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Abstract

Variable selection is popular in high-dimensional data analysis to identify the truly informa-
tive variables. Many variable selection methods have been developed under various model
assumptions. Whereas success has been widely reported in literature, their performances
largely depend on validity of the assumed models, such as the linear or additive models.
This article introduces a model-free variable selection method via learning the gradient
functions. The idea is based on the equivalence between whether a variable is informative
and whether its corresponding gradient function is substantially non-zero. The proposed
variable selection method is then formulated in a framework of learning gradients in a flex-
ible reproducing kernel Hilbert space. The key advantage of the proposed method is that it
requires no explicit model assumption and allows for general variable effects. Its asymptotic
estimation and selection consistencies are studied, which establish the convergence rate of
the estimated sparse gradients and assure that the truly informative variables are correctly
identified in probability. The effectiveness of the proposed method is also supported by a
variety of simulated examples and two real-life examples.

Keywords: group Lasso, high-dimensional data, kernel regression, learning gradients,
reproducing kernel Hilbert space (RKHS), variable selection

1. Introduction

The rapid advance of technology has led to an increasing demand for modern statistical
techniques, such as high-dimensional data analysis that has attracted tremendous interests
in the past two decades. When analyzing high-dimensional data, it is often believed that
only a small number of variables are truly informative while others are noise. Therefore,
identifying the truly informative variables is regarded as one of the primary goals in high-
dimensional data analysis as well as many real applications such as health studies.
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In literature, a wide spectrum of variable selection methods have been proposed based
on various model assumptions. For example, under the linear model assumption, regular-
ized regression models are popularly used for variable selection, including the nonnegative
garrote (Breiman and Friedman, 1985), the least absolute shrinkage and selection operator
(Tibshirani, 1996), the smoothly clipped absolute deviation (Fan and Li, 2001), the adap-
tive Lasso (Zou, 2006), the combined L0 and L1 penalty (Liu and Wu, 2007), the truncated
L1 penalty (Shen et al., 2012), and many others. The main strategy is to associate the least
square loss function with a sparsity-inducing penalty, leading to sparse representation of the
resultant regression function. With the linear regression model, the sparse representation
leads to variable selection based on whether the corresponding regression coefficient is zero.

The aforementioned variable selection methods have demonstrated superior performance
in many real applications. Yet their success largely relies on the validity of the linear
model assumption. To relax the model assumption, attempts have been made to extend
the variable selection methods to a nonparametric regression context. For example, under
the additive regression model assumption, a number of variable selection methods have
been developed (Shively et al., 1999; Huang and Yang, 2004; Xue, 2009; Huang et al.,
2010). Furthermore, higher-order additive models can be considered, allowing each func-
tional component contain more than one variables, such as the component selection and
smoothing operator (Cosso) method (Lin and Zhang, 2006). While this method provides
a more flexible and still interpretable model compared to the classical additive models,
the number of functional components increases exponentially with the dimension. Another
stream of research on variable selection is to conduct screening (Fan et al., 2011; Zhu et
al., 2011; Li et al., 2012), which treats each individual variable separately and assures the
sure screening properties. To overcome the issue of ignoring interaction effects, a higher-
order interaction screening method is also developed (Hao and Zhang, 2014). Model-free
variable selection has also been approached in the context of sufficient dimension reduction
(Li et al., 2005; Bondell and Li, 2009). More recently, Stefanski et al. (2014) introduced a
novel measurement-error-model-based variable selection method that can be adapted to a
nonparametric kernel regression.

In this article, we propose a novel model-free variable selection method, which requires
no explicit model assumptions and allows for general variable effects. The method is based
on the idea that a variable is truly informative with respect to the regression function if
the gradient of the regression function along the corresponding coordinate is substantially
different from zero. Thus the proposed variable selection method is formulated in a gradi-
ent learning framework equipped with a flexible reproducing kernel Hilbert space (Wahba,
1999). Learning gradients can be traced back to Härdle and Gasser (1985). Some of its
recent developments include Jarrow et al. (2004), Mukherjee and Zhou (2006), Ye and
Xie (2012), and Brabanter et al. (2013), where the main focus is to estimate the gradient
functions.

As opposed to estimating the gradient functions, this article focuses on variable selection
whose primary interest is to identify the truly informative variables corresponding to the
non-zero gradient functions. To attain the sparsity in the estimated gradients, we consider
a learning algorithm generated by a coefficient-based regularization scheme (Scholköpf and
Smola, 2002), and a group Lasso penalty (Yuan and Lin, 2006) is enforced on the coeffi-
cients so that the proposed method can conduct gradient learning and variable selection
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simultaneously. Specifically, the proposed variable selection method via gradient learning is
formulated in a regularization form that consists of a pairwise loss function for estimating
the gradient functions and a group Lasso penalty.

One of the main features of the proposed variable selection method is that it does not
require any explicit model assumption and detect informative variables with various effects
on the regression function. This is a major advantage over most existing model-based
variable selection methods which need to pre-specify a working model. If higher-order
variable effects are considered, the model-based methods need to enumerate the possible
components, whose number increases exponentially with the dimension p. In sharp contrast,
our proposed method only needs to estimate p components, while allowing for general
variable effects.

Another interesting feature of the proposed method is the use of coefficient-based rep-
resentation in estimating the gradient function. It follows directly from the representor
theorem (Wahba, 1999) in a RKHS, and turns out to greatly facilitate variable selection in
the gradient learning framework. With the coefficient-based representation, the group Lasso
penalty can be naturally enforced on all the coefficients associated with the same variable.
This leads to a well-structured optimization task, and can be efficiently solved through a
blockwise coordinate descent algorithm (Yang and Zou, 2015). This is contrast to the exist-
ing gradient learning methods such as Ye and Xie (2012), where standard RHKS is used and
a squared RKHS-norm penalty is enforced to attain the sparsity structure in the estimated
gradients, and a forward-backward splitting algorithm is required for computation.

Finally, the effectiveness of the proposed method is supported by a variety of simulated
and real examples. More importantly, its asymptotic estimation and selection consisten-
cies are established, showing that the proposed method shall recover the truly informative
variables with probability tending to one, and estimate the true gradient function at a fast
convergence rate. Note that the variable selection consistency is not established in Ye and
Xie (2012), and the estimation consistency of our method is more challenging due to the
additional hypothesis error arises in the coefficient-based formulation. Also, as in many
nonparametric variable selection methods (Lin and Zhang, 2006; Xue, 2009; Huang et al.,
2010), the results are obtained in the sneario of fixed dimension, which are particlarly inter-
esting given the fact that the variable selection consistency is obtained without assuming
any explicit model.

The rest of the article is organized as follows. Section 2 presents a general framework
of the proposed model-free variable selection method as well as an efficient computing al-
gorithm to tackle the resultant large-scale optimization task. Section 3 establishes the
asymptotic results of the proposed method in terms of both estimation and variable se-
lection. The numerical experiments on the simulated examples and real applications are
contained in Section 4. A brief discussion is provided in Section 5, and the Appendix is
devoted to the technical proofs.

2. Model-free variable selection

2.1 Preambles

Suppose that a training set consists of (xi, yi); i = 1, . . . , n, where xi = (xi1, . . . , xip)
T ∈ Rp

and yi ∈ R are independently sampled from some unknown joint distribution. We consider
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the following regression model,

y = f∗(x) + ε,

where E(ε|x) = 0, Var(ε|x) = σ2, x = (x(1), . . . , x(p))T is supported on a compact metric
space X , and f∗ is the true regression function that is assumed to be twice differentiable
everywhere.

