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Abstract

We derive two convergence results for a sequential alternating maximization procedure to
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estimation. We manage to show that the sequence attains the same deviation properties as
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Convergence of an Alternating Procedure

1. Introduction

This paper presents two convergence results for an alternating maximization procedure to
approximate M-estimators. Let Y ∈ Y denote some observed random data, and P denote
the data distribution. In the semiparametric profile M-estimation framework the target of
analysis is

θ∗ = Πθυ
∗ = Πθ argmax

υ
EPL(υ,Y), (1)

where L : Υ ×Y → R is an appropriate functional, Πθ : Υ → Rp is a projection and where
Υ is some high dimensional or even infinite dimensional parameter space. A prominent way
of estimating θ∗ is the profile M-estimator (pME)

θ̃
def
= Πθυ̃

def
= Πθ argmax

(θ,η)
L(θ,η) = argmax

θ
max
η

L(θ,η). (2)

This paper focuses on finite dimensional parameter spaces Υ ⊆ Rp∗ with p∗ = p+m ∈ N
being the full dimension, as infinite dimensional maximization problems are computation-
ally not feasible. This is motivated by the sieve M-estimation technique, which projects the
estimation problem to a finite dimensional submodel - see Section 1.2 for details.

The alternating maximization procedure is used in situations where a direct computation
of the full maximum estimator (ME) υ̃ ∈ Rp∗ is not feasible or simply very difficult to
implement. Consider for example the task to calculate the pME where with scalar random
observations Y = (yi)

n
i=1 ⊂ R , parameter υ = (θ,η) ∈ Rp × Rm and a function basis

(ek) ⊂ L2(R)

L(θ,η) = −1

2

n∑

i=1

∣∣∣yi −
m∑

k=0

ηkek(X
>
i θ)

∣∣∣
2
.

In this case the maximization problem is high dimensional and non-convex (see Section 3
for more details). But for fixed θ ∈ S1 ⊂ Rp maximization with respect to η ∈ Rm is
rather simple while for fixed η ∈ Rm the maximization with respect to θ ∈ Rp can be
feasible for low p ∈ N . This motivates the following iterative procedure. Given some (data
dependent) functional L : Rp × Rm → R and an initial guess υ̃0 ∈ Rp+m set for k ∈ N

υ̃k,k+1
def
= (θ̃k, η̃k+1) =

(
θ̃k, argmax

η∈Rm
L(θ̃k,η)

)
,

υ̃k,k
def
= (θ̃k, η̃k) =

(
argmax
θ∈Rp

L(θ, η̃k), η̃k

)
. (3)

The so called ”alternating maximization procedure” (or minimization) is a widely applied
algorithm in many parameter estimation tasks (see Jain, Netrapalli, and Sanghavi, 2013;
Netrapalli, Jain, and Sanghavi, 2013; Keshavan, Montanari, and Oh, 2010; Yi, Caramanis,
and Sanghavi, 2013). Some natural questions arise: Does the sequence (θ̃k) converge to
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a limit that satisfies the same statistical properties as the profile estimator? And if the
answer is yes, after how many steps does the sequence acquire these properties? Under
what circumstances does the sequence actually converge to the global maximizer υ̃ ? This
problem is hard because the behavior of each step of the sequence is determined by the
actual finite sample realization of the functional L(·,Y) . To the authors’ knowledge no
general ”convergence” result is available that answers the questions from above except for
the treatment of specific models again (see Jain, Netrapalli, and Sanghavi, 2013; Netra-
palli, Jain, and Sanghavi, 2013; Keshavan, Montanari, and Oh, 2010; Yi, Caramanis, and
Sanghavi, 2013) or variants of the procedure (Cheng, 2013).

We address this difficulty via employing new finite sample techniques (Andresen and
Spokoiny, 2014; Spokoiny, 2012), which allow to answer the above questions: with growing
iteration number k ∈ N the estimators θ̃k attain the same statistical properties as the
profile M-estimator and Theorem 7 provides a choice of the necessary number of steps
K ∈ N . Under slightly stronger conditions on the structure of the model we can give a
convergence result to the global maximizier that does not rely on unimodality. Further we
can address the important question under which ratio of full dimension p∗ = p+m ∈ N to
sample size n ∈ N the sequence behaves as desired. For instance for smooth L our results
become sharp if p∗/

√
n is small and convergence to the full maximizer already occurs if

p∗/n is small.

The alternating maximization procedure can be understood as a special case of the
Expectation Maximization algorithm (EM algorithm) as we illustrate in Section 1.1. The
EM algorithm itself was derived in a work of Dempster, Laird, and Rubin (1977) where
particular versions of this approach are generalized. This paper (Dempster, Laird, and
Rubin, 1977) also contains a variety of problems where an application of the EM algorithm
can be fruitful; for a brief history of the EM algorithm (see McLachlan and Krishnan, 1997,
Section 1.8). We briefly explain the EM algorithm in Section 1.1.

Since the EM algorithm is very popular in applications a lot of research on its behavior
has been done. We are only dealing with a special case of this procedure so we restrict our
selves to citing the well-known convergence result by Wu Wu (1983), which is still state of
the art in most settings. Unfortunately Wu’s result - as most convergence results on these
iterative procedures - only ensures convergence to some set of local maximizers or fixpoints
of the procedure. Only in very special cases like unimodality can actual convergence to the
maximizer be ensured.

In a recent work (Balakrishnan, Wainwright, and Yu, 2014) a new way is presented
of addressing the properties of the EM sequence in a very general i.i.d. setting, based on
concavity of L . They assume that the functional L is concave and smooth enough (First
order stability) and that for a sample (Y i)i=1,...,n with high probability an uniform bound
is satisfied of the kind

max
θ◦∈Br(θ

∗)

∣∣∣∣argmax
θ

L(θ, η̃θ◦)− argmax
θ

EL(θ, η̃θ◦)

∣∣∣∣ ≤ εn. (4)

Under these assumptions, with high probability and some ν < 1 they show

‖θ̃k − θ∗‖ ≤ νk‖θ0 − θ∗‖+ Cεn. (5)

4



Convergence of an Alternating Procedure

Unfortunately this does not answer our two questions to full satisfaction. First the bound (4)
is rather high level and has to be checked for each model, while we seek (and find) properties
of the functional - such as smoothness and bounds on the moments of its gradient - that
lead to comparably desirable behavior. Further with (5) it remains unclear whether for
large k ∈ N the alternating sequence satisfies a Fisher expansion or whether a Wilks type
phenomenon occurs. In particular it remains open which ratio of dimension to sample size
ensures good performance of the procedure. Also the actual convergence of θ̃k → θ̃ is not
addressed.

These results apply to our problem if the involved regularity criteria are met. But as
noted these results do not tell us if the limit of the sequence (θ̃k) actually is the profile and
the statistical properties of limit points are not clear without too restrictive assumptions
on L and the data.

Another new work (Cheng, 2013) contains the analysis of a slightly altered algorithm in
a very general semiparametric asymptotic framework. Instead of alternatingly maximizing

the functional L a kind of gradient decent procedure for the profile likelihood pl(θ)
def
=

maxη L(θ,η) is analyzed, i.e. they define

θk
def
= θk−1 + D̂(θk−1)−2`(θk−1), (6)

where η̂(·) is an estimator of argmaxη EL(·,η) , D̂(·) is an estimator of ∇2Emaxη L(·,η)
and `(·) is an estimator of ∇maxη L(·,η) . Under common regularity conditions it is

shown, that ‖θk − θ̃‖ = oP(1/
√
n) if k(n) ∈ N is chosen such that the rate of the initial

guess θ0 - obtained via a stochastic grid search - and the rate of the estimator of the
nuisance parameter are addressed. These results resemble very much what is aimed for in
this work but it is important to note a series of differences between the results of that work
and the present paper. First and most importantly, the treated algorithm in that paper
(Cheng, 2013) is similar in virtue to the alternating procedure, but in fact is a different
procedure. It is a gradient descend scheme and involves a very careful data driven choice
of step sizes when carrying out the estimations necessary in (6) and in that sense differs
substantially from the simple and direct alternating maximization. Also the estimating step
of the nuisance component is not object of the analysis but assumed to be sufficiently good
for the arguments to go through. Finally the results of (Cheng, 2013) are purely asymptotic.

In this work we carry out a finite sample analysis for the alternating maxmimization
procedure in (3). Instead of a general semiparametric framework we address sieve profile
estimators also called finite dimensional linear series estimation (see Chen, 2007; Andresen
and Spokoiny, 2014), see Section 1.2 for more details. In this setting the bias of estimation -
induced by projection the full model to a finite dimensional sub model - can be treated sep-
arately and the model becomes finite dimensional as far as the algorithm is concerned. This
allows a very careful and explicit analysis of the behavior of the procedure. In particular the
speed of convergence can be linked to characteristics of the information matrix −∇2EL(υ∗)
- namely to the constant ν < 1 in (20) - and to the the full dimension of the projected
parameter space. The resulting number of iterations necessary for efficient estimation can
be given in a rather simple and closed form. Finally our results are nonasymptotic which in
this context is crucial as a clear comparison of the computational and the estimation error
for finite samples is needed for reasonable inference.
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Our main result can be summarized as follows: Under a set of regularity conditions on
the data and the functional L points of the sequence (θ̃k) behave for large iteration number
k ∈ N like the pME. To be more precise we show in Theorem 7 that if the initial guess
υ̃0 ∈ Υ is good enough the step estimator sequence (θ̃k) satisfies with high probability

∥∥D̆
(
θ̃k − θ∗

)
− ξ̆
∥∥2 ≤ ε(p∗ + νkR0), (7)

∣∣∣∣max
η

L(θ̃k,η)−max
η

L(θ∗,η)− ‖ξ̆‖2/2
∣∣∣∣ ≤ (p+ x)1/2ε(p∗ + νkR0), (8)

where ν < 1 is introduced in (20) and ε > 0 is some small number, for example ε = C/
√
n

in the smooth i.i.d setting. Further R0 > 0 is a bound related to the quality of the initial
guess. Generally it is proportional to the full dimension and in this way the rate with which
the full nuisance can be estimated affects the speed of the convergence of the procedure.
The random variable ξ̆ ∈ Rp and the matrix D̆ ∈ Rp×p are related to the efficient influence
function in semiparametric models and its covariance. These are up to νkR0 the same
properties as those proven for the pME by Andresen and Spokoiny (2014) under nearly the
same set of conditions. Up to the finite sample bounds on the right hand sides this means
that the estimating points of the procedure admit a Fisher expansion - in other words are
asymptotical normal - and a Wilks expansion. Consequently the usual inference procedures
based on confidence and concentration sets can be applied to these estimators. Further in
our second main result we manage to show under slightly stronger smoothness conditions
that (θ̃k, η̃k) approaches the ME (θ̃, η̃) = argmaxL(θ,η∗) with nearly linear convergence
speed, i.e. ‖D((θk,ηk)− υ̃)‖ ≤ τk/ log(k) with some 0 < τ < 1 and D2 = −E∇2L(υ∗) (see
Theorem 14).

To clarify we want to mention that the term convergence refers to the behavior of
the sequence (θ̃k, η̃k) when the number of iterations k ∈ N tends to infinity. We show
(θ̃k, η̃k) → (θ̃, η̃) . This has to be distinguished from the usual stochastic convergence
results of the M-estimator (θ̃, η̃) towards the target (θ∗,η∗) or the weak convergence to
a normal distribution as the sample size increases. Our setup is assuming finite sample
size such that even with k → ∞ there remains a gap between (θ̃k, η̃k) and (θ∗,η∗) and
between θ̃k and θ∗ that is related to the parametric and semiparametric Cramer-Rao
lower bounds respectively. This is why we can in the finite sample setting only hope to
obtain convergence of the alternating procedure to (θ̃, η̃) but not to (θ∗,η∗) . But for
a growing sample size (7) implies the weak convergence results also for the estimator θ̃k
when k(n) ∈ N is large enough and εp∗ vanishes (see Section 1.3).

In the following we write υ̃k,k(+1) in statements that are true for both υ̃k,k+1 and
υ̃k,k . Also we do not specify whether the elements of the resulting sequence are sets or
single points. All statements made about properties of υ̃k,k(+1) are to be understood in
the sense that they hold for “every point of υ̃k,k(+1) “.

1.1 Relation to the EM Algorithm

In the introduction we claimed that the alternating procedure analyzed in this work is
related to the EM algorithm. In this section we want to elaborate on that.
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First we explain the EM algortihm. Consider data (X) ∼ Pθ for some parametric
family (Pθ, θ ∈ Θ) . Assume that a parameter θ ∈ Θ is to be estimated as maximizer
of the functional Lc(θ,X) ∈ R , but that only Y ∈ Y is observed, where Y = fY (X) is
the image of the complete data set X ∈ X under some map fY : X → Y . Prominent
examples for the map fY are projections onto subspaces of X if both Y,X are vector
spaces. The information lost under the map can be regarded as missing data or latent
variables. As a direct maximization of the functional is impossible without knowledge of X
the EM algorithm serves as a workaround. It consists of the iteration of two steps: starting
with some initial guess θ̃0 the kth “Expectation step“ derives the functional Q via

Q(θ,θk) = Eθk [Lc(θ,X)|Y],

which means that on the right hand side the conditional expectation is calculated under the
distribution Pθk . The kth ”Maximation step” then simply locates the maximizer θk+1 of
Q .

Now we can present the convergence result of Wu (1983) in more detail. Wu presents
regularity conditions that ensure that L(θk+1|Y) ≥ L(θk|Y) where

L(θ|Y)
def
= E [Lc(θ,X)|Y = fY (X)] ,

such that L(θk|Y)→ L∗ for some limit value L∗(Y) > 0 , that may depend on the starting
point θ0 . Additionally Wu gives conditions that guarantee that the sequence θk (possibly

a sequence of sets) converges to C(L∗)
def
= {θ|L(θ|Y) = L∗(Y)} . Dempster, Laird, and

Rubin (1977) show that the speed of convergence is linear in the case of point valued θk
and of some differentiability criterion being met. A limitation of these results is that it
is not clear whether L∗(Y) = supL(θ|Y) and thus it is not guaranteed that C(L∗) is
the desired MLE and not just some local maximum. Of course this problem disappears if
L(·|Y) is unimodal and the regularity conditions are met but this assumption may be too
restrictive.

To see that the procedure (3) is a special case of the EM algorithm we have to find the
right triplet (X, fY ,Lc) . For this we take X =

(
Z,Y

)
with Z ∼ argmaxη L{(θ,η),Y}

under Pθ . Further we set fY (X) = Y and Lc(θ,X)
def
= L(θ,η,Y) , where X = (η,Y) .

