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Abstract

We consider stationary hidden Markov models with finite state space and nonparametric
modeling of the emission distributions. It has remained unknown until very recently that
such models are identifiable. In this paper, we propose a new penalized least-squares esti-
mator for the emission distributions which is statistically optimal and practically tractable.
We prove a non asymptotic oracle inequality for our nonparametric estimator of the emis-
sion distributions. A consequence is that this new estimator is rate minimax adaptive up
to a logarithmic term. Our methodology is based on projections of the emission distri-
butions onto nested subspaces of increasing complexity. The popular spectral estimators
are unable to achieve the optimal rate but may be used as initial points in our procedure.
Simulations are given that show the improvement obtained when applying the least-squares
minimization consecutively to the spectral estimation.

Keywords: nonparametric estimation, hidden Markov models, minimax adaptive esti-
mation, oracle inequality, penalized least-squares.

1. Introduction

1.1 Context and Motivations

Finite state space hidden Markov models (HMMs for short) are widely used to model data
evolving in time and coming from heterogeneous populations. They seem to be reliable tools
to model practical situations in a variety of applications such as economics, genomics, signal
processing and image analysis, ecology, environment, speech recognition, to name but a few.
From a statistical view point, finite state space HMMs are stochastic processes (Xj,Y;);>1
where (X;);>1 is a Markov chain with finite state space and conditionally on (X;);>1 the
Y;’s are independent with a distribution depending only on X;. The observations are
Yi.n = (Y1,...,Yy) and the associated states X;.xy = (X1,...,Xy) are unobserved. The
parameters of the model are the initial distribution, the transition matrix of the hidden
chain, and the emission distributions of the observations, that is the probability distributions
of the Y}’s conditionally to X; = x for all possible z’s. In this paper we shall consider
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stationary ergodic HMMs so that the initial distribution is the stationary distribution of
the (ergodic) hidden Markov chain.

Until very recently, asymptotic performances of estimators were proved only in the para-
metric setting (that is, with finitely many unknown parameters). Though, nonparametric
methods for HMMs have been considered in applied papers, but with no theoretical guar-
antees, see for instance |Couvreur and Couvreur| (2000) for voice activity detection, Lambert
et al. (2003) for climate state identification, |Leféevre (2003) for automatic speech recognition,
Shang and Chan| (2009) for facial expression recognition, Volant et al.| (2014) for methy-
lation comparison of proteins, Yau et al.|(2011) for copy number variants identification in
DNA analysis.

The preliminary obstacle to obtain theoretical results on general finite state space non-
parametric HMMs was to understand when such models are indeed identifiable. Marginal
distributions of finitely many observations are finite mixtures of products of the emission
distributions. It is clear that identifiability can not be obtained based on the marginal
distribution of only one observation. It is needed, and it is enough, to consider the marginal
distribution of at least three consecutive observations to get identifiability, see [Gassiat et al.
(2016)), following [Allman et al.| (2009) and Hsu et al.| (2012).

1.2 Contribution

The aim of our paper is to propose a new approach to estimate nonparametric HMMs with
a statistically optimal and practically tractable method. We obtain this way nonparametric
estimators of the emission distributions that achieve the minimax rate of estimation in an
adaptive setting.

Our perspective is based on estimating the projections of the emission laws onto nested
subspaces of increasing complexity. Our analysis encompasses any family of nested sub-
spaces of Hilbert spaces and works with a large variety of models. In this framework one
could think to use the spectral estimators as proposed by [Hsu et al. (2012); Anandku-
mar et al| (2012) in the parametric framework, by extending them to the nonparametric
framework. But a careful analysis of the tradeoff between sampling size and approximation
complexity shows that they do not lead to rate optimal estimators of the emission densities,
see De Castro et al.| (2015]) for a formal statement and proof. This can be easily understood.
Indeed, the spectral estimators of the emission densities are computed as functions of the
empirical estimator of the marginal distribution of three consecutive observations on )3
(where Y is the observation space), for which, roughly speaking, when ) is a subset of R,
the optimal rate is N=%/(25%3) N being the number of observations and s the smoothness
of the emission densities. Thus the rate obtained this way for the emission densities is also
N—/(25+3) " But since those emission densities describe one dimensional random variables
on Y, one could hope to be able to obtain the sharper rate N~%/(25%1)  This is the rate we
obtain, up to a log V term, with our new method. Let us explain how it works.