When p is large, it is generally believed that only a small number of variables are truly
informative. In literature, to define the truly informative variables, f∗ is often assumed to
be of certain form. For instance, if f∗(x) = xT β∗ with β∗ = (β∗1 , . . . , β

∗
p)T , then x(j) is

regarded as truly informative if β∗j 6= 0. However, this linear model assumption on f∗ can
be too restrictive in practice, and whether a variable is informative shall not depend on the
assumed model. In this article, a model-free variable selection method is developed without
assuming any explicit form for f∗.

Since no explicit form is assumed for f∗, we note that if x(l) is non-informative in f∗, the
corresponding gradient function ∇f∗l (x) = ∂f∗(x)/∂x(l) ≡ 0 for any x. This fact motivates
the proposed model-free variable selection method in a gradient learning framework. Denote
g∗(x) = ∇f∗(x) = (∇f∗1 (x), . . . ,∇f∗p (x))T the true gradient function, and the estimation
error as

E(g) = E(x,y),(u,v)w(x,u)(y − v − g(x)T (x−u))2

= 2σ2
s + Ex,uw(x,u)(f∗(x)− f∗(u)− g(x)T (x−u))2, (1)

where σ2
s = E(x,y),(u,v)[w(x,u)(y − f∗(x))2] is independent of g, and w(x,u) is a weight

function that decreases as ‖x−u ‖ increases and ensures the local neighborhood of x con-

tributes more to estimating g∗(x). Typically, w(x,u) = e−‖x−u ‖2/τ2n with a pre-specified
positive parameter τ2

n, which plays a key role in the asymptotic estimation consistency and
is to be elaborated.

2.2 Coefficient-based formulation

Given the training set (xi, yi); i = 1, . . . , n, E(g) is approximated by its empirical version,
and then the proposed variable selection method is formulated as

argmin
g∈HpK

s(g) =
1

n(n− 1)

n∑
i,j=1

wij

(
yi − yj − g(xi)

T (xi − xj)
)2

+ J(g), (2)

where wij = w(xi,xj), HK denotes a RKHS induced by a pre-specified kernel K(·, ·),
J(g) = λn

∑p
l=1 πlJ(gl) is a penalty function on the complexity of g, and πl’s are the

adaptive tuning parameters to be specified. The representor theorem assures that the
minimizer of (2) must be of the following coefficient-based representation,

gl(x) =

n∑
t=1

αltK(x,xt); l = 1, . . . , p.

Thanks to the explicit form of gl(x), it is clear that gl(x) ≡ 0 is equivalent to αlt = 0 for all t’s,
or more concisely, ‖α(l)‖2 = 0 with α(l) = (αl1, ..., α

l
n)T . A similar formulation connecting
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between ridge regression with a coefficient-based representation and support vector machine
(Cortes and Vapnik, 1995) is also established in Scholköpf and Smola (2002).

Furthermore, to exploit the sparse structure in the regression model, we propose to
consider the following sparsity-inducing penalty,

J(gl) = inf
{
‖α(l)‖2 : gl(·) =

n∑
t=1

αltK(·,xt)
}
. (3)

Here the group Lasso type of penalty ‖α(l)‖2 attains the effect of pushing all or none of
αlt’s to be exactly 0 and thus achieves the purpose of variable selection. The infimum is
necessary for defining the penalty as the kernel basis {K(·,xt)}nt=1 may not be linearly
independent and thus the representation of gl in HK may not be unique. This penalty term
differs from that in Ye and Xie (2012) in that our coefficient-based penalty does not rely on
K and usually leads to sparser solutions. On the contrary, the penalty ‖gl‖K in Ye and Xie
(2012) can be sensitive to the choice of K as its minimum eigenvalue can be very small. In
addition, the finite dimensional hypothesis space is more flexible than the standard RHKS,
and particularly the positive definite K is no longer needed. This relaxation can be critical
in scenarios when such kernels are inappropriate.

With the coefficient-based representation and the group Lasso penalty, the proposed
variable selection formulation can be rewritten as

argmin
α(1),...,α(p)

1

n(n− 1)

n∑
i,j=1

wij

(
yi − yj −

p∑
l=1

K
T
i α

(l)(xil − xjl)
)2

+ λn

p∑
l=1

πl‖α(l)‖2, (4)

where Ki = (K(xi,x1), . . . ,K(xi,xn))T is the i-th column of K = (K(xi,xj))n×n, and
λn is a tuning parameter. The infimum operator in (3) is absorbed in the minimization
in (4). Clearly, (4) simplifies the original formulation (2) from a functional space to a
finite-dimensional vector space. However, the vector space is of dimension np and thus still
requires an efficient large-scale optimization scheme, which will be developed in the next
section.

2.3 Computing algorithm

To solve (4), we develop a block coordinate descent algorithm as in Yang and Zou (2015).
First, after dropping the α-unrelated terms, the cost function in (4) can be simplified as

argmin
α

−αT
U +

1

2
αT

Mα + λn

p∑
l=1

πl‖α(l)‖2, (5)

where αT =
(
(α(1))T , . . . , (α(p))T

)
, U = 2

n(n−1)

∑n
i,j=1wijUij , M = 2

n(n−1)

∑n
i,j=1wijMij ,

Uij = (yi − yj)(xi − xj)⊗Ki,

Mij =
(

(xi − xj)(xi − xj)
T
)
⊗
(
KiK

T
i

)
,

Ki is the i-th column of K = (K(xi,xj))n×n, In is a n-dimensional identity matrix, and ⊗
denotes the kronecker product.
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Then we update one α(l) at a time pretending others fixed, and the l-th subproblem
becomes

argmin
α(l)

L(α) + λnπl‖α(l)‖2 = −αT
U +

1

2
αT

Mα + λnπl‖α(l)‖2,

To solve the subproblem, a similar approximation as in Yang and Zou (2015) can be em-
ployed, where the updated α(l) is obtained by solving

argmin
α(l)

∇lL(α̃)(α(l) − α̃(l)) +
γ(l)

2
(α(l) − α̃(l))

T
(α(l) − α̃(l)) + λnπl‖α(l)‖2. (6)

Here α̃ is the current estimate for α, α̃(l) is the l-th column of α̃,

∇L(α̃) =
2

n(n− 1)

n∑
i,j=1

wij(Mijα̃−Uij),

∇lL(α̃) denotes the l-th block vector of ∇L(α̃), and

∇lL(α̃) =
2

n(n− 1)

n∑
i,j=1

wij

(
p∑
s=1

((xi − xj)(xi − xj)
T )lsKiK

T
i α̃

(s) − (yi − yj)(xil − xjl)Ki

)
,

where ((xi − xj)(xi − xj)
T )ls is the (l, s)-th entry of (xi − xj)(xi − xj)

T . Furthermore,

denote γ(l) the largest eigenvalue of

M
(l) =

2

n(n− 1)

n∑
i,j=1

wij((xi − xj)(xi − xj)
T )llKiK

T
i ,

which is the l-th n× n block diagonal of M.
It is straightforward to show that (6) has an analytical solution,

α(l) =

(
α̃(l) − ∇lL(α̃)

γ(l)

)(
1− λnπl

‖γ(l)α̃(l) −∇lL(α̃)‖2

)
+

. (7)

The proposed algorithm then iteratively updates α(l) for l = 1, . . . , p, 1, . . . until conver-
gence. The algorithm is guaranteed to converge to the global minimum, since the cost
function in (5) is convex and its value is decreased in each updating step. Furthermore, the
computational complexity of the block coordinate descent algorithm is O(n2p2D) with D
being the number of iterations until convergence, which can be substantially less than the
complexity of solving (5) with standard optimization packages.