Then we find

Q(θ, θ̃
(k−1)

) = E
θ̃
(k−1) [Lc(θ,X)|Y]

= E
θ̃
(k−1)

[
Lc

(
θ, argmax

η
L{(θ(k−1),η),Y},Y

)∣∣∣Y
]

= Lc

(
θ, argmax

η
L{(θ̃

(k−1)
,η),Y},Y

)

= L(θ, η̃(k),Y),

and thus the resulting sequence is the same as in (3).
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1.2 Linear Series Estimators

In semiparametric models the profile M estimator θ̃ ∈ Rp from Equation (2) cannot be
calculated in practice if the full model is infinite dimensional. There are various ways to
circumvent this problem. Next to non parametric estimation and plugin of the nuisance
η ∈ X a prominent approach is the so called sieve technique that motivates the setting in
this work.

The sieve approach was systematically introduced by Grenander (see Grenander, 1981,
Chapter 8) and consists in choosing a suitable sequence of subsets (Υm)∞m=1 ⊂ Υ such that
for each υ ∈ Υ there exists a sequence Πm(υ) ⊂ Υm with ‖υ−Πm(υ)‖ → 0 . Furthermore
the sets Υm ⊂ Υ have to be such that supυ∈Υm L(υ) can be calculated in practice. In
the setting of semiparametric M-Estimation we assume Υ = Υθ × Υη ⊆ Rp × X with some
infinite dimensional separable Hilbert space X and countable basis {e1, e2, . . .} ⊂ X . We
set Υm = Υθ × ΠmΥη , where Πm : X → Xm denotes the orthogonal projection onto

Xm
def
= span(e1, . . . , em} . For each m ∈ N the sieve profile M-estimator is defined as

θ̃m
def
= Πθυ̃m

def
= Πθ argmax

θ∈Rp
η∈Rm

L

(
θ,

m∑

k=1

ηkek

)
.

This means that for the calculation of the estimator θ̃m only a finite dimensional setting
has to be considered. In our analysis we will focus on the behavior of the alternating
maximization procedure in that case.

But of course the projection onto a finite dimensional submodel induces an approxima-
tion bias ”υ∗ − υ∗m ” where

(θ∗m,η
∗
m)

def
= υ∗m

def
= argmax

θ∈Rp
η∈Rm

EL

(
θ,

m∑

k=1

ηkek

)
.

In (Andresen and Spokoiny, 2014) it is explained in detail how this bias can be treated.
Once the bias is controlled this leads for each m ∈ N to bounds of the kind

∥∥∥D̆(θ̃m − θ∗)− ξ̆m
∥∥∥ ≤ ♦̆(x) + α(m),

∣∣∣∣ max
η∈ΠmΥη

L(θ̃m,η)− max
η∈ΠmΥη

L(θ∗,η)− ‖ξ̆m‖2
∣∣∣∣ ≤ p♦̆(x) + α(m),

where α(m) ≥ 0 quantifies the impact of the bias ”υ∗ − υ∗m ”. The choice of m ∈ N then
has to balance the two terms ♦̆(x) and α(m) , which leads to common optimal choices
for the dimension based on the ”smoothness” of the nuisance component η∗ ∈ X . To
ease notation we drop the ·m in the following, as the treatment of the bias can be done
separately, (see Andresen and Spokoiny, 2014).
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1.3 Finite sample Wilks and Fisher Theorems

Before we present our main results we want to explain what type of results we aim at and
how they can be interpreted. Hopefully this will ease the understanding and will make some
of the apparently cumbersome notation more intelligible.

Usually in asymptotic treatments of semiparametric M-estimators like θ̃ in (2) the aim
is to derive statements of the kind

√
n(θ̃ − θ∗)− d̆−1ξ̆ = oP(1), (9)

max
η

L(θ̃,η)−max
η

L(θ∗,η)− ‖ξ̆‖2/2 = oP(1), (10)

ξ̆
w−→ N(0, d̆−1v̆2d̆−1),

where n ∈ N denotes the sample size. The random variable ξ̆ ∈ Rp is called semiparametric
score. Below we will briefly explain its derivation along with the explanation of the matrices
v̆2, d̆2 ∈ Rp×p . But before, we sketch how (9) and (10) can be used for the construction
of asymptotic confidence sets that yield statistical tests. Given the matrices v̆2, d̆2 the
construction works as follows. Let q2

α > 0 be an α− level quantile of a χ2
p(d̆
−2v̆2d̆−2) -

distribution. Set

E(qα) =
{
θ :
√
n‖(θ̃ − θ)‖ ≤ qα

}
; (11)

then one can use (9) to show

P {θ∗ /∈ E (qα)} = P
{√

n‖(θ̃ − θ∗)‖ ≥ qα
}
→ 1− α.

Similarly one can exploit (10).

Now we explain the definition of v̆2 and d̆2 . Introduce

nv̆−2(υ)
def
= Πθ Cov(∇L(υ))−1Π>θ ,

nd̆−2(υ)
def
= −Πθ

(
∇2EL(υ)

)−1
Π>θ ,

where Πθ is the orthogonal projection onto the θ -commponent in Rp and Π>θ is its dual

operator. Then v̆2 = v̆2(υ∗) and d̆2 = d̆2(υ∗) .

Remark 1 Note that these two matrices coincide if the functional L was the complete
loglikelihood of the observations and that then d̆2 would equal the covariance of the efficient
influence function (see Kosorok, 2005, for more details).

For the definition of the semiparametric score ξ̆ ∈ Rp consider

nd2(υ) =

(
d2(υ) a(υ)
a>(υ) h2(υ)

)
def
= −∇2EL(υ) ∈ Rp

∗×p∗ .

9
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Then

ξ̆
def
=

1√
n
d̆(υ∗)(1− Eε)Πθd−2(υ∗)∇L(υ∗)

=
1√
n

(1− Eε)d̆−1(υ∗)
{
∇θL(υ∗)− ah−2(υ∗)∇ηL(υ∗)

}
,

This random variable is related to the efficient influence function in semiparametric estima-
tion and it plays the role that the usual score ∇L(υ∗) plays in the setting of parametric
M-estimation.

In this work we derive (9) and (10) for θ̃k instead of θ̃ but with finite sample bounds for
the terms on the right-hand sides of (9) and (10). To be more precise we derive statements
of the following kind. With probability greater than 1− Ce−x

∥∥∥
√
n(θ̃k − θ∗)− d̆−1ξ̆

∥∥∥ ≤ ε(p∗ + νkR0), (12)

∣∣∣∣max
η

L(θ̃k,η)−max
η

L(θ∗,η)− ‖ξ̆‖2/2
∣∣∣∣ = (p+ x)1/2ε(p∗ + νkR0), (13)

with some small value ε > 0 as in (7) and (8). Note that for vanishing right hand sides
these equations imply (9) and (10) when n tends to infty. Using the scheme in (11) the
bounds (12) and (13) allow the construction of (conservative) finite sample ”confidence
sets”. Assume that (approximate) quantiles qα for ‖ξ̆‖ are available, i.e. that with some
small ε > 0 and any α ∈ [0, 1]

P(‖ξ̆‖ ≤ qα) ∈ (α− δ, α+ δ),

then with some generic constant C > 0 (see Andresen and Spokoiny, 2014, Remark 2.13)

α+ δ + Ce−x ≤ P
{
θ∗ ∈ E(qα + ε(p∗ + νkR0)

}
,

P
{
θ∗ ∈ E(qα − ε(p∗ + νkR0)

}
≤ α− δ − Ce−x.

The important achievement is that one can make approximate confidence statements for
the estimators of the alternating procedure and this even in the finite sample case, without
ignoring ”hopefully small enough” terms. As remarked above such approximate quantiles
could be attained via an plug-in-estimation of d̆−2v̆2d̆−2 combined with a Gaussian approx-
imation or a bootstrap.

2. Main Results

This Section contains the thorough presentation of our main convergence results. It involves
the introduction of various technicalities and may appear a bit cumbersome on first read.
We recommend to carefully read Section 1.3 first to ease understanding.
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2.1 Conditions

This section collects the conditions imposed on the model. We use the same set of assump-
tions as Andresen and Spokoiny (2014) and this section closely follows Section 2.1 of that
paper.

Let the full dimension of the paramter space be finite, i.e. p∗ < ∞ . Our conditions
involve the symmetric positive definite information matrix D2

0 ∈ Rp∗×p∗ and a central point
υ∗ ∈ Rp∗ . To ease presentation in this paper we identify υ∗ with the “true point” from
(1) and define

D2
0

def
= −∇2EL(υ∗),

where we assume, that the second derivative exists. In the context of semiparametric
estimation, it is convenient to represent the information matrix in block form:

D2
0 =

(
D2

0 A0

A>0 H2
0

)
.

First we state an identifiability condition, which basically imposes that D2 is positive
definite. Note that in this work ‖ · ‖ allways denotes the spectral norm when its argument
is a matrix.

(I) It holds for some ν < 1

‖H−1
0 A>0 D−1

0 ‖ ≤
√
ν. (14)

The condition (I) allows to introduce the important p× p efficient information matrix

D̆
2
0 which is defined as the inverse of the θ -block of the inverse of the full dimensional

matrix D2
0 . The exact formula is given by

D̆
2
0

def
= D2

0 −A0H−2A>0 ,

and (I) ensures that the matrix D̆
2
0 is positive definite such that D̆ is well defined. At

the same time ν < 1 ensures that the alternating sequence actually converges. As can be
seen in Theorem 7 the speed of convergence is linear in ν .

Using the matrix D2
0 and the central point υ∗ ∈ Rp∗ , we define the local set Υ◦(r) ⊂

Υ ⊆ Rp∗ with some r ≥ 0 :

Υ◦(r)
def
=
{
υ = (θ,η) ∈ Υ : ‖D0(υ − υ∗)‖ ≤ r

}
. (15)

2.1.1 Smoothness

Usually in the context of regular M-estimation one assumes local quadraticity, i.e. that

pl(θ) = ∇pl(θ∗)(θ − θ∗) +
1

2
(θ∗ − θ∗)⊥∇2pl(θ∗)(θ∗ − θ∗) + oP(1),

11
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for θ ∈ Rp close enough to θ∗ . The functional pl(·) in this context denotes the profile-
functional and is defined as

pl(θ)
def
= max

η
L(θ,η),

see for instance (Cheng, 2013).
In our setting we need a precise bound for the accuracy of a quadratic approxima-

tion of the expected profile functional Epl . We want to bound the error of a local linear
approximation of the projected gradient ∇̆θEL(υ) which is defined as

∇̆θ = ∇θ −A0H−2
0 ∇η.

Instead of local quadraticity of the profile functional we impose that for (θ,η) = υ ∈ Υ◦(r)
- with the local set Υ◦(r) defined in (15) - with some small ε̆ > 0

∥∥∥D̆
−1
(
∇̆EL(υ)− ∇̆EL(υ∗)

)
− D̆(θ − θ∗)

∥∥∥ ≤ ε̆r2.

The following condition serves a less high level way of checking that such an approximation
holds (see Andresen and Spokoiny, 2014, Lemma B.1)

(L̆0) For each r ≤ r0 , there is a constant ε̆ > 0 such that it holds on the set Υ◦(r) :

‖D−1D2(υ)D−1 − Ip‖ ≤ ε̆r, ‖D−1(A(υ)−A)H−1‖ ≤ ε̆r,
∥∥D−1AH−1

(
Im −H−1H2(υ)H−1

)∥∥ ≤ ε̆r.

If EL is three times continuously differentiable one obtains ε̆ ≤ C‖D−1‖ . In i.i.d.
models one usually has ‖D−1‖ = O(1/

√
n) .

Remark 2 Here and in what follows we implicitly assume that the function L(υ) : Rp∗ →
R is sufficiently smooth in υ ∈ Rp∗ , ∇L(υ) ∈ Rp∗ stands for the gradient and ∇2EL(υ) ∈
Rp∗×p∗ for the Hessian of the expectation EL : Rp∗ → R at υ ∈ Rp∗ . By smooth enough
we mean that we can interchange ∇EL = E∇L on Υ◦(R0) , where Υ◦(r) is defined in

(15) and R0 > 0 in (19). It is worth mentioning that D2
0 = V2

0
def
= Cov(∇L(υ∗)) if the

model Y ∼ Pυ∗ ∈ (Pυ) is correctly specified and sufficiently regular; see e.g. (Ibragimov
and Khas’minskij, 1981).

2.1.2 Complexity

The usual approach to gain asymptotic control on profile M-estimators would be to assume
that the class

{∇̆L(υ), υ ∈ Υ◦(r)},

is P -Donsker (see Cheng, 2013).
To pin down the estimator sequence (θ̃k, η̃k)k∈N and to obtain finite sample results we

use a more specific approach, which is based on a new finite sample approach (Spokoiny,

12
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2012; Andresen and Spokoiny, 2014). First note that we assume that - as far as the
alternating procedure is concerned - the model is finite dimensional, which means that
Υ◦(r) ⊂ Υ ⊂ Rp∗ in (15) is automatically compact for finite radius r > 0 . If we can ensure
the right smoothness and moment conditions on ∇̆L(υ) , we automatically obtain that the
above class is P -Donsker. But using the new techniques (Spokoiny, 2012; Andresen and
Spokoiny, 2014) we manage to obtain slightly stronger bounds that are useful in a finite
sample setting.

To understand the next condition consider first the definition of a subgaussian random
vector. A random vector X ∈ Rp is called subgaussian, if for any µ ∈ R and some ν > 0

sup
‖γ‖≤1

logE exp
{
µγ>X

}
≤ ν2µ2/2. (16)

Obviously this is a strong condition. As it turns out in many situations it is sufficient to
assume subexponentiality, which simply relaxes subgaussianity to demanding that (16) is
met for any |µ| ≤ g with some g > 0 . In this way many distributions that would be
excluded by assuming subgaussianity can still be treated.

Our next condition combines subexponentiality with a smoothness constraint on the
stochastic component of ∇̆L(υ) . It assumes that - with some ε̆ > 0 - the random vector

1

ε̆‖D(υ − υ′)‖
D̆
−1{∇̆θζ(υ)− ∇̆θζ(υ′)

}
∈ Rp,

is uniformly subexponential for υ,υ′ ∈ Υ◦(r) , with the stochastic component defined as

ζ(υ)
def
= L(υ)− EL(υ) . It reads:

(ĔD1) For all 0 < r < r0 , there exists a constant ε̆ ≤ 1/2 such that for all |µ| ≤ ğ and
υ,υ′ ∈ Υ◦(r)

sup
υ,υ′∈Υ◦(r)

sup
‖γ‖≤1

logE exp

{
µ
γ>D̆

−1{∇̆θζ(υ)− ∇̆θζ(υ′)
}

ε̆‖D(υ − υ′)‖

}
≤ ν̆2

1µ
2

2
.