Using the HMM modeling, and using sieves for the emission densities on ), we propose
a penalized least squares estimator in the model selection framework. We prove an oracle
inequality for the Lo-risk of the estimator of the density of (Y1, Y2, Y3), see Theorem
Since the complexity of the model is that given by the sieves for the emission densities, this
leads, up to a log N term, to the adaptive minimax rate computed as for the density of only
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one observation Y; though we estimate the density of (Y1, Y2, Y3). Roughly speaking, when
the observations are one dimensional, that is when ) is a subset of R, the obtained rate for
the density of (Y7, Y5,Y3) is of order N=%/(25t1) up to a log N term, N being the number
of observations and s the smoothness of the emission densities.

The key point is then to be able to go back to the emission densities. This is the
cornerstone of our main result. We prove in Theorem |§| that, under the assumption [HD]
defined in Section the quadratic risk for the density of (Y1, Ys,Y3) is lower bounded
by some positive constant multiplied by the quadratic risk for the emission densities. This
technical assumption is generically satisfied in the sense that it holds for all possible emission
densities for which the Ls-norms and Hilbert dot products do not lie on a particular algebraic
surface with coefficients depending on the transition matrix of the hidden chain. Moreover,
we prove that, when the number of hidden states equals two, this assumption is always
verified when the two emission densities are distinct, see Lemma [5]

Our methodology requires that we have a preliminary estimator of the transition matrix.
To get such an estimator, it is possible to use spectral methods. Thus our approach is the
following. First, get a preliminary estimator of the initial distribution and the transition
matrix of the hidden chain. Second, apply penalized least squares estimation on the density
of three consecutive observations, using HMM modeling, model selection on the emission
densities, and initial distribution and stationary matrix of the hidden chain set at the
estimated value. This gives emission density estimators which have minimax adaptive rate,
as our main result states, see Theorem [7] A simplified version of this theorem can be given
as follows.

Theorem 1 Assume (Y;)j>1 is a hidden Markov model on R, with latent Markov chain
(Xj)j>1 with K possible values and true transition matriz Q*. Denote f} the density of
Y, given X, =k, fork=1,..., K. Assume the true transition matriz Q* is full rank and
the true emission densities f;, k = 1,..., K are linearly independent, with smoothness s.
Assume that [HD] holds true. Then, up to label switching, for N the number of observations
large enough, the estimators Q, fk, k=1,...,K built in Sectz’on@ and@ satisfy

eflQ - QP =0 8Y) ana E[Is - ful3] =o(EN ) k=1
Moreover, since the family of sieves we consider is that given by finite dimensional spaces
described by an orthonormal basis, we are able to use the spectral estimators of the coeffi-
cients of the densities as initial points in the least squares minimization. This is important
since, in the HMM framework, least squares minimization does not have an explicit solution
and may lead to several local minima. However, since the spectral estimates are proved to
be consistent, we may be confident that their use as initial point is enough. Simulations
indeed confirm this point.

To conclude we claim that our results support a powerful new approach to estimate, for
the first time, nonparametric HMMs with a statistically optimal and practically tractable
method.