3. Asymptotic theory

This section presents the asymptotic estimation and variable selection consistencies of the
proposed model-free variable selection method. The estimation consistency assures that the
distance between ĝ and g∗ converges to 0 at a fast rate, and the variable selection consis-
tency assures that the truly informative variables can be exactly recovered with probability

6



Model-free Variable Selection in RKHS

tending to 1. Both consistency results are established for fixed p. For simplicity, we as-
sume only the first p0 variables x(1), . . . , x(p0) are truly informative. The following technical
assumptions are made.

Assumption A1. The support X is a non-degenerate compact subset of Rp, and there
exists a cosntatnt c1 such that supx ‖H∗(x)‖2 ≤ c1, where H∗(x) = ∇2f∗(x). Also,
supx |K(x,x)| = 1, and the largest eigenvalue of K is of order O(nψ) with 0 ≤ ψ ≤ 1.

Assumption A2. For some constants c2 and θ > 0, the probability density p(x) exists
and satisfies

|p(x)− p(u)| ≤ c2dX(x,u)θ, for any x,u ∈ X , (8)

where dX(·, ·) is the Euclidean distance on X .
Assumption A3. There exists some constant c4 and c5 such that c4 ≤ limn→∞min1≤l≤p πl ≤

limn→∞max1≤l≤p0 πl ≤ c5 and n−1/2λn minl>p0 πl →∞.
Assumption A4. For any j ≤ p0, there exists a constant t such that

∫
X\Xt ‖g

∗
j (x)‖2dρX(x) >

0, and for any j ≥ p0 + 1, g∗j (x) ≡ 0 for any x ∈ X , where Xt = {x ∈ X : dX(x, ∂X ) < t}.
In Assumption A1, the compact support is assumed for the technical simplicity, which

has been often used in the literature of nonparametric models (Horowitz and Mammen, 2007;
Ye and Xie, 2012). The non-degenerate X rules out the complete multicollinearity and thus
assures the unique minimizer of (4) and the true gradient function g∗(x). And ‖H∗(x)‖2
is a matrix-2 norm of H∗(x) for any given x, denoting its largest eigenvalue. The bounded
assumption on ‖H∗(x)‖2 implies that |f∗(u)− f∗(x)− (g∗(x))T (u−x)| ≤ c1‖u−x ‖22 for
any u and x, which is necessary to prevent the loss function from diverging at certain values.
Furthermore, for the Gaussian Kernel, the assumption for its largest eigenvalue can be
verified with ψ = 1. (Gregory et al., 2012). Assumption A2 introduces a Lipschitz condition
on the density function, assuring the smoothness of the distribution of x. Assumption A1
and A2 also imply that the probability density p(x) is bounded. Assumption A3 provides
some guideline on setting the adaptive weights, and is satisfied with πl = ‖(α̃(l))T K α̃(l)‖−γ2

and some positive γ. For example, the initializer α̃(l) can be obtained by solving (4)
without the Lasso penalty and γ = 3 − 2ψ, which can be verified following Lemma 1
and Theorem 14 in Mukherjee and Zhou (2006). Other consistent estimators can also be
employed to initialize the weights. Assumption A4 requires that the gradient function
along a truly informative variable needs to be substantially different from 0, and that along
a non-informative variable is 0 everywhere.

Lemma 1 Let g0 be the minimizer of E(g) over all functionals. If Assumption A1-A2 are
met, then as τ2

n → 0, g0(x) converges to g∗(x) in probability, and E(g0)− 2σ2
s → 0.

Lemma 1 is analogous to the Fisher consistency established for margin-based classification
(Lin, 2004; Liu, 2007). It shows that the error measure E(g) in (1) is reasonable in the sense
that its global minimizer well approximates the true gradient function g∗ as τ2

n shrinks to 0.
Note that it may not appropriate to set τ2

n to be exactly 0 in the gradient learning framework,
but a sufficient small τ2

n is necessary in order to assure the estimation consistency.

Theorem 2 Suppose Assumptions A1-A4 are met. Then there exists some constant M0

and c6 such that with probability at least 1− δ,

E(ĝ)− 2σ2
s ≤ c6

√
log(4/δ)

(
n−1/4 + n

2ψ−1
2 λ−2

n + τp+4
n + n

− 1
2(p+2) + n

−(1− 1
2(p+2)

)
λ2
nτ
−4
n

)
.
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Theorem 2 establishes the estimation consistency of ĝ in terms of its estimation error

E(ĝ)−2σ2
s , which is governed by the choice of λn and τn. Specifically, let λn = n

2ψ−1
4

+ 1
4(p+2)

and τn = n
− θ

4p(p+2)(p+4+3θ) , and we have E(ĝ)− 2σ2
s → 0 in probability.

Next, let AT = {1, · · · , p0} consist of all the truly informative variables, and Â = {j :

‖α̂(j)‖2 > 0} consist of all the estimated informative variables, where α̂(j) is the solution of
(4).

Theorem 3 Suppose all the assumptions in Theorem 2 are met. Let λn = n
2ψ−1

4
+ 1

4(p+2)

and τn = n
− θ

4p(p+2)(p+4+3θ) , then P (Â = A∗)→ 1 as n diverges.

Theorem 3 assures that the selected variables by the proposed method can exactly recover
the true active set with probability tending to 1. In fact, P (Â = A∗) can be upper bounded
by 1−O(n−1/4) with an appropriate choice of δ. This result is particularly interesting given
the fact that it is established without assuming any explicit model assumptions.

4. Numerical experiments

This section examines the effectiveness of the proposed model-free variable selection method,
and compares it against some popular model based methods in literature, including variable
selection with the additive model (Xue, 2009), Cosso (Lin and Zhang, 2006), sparse gra-
dient learning (Ye and Xie, 2012) and multivariate adaptive regression splines (Friedman,
1991), denoted as MF, Add, Cosso, SGL and Mars respectively. In all the experiments, the
Gaussian kernel K(x,u) = e−‖x−u ‖22/2σ2

n is used, where the scalar parameters σ2
n and τ2

n

in w(x,u) are set as the median over the pairwise distances among all the sample points
(Mukherjee and Zhou, 2006). Other tuning parameters in these competitors, such as the
number of knots in Xue (2009), are set as the default values in the available R and Matlab
packages.

The tuning parameters in each method are determined by the stability-based selection
criterion in Sun et al. (2013). The idea is to conduct a cross-validation-like scheme, and
measure the stability as the agreement between two estimated active sets. It randomly
splits the training set into two subsets, applies the candidate variable selection method to
each subset, and obtains two estimated active sets, denoted as Â1b and Â2b. The variable
selection stability can approximated by sλ = 1

B

∑B
b=1 κ(Â1b, Â2b), where B is the number of

splitting in the cross validation scheme, and κ(·, ·) is the standard Cohen’s kappa statistic
measuring the agreement between two sets. The tuning parameter λ is then selected as the
one maximizing sλ. Finally, the performance of all methods is evaluated by a number of
measures regarding the variable selection accuracy.