To convey more intuition consider for some pair υ,υ′ ∈ Υ◦(r) the function

ψγ(t)
def
= γ>D̆

−1{∇̆θζ(υ)− ∇̆θζ(υ + t(υ′ − υ))
}
.

Then (ĔD1) is met with ε̆ ≤ ‖D−1‖ , if - uniformly in γ - for any pair υ,υ′ ∈ Υ◦(r) the
corresponding function ψγ : [0, 1] → R is Lipshitz continuous and the Lipshitz constant a
subexponential random variable.

2.1.3 Moments

We need another condition that allows to control the deviation behavior of ‖D̆−1∇̆ζ(υ∗)‖ .
To present this condition define the covariance matrix V2

0 ∈ Rp∗×p∗ and V̆ 2 ∈ Rp×p

V2
0

def
= Cov

{
∇L(υ∗)

}
, V̆ 2 = Cov(∇̆θζ(υ∗)).

We impose subexponential moments on V̆ −1∇̆θζ(υ∗) :

13
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(ĔD) There exist constants ν0 > 0 and ğ > 0 such that for all |µ| ≤ ğ

sup
‖γ‖≤1

logE exp
{
µγ>V̆ −1∇̆θζ(υ∗)

}
≤ ν̆2

0µ
2

2
.

2.1.4 Conditions for the Full Model

So far we only presented conditions that allow to treat the properties of θ̃k on local
sets Υ◦(rk) , for some sequence (rk)k∈N . To show that that the sequence of estimators
(υk)k∈N satisfies υk ∈ Υ◦(rk) for an appropriately decreasing sequence (rk)k∈N the fol-
lowing, stronger conditions are employed, which can be interpreted just as the previous
ones.

(L0) For each r ≤ r0 , there is a constant ε > 0 such that it holds on the set Υ◦(r) :

∥∥D−1
0

{
∇2EL(υ)

}
D−1

0 − IIp∗
∥∥ ≤ εr.

(ED1) There exists a constant ε ≤ 1/2 , such that for all |µ| ≤ g and all 0 < r < r0

sup
υ,υ′∈Υ◦(r)

sup
‖γ‖=1

logE exp

{
µγ>D−1

0

{
∇ζ(υ)−∇ζ(υ′)

}

ε ‖D0(υ − υ′)‖

}
≤ ν2

1µ
2

2
.

(ED) There exist constants ν0 > 0 and g > 0 such that for all |µ| ≤ g

sup
‖γ‖≤1

logE exp
{
µγ>V−1

0 ∇ζ(υ∗)
}
≤ ν2

0µ
2

2
.

It is important to note, that the constants ε̆, ν̆ and ε, ν in the respective weak and
strong version can differ substantially and may depend on the full dimension p∗ ∈ N in less
or more severe ways (AH−2∇ηL might be quite smooth while ∇ηL could be less regular).

For the convergence statement in Theorem 14 we additionally need the following condi-
tion, that controls the moments and the smoothness of the process ∇2(L− EL) :

(ED2) There exists a constant ε2 ≤ 1/2 , such that for all |µ| ≤ g and all 0 < r < r0

sup
υ,υ′∈Υ◦(r)

sup
‖γ1‖=1

sup
‖γ2‖=1

logE exp

{
µγ>1 D

−1
{
∇2ζ(υ)−∇2ζ(υ′)

}
γ2

ε2 ‖D(υ − υ′)‖

}
≤ ν2

2µ
2

2
.

2.1.5 Quadratic Drift Beats Linear Fluctuation

Finally we present two conditions that allow to ensure that with a high probability the
sequence (υk,k(+1)) stays close to υ∗ if the initial guess υ̃0 lands close to υ∗ . These

conditions have to be satisfied on the whole set Υ ⊆ Rp∗ .

The first condition imposes that EL(υ) decreases nearly quadratically as the distance
of υ to υ∗ grows.

14
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(Lr) For any r > r0 there exists a value b > 0 , such that

E [L(υ)− L(υ∗)] ≤ b‖D0(υ − υ∗)‖2.

The next condition bounds moments of the full gradient ∇L(υ) - again via subexpo-
nentiality.

(Er) For any r ≥ r0 there exists a constant g(r) > 0 such that

sup
υ∈Υ◦(r)

sup
µ≤g(r)

sup
‖γ‖≤1

logE exp
{
µγ>D−1∇ζ(υ)

}
≤ ν2

rµ
2

2
.

We impose one further merely technical condition:

(B1) We assume for all r ≥ 6νr
b

√
x + 4p∗

1 +
√
x + 4p∗ ≤ 3ν2

r

b
g(r).

Remark 3 Without this the calculation of R0(x) in Section 4.3 would become technically
more involved, without that further insight would be gained.

Remark 4 The condition (Er) can be substantially relaxed to b = b(r) > 0 that decreases
to 0 as r → ∞ . We avoid the resulting technicalities and refer the reader to the original
publication for the non constant case (see Spokoiny, 2012, Theorem 4.1).

2.2 Dependence on Initial Guess

Our main theorem is only valid under the conditions from Section 2.1 and under some
constraints on the quality of the initial guess υ̃0 ∈ Rp∗ which we denote by (A1) , (A2)
and (A3) :

(A1) With probability greater 1− β the initial guess satisfies L(υ̃0)− L(υ∗) ≥ −K0 for
some K0 ≥ 0 .

(A2) The conditions (ĔD1) , (L̆0) , (ED1) and (L0) from Section 2.1 hold for all r ≤
R0(x) where R0(x) can be bounded with (see (19))

R0(x) ≤ C
√
x + p∗ + K0.

(A3) K0 ∈ R and ε > 0 are small enough to ensure

εC(ν)R0 < 1, (17)

with

C(ν)
def
=

16
√

2(1 +
√
ν)

(1− ν)(1−
√
ν)
, (18)

where ν > 0 is defined in (14).
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Condition (A1) allows to concentrate the analysis on a local set {‖D(υ − υ∗)‖ ≤
R0(x)} ⊂ Υ with dominating probability (see Theorem 28). Conditions (A2) and (A3)
ensure that this neighborhood is small enough to imply convergence of the procedure. They
impose a bound on R0(x) and thus on K0 from (A1) . These conditions boil down to
ε
√

K0 being significantly smaller than 1, which is a quantification of the quality of the first
guess. There are numerous ways to initiate the procedure. In Section 3 we use a grid search
and show that for a sufficiently fine grid these conditions can be met in the treated model.

Remark 5 One way of obtaining condition (A1) is to show that ‖D(υ̃ − υ∗)‖ ≤ R with
probability greater 1 − β for some finite R ∈ R and 0 ≤ β(R) < 1 . Then one can use -
with some constant C > 0 -

K0 ≤ (1/2 + ε(1 + 12ν0))(R+ C
√
x + p∗)2,

as we show in Lemma 31.

Remark 6 The precise definition of R0(x) > 0 reads

R0(x)
def
= z(x) ∨ 6νr

b(1− ν)

√
x + 2.4p∗ +

b2

9ν2
r

K0, (19)

with the term

z(x) ≈ C
√
p∗ + x,

which is defined in (30).

2.3 Introduction of Important Objects

In this section we collect the most important objects and bounds that are relevant for
Theorem 7. Remember the p∗ × p∗ information matrix D2 from Section 2.1, which is
defined similarly to the Fisher information matrix:

D2 def
= −∇2EL(υ∗) =

(
D2 A

A> H2

)
.

A crucial object is the constant 0 ≤ ν defined by

‖D−1AH−1‖2 def
= ν, (20)

which we assume with condition (I) to be smaller 1. It determines the speed of convergence
of the alternating procedure (see Theorem 7 ).

Further introduce the p× p matrix D̆ and the p -vectors ∇̆θ and ξ̆ as

D̆
2

= D2 −AH−2A>,

ξ̆ = D̆
−1∇̆θL(υ∗), ∇̆θL = ∇θL−AH−2∇ηL.
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The random variable ξ̆ ∈ Rp is related to the efficient influence function in semiparametric

models. If the model is regular and correctly specified D̆
2

is the covariance of the efficient
influence function and its inverse the semiparametric Cramer-Rao lower bound for regular
estimators.

We define the semiparametric uniform spread

♦̆Q(r, x)
def
= ε̆

{
16

(1− ν2)2
r2 + zQ(x, 2p∗ + 2p)2

}
(1 + 6ν̆2

1). (21)

This object is central for our analysis as it describes the accuracy of our main results. It is
small if ε̆(r2 + x + p∗) is small, since zQ(x, p∗) ≈

√
p∗ + x (see its definition in Equation

(42)).

2.4 Statistical Properties of the Alternating Sequence

In this Section we present our main theorem in full rigor, i.e. that the limit of the alternating
sequence satisfies a finite sample Wilks Theorem and Fisher expansion.

Theorem 7 Assume that the conditions (Lr) , (Er) and (B1) of Section 2.1 are met.
Further assume (A1) , (A2) and (A3) of Section 2.2. Then it holds with probability greater
1− 8e−x − β for all k ∈ N

∥∥D̆
(
θ̃k − θ∗

)
− ξ̆
∥∥ ≤ ♦̆Q(rk, x), (22)

∣∣max
η

L(θ̃k,η)−max
η

L(θ∗,η)− ‖ξ̆‖2/2
∣∣ ≤ 5

(
‖ξ̆‖+ ♦̆Q(rk, x)

)
♦̆Q(rk, x), (23)

where

rk ≤ C
(√

p∗ + x + νkR0

)
,

with a constant C that depends on ν < 1 and 1 − C(ν)εR0 > 0 . In particular this means
that if

k ≥ log(p∗ + x)− log{R0}
log(ν)

,

we have

♦̆Q(rk, x) ≈ ♦̆Q
(
C
√
p∗ + x, x

)
.

Remark 8 Note that with linear convergence speed this leads to statements about θ̃k that
are very similar to those in (Andresen and Spokoiny, 2014) for the profile M estimator θ̃ .

Remark 9 Concerning the properties of ξ̆ ∈ Rp we repeat remark 2.1 of (Andresen and
Spokoiny, 2014). In case of correct model specification the deviation properties of the

quadratic form ‖ξ̆‖2 = ‖D̆−1∇̆θ‖2 are essentially the same as those of a chi-square random
variable with p degrees of freedom; see Theorem 39 in the appendix. In the case of a possible
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model misspecification the behavior of the quadratic form ‖ξ̆‖2 will depend on the charac-

teristics of the matrix ĬB
def
= Cov(ξ̆) ; see again Theorem 39. Moreover, in the asymptotic

setup the vector ξ̆ is asymptotically standard normal; see Section 2.2. of (Andresen and
Spokoiny, 2014) for the i.i.d. case.

Remark 10 These results allow to derive some important corollaries like concentration
and confidence sets (see Section 1.3).

Remark 11 In general an exact numerical computation of

θ(η)
def
= argmax

θ∈Rp
L(θ,η), or η(θ)

def
= argmax

η∈Rm
L(θ,η),

is not possible. Define θ̂(η) and η̂(θ) as the numerical approximations to θ(η) and η(θ)
and assume that - with the local set Υ◦(r) defined in (15) -

‖D(θ̂(η)− θ(η))‖ ≤ τ, for all η ∈ Υ◦,η(R0)
def
= {υ ∈ Υ◦(R0), Πηυ = η},

‖H(η̂(θ)− η(θ))‖ ≤ τ, for all θ ∈ Υ◦,θ(R0)
def
= {υ ∈ Υ◦(R0), Πθυ = θ}.

Then we can easily modify the proof of Theorem 7 via adding C(ν)τ to the error terms and
the radii rk , where C(ν) is some rational function of ν .

2.5 Convergence to the ME

Even though Theorem 7 tells us that the statistical properties of the alternating sequence
resemble those of its target - the profile ME θ̃ - it is an interesting question if the under-
lying approach allows to qualify conditions under which the sequence actually attains the
maximizer υ̃ .

Define the radius r0(x) > 0 to be the smallest radius r > 0 such that P(υ̃, υ̃θ∗ ∈
Υ◦(r0)) ≥ 1− e−x , where

υ̃θ∗
def
= argmax

υ∈Υ
Πθυ=θ∗

L(υ).

Remark 12 This radius can be determined using conditions (Lr) and (Er) of Section 2.1
and Theorem 28 which would yield r0(x) = O(

√
x + p∗) .

Without further assumptions Theorem 7 yields the following Corollary:

Corollary 13 Under the assumptions of Theorem 7 it holds with probability greater 1 −
8e−x − β

‖D̆(θ̃ − θ̃k)‖ ≤ ♦̆Q(rk, x) + ♦̆Q(r0, x).

Corollary 13 is a first step in the direction of an actual convergence result but the gap
♦̆Q(rk, x) + ♦̆Q(r0, x) is not a zero sequence in k ∈ N . It turns out that it is possible to
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prove convergence to the ME at the cost of assuming more smoothness of the functional L

and using the right bound for the maximal eigenvalue of the Hessian ∇2L(υ∗) .
Define z2(x,∇2L(υ∗)) via

P
(
‖D−1∇2L(υ∗)‖ ≥ z2

(
x,∇2L(υ∗)

) )
≤ e−x,

and κ(x,R0) as

κ(x,R0)
def
=

2
√

2(1 +
√
ν)√

1− ν

{
εR0 + 9ε2ν2‖D−1‖z1(x, 6p∗)R0 + ‖D−1‖z2

(
x,∇2L(υ∗)

)}
,

where z1(x, ·) ≈
√
x + p∗ , see (46). With these definitions we can prove the following

Theorem:

Theorem 14 Let the conditions (Lr) , (Er) and (B1) be met. Further suppose (A1) and
(A2) , with (ED2) instead of (ED1) . Assume that κ(x,R0) < (1− ν) . Then

P

(⋂

k∈N

{
‖D(υk,k(+1) − υ̃)‖ ≤ r∗k

}
)
≥ 1− 3e−x − β,

where

r∗k ≤




νk 4

√
2

1−κ(x,R0)kR0, κ(x,R0)k ≤ 1,

ν
k

log(k)
log
(

1−ν
κ(x,R0)

)
ckR0, otherwise,

(24)

with some sequence (ck) ∈ N , where 0 < ck → 2 .

Remark 15 This means that we obtain nearly linear convergence to the global maximizer
υ̃ .

Remark 16 As in Remark 11 if no exact numerical computation of the stepwise maximiz-
ers is possible we can easily modify the proof of Theorem 14 via adding C(ν)τ to κ(x,R0)
to address that case.