1.3 Related Works

The papers Allman et al. (2009), Hsu et al.|(2012) and |Anandkumar et al.| (2012) paved the
way to obtain identifiability under reasonable assumptions. In |Anandkumar et al. (2012)
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the authors point out a structural link between multivariate mixtures with conditionally
independent observations and finite state space HMMs. In |[Hsu et al| (2012) the authors
propose a spectral method to estimate all parameters for finite state space HMMs (with
finitely many observations), under the assumption that the transition matrix of the hid-
den chain is non singular, and that the (finitely valued) emission distributions are linearly
independent. Extension to emission distributions on any space, under the linear indepen-
dence assumptions (and keeping the assumption of non singularity of the transition matrix),
allowed to prove the general identifiability result for finite state space HMMSs, see |Gassiat
et al.| (2016)), where also model selection likelihood methods and nonparametric kernel meth-
ods are proposed to get nonparametric estimators. Let us notice also [Vernet| (2015) that
proves theoretical consistency of the posterior in nonparametric Bayesian methods for finite
state space HMMs with adequate assumptions. Later, Alexandrovich et al.| (2016]) obtained
identifiability when the emission distributions are all distinct (not necessarily linearly in-
dependent) and still when the transition matrix of the hidden chain is full rank. In the
nonparametric multivariate mixture model, [Song et al. (2014) prove that any linear func-
tional of the emission distributions may be estimated with parametric rate of convergence in
the context of reproducing kernel Hilbert spaces. The latter uses spectral methods, not the
same but similar to the ones proposed in Hsu et al. (2012)) and |Anandkumar et al.| (2012)).

Recent papers that contain theoretical results on different kinds of nonparametric HMMs
are (Gassiat and Rousseaul (2016)), where the emitted distributions are translated versions
of each other, and Dumont and Le Corfl (2017)) in which the authors consider regression
models with hidden regressor variables that can be Markovian on a continuous state space.
Parallel to our work, the article Bonhomme et al.| (2016)) introduces a non-adaptive spectral
method to estimate hidden parameters in latent-structure models.

1.4 Outline of the paper

In Section [2] we set the notations, the model we tudy, and the assumptions we consider.
We then state an identifiability lemma (see Lemma [3)) that will be useful for our estimation
method. In Sections[3|and 4] we give our main results. We explain the penalized least-squares
estimation method in Section [3| and we prove in Section [4] that, when the transition matrix
is irreducible and aperiodic, when the emission distributions are linearly independent and
the penalty is adequately chosen, then, under a technical assumption, the penalized least
squares estimator is asymptotically minimax adaptive up to a log N term, see Theorem [7]
and Corollary [I0} For this, we first prove an oracle inequality for the estimation of the
density of (Y7,Y3,Y3s), see Theorem [4f then we prove the key result relating the risk of the
density of (Y3,Y2,Y3) to that of the emission densities, see Theorem [ The latter holds
under a technical assumption which we prove to be always verified in case K = 2, see
Lemma Finally, we need the performances of the spectral estimator of the transition
matrix and of the stationary distribution which are given in Section [f] see Theorem [I1]
proved in[De Castro et al| (2015). We finally present simulations in Section[f] to illustrate our
theoretical results. Those simulations show in particular the improvement obtained when
applying the least-squares minimization consecutively to the spectral estimation. Detailed
proofs are given in Section [§]
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2. Notations and Assumptions

2.1 Nonparametric Hidden Markov Model

Let K, D be positive integers and let £ be the Lebesgue measure on R”. Denote by X
the set {1,..., K} of hidden states, ) C RP the observation space, and Ag the space of
probability measures on X identified to the (K — 1)-dimensional simplex. Let (X;),>1 be
a Markov chain on X with K x K transition matrix Q* and initial distribution 7* € Ag.
Let (Y},)n>1 be a sequence of observed random variables on ). Assume that, conditional on
(Xn)n>1, the observations (Y;,),>1 are independent and, for all n € N, the distribution of
Y,, depends only on X,,. Denote by p} the conditional law of Y}, conditional on {X,, = k},
and assume that p; has density f; with respect to the measure LP on Y:

Vke X, duf= frdcP.

Denote by § := {ff,..., fji} the set of emission densities with respect to the Lebesgue
measure. Then, for any integer n, the distribution of (Y7,...,Y,,) has density with respect
to ( [,D)®”

K
Z (k1) Q (k1 k) ... Q (kn—1, kn) f2, (y1) - - - fr, (Un)-

We shall denote ¢g* the density of (Y7, Y3, Y3).
In this paper we shall address two observations schemes. We shall consider N i.i.d.

samples (Y] S), YQ(S), 3(8))£V:1 of three consecutive observations (Scenario A) or consecutive
observations of the same chain (Scenario B):

Vse{l,...,N}, (Vv vy = (v, Viy1, Yeso) -

2.2 Projections of the population joint laws

Denote by (L2(), L"), |- ||2) the Hilbert space of square integrable functions on ) with
respect to the Lebesgue measure £P equipped with the usual inner product (-,-) on
L2(Y, £P). Assume §* C L2(), LP).