4.1 Simulated examples

Two simulated examples are considered. The first example was used in Xue (2009) and
Huang et al. (2010), where the true regression model is an additive model. The second
example modifies the generating scheme of the first one and includes interaction terms.

Example 1: First generate p-dimensional variables xi = (xi1, . . . , xip)
T with xij =

Wij+ηUi
1+η , where Wij and Ui are independently from U(−0.5, 0.5), for i = 1, . . . , n and
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j = 1, . . . , p. When η = 0 all variables are independent, whereas when η = 1 correlation
presents among the variables. Next, set f∗(xi) = 5f1(xi1) + 3f2(xi2) + 4f3(xi3) + 6f4(xi4),

with f1(u) = u, f2(u) = (2u−1)2, f3(u) = sin(πu)
2−sin(πu) , and f4(u) = 0.1 sin(πu)+0.2 cos(πu)+

0.3 sin2(πu) + 0.4 cos3(πu) + 0.5 sin3(πu). Finally, generate yi by yi = f(xi) + εi with
εi ∼ N(0, 1.312). Clearly, the true underlying regression model is additive.

Example 2: The generating scheme is similar as Example 1, except that f∗(xi) = (2xi1−
1)(2xi2 − 1), Wij and Ui are independently from N(0, 1) and εi ∼ N(0, 1). It is clear that
the underlying regression model includes interaction terms, and thus the additive model
assumption is no longer valid.

For each example, different scenarios are considered with η = 0 or 1, and (n, p) =
(100, 10), (100, 20) or (200, 50). Each scenario is replicated 50 times, and the averaged
performance measures are summarized in Tables 1 and 2. Specifically, Size represents the
averaged number of selected informative variables, TP represents the number of truly in-
formative variables selected, FP represents the number of truly non-informative variables
selected and C, U, O are the times of correct-fitting, under-fitting and over-fitting, respec-
tively.

It is evident that the proposed MF method delivers superior selection performance
against the other three competitors. In Table 1 where the true model is indeed additive,
MF performs similarly as Add and SGL, whereas Cosso and Mars appear more likely to
overfit. In Table 2 where the true model consists of interaction terms, the performance
of MF becomes competitive, but Add tends to under-fit more frequently, and Cosso, Mars
and SGL tend to overfit as the dimension increases. Furthermore, in both examples with
η = 1, it is clear that the correlation among variables increases the difficulty of selecting the
truly informative variables, yet the proposed MF method still outperforms its competitors.
Furthermore, it is also noted that the estimation accuracy of MF outperforms SGL, but it
is omitted here as only MF and SGL estimate the gradient function g, whereas Add, Cosso
and Mars estimate the regression function f .

4.2 Real examples

The proposed model-free variable selection method is applied to three real data examples,
the Boston housing data, the Ozone concentration data, and the digit recognition data,
all of which are publicly available. The Boston housing data concerns the median value of
owner-occupied homes in each of the 506 census tracts in the Boston Standard Metropolitan
Statistical Area in 1970. It consists of 13 variables, including per capita crime rate by
town (CRIM), proportion of residential land zoned for lots over 25,000 square feet (ZN),
proportion of non-retail business acres per town (INDUS), Charles River dummy variable
(CHAS), nitric oxides concentration (NOX), average number of rooms per dwelling (RM),
proportion of owner-occupied units built prior to 1940 (AGE), weighted distances to five
Boston employment centers (DIS), index of accessibility to radial highways (RAD), full-
value property-tax rate per $10000 (TAX), pupil-teacher ratio by town (PTRATIO), the
proportion of blacks by town (B), lower status of the population (LSTAT), which may affect
the housing price. The Ozone concentration data concerns the daily measurements of Ozone
concentration in Los Angeles basin in 330 days. The Ozone concertration may be influenced
by 11 meteorological quantities, such as month (M), day of month (DM), day of week
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(n, p, η) Method Size TP FP C U O

(100,10,0) MF 4.000 4.000 0.000 50 0 0
Add 4.080 4.000 0.080 46 0 4

Cosso 4.200 3.960 0.240 41 1 8
SGL 4.020 3.600 0.420 12 20 18
Mars 5.200 4.000 1.200 12 0 38

(100,20,0) MF 4.040 4.000 0.300 35 0 15
Add 4.040 4.000 0.040 48 0 2

Cosso 4.280 4.000 0.280 40 0 10
SGL 4.220 3.620 0.600 16 18 16
Mars 6.000 4.000 2.000 10 0 40

(200,50,0) MF 4.500 4.000 0.500 39 0 11
Add 5.200 4.000 1.200 30 0 20

Cosso 5.600 4.000 1.600 31 0 19
SGL 3.600 3.400 0.200 12 30 8
Mars 12.400 4.000 8.400 0 0 50

(100,10,1) MF 4.160 3.800 0.360 33 10 7
Add 3.960 3.960 0.000 48 2 0

Cosso 4.200 3.760 0.440 24 8 18
SGL 4.200 3.600 0.600 24 12 14
Mars 5.240 4.000 1.240 16 0 34

(100,20,1) MF 4.080 3.800 0.280 30 10 10
Add 3.960 3.840 0.120 36 8 6

Cosso 3.960 3.800 0.160 37 5 8
SGL 4.020 3.500 0.520 10 20 20
Mars 6.240 4.000 2.240 8 0 42

(200,50,1) MF 4.700 3.900 0.800 35 5 10
Add 5.600 4.000 1.600 21 0 29

Cosso 5.000 3.900 1.100 26 4 20
SGL 3.720 3.500 0.220 20 20 10
Mars 13.220 4.000 9.220 0 0 50

Table 1: The averaged performance measures of various variable selection methods in Ex-
ample 1.

(DW), Vandenburg 500 millibar height (VDHT), wind speed (WDSP), humidity (HMDT),
temperature at Sandburg (SBTH), inversion base height (IBHT), Daggett pressure gradient
(DGPG), inversion base temperature (IBTP) and visibility (VSTY). These two datasets
have been widely analyzed in literature, including Breiman and Friedman (1985), Xue
(2009), and Lin and Zhang (2006). For the digit recognition data, each digit is described
by a 8 × 8 gray-scale image with each entry ranging from 0 to 16. We focus on digits 3
and 5 due to their similarity, and the resultant dataset consists of 365 observations and 64
attributes.
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(n, p, η) Method Size TP FP C U O

(100,10,0) MF 1.960 1.920 0.080 43 3 4
Add 2.140 1.760 0.380 25 9 16

Cosso 2.920 1.920 1.000 15 3 32
SGL 2.320 1.920 0.400 30 4 16
Mars 4.000 2.000 2.000 8 0 42

(100,20,0) MF 2.100 2.000 0.100 45 0 5
Add 2.200 1.800 0.400 30 8 12

Cosso 4.320 1.920 2.400 10 3 37
SGL 2.220 2.000 0.220 42 0 8
Mars 4.240 1.920 2.320 14 2 34

(200,50,0) MF 2.100 2.000 0.100 45 0 5
Add 2.920 1.920 1.000 28 2 20

Cosso 2.200 1.800 0.400 25 10 15
SGL 1.800 1.800 0.000 42 8 0
Mars 8.200 2.000 6.200 0 0 50

(100,10,1) MF 2.160 2.000 0.160 42 0 8
Add 2.360 1.560 0.800 16 12 22

Cosso 3.600 2.000 1.600 10 0 40
SGL 2.300 2.000 0.300 35 0 15
Mars 4.240 2.000 2.240 10 0 40

(100,20,1) MF 2.040 1.920 0.120 40 4 6
Add 2.460 1.920 0.540 34 4 12

Cosso 3.240 1.800 1.440 9 10 31
SGL 2.120 1.800 0.320 28 10 12
Mars 6.740 2.000 4.740 0 0 50

(200,50,1) MF 2.160 1.960 0.200 40 2 8
Add 16.200 1.800 14.400 17 9 24

Cosso 2.340 1.800 0.540 28 10 22
SGL 2.460 1.960 0.500 23 2 25
Mars 8.160 1.960 6.240 0 2 48

Table 2: The averaged performance measures of various variable selection methods in Ex-
ample 2.