Remark 17 For the case that L(υ) =
∑n

i=1 `i(υ) with a sum of independent marginal
functionals `i : Υ → R we can use Corollary 3.7 of (Tropp, 2012) to obtain

z2
(
x,∇2L(υ∗)

)
=
√

2τν
√
x + log(p∗),

if for some sequence of matrices (Ai) ⊂ Rp∗×p∗

logE expλ∇2`i(υ
∗) � ν2λ2/2Ai, ‖

n∑

i=1

Ai‖ ≤ τ.

In the case of smooth i.i.d models this means that

κ(x,R0) ≤ C√
n

(x + R0 + log(p∗)),

if p∗ + x = o(n) .
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Remark 18 It may happen that κ(x,R0)/(1 − ν) is very close to or even larger than 1 .
But a close look at the proof of Theorem 14 reveals that this can be improved using Lemma
33. For this purpose bound r∗k ≤ C∗(z(x) + νkR0) with r∗k defined in (33) and with some
constant C∗ > 0 . Then the result of Theorem 14 is true with κ(x, C∗

√
p∗ + x) instead of

κ(x,R0) and with probability greater 1− 10e−x . See Remark 38 for more details.

2.6 Critical Dimension

We want to address the issue of critical parameter dimensions when the full dimension
p∗ grows with the sample size n . We write p∗ = pn . The results of Theorem 7 are
accurate if the spread function ♦̆Q(rk, x) from (21) is small. The critical size of pn then
depends on the exact bounds on ε, ε̆ . In the i.i.d setting we have ε � ε̆ � 1/

√
n such

that ♦̆(rk, x) � pn/
√
n for large k ∈ N . In other words, one needs that “ pn

2/n is small”
to obtain an accurate non-asymptotic version of the Wilks phenomenon and the Fisher
Theorem for the limit of the alternating sequence. This is not surprising because good
performance of the ME itself can only be guaranteed if “ pn

2/n is small”, as is shown by
Andresen and Spokoiny (2014). There are examples where the pME only satisfies a Wilks- or
Fisher result if “ pn

2/n is small”, such that in any of those settings the alternating sequence
started in the global maximizer does not admit an accurate Wilks- or Fisher expansion.

Interesting enough the constrain κ(x,R0) < (1− ν) of Theorem 14 for the convergence
of the sequence to the global maximizer means that one needs pn/n � 1 in the smooth
i.i.d. setting if R0 ≤ CR0

√
pn + x . Further Theorem 14 states a lower bound for the speed

of convergence that in the smooth i.i.d. setting decreases if pn/n grows. Unfortunately
we were unable to find an example that meets the conditions of Section 2.1 and where
no convergence occurs if pn/n tends to infinity. So whether this dimension effect on the
convergence is an artifact of our proofs or indeed a property of the alternating procedure
remains an open question.

3. Application to Single Index Model

We illustrate how the results of Theorem 7 and Theorem 14 can be applied in Single Index
modeling. This section is based on (Andresen, 2015). See that paper for a more detailed
presentation.

Consider the following model

yi = f(X>i θ
∗) + εi, i = 1, ..., n,

for some f : R → R and θ∗ ∈ Sp,+1 ⊂ Rp and with i.i.d errors εi ∈ R , Var(εi) = σ2 and
i.i.d random variables Xi ∈ Rp with distribution denoted by PX . The single-index model
is widely applied in statistics. For example in econometric studies it serves as a compromise
between too restrictive parametric models and flexible but hardly estimable purely non-
parametric models. Usually the statistical inference focuses on estimating the index vector
θ∗ . A lot of research has already been done in this field. For instance, (Delecroix. et al.,
1997) show the asymptotic efficiency of the general semiparametric maximum-functional
estimator for particular examples and in (Haerdle et al., 1993) the right choice of band-
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width for the nonparametric estimation of the link function is analyzed. We want to use
this model to illustrate our theoretical results.

To ensure identifiability of θ∗ ∈ Rp we assume that it lies in the half sphere Sp,+1
def
= {θ ∈

Rp : ‖θ‖ = 1, θ1 > 0} ⊂ Rp . For simplicity we assume that the support of the Xi ∈ Rp is
contained in the ball of radius s > 0 . This allows to approximate f ∈ {f : [−s, s] 7→ R}
by an orthonormal C3 -Daubechies-wavelet basis (ek)k∈N on the interval.

A candidate to estimate θ∗ is the sieve profile ME

θ̃m
def
= Πθ argmax

(θ,η)∈Υm

Lm(θ,η),

where

Lm(θ,η) = −1

2

n∑

i=1

∣∣∣yi −
m∑

k=0

ηkek(X
>
i θ)

∣∣∣
2
,

and where Υm = Sp,+1 × Rm . Again we will suppress the sub index ·m in the following.
In this setting a direct computation of υ̃ becomes involved, as the maximization problem

is high dimensional and not convex. But as noted in the introduction the maximization with
respect to η for given θ is high dimensional but convex and consequently feasible. Further
for moderate p ∈ N the maximization with respect to θ for fixed η is computationally
realistic. So an alternating maximization procedure is applicable. To show that it behaves
in a desired way we apply the technique presented above.

For the initial guess υ̃0 ∈ Υ one can use a simple grid search. For this take a uniform

grid GN
def
= (θ1, . . . ,θN ) ⊂ S+

1 and define

υ̃0
def
= argmax

(θ,η)∈Υ
θ∈GN

L(υ). (25)

Note that given the grid the above maximizer is easily obtained. Simply calculate

η̃0,k
def
= argmaxL(θk,η) =

(
1

n

n∑

i=1

ee>(X>i θk)

)−1
1

n

n∑

i=1

yie
>(X>i θk) ∈ Rm, (26)

where by abuse of notation e = (e1, . . . , em) ∈ Rm . Now observe that

υ̃0 = argmax
k=1,...,N

L(θk, η̃0,k).

Define the mesh size of the grid τ
def
= supθ,θ◦∈GN ‖θ − θ

◦‖ .
To apply the result presented in Theorem 7 and Theorem 14 we need a list of assumptions

denoted by (A) .

(CondX) The random variables (Xi)i=1,...,n ⊂ Rp are i.i.d and bounded with distribution
denoted by PX and independent of (εi)i=1,...,n ⊂ R .
The measure PX is absolutely continuous with respect to the Lebesgue measure. The
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Lebesgue density pX of PX is Lipschitz continuous and positive on Bs(0) ⊂ Rp .
For any pair θ ∈ S+,p

1 with θ ⊥ θ∗ we have almost surely

Var
(
X>θ

∣∣X>θ∗
)
> 0.

(Condf ) For some η∗ ∈ Br◦(0) ⊂ l2 def
= {(uk)k∈N :

∑∞
k=1 u

2
k <∞}

f =

∞∑

k=1

η∗kek,

where ‖f ′‖∞ <∞ and ‖f ′′‖∞ <∞ and where with some α > 2

∞∑

k=0

k2αη∗k
2 <∞.

On some interval [t0 − h, t0 + h] ⊆ [−s+ s] with h > 0 it holds true that

|f ′(t)| > 0.

(Condε) The errors (εi) ∈ R are i.i.d. with E[εi] = 0 , Cov(εi) = σ2 and satisfy for all
|µ| ≤ g̃ for some g̃ > 0 and some ν̃ > 0

logE[exp {µε1}] ≤ ν̃2µ2/2.

Remark 19 Note that our assumptions in terms of moments and smoothness are quite
common in this model. For instance (Haerdle et al., 1993) assume that the density pX of
the regressors (Xi) is twice continuously differentiable, that f has two bounded derivatives
and that the errors (εi) are centered with bounded polynomial moments of arbitrary degree.

Remark 20 Var
(
X>θ◦

∣∣X>θ∗
)

= 0 would mean that X>θ◦ = a(X>θ∗) for some mea-
surable function a : R→ R . But then we would have for any (α, β) ∈ R2 with α2 +β2 = 1
that

f(X>(αθ∗ + βθ◦)) = f(αX>θ∗ + βa(X>θ∗))
def
= f◦α,β(X>θ∗),

such that the problem would no longer be identifiable. Also |f ′(t)| > 0 on some interval is
necessary for identifyability of θ∗ .

Proposition 21 Let τ = o(p∗−3/2) and p∗5/n→ 0 . With initial guess given by Equation
(25) and for not too large x > 0 the alternating sequence satisfies (22) and (23) with
probability greater 1− 9 exp{−x} and where with some constant C ∈ R

♦̆Q(r, x) ≤ C(p∗ + x)3/2

√
n

(r2 + p∗ + x).
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Proposition 22 Take the initial guess given by Equation (25). Assume (A) . Further
assume that p∗4/n → 0 and τ = o(p∗−3/2) . Then we get the claim of Theorem 14 with
β = e−x and

κ(x,R0) = O(τp∗3/2 +
√
τxp∗3/2/n1/4) +O(p∗2/

√
n)→ 0,

for moderate choice of x > 0 .

Remark 23 The constraint τ = o(p∗−3/2) implies that for the calculation of the initial
guess the vector η̃0,l of (26) and the functional L(·) have to be evaluated N = p∗3(p−1)/2

times.

For details and proofs see (Andresen, 2015).

4. Proof of Theorem 7

In this section we present the proof of Theorem 7. As the proof is quite technical and
complex we want to first explain the basic ideas of the proof. In a second section we will
outline more clearly the steps of the proof. Finally we carry out each of these steps which
combine to yield the proof.

4.1 Idea of the Proof

To ease the understanding of what follows in the subsequent sections we want to illustrate
the central ideas with a simple model. Consider for some positive definite matrix D ∈
Rp∗×p∗ and some vector υ∗ = (θ∗,η∗) ∈ Rp+m = Rp∗ the model

Y = υ∗ + ε ∈ Rp
∗
, where ε ∼ N (0,D−2), D2 =

(
D2 A
A> H2

)
∈ Rp

∗×p∗ .

Set L to be the true log likelihood of the observations, i.e.

L(υ,Y) = −‖D(υ − Y)‖2/2.

With any starting initial guess υ̃0 ∈ Rp+m we obtain from (3) for k ∈ N and the usual
first order criterion of maximality the following two equations

D(θ̃k − θ∗) = Dεθ + D−1A(η̃k − η∗),

H(η̃k+1 − η∗) = Hεη + H−1A>(θ̃k − θ∗).

Combining these two equations we derive, assuming ‖D−1AH−2A>D−1‖ def
= ‖M0‖ = ν < 1

D(θ̃k − θ∗) = D−1(D2εθ −Aεη) + D−1AH−1A>D−1D(θ̃k−1 − θ∗)

=
k∑

l=1

Mk−l
0 D−1(D2εθ −Aεη) +Mk

0D(θ̃0 − θ∗)

→ X
def
= D(θ̂ − θ∗).
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Because the limit θ̂ is independent of the initial point υ̃0 and because the profile θ̃ is a
fix-point of the procedure the unique limit satisfies θ̂ = θ̃ . This argument is based on the
fact that in this setting the functional is quadratic such that the gradient satisfies

∇L(υ) = D2
υ∗(υ − υ∗) + D2

υ∗ε.

Any smooth function is quadratic around its maximizer which motivates a local linear ap-
proximation of the gradient of the functional L to derive our results with similar arguments.
This is done in the proof of Theorem 7 .

First it is ensured that the whole sequence (υ̃k,k(+1))k∈N0 satisfies for some R0(x) > 0
and with probability greater that 1− e−x

{υ̃k,k(+1), k ∈ N0} ⊂ {‖D(υ − υ∗)‖ ≤ R0(x)}, (27)

where D2 def
= −∇2EL(υ∗) (see Theorem 28). In the second step we approximate with

ζ = L− EL

L(υ)− L(υ∗) = ∇ζ(υ∗)(υ − υ∗)− ‖D(υ − υ∗)‖2/2 + α(υ,υ∗), (28)

where α(υ,υ∗) is defined by (28). Similar to the toy case above this allows using the first
order criterion of maximality and (27) to obtain a bound of the kind

‖D(υk,k − υ∗)‖ ≤ C

k∑

l=0

νl
(
‖D−1∇ζ(υ∗)‖+ |α(υl,l,υ

∗)|
)

≤ C1

(
‖D−1∇ζ(υ∗)‖+ ε(R0)

)
+ νkR0

def
= rk.

This is done in Lemma 32 using results from (Andresen and Spokoiny, 2014) to show
that ε(R0) is small. Finally the same arguments as in (Andresen and Spokoiny, 2014)
allow to obtain our main result using that with high probability for all k ∈ N0 υ̃k,k ∈
{‖D(υ − υ∗)‖ ≤ rk} . For the convergence result similar arguments are used. The only
difference is that instead of (28) we use the approximation

L(υ)− L(υ̃) = −‖D(υ − υ̃)‖2/2 + α′(υ, υ̃),

exploiting that ∇L(υ̃) ≡ 0 , which allows to obtain actual convergence to the ME.

4.2 A Desirable Set

In this section we will explain the agenda of the proof. The first step of the proof is to
find a desirable set Ω(x) ⊂ Ω of high probability, on which a linear approximation of the
gradient of the functional L(υ) can be carried out with sufficient accuracy. Once this set
is found all subsequent analysis concerns events in Ω(x) ⊂ Ω .

24



Convergence of an Alternating Procedure

For this purpose define - with the local set Υ◦(r) defined in (15) - for some K ∈ N the
set

Ω(x) =
K⋂

k=0

(Ck,k ∩ Ck,k+1) ∩ C(∇) ∩ {L(υ̃0)− L(υ∗) ≥ −K0}, where (29)

Ck,k(+1) =
{
‖D(υ̃k,k(+1) − υ∗)‖ ≤ R0(x), ‖D(θ̃k − θ∗)‖ ≤ R0(x),

‖H(η̃k(+1) − η∗)‖ ≤ R0(x)
}
,

C(∇) =
⋂

r≤R0(x)

{
sup

υ∈Υ◦(r)

{
1

6εν1
‖Y(υ)‖ − 2r2

}
≤ zQ(x, 4p∗)2

}

⋂

r≤4R0(x)

{
sup

υ∈Υ◦(r)

{
1

6ε̆ν̆1
‖Y̆(υ)‖ − 2r2

}
≤ zQ(x, 2p∗ + 2p)2

}

∩
{

max{‖D−1∇L‖, ‖D−1∇θL‖, ‖H−1∇ηL‖} ≤ z(x)

}

∩{υ̃, υ̃θ∗ ∈ Υ◦(r0(x))}.