Let (M,)r>1 be an increasing sequence of integers, and let (Pas.)r>1 be a sequence
of nested subspaces with dimension M, such that their union is dense in L2(Y, £P). Let
®rr = {p1,...,0n, } be an orthonormal basis of .. Recall that for all f € L?(), £P),

M,
m=1

in L2(Y, £P). Note that changing M, may change all functions ¢,,, 1 < m < M, in the
basis @, which we shall not indicate in the notation for sake of readability. Also, we drop
the dependence on r and write M instead of M,.. Define the projection of the emission laws

onto Pys by
M
VEeX, figi= Y {fF om)pm -
m=1

We shall write £3, := (f3;1,---, fis k) and £ := (f{,..., fk) throughout this paper.
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Remark 2 One can consider the following standard examples:

(Spline) The space of piecewise polynomials of degree bounded by d, based on the regular par-
tition with p? reqular pieces on Y = [0,1]P. It holds that M, = (d, + 1)PpP.

(Trig.) The space of real trigonometric polynomials on Y = [0,1]P with degree less than r. It
holds that M, = (2r +1)".

(Wav.) A wavelet basis @y, of scale r onY = [0,1]7, see Meyer| (1992). In this case, it holds
that M, = 2r+1)D
2.3 Assumptions

We shall use the following assumptions on the hidden chain.

[H1] The transition matriz Q* has full rank,

[H2] The Markov chain (X,)n>1 is irreducible and aperiodic,

[H3] The initial distribution © = (n},..., 7)) is the stationary distribution.

Notice that under [H1], [H2] and [H3], one has for all k € X, 75 > n};, > 0. We shall

min
use the following assumption on the emission densities.
[H4] The family of emission densities §* = {f,..., fi} is linearly independent.

Those assumptions appear in spectral methods, see for instance Hsu et al.| (2012); Anandku-
mar et al.| (2012), and in identifiability issues, see for instance Allman et al.| (2009)); |Gassiat
et al.| (2016).

2.4 Identifiability Lemma

For any f = (f1,...,fk) € (LQ()), ﬁD))K and any transition matrix Q, denote by gQ’f :
V3 — R the function given by

K

Uyyo,ms) = Y wk)QUk1, k2)QUka, k3) fry (u1) fro (y2) fis (43), (2)

k1,k2,k3=1

g

where 7 is the stationary distribution of Q. When Q = Q* and f = f*, we get ¢Q@"f" = ¢*.
When f1,..., fx are probability densities on ), g@Ff is the probability distribution of three
consecutive observations of a stationary HMM. We now state a lemma that gathers all what
we need about identifiability.

For any transition matrix Q, let Tq be the set of permutations 7 such that for all ¢ and j,
Q(7(2),7(j)) = Q(4, 7). The permutations in Tq describe how the states of the Markov chain
may be permuted without changing the distribution of the whole chain: for any 7 in Tq,
(7(Xn))n>1 has the same distribution as (X5 )n>1. Since the hidden chain is not observed,
if the emission distributions are permuted using 7, we get the same HMM. In other words,
if £7 = (fray,---» fr(x)), then g@f" = ¢gQf. Since identifiability up to permutation of the
hidden states is obtained from the marginal distribution of three consecutive observations,
we get the following lemma whose detailed proof is given in Section [8.1}
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Lemma 3 Assume that Q is a transition matriz for which [H1] and [H2] hold. Assume
that [H4] holds. Then for any h € (L2(Y, LP))X,

g e = QF 37 ¢ Tq such that h; = f*(j) —ffi=1.. . K

T

In particular, if Tq reduces to the identity permutation, g th — gQF «— h = (0,...,0).