In our analysis, all the variables and responses are standardized and the selected vari-
ables are summarized. The selected informative variables by MF, Add, Cosso and Mars are
summarized in Tables 3 and 4. As the truly informative variables are unknown in real exam-
ples, averaged prediction errors with the selected variables are also reported to compare the
performance. To compute the averaged prediction error, each dataset is randomly split into
two parts: m observations for testing and the remaining for training. Specifically, m = 30
for the Boston housing data, m = 50 for the Ozone concentration data, and m = 35 for
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digit recognition data. Each example is replicated 100 times, and the averaged prediction
errors by MF, Add, Cosso and Mars are summarized in Tables 3-5.

Variables MF Add Cosso SGL Mars
CRIM -

√ √
-

√

ZN - - - - -
INDUS - - - - -
CHAS - - - - -
NOX -

√
- -

√

RM
√ √ √ √ √

AGE - - - - -
DIS -

√
- -

√

RAD - - - -
√

TAX -
√

- - -
PTRATIO -

√
- -

√

B - - - -
√

LSTAT
√ √ √ √ √

Pred. Err. 1.774(0.0931) 1.780(0.0916) 1.797(0.0924) 1.774(0.0931) 1.956(0.0939)

Table 3: The selected variables as well as the corresponding prediction errors by various
selection methods in the Boston housing dataset.

Variables MF Add Cosso SGL Mars
M

√ √ √ √ √

DM - - - - -
DW - - - - -

VDHT -
√

-
√ √

WDSP - - - -
√

HMDT
√

-
√ √ √

SBTH
√ √ √ √ √

IBHT -
√

-
√ √

DGPG -
√

- -
√

IBTP
√

-
√ √ √

VSTY -
√

-
√ √

Pred. Err. 1.768(0.0416) 1.769(0.0425) 1.768(0.0416) 1.776(0.0426) 1.784(0.0463)

Table 4: The selected variables as well as the corresponding prediction errors by various
selection methods in the Ozone concentration dataset.

MF Add Cosso SGL Mars
No. of variables 2 48 8 4 18
Prediction error 1.857(0.0316) 1.871(0.0310) 1.878(0.0314) 1.875(0.0324) 1.879(0.0310)

Table 5: The number of selected variables and the prediction errors by various selection
methods in the digit recognition dataset.

For the Boston housing data, MF and SGL select two informative variables, RM and
LSTAT, whereas Add, Cosso and Mars tend to select more variables. However, the corre-
sponding prediction errors of Add, Cosso and Mars appear to be larger than that of MF
and SGL, implying that the additional selected variables by Add, Cosso and Mars may
hinder the prediction performance. For the Ozone concentration data, both MF and Cosso
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select four variables but Add and Mars select more. One discrepancy is the variable IBTP,
which is selected by MF, Cosso, SGL and Mars but not by Add. As claimed in Gregory et
al. (2012), M, SBTH and IBTP are three most important meteorological variables related
to Ozone concentration as all of them describe the temperature changes. Meanwhile, MF
and Cosso show smaller prediction error than SGL and Mars, which implies that SGL and
Mars may include some non-informative variables. Figure 1 displays scatter plots of the
responses against the selected variables by MF in the Boston housing data and the Ozone
concentration data. It is clear that all the selected variables show moderate to strong re-
lationship with the responses. For digit recognition data, MF selects much less variables
than the other competitors and provides smaller prediction error. Figure 2 shows some
randomly selected digits of 3 and 5 and the two selected informative variables, where the
left informative variable is always contained in digit 5 and the right one is always contained
in digit 3.

Figure 1: The scatter plots of the responses and the selected variables by MF in the Boston
housing data (first row) and the Ozone concentration data (second and third
rows).

13
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Figure 2: Some randomly selected digit 3, digit 5 and the two selected informative variables.

5. Summary

This article proposes a model-free variable selection method, which is in sharp contrast
to most existing methods relying on various model assumptions. The proposed method
makes use of the natural connection between informative variables and sparse gradients,
and formulates the variable selection task in a flexible framework of learning gradients.
Additionally, we introduce a coefficient-based representation to facilitate variable selection
in the learning framework. A block-wise coordinate decent algorithm is developed to make
efficient computation for large-scale problems feasible. More importantly, we establish the
estimation and variable selection consistencies of the proposed method without assuming
any restrictive model assumption. The effectiveness of the proposed method is also sup-
ported by numerical experiments on simulated and real examples. It is worth pointing out
that the computational cost of the proposed method can be expensive, as it allows for a more
flexible modeling framework in RKHS. The extension of the proposed method to diverging
dimension is also challenging as a model-free framework with diverging dimension can be
too flexible to analyze. One possible remedy is to pre-screen the non-informative variables
via some model-free screening methods (Li et al., 2012) to shrink the size of candidate
variables.
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Appendix A. technical proofs

Proof of Lemma 1: First, note that under Assumption A1 and A2, the probability
density p(x) is bounded, and thus there exists some constant c7 such that supx∈X p(x) ≤ c7.
Moreover, denote Xt = {x ∈ X : dX(x, ∂X ) < t}, then we have ρX(Xt) ≤ c8t for any t given
a constant c8, where ∂X is the boundary of the compact support X , ρX is the marginal
distribution and dX(x, ∂X ) = infu∈∂X dX(x,u).

Since g0 is the minimizer of E(g), the functional derivative of E(g) at g0 yields that for
any arbitrary function vector δ(x),∫

X

∫
X
w(x,u)

(
f(x)− f(u) + g0(x)T (u−x)

)
(u−x)T δ(x)dρX(u)dρX(x) = 0p,

where 0p is a p-dimensional vector with all zeros. As the above equality is true for any
δ(x), it implies that for any given x,∫

X
w(x,u)

(
f(x)− f(u) + g0(x)T (u−x)

)
(u−x)dρX(u) = 0p.