For ζ(υ) = L(υ)−EL(υ) the semiparametric normalized stochastic gradient gap is defined
as

Y̆(υ) = D̆
−1
(
∇̆θζ(υ)− ∇̆θζ(υ∗)

)
.

the parametric normalized stochastic gradient gap Y(υ) is defined as

Y(υ) = D−1
(
∇ζ(υ)−∇ζ(υ∗)

)
,

and r0(x) > 0 is chosen such that P(υ̃, υ̃θ∗ ∈ Υ◦(r0)) ≥ 1− e−x , where

υ̃θ∗
def
= argmax

υ∈Υ
Πθυ=θ∗

L(υ).

The constant z(x) in the definition of C(∇) is only introduced for ease of notation. This
makes some bounds less sharp but allows to address all terms that are of order

√
p∗ + x

with one symbol. It is defined as

z(x)
def
= z(x,D−1V2D−1) ∨ zQ(x, 4p∗) ≈

√
p∗ + x, (30)

where V2 ∈ Rp∗×p∗ denotes the covariance matrix from Section 2.1

V2 def
= Cov(∇L(υ∗)).

Remark 24 z(x, ·) is explained in more detail in Section A and zQ(x, ·) is defined in
Equation (42). The constant z(x, IB) is comparable to the ” 1− e−x ”-quantile of the norm
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of X , where X ∼ N(0, IB) , i.e. it is of order of the trace of IB . The constant zQ(x,Q)
arises as an exponential deviation bound for the supremum of a smooth process over a set
with complexity described by Q .

Remark 25 We intersect the set with the event {υ̃, υ̃θ∗ ∈ Υ◦(r0)} where we a priory
demand r0(x) > 0 to be chosen such that P(υ̃, υ̃θ∗ ∈ Υ◦(r0)) ≥ 1 − e−x . Note that
condition (Er) together with (Lr) allow to set

√
p∗ + x ≈ r0 ≤ R0 (see Theorem 28).

In Section 4.3 we show that this set is of probability greater 1− 8e−x− β(A) . We want
to explain the purpose of this set along the architecture of the proof of our main theorem.

{L(υ̃0,υ
∗) ≥ −K0} : This set ensures, that the first guess satisfies L(υ̃0,υ

∗)
≥ −K0 , which means that it is close enough to the target υ∗ ∈ Rp∗ . This fact
allows us to obtain an a priori bound for the deviation of the sequence (υ̃k,k(+1)) ⊂ Υ
from υ∗ ∈ Υ with Theorem 28.

{D(υ̃k,k(+1) − υ∗) ≤ R0(x)} : As just mentioned this event is of high probability due to
L(υ̃0,υ

∗) ≥ −K0 and Theorem 28. This allows to concentrate the analysis on the set
Υ◦(R0) on which Taylor expansions of the functional L : Rp∗ → R become accurate.

C(∇) : This set ensures that on Ω(x) ⊂ Ω all occurring random quadratic forms and
stochastic errors are controlled by z(x) ∈ R . Consequently we can derive in the proof
of Lemma 32 an a priori bound of the form ‖D(υ̃k,k(+1)−υ∗)‖ ≤ rk for a decreasing
sequence of radii (rk) ⊂ R+ satisfying lim supk→∞ rk = Cz(x) . Further this set
allows to obtain in Lemma 34 the bounds for all k ∈ N .

On Ω(x) ⊂ Ω we find υ̃k,k(+1) ∈ Υ◦(rk) such that we can follow the arguments of
Theorem 2.2 of (Andresen and Spokoiny, 2014) to obtain the desired result with accuracy
measured by ♦̆Q(rk, x) .

The sketch in figure 4.2 illustrates the behavior of the first steps of the procedure. The
axes correspond to the θ - or η -subspaces respectively. The two ellipsoids with center υ∗

and solid frame represent the local sets Υ◦(RK) ⊂ Υ◦(R0) , with RK > 0 from Remark 5.
We see that the initial guess υ̃0 lies in Υ◦(R) . The elements (υk,k(+1)) of the alternating
sequence all land inside of the respective Υ◦(rk) , which are represented by shrinking ellip-
soids centered in υ∗with doted frames. Note that not the set Υ◦(RK) but Υ◦(R0) contains
all points of the sequence.

4.3 Probability of Desirable Set

Here we show that the set Ω(x) actually is of probability greater 1− 8e−x − β . We prove
the following two Lemmas, which together yield the claim.

Lemma 26 The set C(∇) satisfies

P(C(∇)) ≥ 1− 7e−x.

26



Convergence of an Alternating Procedure

η

θ

×
υ∗

b
υ̃(0)

b̃
υ(0,1)

b

υ̃(1,1)

b

υ̃(1,2)

bυ̃(2,2)

Υ◦(R0)

Υ◦(RK)

Υ◦(r0)

Υ◦(r1)

Υ◦(r2)

Figure 1: The behavior of the procedure for the first 4 steps of the alternating algorithm.
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Proof The proof is similar to the proof of Theorem 3.1 in (Spokoiny, 2012). Denote

A def
=

⋂

r≤R0(x)

{
sup

υ∈Υ◦(r)

{
1

6εν1
‖Y(υ)‖ − 2r2

}
≤ zQ(x, 4p∗)2

}

B def
=

⋂

r≤4R0(x)

{
sup

υ∈Υ◦(r)

{
1

6ε̆ν̆1
‖Y̆(υ)‖ − 2r2

}
≤ zQ(x, 2p∗ + 2p)2

}

C def
=
{

max{‖D−1∇L‖, ‖D−1∇θL‖, ‖H−1∇ηL‖} ≤ z(x)
}
.

We estimate

P(C(∇)) ≥ 1− P (Ac)− P (Bc)− P (Cc)

−P (υ̃, υ̃θ∗ /∈ Υ◦(r0))− P
(
‖ξ̆‖ > z(x,Cov(ξ̆))

)
.

We bound using for both terms Theorem 42 which is applicable due to (ED1) and (ĔD1) :

P(Ac) ≤ e−x, P (Bc) ≤ e−x.

For the set C ⊂ Ω observe that we can use (I) and Lemma 27 to find

‖H−1∇η‖ ∨ ‖D−1∇θ‖ ≤ ‖D−1∇‖.

This implies that

{‖D−1∇‖ ≤ z(x, IB)}

⊆ {‖D−1∇θ‖ ∨ ‖H−1∇η‖ ≤ z(x, IB)}.

Using the deviation properties of quadratic forms as sketched in Section A we find

P
(
‖D−1∇‖ > z(x, IB)

)
≤ 2e−x, P

(
‖D̆−1∇̆‖ > z(x,Cov(ξ̆))

)
≤ 2e−x.

By the choice of z(x) > 0 and r0 > 0 this gives the claim.

We cite Lemma B.2 of (Andresen and Spokoiny, 2014):

Lemma 27 Let

D2 =

(
D2 A

A> H2

)
∈ R(p+p)×(p+p), D ∈ Rp×p, H ∈ Rm×m invertible,

‖D−1AH−1‖ < 1.

Then for any υ = (θ,η) ∈ Rp+m we have ‖H−1η‖ ∨ ‖D−1θ‖ ≤ ‖D−1υ‖ .
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The next step is to show that the set
⋂K
k=1(Ck,k ∩Ck,k+1) has high probability, that is

independent of the number of necessary steps. A close look at the proof of Theorem 4.1 of
(Spokoiny, 2012) shows that it actually yields the following modified version:

Theorem 28 ((Spokoiny, 2012), Theorem 4.1) Suppose (Er) and (Lr) with b(r) ≡
b . Further define the following random set

Υ (K)
def
= {υ ∈ Υ : L(υ,υ∗) ≥ −K}.

If for a fixed r0 and any r ≥ r0 , the following conditions are fulfilled:

1 +
√
x + 2p∗ ≤ 3ν2

rg(r)/b,

6νr

√
x + 2p∗ +

b

9ν2
r

K ≤ rb,

then

P(Υ (K) ⊆ Υ◦(r0)) ≥ 1− e−x.

Note that with (I)

‖D(θ̃k − θ∗)‖ ∨ ‖H(η̃k(+1) − η∗)‖ ≤
1

1− ν
‖D(υ̃k,k(+1) − υ∗)‖.

With assumption (B1) and

R0(x) =
6νr

b(1− ν)

√
x + Q +

b

9ν2
r

K0,

this implies the desired result as L(υk,k(+1),υ
∗) ≥ L(υ̃0,υ

∗) such that with Theorem 28

P

(
K⋂

k=0

(Ck,k ∩ Ck,k+1)

)
≥ P

(
K⋂

k=0

(Ck,k ∩ Ck,k+1) ∩ {L(υ̃0,υ
∗) ≥ −K0}

)

−P(L(υ̃0,υ
∗) ≤ −K0)

≥ P
{
Υ (K0) ⊂ Υ◦

(
(1− ν)R0(x)

)}
− β(A)

≥ 1− e−x − β(A).

Remark 29 This also shows that the sets of maximizers (υ̃k,k(+1)) are nonempty and
well defined since the maximization always takes place on compact sets of the form {θ ∈
Rp, (θ,η) ∈ Υ◦(R0)} or {η ∈ Rm, (θ,η) ∈ Υ◦(R0)} .

Remark 30 To address the claim of Remark 5 we present the following lemma:
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Lemma 31 On the set C(∇) ∩ {υ̃0 ∈ Υ◦(RK)} it holds

L(υ0,υ
∗) ≥ −(1/2 + ε(1 + 12ν0))(R+ z(x))2.

Proof With similar arguments as in the proof of Lemma 32 we have on C(∇) ⊂ Ω that

L(υ0)− L(υ∗)

≥ E[L(υ0)− L(υ∗)]− ‖D−1∇ζ(υ∗)‖R− |{∇ζ(υ̂)−∇ζ(υ∗)}(υ0 − υ∗)|

≥ −‖D(υ0 − υ∗)‖2/2− ‖D−1∇ζ(υ∗)‖R

−‖D−1
{
∇L(υ̂)−∇L(υ∗)

}
‖R− εR2

K

≥ −R2/2− z(x)R− ε(1 + 12ν0)
(
R2 + z(x)2

)
.

4.4 Proof Convergence

We derive the a priori bound υ̃k,k(+1) ∈ Υ◦(rk) with an adequately decreasing sequence
(rk) ⊂ R+ using the argument of Section 4.1, where lim sup rk ≈ z(x) . For this purpose
we define the parametric uniform spread

♦Q(r, x)
def
= ε

{
2r2 + zQ(x, 4p∗)2

}
(1 + 6ν2

1). (31)

Lemma 32 Assume that for some sequence (r
(l)
k )k∈N

Ω(x) ⊆
⋂

k∈N

{
υk,k(+1) ∈ Υ◦

(
r

(l)
k

)}
.

Then under the assumptions of Theorem 7 we get on Ω(x) for all k ∈ N0

∥∥D(υ̃k,k(+1) − υ∗)
∥∥ ≤ 2

√
2(1−

√
ν)−1

(
z(x) + (1 +

√
ν)νkR0(x)

)

+2
√

2(1 +
√
ν)

k−1∑

r=0

νr♦Q
(
r(l)
r

)

=: r
(l+1)
k .

Proof

1. We first show that on Ω(x)

D(θ̃k − θ∗) = D−1∇θL(υ∗)−D−1A(η̃k − η∗) + τ
(
r

(l)
k

)
, (32)

H(η̃k − η∗) = H−1∇ηL(υ∗)−H−1A>(θ̃k−1 − θ∗) + τ
(
r

(l)
k

)
,
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where - with ♦Q(r, x) defined in (31) -

‖τ (r)‖ ≤ ♦Q(r, x).

The proof is the same in each step for both statements such that we only prove the first
one. The arguments presented here are similar to those of Theorem D.1 in (Andresen

and Spokoiny, 2014). By assumption on Ω(x) we have υ̃k,k(+1) ∈ Υ◦
(
r

(l)
k

)
. Define with

ζ = L− EL

α(υ,υ∗) := L(υ)− L(υ∗)−
(
∇ζ(υ∗)(υ − υ∗)− ‖D(υ − υ∗)‖2/2

)
.

Note that

L(υ)− L(υ∗) = ∇ζ(υ∗)(υ − υ∗)− ‖D(υ − υ∗)‖2/2 + α(υ,υ∗)

= ∇θζ(υ∗)(θ − θ∗)− ‖D(θ − θ∗)‖2/2 + (θ − θ∗)>A(η − η∗)

+∇ηζ(υ∗)(η − η∗)− ‖H(η − η∗)‖2/2 + α(υ,υ∗).

Setting ∇θL(θ̃k, η̃k) = 0 we find

D(θ̃k − θ∗)−D−1
(
∇θζ(υ∗)−A(η̃k − η∗)

)
= D−1∇θα(υ̃k,k,υ

∗).

As we assume that υ̃k,k ∈ Υ◦(R0) it suffices to show that with dominating probability

sup
(θ,η̃k)∈Υ◦(R0)

‖Uθ(θ, η̃k)‖ ≤ ♦(r
(l)
k ),

where

Uθ(θ, η̃k)
def
= D−1

{
∇θL(υ̃k,k)−∇θL(υ∗)−D2 (θ − θ∗)−A(η̃k − η∗)

}
.

To see this note first that with Lemma 27 ‖D−1ΠθDυ‖ ≤ ‖D−1Dυ‖ . This gives by
condition (L0) , Lemma 27 and Taylor expansion

sup
(θ,η̃k)∈Υ◦(r)

‖EU(θ, η̃k)‖ ≤ sup
υ∈Υ◦(r)

‖D−1Πθ

(
∇EL(υ)−∇EL(υ∗)−D (υ − υ∗)

)
‖

≤ sup
υ∈Υ◦(r)

‖D−1ΠθD‖‖D−1∇2EL(υ)2D−1 − Ip∗‖1/2r

≤ εr2.

For the remainder note that again with Lemma 27

‖D−1
(
∇θζ(υ)−∇θζ(υ∗)

)∥∥∥ ≤ ‖D−1
(
∇ζ(υ)−∇ζ(υ∗)

)∥∥∥.
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This yields that on Ω(x)

sup
(θ,η̃k)∈Υ◦(r)

∥∥∥Uθ(θ, η̃k)− EUθ(θ, η̃k)
∥∥∥ ≤ sup

υ∈Υ◦(r)

∥∥∥D−1
(
∇θζ(υ)−∇θζ(υ∗)

)∥∥∥

≤ sup
υ∈Υ◦(r)

{
1

6ν1ε
‖Y(υ)‖

}
6ν1ε ≤ 6ν1ε

{
zQ(x, 4p∗) + 2r2

}
.

Using the same argument for η̃k gives the claim.

2. We prove the apriori bound for the distance of the k. estimator to the oracle

∥∥D(υ̃k,k(+1) − υ∗)
∥∥ ≤ r

(l+1)
k .

