayesian policy search for multi-agent role
discovery. In AAAI Conference on Artificial Intelligence, 2010.

Chongjie Zhang and Victor Lesser. Multi-agent learning with policy prediction. In AAAT
Conference on Artificial Intelligence, pages 927-934, 2010.

42