For simplicity, denote M(x) =
∫
X w(x,u)(u−x)(u−x)TdρX(u) a function matrix,

and d(x) =
∫
X w(x,u)(u−x) (f(u)− f(x)) dρX(u) a function vector. Then M(x) g0(x)−

d(x) = 0 for any given x. Let Xτ = {x : dX(x, ∂X ) ≥ τn, p(x) ≥ c2τ
θ
n + τ

1/2
n }, then by

Assumption A2,

P (X cτ ) ≤ P (dX(x, ∂X ) < τn) + P
(
p(x) < c2τ

θ
n + τ1/2

n

)
≤ c8τn + (c2τ

θ
n + τ1/2

n )|X |,

where |X | denotes the Lebesgue measure of X . For any x ∈ Xτ ,

M(x) =

∫
w(x,u)(u−x)(u−x)T p(u)du

≥ τ1/2
n

∫
dX(x,u)<τn

e
− ‖x−u ‖22

2τ2n (u−x)(u−x)Tdu = τp+5/2
n

∫
‖ t ‖2<1

e−
‖ t ‖22

2 t tTd t,

where t = (u−x)/τn. The inequality follows from Assumption A2 and the fact that

p(u) ≥ p(x) − |p(u) − p(x)| ≥ p(x) − c2d(x,u)θ ≥ τ
1/2
n on Xτ . As the support X is

non-degenerate by assumption A1,
∫
‖ t ‖2<1 e

− ‖ t ‖
2
2

2 t tTd t is always positive definite. So its

smallest eigenvalue, denoted as φmin, is positive, and thus the smallest eigenvalue of M(x)

must be larger than φminτ
p+5/2
n , which is also positive.

As M(x) is invertible for any x ∈ Xτ , we have g0(x) = M(x)−1d(x), and thus

‖g0(x)− g∗(x)‖2 ≤ ‖(M(x))−1‖2‖d(x)−M(x)g∗(x)‖2.

Furthermore,

‖d(x)−M(x)g∗(x)‖2 =

∫
X
w(x,u)(u−x)

(
f(u)− f(x)− g∗(x)T (u−x)

)
dρX(u)

≤
∫ ∣∣∣w(x,u)(u−x)

(
f(u)− f(x)− g∗(x)T (u−x)

) ∣∣∣p(u)du

≤ c1c8

∫
w(x,u)‖u−x ‖32du ≤ c1c8τ

p+3
n

∫
e−
‖ t ‖22

2 ‖ t ‖32d t .
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Therefore, for any x ∈ Xτ ,

‖g0(x)− g∗(x)‖2 ≤ ‖M(x)−1‖2‖d(x)−M(x)g∗(x)‖2 ≤
c1c8τ

1/2
n

φmin

∫
e−
‖ t ‖22

2 ‖ t ‖32d t,

which converges to 0 for any x ∈ Xτ . Since P (x ∈ Xτ ) → 1 as τn → 0, the desired result
follows immediately.

Next, as E(g) − 2σ2
s > 0 for any g, we have 0 ≤ E(g0) − 2σ2

s ≤ E(g∗) − 2σ2
s . By

Proposition 3 in Ye and Xie (2012), E(g∗) − 2σ2
s ≤ O(τp+4

n ) → 0 as τn → 0. Therefore,
E(g0)− 2σ2

s → 0 as τn → 0. �
To proceed further, we note that the proof of Theorem 2 is substantially different from

conventional error analysis as in Mukerjee and Zhou (2006) and Ye and Xie (2012). In our
setting, we consider the coefficient-based space Hz = {g : g(x) =

∑n
i=1 aiK(xi,x), ai ∈ R}

as the candidate functional space, which depends on {xi}ni=1. One difficulty arises is that g∗

may not be contained inHpz and thus J(g∗) can not be defined. To circumvent this difficulty,
we introduce an intermediate learning algorithm as a bridge for the error analysis, so that
standard empirical process and approximation theories can be used.

Define a vector-valued functional space as HpK = {g = (g1, ..., gp)
T , gj ∈ HK}, and

Hpz = {g = (g1, ..., gp)
T , gj ∈ Hz}. Furthermore, denote the empirical error used in our

algorithm as

Ez(g) =
1

n(n− 1)

n∑
i,j=1

ωij

(
yj − yi − g(xi)

T (xj − xi)
)2
.

Clearly, E(Ez(g)) = E(g) for any g ∈ HpK .
In order to establish the consistency results, we introduce an intermediate learning

algorithm,

ḡ = argmin
g∈HpK

1

n(n− 1)

n∑
i,j=1

wij

(
yi − yj − g(xi)(xi − xj)

)2
+ ρn

p∑
l=1

πl‖gl‖2K , (9)

where ρn = n−η with η = 1
4(p+2) . Note that (9) is a weighted version of the original gradient

learning in Mukherjee and Zhou (2006). By the representor theorem, each element of ḡ in
(9) has a closed solution with the form

ḡl =
n∑
t=1

ᾱltK(x,xt), for l = 1, ..., p.

Denote ᾱl = (ᾱl1, ..., ᾱ
l
n)T satisfies the linear system

ρnπl K ᾱl +
1

n(n− 1)

n∑
i,j=1

ωij

(
yj − yi − ḡ(xi)

T (xj − xi)
)

(K)Ti [xj − xi]l = 0, (10)

where (K)i represents the i-th row of K. Without loss of generality, we assume that K is
invertible. In this case, we can solve for ᾱlt as follows:

ρnπlᾱ
l
t = − 1

n(n− 1)

n∑
j=1

ωtj

(
yj − yt − ḡ(xt)

T (xj − xt)
)

[xj − xt]l. (11)
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With these preparations, we are now in the position to decompose the excess error as
follows.

Proposition 4 Let ϕ0(z) = Ez(g∗)− E(g∗) and ϕ1(z) = E(ĝ)− Ez(ĝ). Then the following
inequality holds for any 0 < ε ≤ 1,

E(ĝ) + λn

p∑
l=1

πlJ(ĝl) ≤ ϕ1(z) + 2ϕ0(z) + Λn(ε, ρ,K),

where

Λn(ε, ρ,K) = (1 + ε)E(g∗) +

p0∑
l=1

ρnπl(‖g∗l ‖2K − ‖ḡl‖2K) + c2
n/ε, (12)

with cn = cxpλn
ρn
√
n−1

and cx ≥ supx ‖x ‖. In the literature of statistical learning theory, ϕ0(z),

ϕ1(z) are called the sample error and Λ(λn) is the approximation error.

Proof of Proposition 4: First of all, by the Hölder inequality, it follows from 11 that:

J(ḡl) ≤
cx

ρnπl
√
n− 1

√
Ez(ḡ), l = 1, ..., p. (13)

The above inequality in connection with the definition of ĝ yields that

E(ĝ) + λn

p∑
l=1

πlJ(ĝl) = E(ĝ)− Ez(ĝ) + Ez(ĝ) + λn

p∑
l=1

πlJ(ĝl)

≤ E(ĝ)− Ez(ĝ) + Ez(ḡ) + λn

p∑
l=1

πlJ(ḡl)

≤ E(ĝ)− Ez(ĝ) + Ez(ḡ) +
( cxλn√

n− 1

p∑
l=1

1

ρn

)√
Ez(ḡ)

≤ E(ĝ)− Ez(ĝ) + (1 + ε)Ez(ḡ) + c2
n/ε

≤ E(ĝ)− Ez(ĝ) + (1 + ε)Ez(g∗) + 2

p∑
l=1

ρnπl(‖g∗l ‖2K − ‖ḡl‖2K) + c2
n/ε

≤ E(ĝ)− Ez(ĝ) + (1 + ε)Ez(g∗) + 2

p0∑
l=1

ρnπl(‖g∗l ‖2K − ‖ḡl‖2K) + c2
n/ε,

where the first inequality follows from the definition of ĝ, the second inequality is derived
based on 13, the third inequality follows from the fact

√
xy ≤ εx+y/ε

2 for any ε > 0, the
fourth inequality follows from the definition of ḡ, and the last inequality is due to the
assumption that g∗l = 0 for any l > p0. �

Next, For any given value R > 0, define the functional subspace with bounded J(g) as

HpR = {g ∈ Hpz, with J(g) ≤ R},
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and
S(R,λn) = sup

g∈HpR
|E(g)− Ez(g)|.