To see this we first use the inequality

‖D(υ̃k,k(+1) − υ∗)‖ ≤
√

2‖D(θ̃k − θ∗)‖+
√

2‖H(η̃k(+1) − η∗)‖.

Now we find with (32)

‖D(θ̃k − θ∗)‖ ≤ ‖D−1∇θL(υ∗)‖+ ‖D−1A(η̃k − η∗)‖+ ‖τ
(
r

(l)
k

)
‖

≤ ‖D−1∇θL(υ∗)‖+ ‖D−1AH−1‖‖H(η̃k − η∗)‖+ ‖τ
(
r

(l)
k

)
‖.

Next we use that on Ω(x)

‖D−1AH−1‖ ≤
√
ν, ‖D−1∇θL(υ∗)‖ ≤ z(x), ‖H−1∇ηL(υ∗)‖ ≤ z(x),

and

‖H(η̃k − η∗)‖ ≤ ‖H−1∇ηL(υ∗)‖+ ‖H−1A>(θ̃k−1 − θ∗)‖+ ‖τ
(
r

(l)
k

)
‖,

to derive the recursive formula

‖D(θ̃k − θ∗)‖ ≤ (1 +
√
ν)
(
z(x) + ‖τ

(
r

(l)
k

)
‖
)

+ ν‖D(θ̃k−1 − θ∗)‖.

Deriving the analogous formula for ‖H(η̃k−η∗)‖ and solving the recursion gives the claim.

Lemma 33 Assume the same as in Theorem 7 . Further assume that (17) is met with
C(ν) defined in (18). Then

Ω(x) ⊆
⋂

k∈N

{
υk,k(+1) ∈ Υ◦(r∗k)

}
,
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where - with C(ν) ≥ 0 defined in (18) -

r∗k ≤
(
C(ν) +

4εC(ν)4z(x)

1− εC(ν)z(x)

)
2z(x) (33)

+νk
(
C(ν) +

4εC(ν)4R0

1− εC(ν)R0

)
R0.

Proof We proof this claim via induction. On Ω(x) we have

υk,k(+1) ∈ Υ◦(R0), set r
(0)
k

def
= R0.

Now with Lemma 32 we find that if

Ω(x) ⊆
⋂

k∈N

{
υk,k(+1) ∈ Υ◦(r

(l)
k )
}
,

that then

Ω(x) ⊆
⋂

k∈N

{
υk,k(+1) ∈ Υ◦(r

(l+1)
k )

}
,

where

r
(l)
k ≤ 2

√
2(1−

√
ν)−1

(
z(x) + (1 +

√
ν)νkR0(x)

)

+2
√

2(1 +
√
ν)

k−1∑

r=0

νr♦Q
(
r

(l−1)
k−r , x

)
.

Setting l = 1 this gives

r
(1)
k ≤ 2

√
2(1−

√
ν)−1

{
(z(x) +♦Q(R0, x)) + (1 +

√
ν)νkR0(x)

}
.

We show that

Ω(x) ⊆
⋂

k∈N

{
υk,k(+1) ∈ Υ◦

(
lim sup
l→∞

r
(l)
k

)}
⊆
⋂

k∈N

{
υk,k(+1) ∈ Υ◦(r∗k)

}
.
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So we have to show that lim supl→∞ r
(l)
k ≤ r∗k in (33). For this we estimate further

r
(l)
k ≤ 2

√
2(1−

√
ν)−1

(
z(x) + (1 +

√
ν)νkR0(x)

)

+2
√

2(1 +
√
ν)ε

k−1∑

r=0

νr
((

r
(l−1)
k−r

)2
+ z(x)2

)

≤ 2
√

2(1−
√
ν)−1

(
z(x) + εz(x)2 + (1 +

√
ν)νkR0(x)

)

+2
√

2(1 +
√
ν)ε

k−1∑

r=0

νr
(
r

(l−1)
k−r

)2

≤ C(ν)

{
(
z(x) + εz(x)2

)
+ νkR0 + ε

k−1∑

r=0

νr
(
r

(l−1)
k−r

)2
}
,

where C(ν) > 0 is defined in (18). We set

A
(l)
s,k

def
=

k−1∑

r1=0

νr1



k−r1−1∑

r2=0

νr2


. . .

k−r1−...−rs−1−1∑

rs=0

νrs
(
r

(l−1)
k−r1−...−rs

)2
. . .




2


2

.

Claim

A
(l)
s,k ≤ 4

∑s−1
t=0 2tC(ν)2s

{(
1

1− ν

)∑s−1
t=0 2t (

z(x) + εz(x)2
)2s

(34)

+νk
(

1

ν−1 − 1

)∑s−1
t=0 2t

R2s

0

}

+4
∑s−1
t=0 2t(C(ν)ε)2sA

(l−1)
s+1,k.

We proof this claim via induction. Clearly

A
(l)
1,k =

k−1∑

r1=0

νr1
(
r

(l−1)
k−r1

)2 ≤ 4C(ν)2
k−1∑

r1=0

νr1
{(

z(x) + εz(x)2
)2

+ ν2(k−r1)R2
0

}

+4C(ν)2ε2
k−1∑

r1=0

νr1

(
k−r1−r2−1∑

r2=0

νr2
(
r

(l−2)
k−r1−r2

)2
)2

≤ 4C(ν)2

{
1

1− ν
(
z(x) + εz(x)2

)2
+

νk

ν−1 − 1
R2

0

}

+4C(ν)2ε2A
(l−1)
2,k .
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Furthermore

A
(l)
s,k

def
=

k−1∑

r1=0

νr1



k−r1−1∑

r2=0

νr2


. . .

k−r1−...−rs−1−1∑

rs=0

νrs
(
r

(l−1)
k−r1−...−rs

)2
. . .




2


2

=

k−1∑

r1=0

νr1
(
A

(l)
s−1,k−r1

)2
. (35)

Plugging in (34) we get for s ≥ 2

A
(l)
s,k ≤

k−1∑

r1=0

νr1

(
4
∑s−2
t=0 2tC(ν)2s−1

{(
1

1− ν

)∑s−2
t=0 2t (

z(x) + εz(x)2
)2s−1

+νk
(

1

ν−1 − 1

)∑s−2
t=0 2t

R2s−1

0

}

+ 4
∑s−2
t=0 2t(C(ν)ε)2s−1

A
(l−1)
s,k−r1

)2

.

Shifting the index this gives

A
(l)
s,k ≤ 4

k−1∑

r1=0

νr1

(
4
∑s−1
t=1 2tC(ν)2s

{(
1

1− ν

)∑s−1
t=1 2t−1 (

z(x) + εz(x)2
)2s

+νk
(

1

ν−1 − 1

)∑s−1
t=1 2t

R2s

0

}

+ 4
∑s−1
t=1 2t(C(ν)ε)2s(A

(l−1)
s,k−r1)2

)
.

Direct calculation then leads to

A
(l)
s,k ≤ 4

∑s−1
t=0 2tC(ν)2s

{(
1

1− ν

)∑s−1
t=0 2t (

z(x) + εz(x)2
)2s

+νk
(

1

ν−1 − 1

)∑s−1
t=0 2t

R2s

0

}

+4
∑s−1
t=0 2t(C(ν)ε)2s

k−1∑

r1=0

νr1(A
(l−1)
s,k−r1)2,
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which gives (34) with (35). Similarly we can prove

A
(1)
s,k =

(
1

1− ν

)2s−1

R2s

0 .

Abbreviate

λs
def
= 42s−1C(ν)2s , βs

def
= 42s−1(C(ν)ε)2s ,

zs(x)
def
=

(
1

1− ν

)2s−1 (
z(x) + εz(x)2

)2s
, Rs

def
=

(
1

ν−1 − 1

)2s−1

R2s

0 .

Then

r
(l)
k ≤ C(ν)

{(
z(x) + εz(x)2

)
+ νkR0 + εA

(l)
1,k

}

≤
l−1∑

s=0

λs

s−1∏

r=0

βrzs(x) + νk
l−1∑

s=0

λs

s−1∏

r=0

βrRs +
l−1∏

r=0

βrRl. (36)

We estimate further

l−1∑

s=0

λs

s−1∏

r=0

βrzs(x)− C(ν)
(
z(x) + εz(x)2

)
=

l−1∑

s=1

λs

s−1∏

r=0

βrzs(x)

≤
l−1∑

s=1

42sC(ν)2s+1
ε2
s−1

(
1

1− ν

)2s−1 (
z(x) + εz(x)2

)2s

= ε42C(ν)4

(
1

1− ν

)(
z(x) + εz(x)2

)2

l−1∑

s=1

(
ε4C(ν)

1

1− ν
(
z(x) + εz(x)2

))2s−1

.

Assuming (17) and the definition of R0 > z(x) this gives

l−1∑

s=0

λs

s−1∏

r=0

βrzs(x) ≤
(
C(ν) +

4εC(ν)4z(x)

1− εC(ν)z(x)

)
2z(x).

With the same argument we find under (17) that

νk
l−1∑

s=0

λs

s−1∏

r=0

βrRs ≤ νk
(
C(ν) +

4εC(ν)4R0

1− εC(ν)R0

)
R0.

Additionally (17) implies

l−1∏

r=0

βrRr ≤
(
ε4C(ν)

1

ν−1 − 1

)2l−1

R2l

0 → 0.
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Plugging these bounds into (36) and letting l→∞ gives the claim.

4.5 Result after Convergence

In the previous section we showed that

Ω(x) ⊂
⋂

r≤4R0(x)

{
sup

υ∈Υ◦(r)

{
1

6ε̆ν̆1
‖Y̆(υ)‖ − 2r2

}
≤ zQ(x, 2p∗ + 2p)2

}

∩
⋂

k∈N
{υk,k ∈ Υ◦ (r∗k) , υk,k+1 ∈ Υ◦ (r∗k)} ∩ {υ̃, υ̃θ∗ ∈ Υ◦(r0)},

where r∗k is defined in (33). The claim of Theorem 7 follows with the following lemma:

Lemma 34 Assume (ĔD1) , (L̆0) , and (I) . Then it holds on Ω(x) ⊆ ε that for all k ∈ N
∥∥D̆
(
θ̃k − θ∗

)
− ξ̆
∥∥ ≤ ♦̆Q(rk, x), (37)

∣∣2L̆(θ̃k,θ
∗)− ‖ξ̆‖2

∣∣ ≤ 5
(
‖D̆−1∇̆‖+ ♦̆Q(rk, x)

)
♦̆Q(rk, x), (38)

where the spread ♦̆(r, x) is defined in (21) and where

rk
def
= r∗k ∨ r0.

Proof The proof is nearly the same as that of Theorem 2.2 of (Andresen and Spokoiny,
2014) which is inspired by the proof of Theorem 1 of (Murphy and van der Vaart, 2000).
So we only sketch it and refer the reader to (Andresen and Spokoiny, 2014) for the skipped
arguments. We define

l : Rp × Υ → R, (θ1,θ2,η) 7→ L(θ1,η + H−2A>(θ2 − θ1)).

Note that

∇θ1 l(θ1,θ2,η) = ∇̆θL(θ1,η + H−2A>(θ2 − θ1)), θ̃k = argmax
θ

l(θ, θ̃k, η̃k),

such that ∇̆θL(θ̃k, η̃k) = 0 . This gives

∥∥D̆
(
θ̃k − θ∗

)
− ξ̆
∥∥ =

∥∥D̆
−1∇̆L(θ̃k, η̃k)− D̆

−1∇̆L(υ∗) + D̆
(
θ̃k − θ∗

)∥∥.

Now the right hand side can be bounded just as in the proof of Theorem 2.2 of (Andresen
and Spokoiny, 2014). This gives (37).

For (38) we can represent:

L̆(θ̃k)− L̆(θ∗) = l(θ̃k, θ̃k, η̃k+1)− l(θ∗,θ∗, η̃θ∗),
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where

η̃θ∗
def
= Πη argmax

υ∈Υ,
Πθυ=θ∗

L(υ).

Due to the definition of θ̃k and η̃k+1

l(θ̃k,θ
∗, η̃θ∗)− l(θ∗,θ∗, η̃θ∗) ≤ L̆(θ̃k)− L̆(θ∗) ≤ l(θ̃k, θ̃k, η̃k+1)− l(θ∗, θ̃k, η̃k+1).

Again the remaining steps are exactly the same as in the proof of Theorem 2.2 of (Andresen
and Spokoiny, 2014).

5. Proof of Corollary 13

Proof Note that with the argument of Section 4.3 P(ε′(x)) ≥ 1 − 8e−x − β where with
Ω(x) from (29)

ε′(x) = Ω(x) ∩ {υ̃ ∈ Υ◦(r0)}.

On ε′(x) it holds due to Theorem 7 and due to Theorem 2.1 of (Andresen and Spokoiny,
2014)

‖D̆(θ̃k − θ∗)− ξ̆‖ ≤ ♦̆Q(rk, x), ‖D̆(θ̃ − θ∗)− ξ̆‖ ≤ ♦̆(r0, x).

Now the claim follows with the triangular inequality and noting that ♦̆(r0, x) ≤ ♦̆Q(r0, x) .

6. Proof of Theorem 14

We prove this Theorem in a similar manner to the convergence result in Lemma 32. Redefine
the set Ω(x)

Ω(x)
def
=

K⋂

k=0

(Ck,k ∩ Ck,k+1) ∩ C(∇) ∩ {L(υ̃0)− L(υ∗) ≥ −K0}, where (39)

Ck,k(+1) =
{
‖D(υ̃k,k(+1) − υ∗)‖ ≤ R0(x), ‖D(θ̃k − θ∗)‖ ≤ R0(x),

‖H(η̃k(+1) − η∗)‖ ≤ R0(x)
}
,

C(∇) =

{
sup

υ∈Υ◦(R0(x))
‖Y(∇2)(υ)‖ ≤ 9ν2ε2z1(x, 6p∗)R0(x)

}

∩{‖D−1∇2ζ(υ∗)‖ ≤ z(x,∇2ζ(υ∗))}.
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where

Y(∇2)(υ)
def
= D−1

(
∇2ζ(υ)−∇2ζ(υ∗)

)
∈ Rp

∗2
.

We see that on Ω(x)

υk,k(+1) ∈ Υ̃◦(R0)
def
= {‖D(υ − υ̃)‖ ≤ R0 + r0} ∩ Υ◦(R0).

Lemma 35 Under the conditions of Theorem 14

P(Ω(x)) ≥ 1− 3e−x − β.