3. The Penalized Least-Squares Estimator

In this section we shall estimate the emission densities using the so-called penalized least
squares method. Here, the least squares adjustment is made on the density g* of (Y7, Ya, Y3).
Starting from the operator I' : ¢ +— ||t — g*[|3 — [lg*[|3 = ||t|3 — 2 [ tg* which is minimal
for the target g*, we introduce the corresponding empirical contrast vyy. Namely, for any
te LQ()}?’,L'D@?’), set

9 N
W () = I - % Do t(Z),
s=1

with Zg = ( 1(5),}/2(3),}/})(8)) (Scenario A) or Zs := (Y;,Ys41,Ys42) (Scenario B). As
N tends to infinity, vy (t) — yn (g*) converges almost surely to ||t — ¢g*||3, thus the name
least squares contrast function. A natural estimator is then a function ¢ such that vy (¢)
is minimal over a judicious approximation space which is a set of functions of form ¢g®f,
Q a transition matrix and f € FX for F a subset of L2()), £LP). We thus define a whole
collection of estimates gys, each M indexing an approximation subspace (also called model).
Considering (2) we shall introduce a collection of model of functions by projection of possible
f’s on the subspaces (Pas)ar- Thus, for any irreducible transition matrix Q with stationary
distribution 7, we define S(Q, M) as the set of functions gt such that f € FX and, for

each k =1,..., K, there exists (am)1<m<m € R such that
M
fk = Z Ay, kPm -
m=1

We now assume that we have in hand an estimator Q of Q*. For instance, one can use
a spectral estimator, we recall such a construction in Section Then, (S(Q,M))a is
the collection of models we use for the least squares minimization. For any M, define
gur as a minimizer of yy(t) for t € S(Q, M). Then gy can be written as gy = gt
with fi; € FX and farr = SM dpmpom (k= 1,...,K) for some (apmi)1<m<y € RM,
k=1,..., K. It then remains to select the best model, that is to choose M which minimizes
lgar — 9113 — |lg*||3. This quantity is close to yn(gas), but we need to take into account
the deviations of the process I' — . Then we rather minimize vy (gns) + pen(N, M) where
pen(N, M) is a penalty term to be specified. Our final estimator will be a penalized least
squares estimator. For this purpose we choose a penalty function pen(N, M) and we let
M =arg | min {yv(gn)+pen(N, M)}.

Notice that, with N observations, we consider N subspaces as candidates for model selAe(:,—
tion. Then the estimator of g* is § = g, and the estimator of f* is f.= fM so that § = ¢g@f.
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The least squares estimator does not have an explicit form such as in usual nonparamet-
ric estimation, so that one has to use numerical minimization algorithms. As initial point
of the minimization algorithm, we shall use the spectral estimator, see Section [6] for more
details. Since the spectral estimator is consistent, see |De Castro et al.|(2015), the algorithm
does not suffer from initialization problems.

4. Adaptive Estimation of the Emission Distributions

4.1 Oracle Inequality for the Estimation of g*

We now fix a subset F of L2(), £”), and we shall use the following assumption:

[HF] F is a closed subset of L2(Y, LP) such that: for any f € F, [ fdCP =1, | f]l2 < Cr2
and || flloo < CF oo for some fized positive Cro and Cr .

Our first main result is an oracle inequality for the estimation of g* which is stated below
and proved in Section . We denote by Sk the set of permutations of {1,..., K}. When
a is a vector, ||al|2 denotes its Euclidian norm, and when A is a matrix, ||A||r denotes its
Frobenius norm.

Theorem 4 Assume [H1]-[H4] and [HF]. Assume also £* € FX and for all M, £}, € FX.
Then, there exists positive constants Ny, p* and A} (depending on Cr 2 and Cr o (Scenario
B) or on Q*, Crz and Cr o (Scenario A)) such that, if

Mlog N

then for all x > 0, for all N > Ny, one has with probability 1 — (e — 1)"te™%, for any
permutation T € Sk,

. . s x
lg -3 < 6inf {|lg" — g% |3+ pen(N, M)} + Af -
+18CE5(21Q" — P-QNP; |7 + 7" — P-713).
Here, P, is the permutation matriz associated to T.