Then the quantity S(R, λn) can be bounded using the McDiarmid’s inequality (McDiarmid,
1989).

Lemma 5 (McDiarmid’s Inequality) Let Z1, ..., Zn be independent random variables taking
values in a set Z, and assume that f : Zn → R satisfies

sup
z1,...,zn,z′i∈Z

|f(z1, ..., zn)− f(z1, ..., z
′
i, ..., zn)| ≤ Ci,

for every i ∈ {1, 2, ..., n}. Then, for every t > 0,

P{|f(z1, ..., zn)− E (f(z1, ..., zn)) | ≥ t} ≤ 2 exp

(
− 2t2∑n

i=1C
2
i

)
.

This result implies that, as soon as one has a function of n independent random variables,
whose variation is bounded when only one variable is modified, the function will satisfy a
Hoeffding-type inequality.

Lemma 6 If |y| ≤ Mn and Assumptions A1-A3 hold, then for any constant R > 0 and
ε > 0 , there holds

P (|S(R, λn)− E(S(R, λn))| ≥ ε) ≤ 2 exp

(
− nε2

8(Mn + cxnψ/2R
c4λn

)4

)
.

In addition, there exists a constant c5, such that

P (|Ez(g∗)− E(g∗)| ≥ ε) ≤ 2 exp

(
− nε2

8(Mn + cx
∑p

l=1 ‖g∗l ‖K)4

)
. (14)

Proof of Lemma 6: It suffices to verify the conditions required by the McDiarmid’s
inequality. For this purpose, we define (x′, y′) as a sample point drawn from the distribution
ρ(x, y) and independent of (xi, yi). Denote by z′ the modified training sample which is the
same as z except that the i-th observation (xi, yi) is replaced with (x′, y′). Let h(zi, zj) =
ωij(yj − yi−g(xi)

T (xj −xi))
2 with any fixed g ∈ HpR, then we decompose Ez(g) as follows,

Ez(g) =
1

n(n− 1)

n∑
k 6=i,j 6=i

h(zk, zj) +
1

n(n− 1)

n∑
j=1

h(zi, zj) +
1

n(n− 1)

n∑
k=1

h(zk, zi).

Note that if z is replaced by z′, the difference between Ez(g) and Ez′(g) boils down to
the differences between the second and third components of the above decomposition. By
Assumption A3, we see that πl > c4 for any l. Then it follows that

Ez(g)−Ez′(g) ≤
4(Mn + cx

∑p
l=1 ‖gl‖K)2

n
≤

4(Mn + cxn
ψ/2
∑p

l=1 ‖α
(l)‖2)2

n
≤

4(Mn + cxnψ/2R
c4λn

)2

n
,
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where the second inequality follows from the Hölder inequality and Assumption A1. Inter-
changing the roles of z and z′ yields that

|Ez(g)− Ez′(g)| ≤
4(Mn + cxnψ/2R

c4λn
)2

n
, ∀ g ∈ HpR.

Then applying the McDiarmid’s inequality, we have

P (|S(R,λn)− E(S(R, λn))| ≥ ε) ≤ 2 exp

(
− nε2

8(Mn + cxnψ/2R
c4λn

)4

)
.

In contrast with the first one, it is easier to obtain the second result in Lemma 6, since
it only involves the fixed function g∗. As a similar argument to the first one, we can set

Ci =
4(Mn+cx

∑p
l=1 ‖g

∗
l ‖K)2

n . Thus plugging Ci into the McDiarmid’s inequality, our desired
result follows immediately. �

Proposition 7 Assume the assumptions of Theorem 2 are met. If Ez(0) = 1
n(n−1)

∑n
i,j=1(yi−

yj)
2 is upper bounded by M0, then there exists a constant c9 such that for any δ ∈ (0, 1),

with probability at least 1− δ,

J(ĝ) ≤ c9

√
log(4/δ)

{
M2
nn
−1/2 + n

2ψ−1
2 M2

0λ
−2
n + ετpn + max

l≤p0
ρnπl‖g∗l − ḡl‖K + c2

n/ε

}
where cn is defined as Proposition 4. In addition, there holds

E(ĝ)− 2σ2
s ≤ c9

√
log(4/δ)

{
M2
nn
−1/2 + n

2ψ−1
2 λ−2

n + ετpn + max
l≤p0

ρnπl‖g∗l − ḡl‖K + c2
n/ε

}
Proof of Proposition 7: By Lemma 2 of Ye and Xie (2012), we have

E(S(R, λn)) ≤
(Mn + cxnψ/2R

c4λn
)2

√
n

,

which, together with Lemma 6, implies that with probability at least 1− δ,

ϕ1(z) ≤ |S(R, λn)| ≤ 3

√
log(2/δ)

n

(
Mn +

cxn
ψ/2R

c4λn

)2
. (15)

By Proposition 4, we recall that

J(ĝ) + E(ĝ) ≤ ϕ1(z) + 2ϕ0(z) + Λn(ε, ρ,K),

where Λn(ε, ρ,K) = (1+ε)E(g∗)+
∑p0

l=1 ρnπl(‖g
∗
l ‖2K−‖ḡl‖2K)+c2

n/ε. In addition, note that
the Hessian matrix H∗(x) of f∗ is bounded uniformly on x, it is easy to verify that

E(g∗)− 2σ2
s = O(τ4+p

n ),

which implies that

Λn(ε, ρ,K)− 2σ2
s ≤ O(ετpn + max

l≤p0
ρnπl‖g∗l − ḡl‖K + c2

n/ε), (16)
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since σ2
s = O(τpn) by definition.

Thus, combining 14 in Lemma 6, 15 with 16 , for some constant c9, we have

J(ĝ) + E(ĝ)− 2σ2
s

≤ c9

√
log(4/δ)

{
M2
nn
−1/2 + n

2ψ−1
2 R2λ−2

n + ετpn + max
l≤p0

ρnπl‖g∗l − ḡl‖K + c2
n/ε

}
with probability at least 1 − δ. Finally, we give an explicit bound for R. Following the
definition of ĝ, we have

Ez(ĝ) + J(ĝ) ≤ Ez(0) + J(0) ≤M0,

which implies ĝ ∈ HpM0
, and thus R = M0. As a consequence, the first and the second

desired inequalities follow immediately after the fact that E(ĝ)− 2σ2
s ≥ 0 and J(ĝ) ≥ 0. �

Proof of Theorem 2: For given constant c6 > 0, C is denoted to be the following event,

C =
{

ĝ : E(ĝ)−2σ2
s > c6

√
log(4/δ)

(
n−1/4+n

2ψ−1
2 λ−2

n +ετpn+n
− 1

2(p+2) +n
−(1− 1

2(p+2)
)
λ2
n/ε
)
.
}
.