Proof The proof is very similar to the one presented in Section 4.3, so we only give a
sketch. By assumption

P
(
‖D−1∇2ζ(υ∗)‖ ≤ z(x,∇2ζ(υ∗))

)
≥ 1− e−x,

and due to (ED2) with Theorem 47

P

(
sup

υ∈Υ◦(R0(x))
‖Y(∇2)(υ)‖ ≤ 9ν2ε2z1(x, 6p∗)R0(x)

)
≥ 1− e−x.

Lemma 36 Assume for some sequence (r
(l)
k ) that

⋂

k∈N

{∥∥D(υ̃k,k(+1) − υ̃)
∥∥ ≤ r

(l)
k

}
⊆ Ω(x).

Then we get on Ω(x)

∥∥D(υ̃k,k(+1) − υ̃)
∥∥ ≤ 2

√
2(1 +

√
ν)

k−1∑

r=0

νr‖τ (r
(l)
k−r)‖+ 2

√
2νk(R0 + r0),

=: r
(l+1)
k . (40)

where

‖τ (r)‖ ≤
[
εR0 + 9ν2ε2‖D−1‖z1(x, 6p∗)R0 + ‖D−1‖z(x,∇2ζ(υ∗))

]
r.

Proof
1. We first show that on Ω(x)

D(θ̃k − θ̃) = −D−1A(η̃k − η̃) + τ
(
r

(l)
k

)
,

H(η̃k − η∗) = −H−1A>(θ̃k−1 − θ̃) + τ
(
r

(l)
k

)
.
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The proof is very similar to that of Lemma 32. Define

α(υ, υ̃) := L(υ)− L(υ̃) + ‖D(υ − υ̃)‖2/2.

Note that

L(υ)− L(υ̃) = ∇L(υ)− ‖D(υ − υ̃)‖2/2 + α(υ,υ∗)

= −‖D(θ − θ̃)‖2/2 + (θ − θ∗)>A(η − η̃)

−‖H(η − η̃)‖2/2 + α(υ, υ̃).

Setting ∇θL(θ̃k, η̃k) = 0 we find

D(θ̃k − θ̃) = D−1A(η̃k − η̃) + D−1∇θα(υ̃k,k, υ̃).

We want to show

sup
(θ,η̃k)∈Υ̃◦

(
r
(l)
k

)
∩Υ◦(R0)

D−1∇θα((θ, η̃k), υ̃) ≤ ‖τ
(
r

(l)
k

)
‖,

where

D−1∇θα(υ, υ̃)
def
= D−1

{
∇θL(υ)−D2 (θ − θ̃)−A(η̃k − η̃)

}
.

To see this note that by assumption we have Ω(x) ⊆ {υ̃ ∈ Υ◦(r0)} ⊆ {υ̃ ∈ Υ◦(R0)} . By
condition (L0) , Lemma 27 and Taylor expansion we have

sup
(θ,η̃k)∈Υ̃◦(r(l)k )∩Υ◦(R0)

‖EU(θ, η̃k)‖

≤ sup
υ∈Υ̃◦(r(l)k )∩Υ◦(R0)

‖D−1Πθ

(
∇EL(υ)−∇EL(υ̃)−D (υ − υ∗)

)
‖

≤ sup
υ∈Υ◦(R0)

‖D−1ΠθD‖‖D−1∇2EL(υ)D−1 − Ip∗‖r(l)
k

≤ εr
(l)
k

2
.
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For the remainder note that with ζ = L− EL on Ω(x) using Lemma 27 we can bound

sup
(θ,η̃k)∈Υ̃◦(r(l)k )∩Υ◦(R0)

∥∥∥Uθ(θ, η̃k)− EUθ(θ, η̃k)
∥∥∥

≤ sup
υ∈Υ̃◦(r(l)k )∩Υ◦(R0)

∥∥∥D−1
(
∇θζ(υ)−∇θζ(υ̃)

)∥∥∥

≤ sup
υ∈Υ◦(r)

∥∥D−1∇2ζ(υ)D−1
∥∥ r(l)

k

≤ sup
υ∈Υ◦(R0)

{
1

9ν2ε2
‖D−1

(
∇2ζ(υ)−∇2ζ(υ∗)

)
D−1‖

}
6ν1εr

(l)
k

+

{
‖D−1∇2ζ(υ∗)D−1‖

}
r

(l)
k

≤
[
9ν2ε2‖D−1‖z1(x, 6p∗)R0 + ‖D−1‖z(x,∇2ζ(υ∗))

]
r

(l)
k .

Using the same argument for η̃k gives the claim.

Now the claim follows as in the proof of Lemma 32.

Lemma 37 Assume that κ(x,R0) < 1− ν where

κ(x,R0)
def
=

2
√

2(1 +
√
ν)√

1− ν

(
εR0 + 9ε2ν2‖D−1‖z1(x, 6p∗)R0

+ ‖D−1‖z2
(
x,∇2L(υ∗)

))
.

Then

Ω(x) ⊆
⋂

k∈N

{
υk,k(+1) ∈ Υ̃◦(rk)

}
,

where (rk)k∈N satisfy the bound (24).

Proof Define for all k ∈ N0 the sequence r
(0)
k = R0 . We estimate

‖τ (r
(l)
k )‖ ≤ 1√

1− ν
(
εR0 + 6ν1ε2‖D−1‖z1(x, 6p∗)R0 + ‖D−1‖z(x, IB(∇2)

)
r

(l)
k ,

such that by definition

2
√

2(1 +
√
ν)

k−1∑

r=0

νr‖τ (r
(l)
k−r)‖ ≤ κ(x,R0)

k−1∑

r=0

νrr
(l)
k−r.
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Plugging in the recursive formula for r
(l)
k from (40) and denoting R̃0

def
= R0 + r0 we find

r
(l)
k ≤ κ(x,R0)

k−1∑

r=0

νrr
(l−1)
k−r + 2

√
2νkR̃0

≤ κ(x,R0)
k−1∑

r=0

νr

(
κ(x,R0)

k−r−1∑

s=0

νsr
(l−2)
k−r−s + 2νk−rR̃0

)
+ 2
√

2R̃0ν
k

≤ κ(x,R0)2
k−1∑

r=0

νr
k−r−1∑

s=0

νsr
(l−2)
k−r−s + 2

√
2νkR̃0 (κ(x,R0)k + 1)

≤ κ(x,R0)2
k−1∑

r=0

νr
k−r−1∑

s=0

νs

(
κ(x,R0)

k−r−s−1∑

t=0

νtr
(l−3)
k−r−s−t + 2νk−r−sR̃0

)

+2
√

2νkR̃0 (κ(x,R0)k + 1)

≤ κ(x,R0)3
k−1∑

r=0

νr
k−r−1∑

s=0

νsr
(l−3)
k−r−s + 2

√
2νkR̃0

(
κ(x,R0)2k2 + κ(x,R0)k + 1

)
.

By induction this gives for l ∈ N

r
(l)
k ≤ κ(x,R0)l

k−1∑

r1=0

νr1
k−r1−1∑

r2=0

νr2 . . .

k−
∑l−1
s=1 rs−1∑

rl=0

νrlR̃0

+2
√

2νkR̃0

l−1∑

s=0

κ(x,R0)sks

≤

((
κ(x,R0)

1− ν

)l
+ 2
√

2νk
l−1∑

s=0

(κ(x,R0)k)s
)

R̃0

≤





((
κ(x,R0)

1−ν

)l
+ 2
√

2νk 1
1−κ(x,R0)k

)
R̃0, κ(x,R0)k ≤ 1,

κ(x,R0)l
((

1
1−ν

)l
+ 2
√

2νk kl

κ(x,R0)k−1

)
R̃0, otherwise.

By Lemma 36

Ω(x) ⊂
⋂

k∈N0

⋂

l∈N

{
υ̃k,k(+1) ∈ Υ̃◦

(
r

(l)
k

)}
.

Set if κ(x,R0)/(1− ν) < 1

l(k)
def
=

{
∞, κ(x,R0)k ≤ 1,
k log(ν)+log(2

√
2)−log(κ(x,R0)k−1)

− log(1−ν)−log(k) , otherwise.
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Then with r∗k
def
= r

(bl(k)c)
k we get

Ω(x) ⊂
⋂

k∈N0

{
υ̃k,k(+1) ∈ Υ̃◦

(
r∗k
)}
,

r∗k ≤





νk2
√

2
1−κ(x,R0)k R̃0, κ(x,R0)k ≤ 1,

2
(
κ(x,R0)

1−ν

) k
log(k)

L(k)−1
R̃0, otherwise.

The sequence L(k) > 0 is defined as

L(k)
def
=

⌊
log(1/ν)− 1

k

(
log(2

√
2)− log(κ(x,R0)k − 1)

)

1 + 1
log(k) log(1− ν)

⌋
∈ N,

where bxc ∈ N0 denotes the largest natural number smaller than x > 0 . To ensure that
L(k) > 0 we assume that k log(1/ν) − log(2

√
2) > k . Further as κ(x,R0) < (1 − ν) and

L(k) is only relevant once κ(x,R0)k > 1 it follows that

0 < 1 +
1

log(k)
log(1− ν) < 1.

Then

L(k) ≥ log(1/ν)− 1

k

(
log(2

√
2)− log(κ(x,R0)k − 1)

)
> 1.

Consequently

(
κ(x,R0)

1− ν

) k
log(k)

L(k)

≤ ν
k

log(k)
log
(

1−ν
κ(x,R0)

)(
κ(x,R0)

1− ν

)− 1
log(k)(log(2

√
2)−log(κ(x,R0)k−1))

def
= ν

k
log(k)

log
(

1−ν
κ(x,R0)

)
ck,

where ck → κ(x,R0)
1−ν . Finally note that R̃0 ≤ 2R0 and the proof is complete.

Remark 38 As pointed out in Remark 18 the above result can be improved. Redefine Ω(x)
as the intersection of the two sets in (29) and (39). Then P(Ω(x)) ≥ 1 − 10e−x . Also
redefine

κ(x, r)
def
=

2
√

2(1 +
√
ν)√

1− ν

(
εr + 3ε2‖D−1‖z1(x, 6p∗)r

+ ‖D−1‖z2
(
x,∇2L(υ∗)

))
.

By the arguments of the proof of Theorem 7 we find with r∗k defined in (33)

Ω(x) ⊂
⋂

k∈N
{υk,k(+1) ∈ Υ◦(r∗k)}.
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Using this in Lemma 36 instead of ∩k∈N{υk,k(+1) ∈ Υ◦(R0)} we can bound

‖τ (r
(l)
k )‖ ≤ 1√

1− ν

(
εr∗k + 6ν1ε2‖D−1‖z1(x, 6p∗)r∗k

+‖D−1‖z(x, IB(∇2)

)
r

(l)
k .

Consequently, representing r∗k = C
(
z(x) + νkR0

)
we find

r
(l)
k ≤ κ(x, Cz(x))

k−1∑

r=0

νrr
(l−1)
k−r + 2

√
2νk(R0 + r0)

+Cε(1 + ‖D−1‖z1(x, 6p∗))
k−1∑

r=0

νkR0r
(l−1)
k−r

≤ κ(x, Cz(x))

k−1∑

r=0

νrr
(l−1)
k−r + C1εR0kν

k(R0 + r0),

where C1 ≤ 2
√

2 + C(1 + ‖D−1‖z1(x, 6p∗)) . With the same arguments as in the proof of
Lemma 37 we infer

r
(l)
k /(R0 + r0)

≤





((
κ(x,Cz(x))

1−ν

)l
+ kνk C1εR0

1−κ(x,Cz(x))k

)
, κ(x, Cz(x))k ≤ 1,

κ(x, Cz(x))l
((

1
1−ν

)l
+ νk kl+1C1εR0

κ(x,Cz(x))k−1

)
, otherwise.

Set

l(k)
def
=

{
∞, κ(x, Cz(x))k ≤ 1,
k log(ν)+log(C1εR0)−log(κ(x,Cz(x))k−1)−log(k)

− log(1−ν)−log(k) , otherwise.

Then with r∗k
def
= r

(bl(k)c)
k we get with a slight adaptation of L(k)

Ω(x) ⊂
⋂

k∈N0

{
υ̃k,k(+1) ∈ Υ̃◦

(
r∗k
)}
,

r∗k ≤





νk2
√

2
1−κ(xCz(x))k (R0 + r0), κ(x, Cz(x))k ≤ 1,

2
(
κ(x,Cz(x))

1−ν

) k
log(k)

L(k)−1
(R0 + r0), otherwise.

This gives the claim.
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Appendix A. Deviation Bounds for Quadratic Forms

This section is the same as Section A of Andresen and Spokoiny (2014). The following
general result from Spokoiny (2012) helps to control the deviation for quadratic forms of
type ‖IBξ‖2 for a given positive matrix IB and a random vector ξ . It will be used several
times in our proofs. Suppose that

logE exp
(
γ>ξ

)
≤ ‖γ‖2/2, γ ∈ Rp, ‖γ‖ ≤ g.

For a symmetric matrix IB , define

p = tr(IB2), v2 = 2 tr(IB4), λ∗
def
= ‖IB2‖∞

def
= λmax(IB2).

For ease of presentation, suppose that g2 ≥ 2pIB . The other case only changes the constants
in the inequalities. Note that ‖ξ‖2 = η>IB η . Define µc = 2/3 and

gc
def
=
√
g2 − µcpIB,

2(xc + 2)
def
= (g2/µc − pIB)/λ∗ + log det

(
IIp − µcIB/λ∗

)
.

Proposition 39 Let (ED0) hold with ν0 = 1 and g2 ≥ 2pIB . Then for each x > 0

P
(
‖IBξ‖ ≥ z(x, IB)

)
≤ 2e−x,

where z(x, IB) is defined by

z2(IB, x)
def
=





pIB + 2vIB(x + 1)1/2, x + 1 ≤ vIB/(18λ∗),

pIB + 6λ∗(x + 1), vIB/(18λ∗) < x + 1 ≤ xc + 2,∣∣yc + 2λ∗(x− xc + 1)/gc
∣∣2, x > xc + 1,

with y2
c ≤ pIB + 6λ∗(xc + 2) .

Appendix B. A Uniform Bound for the Norm of a Random Process

We want to derive for a random process Y̆(υ) ∈ Rp a bound of the kind

P

(
sup
r≤r∗

sup
υ∈Υ◦(r)

{
1

ε
‖Y̆(υ)‖ − 2r2

}
≥ CzQ(x, p∗)

)
≤ e−x.

This is a slightly stronger result than the one derived in Section D of (Andresen and
Spokoiny, 2014) but the ideas employed here are very similar.

We want to apply Corollary 2.5 of the supplement of Spokoiny (2012) which we cite here
as a Theorem. Note that we slightly generalized the formulation of the theorem, to make
it applicable in out setting. The proof remains the same.

Theorem 40 Let (U(r))0≤r≤r∗ ⊂ Rp be a sequence of balls around υ∗ induced by the
metric d(·, ·) . Let a random real valued process U(r,υ) fulfill for any 0 ≤ r ≤ r∗ that
U(r,υ∗) = 0 and
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(Ed) For any υ,υ◦ ∈ U(r)

logE exp

{
λ
U(r,υ)− U(r,υ◦)

d(υ,υ◦)

}
≤ ν2

0λ
2

2
, |λ| ≤ g. (41)

Finally assume that supυ∈U(r)(U(r,υ)) increases in r . Then with probability greater 1−
e−x

sup
υ∈U(r)

{
1

3ν1
U(r,υ)− d(υ,υ∗)2

}
≤ zQ(x, p∗)2,

where zQ(x, p∗)
def
= Q(U(r∗)) denotes the entropy of the set U(r∗) ⊂ Rp and where with

g0 = ν0g and for some Q > 0

zQ(x,Q)2 def
=

{
(1 +

√
x + Q)2 if 1 +

√
x + Q ≤ g0,

1 + {2g−1
0 (x + Q) + g0}2 otherwise.

(42)

To use this result let Y̆(υ) be a smooth centered random vector process with values in
Rp and let D : Rp∗ → Rp∗ be some linear operator. We aim at bounding the maximum of

the norm ‖Y̆(υ)‖ over a vicinity Υ◦(r)
def
= {‖D(υ − υ∗)‖ ≤ r} of υ∗ . Suppose that Y̆(υ)

satisfies for each 0 < r < r∗ and for all pairs υ,υ◦ ∈ Υ◦(r) =
{
υ ∈ Υ : ‖D(υ − υ∗)‖ ≤

r
}
⊂ Rp∗

sup
‖u‖≤1

logE exp

{
λ
u>
(
Y̆(υ)− Y̆(υ◦)

)

ε‖D(υ − υ◦)‖

}
≤ ν2

0λ
2

2
. (43)

Remark 41 In the setting of Theorem 7 we have

Y̆(υ) = D̆
−1
(
∇̆ζ(υ)− ∇̆ζ(υ∗)

)
,

and condition (43) becomes (ED1) from 2.1.

Theorem 42 Let a random p -vector process Y̆(υ) fulfill Y̆(υ∗) = 0 and let condition (43)
be satisfied. Then for each 0 ≤ r ≤ r∗ , on a set of probability greater 1− e−x

sup
r≤r∗

sup
υ∈Υ◦(r)

{
1

6εν1
‖Y̆(υ)‖ − 2r2

}
≤ zQ(x, 2p∗ + 2p)2,

with g0 = ν0g .

Remark 43 Note that the entropy of the original set Υ◦(r) ⊂ Rp∗ is equal to 2p∗ . So in
order to control the norm ‖Y̆(υ)‖ one only pays with the additional sumand 2p .
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Proof In what follows, we use the representation

‖Y̆(υ)‖ = ε sup
‖u‖≤‖D(υ−υ∗)‖

1

ε‖D(υ − υ∗)‖
u>Y̆(υ).

This implies

sup
υ∈Υ◦(r)

‖Y̆(υ)‖ = ε sup
υ∈Υ◦(r)

sup
‖u‖≤‖D(υ−υ∗)‖

1

ε‖D(υ − υ∗)‖
u>Y̆(υ).

Due to Lemma 44 the process U(r,υ,u)
def
= 1

ε‖D(υ−υ∗)‖u
>Y̆(υ) satisfies condition (Ed) (see

(41)) as process on U(r∗) where

U(r)
def
= Υ◦(r)×Br(0). (44)

Further sup(υ,u)∈U(r) U(r,υ,u) is increasing in r . This allows to apply Theorem 42 to

obtain the desired result. Set d((υ,u), (υ◦,u◦))2 = ‖D(υ− υ∗)‖2 + ‖u−u◦‖2 . We get on
a set of probability greater 1− e−x

sup
(υ,u)∈U(r∗)

{
1

6εν1‖D(υ − υ∗)‖
u>Y̆(υ)− ‖D(υ − υ∗)‖2 − ‖u‖2

}

≤ zQ

(
x,Q

(
U(r∗)

))
.

The constant Q
(
U(r∗)

)
> 0 quantifies the complexity of the set U(r∗) ⊂ Rp∗ × Rp . We

point out that for compact M ⊂ Rp∗ we have Q(M) = 2p∗ (see Supplement of Spokoiny
(2012), Lemma 2.10). This gives Q

(
U
)

= 2p∗ + 2p . Finally observe that

sup
r≤r∗

sup
υ∈Υ◦(r)

{
1

6εν1
‖Y̆(υ)‖ − 2r2

}

≤ sup
r≤r∗

sup
(υ,u)∈U(r)

{
1

6εν1‖D(υ − υ∗)‖
u>Y̆(υ)− ‖D(υ − υ∗)‖2 − ‖u‖2

}

= sup
(υ,u)∈U(r∗)

{
1

6εν1‖D(υ − υ∗)‖
u>Y̆(υ)− ‖D(υ − υ∗)‖2 − ‖u‖2

}
.

Lemma 44 Suppose that Y̆(υ) satisfies for each ‖u‖ ≤ 1 and |λ| ≤ g the inequality (43).
Then the process U(υ,u) = 1

2ε‖D(υ−υ∗)‖ Y̆(υ)>u1 satisfies (Ed) from (41) with |λ| ≤ g/2 ,

d((υ,u), (υ◦,u◦))2 = ‖D(υ−υ∗)‖2 + ‖u−u◦‖2 , ν = 2ν0 and U ⊂ Rp∗+p defined in (44),
i.e. for any (υ,u1), (υ◦,u2) ∈ U

logE exp

{
λ
U(υ,u1)− U(υ◦,u2)

d((υ,u1), (υ◦,u2))

}
≤ ν2

0λ
2

2
, |λ| ≤ g/2.
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Proof Let (υ,u1), (υ◦,u2) ∈ U and w.l.o.g. u1 ≤ ‖D(υ− υ∗)‖ ≤ ‖D(υ◦ − υ∗)‖ . By the
Hölder inequality and (43), we find

logE exp

{
λ
U(υ,u1)− U(υ,u2)

d((υ,u1), (υ◦,u2))

}

= logE exp

{
λ
U(υ,u1)− U(υ◦,u1) + U(υ◦,u1)− U(υ◦,u2)

d((υ,u1), (υ◦,u2))

}

≤ 1

2
logE exp

{
2λ
u>1
(

1
‖D(υ−υ∗)‖ Y̆(υ)− 1

‖D(υ◦−υ∗)‖ Y̆(υ◦)
)

ε‖D(υ − υ◦)‖

}

+
1

2
logE exp

{
2λ

(u>1 − u>2 )Y̆(υ◦)

ε‖u1 − u2‖‖D(υ − υ∗)‖

}

≤ sup
‖u‖≤1

1

2
logE exp

{
2λ
u>
(
Y̆(υ)− Y̆(υ◦)

)

ε‖D(υ − υ◦)‖

}

+ sup
‖u‖≤1

1

2
logE exp

{
2λ
u>
(
Y̆(υ◦)− Y̆(υ∗)

)

ε‖D(υ − υ∗)‖

}

≤ 4ν2
0λ

2

2
, λ ≤ g/2.

Appendix C. A Bound for the Spectral Norm of a Random Matrix
Process

We want to derive for a random process Y̆(υ) ∈ Rp∗×p∗ a bound of the kind

P

(
sup

υ∈Υ◦(r)

{
‖Y̆(υ)‖

}
≥ Cε2z1(x, p∗)r

)
≤ e−x.

We derive such a bound in a very similar manner to Theorem E.1 of Andresen and Spokoiny
(2014).

We want to apply Corollary 2.2 of the supplement of Spokoiny (2012). Again we slightly
generalized the formulation but the proof remains the same.

Corollary 45 Let (U(r))0≤r≤r∗ ⊂ Rp be a sequence of balls around υ∗ induced by the
metric d(·, ·) . Let a random real valued process U(υ) fulfill that U(υ∗) = 0 and

(Ed) For any υ,υ◦ ∈ U(r)

logE exp

{
λ
U(υ)− U(υ◦)

d(υ,υ◦)

}
≤ ν2

0λ
2

2
, |λ| ≤ g. (45)
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Then for each 0 ≤ r ≤ r∗ , on a set of probability greater 1− e−x

sup
υ∈U(r)

U(υ) ≤ 3ν1z1(x, p∗)2d(υ,υ∗),

where z1(x, p∗)
def
= Q(U(r∗)) denotes the entropy of the set U(r∗) ⊂ Rp and where with

g0 = ν0g and for some Q > 0

z1(x,Q)
def
=

{√
2(x + Q) if

√
2(x + Q) ≤ g0,

g−1
0 (x + Q) + g0/2 otherwise.

(46)

To use this result let Y(υ) be a smooth centered random process with values in Rp∗×p∗

and let D : Rp∗ → Rp∗ be some linear operator. We aim at bounding the maximum of

the spectral norm ‖Y(υ)‖ over a vicinity Υ◦(r)
def
= {‖υ − υ∗‖Y ≤ r} of υ∗ . Suppose that

Y(υ) satisfies Y(υ∗) = 0 and for each 0 < r < r∗ and for all pairs υ,υ◦ ∈ Υ◦(r) =
{
υ ∈

Υ : ‖υ − υ∗‖Y ≤ r
}
⊂ Rp∗

sup
‖u1‖≤1

sup
‖u2‖≤1

logE exp

{
λ
u>1
(
Y(υ)− Y(υ◦)

)
u2

ε2‖D(υ − υ◦)‖

}
≤ ν2

2λ
2

2
. (47)

Remark 46 In the setting of Theorem 14 we have ‖υ − υ◦‖Y = ‖D(υ − υ◦)‖ and

Y(υ) = D−1∇2ζ(υ)−D−1∇2ζ(υ∗),

and condition (47) becomes (ED2) from 2.1.

Theorem 47 Let a random process Y(υ) ∈ Rp∗×p∗ fulfill Y(υ∗) = 0 and let condition (47)
be satisfied. Then for each 0 ≤ r ≤ r∗ , on a set of probability greater than 1− e−x

sup
υ∈Υ◦(r)

‖Y(υ)‖ ≤ 9ε2ν2z1(x, 6p∗)r,

with g0 = ν0g .

Remark 48 Note that the entropy of the original set Υ◦(r) ⊂ Rp∗ is multiplied by 3. So
in order to control the spectral norm ‖Y(υ)‖ one only pays with this factor.

Proof In what follows, we use the representation

‖Y(υ)‖ = ε2 sup
‖u1‖≤r

sup
‖u2‖≤r

1

ε2r2
u>1 Y̆(υ)u2.

This implies

sup
υ∈Υ◦(r)

‖Y(υ)‖ = ε sup
υ∈Υ◦(r)

sup
‖u2‖≤r

sup
‖u2‖≤r

1

εr2
u>1 Y̆(υ)u2.
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Due to Lemma 49 the process U(υ)
def
= 1

εr2
u>1 Y(υ)u2 satisfies condition (Ed) (see (45)) as

process on

U(r)
def
= Υ◦(r)×Br(0)×Br(0) ⊂ R3p∗ . (48)

This allows to apply Corollary 45 to obtain the desired result. We get on a set of probability
greater 1− e−x

sup
υ∈Υ◦(r)

‖Y(υ)‖ ≤ sup
(υ,u1,u2)∈U(r)

{
1

r2
u>1 Y(υ)u2

}
≤ 9ε2ν2z1

(
x,Q

(
U(r∗)

))
r.

The constant Q
(
U(r)

)
> 0 quantifies the complexity of the set U(r) ⊂ R3p∗ . We point

out that for compact M ⊂ R3p∗ we have Q(M) = 6p∗ (see Supplement of Spokoiny (2012),
Lemma 2.10). This gives the claim.

Lemma 49 Suppose that Y(υ) ∈ Rp∗×p∗ satisfies Y(υ∗) = 0 and for each ‖u1‖ ≤ 1 ,
‖u2‖ ≤ 1 and |λ| ≤ g the inequality (47). Then the process

U(υ,u1,u2) =
1

2ε2r2
u>1 Y(υ)>u2

satisfies (Ed) from (45) with U ⊂ R3p∗ defined in (48), with |λ| ≤ g/3 and with

d((υ,u1,u2), (υ◦,u◦1,u
◦
2))2 = ‖D(υ − υ∗)‖2 + ‖u1 − u◦1‖2 + ‖u2 − u◦2‖2,

i.e. for any (υ,u1,u2), (υ◦,u◦1,u
◦
2) ∈ U

logE exp

{
λ
U(υ,u1,u2)− U(υ◦,u◦1,u

◦
2)

d((υ,u1,υ2), (υ◦,u◦1,u
◦
2))

}
≤ 9ν2

2λ
2

2
, |λ| ≤ g/3.
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Proof Let (υ,u1,u2), (υ◦,u◦1,u
◦
2) ∈ U . By the Hölder inequality and (47), we find

logE exp

{
λ
U(υ,u1,u2)− U(υ◦,u◦1,u

◦
2)

d((υ,u1,u2), (υ◦,u◦1,u
◦
2))

}

= logE exp

{
λ

(
U(υ,u1,u2)− U(υ◦,u1,u2)

d((υ,u1,u2), (υ◦,u◦1,u
◦
2))

+
U(υ◦,u1,u2)− U(υ◦,u◦1,u2)

d((υ,u1,υ2), (υ◦,u◦1,u
◦
2))

+
U(υ◦,u◦1,u2)− U(υ◦,u◦1,u

◦
2)

d((υ,u1,u2), (υ◦,u◦1,u
◦
2))

)}

≤ 1

3
logE exp

{
3λ
u>1
(

1
r2
Y̆(υ)− 1

r2
Y̆(υ◦)

)
u2

ε2‖D(υ − υ◦)‖

}

+
1

3
logE exp

{
3λ

(u1 − u◦1)>)Y(υ◦)u2

ε2‖u1 − u2‖r2

}

+
1

3
logE exp

{
3λ

(u◦1)>)Y(υ◦)(u2 − u◦2)

ε2‖u1 − u2‖r2

}

≤ 1

3
sup
‖u1‖≤1

sup
‖u2‖≤1

logE exp

{
3λ
u>1
(
Y(υ)− Y(υ◦)

)
u2

ε2‖D(υ − υ◦)‖

}

+
2

3
sup
‖u1‖≤1

sup
‖u2‖≤1

logE exp

{
3λ
u>1
(
Y(υ◦)− Y(υ∗)

)
u2

ε2‖D(υ − υ∗)‖

}

≤ 9ν2
2λ

2

2
, λ ≤ g/3.
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