Then, we split C into three different events as follows,

P (C) = P
(
C ∩ {|y| ≤ n1/8, U ≤M0}c

)
+ P

(
C ∩ {|y| ≤ n1/8, U ≤M0}

)
≤ P (|y| > n1/8) + P (|y| ≤ n1/8, U > M0) + P

(
C ∩ {|y| ≤ n1/8, U ≤M0}

)
,

where U = 1
n(n−1)

∑n
i,j=1(yi − yj)2 and M0 = 4B2 + 2σ2 + 1 with B an upper bound of

f∗(x). The existence of B is due to the assumptions that x has a compact support and f∗

is continuous Now we bound these three probabilities one by one.
First, by Chebyshev inequality, P (|y| > n

1
8 ) = E(P (f∗(x) + ε > n

1
8 |x)) ≤ O(n−

1
4 ),

where the last inequality is due to bounded f∗(x). For the second probability, note that U
is a U-statistic with mean E(U) = E(E(U |xi,xj)) = E(f∗(xi)−f∗(x′))2+2σ2 ≤ 4B2+2σ2.
By Bernstein’s inequality for U-statistic (Janson, 2004),

P (|y| ≤ n1/8, U > M0) ≤ P (U > E(U) + 1||y| ≤ n1/8) ≤ exp

{
− 1

16
n3/4

}
,

where (yi − yj)2 is upper bounded by 4n1/4, which completes the second term.
Now we turn to the third term. Within the set {|y| ≤ n1/8, U ≤M0}, by Proposition 7,

E(ĝ)− 2σ2
s ≤ c9

√
log(4/δ)

(
n−1/4 + n

2ψ−1
2 M2

0λ
−2
n + ετpn + max

l≤p0
ρnπl‖g∗l − ḡl‖K + c2

n/ε
)
.

With the choice of ρl = n−η with η = 1
4(p+2) for all l, we have ‖g∗l − ḡl‖K = O(n

− 1
4(p+2) )

according to theorems 14, 17, 19 in Mukherjee and Zhou (2006). In addition, cn = cxpλn
ρn
√
n−1

=

O(n−( 1
2
−η)λn). Thus with probability at least 1− δ, for some constant c6,

E(ĝ)− 2σ2
s ≤ c6

√
log(4/δ)

(
n−1/4 + n

2ψ−1
2 λ−2

n + ετpn + n
− 1

2(p+2) + n
−(1− 1

2(p+2)
)
λ2
n/ε
)
.
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Specifically, with λn = n
2ψ−1

4
+ 1

4(p+2) , τn = n
− θ

4p(p+2)(p+4+3θ) and ε = τ4
n, we have

E(ĝ)− 2σ2
s ≤ c6

√
log(4/δ)n−Θ,

where Θ = min
{

θ(p+4)
4p(p+2)(p+4+3θ) ,

1
2(p+2) ,

p2(p+4+3θ)−2θ
2p(p+2)(p+4+3θ)

}
. �

Proof of Theorem 3: First, we show that ‖α̂(l)‖2 = 0 for any l > p0 by contradiction.

Suppose that ‖α̂(l)‖2 > 0 for some l > p0. Taking the first derivative of (4) with respect to
α(l) yields that

2

n(n− 1)

n∑
i,j=1

wij(yi − yj − ĝ(xi)
T (xi − xj))(xil − xjl)Kl = −λnπlα̂

(l)

‖α̂(l)‖2
. (17)

Note that the norm of the right-hand side divided by n1/2 is n−1/2λnπl, which diverges to
∞ by Assumption A3. Then the contradiction can be concluded by showing the norm of
the left-hand side is smaller than O(n1/2).

For simplicity, denote Bz(g) = 2
n(n−1)

∑n
i,j=1wij(yi − yj − g(xi)

T (xi − xj)). As the

elements in both x and Kl are bounded by Assumption A1, it suffices to show |Bz(ĝ)| is

bounded. Denote C =
{

ĝ : |Bz(ĝ)| > c10

√
log(4/δ)(n−Θ/2 + n

ψ−1
2 λ−1

n + n−3/8)
}

. As in the

proof of Theorem 2, we decompose P (C) as

P (C) = P
(
C ∩ {|y| ≤ n1/8, U ≤M0}c

)
+ P

(
C ∩ {|y| ≤ n1/8, U ≤M0}

)
≤ P (|y| > n1/8) + P (|y| ≤ n1/8, U > M0) + P

(
C ∩ {|y| ≤ n1/8, U ≤M0}

)
.

where U and M0 are the same as in Theorem 2.
Following the proof of Theorem 2, the first two probabilities can be bounded as P (|y| >

n1/8) ≤ O(n−1/4) and P (|y| ≤ n1/8, U > M0) ≤ exp
{
− 1

16n
3/4
}

. To bound the third

probability, a slight modification of the proof of Proposition 7 yields that when |y| ≤ n1/8

and U ≤M0, we have J(ĝ) ≤M0 and with probability at least 1− δ/2,

|Bz(ĝ)− E(Bz(ĝ)| ≤ 3

√
log(4/δ)

n

(
n1/8 +

cxn
ψ/2M0

c4λn

)
.

We then bound |E(Bz(ĝ)| as follows,

|E(Bz(ĝ))| =
∣∣∣ ∫
X

∫
X
w(x,u)

(
f∗(x)− f∗(u) + ĝ(x)T (u−x)

)
dρX(x)dρX(u)

∣∣∣
≤

(∫
X

∫
X

∣∣∣w(x,u)
(
f∗(x)− f∗(u) + ĝ(x)T (u−x)

)∣∣∣2dρX(x)dρX(u)
)1/2

≤
(∫
X

∫
X
w(x,u)

(
f∗(x)− f∗(u) + ĝ(x)T (u−x)

)2
dρX(x)dρX(u)

)1/2

=
(
E(ĝ)− 2σ2

s

)1/2
.

The first inequality follows from Hölder inequality, and the second inequality follows from
the fact that w(x,u) ≤ 1 for any x and u. Therefore, within the set {|y| ≤ n1/8, U ≤M0},
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we have with probability at least 1− δ/2 that

|Bz(ĝ)| ≤ c10

√
log(4/δ)(n−Θ/2 + n

ψ−1
2 λ−1

n + n−3/8). (18)

This implies that P (C) ≤ δ/2 +O(n−1/4) for any given δ. Then it is clear that the norm of
the left-hand side of (17) divided by n1/2 will converge to 0 in probability, which contradicts
with the fact that the norm of the right-hand side divided by n1/2 diverges to∞. Therefore,
we have ‖α̂(l)‖2 = 0 for any l > p0.

Next, we show that ‖α̂(l)‖2 > 0 for any l ≤ p0. Let X̄τ = {x ∈ X : d(x, ∂X ) > τn, p(x) >
τn + c2τ

θ
n}. Same as the proof of Theorem 5 in Ye and Xie (2012), for some given constant

c11, we have ∫
X̄τ
‖ĝ(x)− g∗(x)‖22dρX(x) ≤ c11τ

−(p+3)
n

(
τp+4
n + E(ĝ)− 2σ2

s

)
.

According to Theorem 2, it can be showed that∫
X̄τ
‖ĝ(x)− g∗(x)‖22dρX(x)→ 0.

Now suppose ‖α̂(l)‖2 = 0 for some l ≤ p0, which implies∫
X̄τ
‖ĝ(x)− g∗(x)‖22dρX(x) =

∫
X̄τ
‖g∗l (x)‖22dρX(x).

As τn → 0,
∫
X̄τ ‖g

∗
l (x)‖22dρX(x) ≥

∫
X\Xt ‖g

∗
l (x)‖22dρX(x), which is a positive constant by

Assumption A4, and then leads to the contradiction. Combining the above two statements
implies the desired variable selection consistency. �
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