The important fact in this oracle inequality is that the minimal possible penalty is of
order M/N (up to logarithmic terms) and not M?3/N as is usually the case when estimating
a joint density of three random variables, so that we get a minimax rate adaptive estimator
of the joint density g*.

4.2 Main Result

The problem is now to deduce from Theorema result on || f7 — fill3, k=1,..., K. Thisis
the cornerstone of our work: we prove that, under a technical assumption on the parameters
of the unknown HMM, a direct lower bound links ||§ — ¢*[|3 to S5, |IfF — f&ll3, up to some
positive constant. Let us now describe the assumption and comment on its genericity.

For any f € FX, define G(f) the K x K matrix with coefficients G(f);; = (fi, f;),
i,7 =1,..., K. Notice that under the assumption [H4], G(f*) is positive definite. Let Q
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be a transition matrix verifying [H1]-[H2] and let Ag be the diagonal matrix having the
stationary distribution 7 of Q on the diagonal. We shall now define a quadratic form with
coefficients depending on Q and G(f). If U is a K x K matrix such that Ulg = 0,

K

D=3 {(QTAQUG(E)UT 40Q), ,(G(D), ,(QG(H)QT),

1,j=1

+ (QTAQG(f)AQQ)m‘ (UG(f)UT)w‘ (QG(f)QT)m‘
+ (QTAQG(f)AQQ)i,j (G(f))i,j (QUG(f)UTQT)i,j}
+2 Z {(QT4qUG(1)49Q), ,(UG(F)),,(QG()QT),

+(QTAQUG(F)A0Q), ;(QUG(H)QT), ,(G()), ;
+(UG(F), ,(QUG(H)QT),(QT A0G(F) 40Q), , }

defines a semidefinite positive quadratic form D in the coefficients U; ;, ¢ = 1,..., K, j =
1,...,K — 1. The determinant of this quadratic form is a polynomial in the coeflicients
of the matrices Q, Ag and G(f). Since the coefficients of Ag are rational functions of the
coefficients of the matrix Q, this determinant is also a rational function of the coefficients
of the matrices Q and G(f). Define H(Q,G(f)) the numerator of the determinant. Then
H(Q,G(f)) is a polynomial in the coefficients of the matrices Q and G(f). Our assumption
will be:

[HD] H(Q*, G(f*)) #0.

Since H is a polynomial function of Q7;, i = 1,...,K, j = 1,...,K — 1, and ( Z-*,f;-‘),
i,7 =1,..., K, the assumption [HD] is generically satisfied. We have been able to prove
that [HD] always holds in the case K = 2. We were only able to prove this result by direct
computation, it is given in Section

Lemma 5 Assume K = 2. Then for all Q* and f* such that [H1]-[H4] hold, one has
H(Q*, G(1)) > 0.
Notice now that, when [HD] and [H1]-[H3] hold, it is possible to define a compact neigh-
borhood V of Q* such that, for all Q € V, H(Q,G(f*)) # 0, [H1]-[H3] hold for Q and
TQ C TQ*.

2 py\\ % 2 . K *
For any h € (L Y, L )) , define [[h[|gy := minrerg {325 lhe + f7 = f7) H }. Denote

|h|3 == {ZK, |ht]l3}. We may now state the theorem which is the cornerstone of our
main result.

K
Theorem 6 Assume [H1]-[H4] and [HD)]. Let K be a closed bounded subset of (L2 , £D))

such that if h € K, then [ h;dCP =0,i=1,...,K. LetV be a compact neighborhood of Q*
such that, for all Q € V, H(Q,G(f*)) # 0, [H1]-[H3] holds for Q and Tq C Tq~. Then
there exists a positive constant c(IC,V,F*) such that

Vhe K, vQ eV, H9Q7f*+h - gQ,f*||2 > C(IC, va*)”h”Q*
This theorem is proved in Section
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We are now ready to prove our main result on the penalized least squares estimator of
the emission densities. The following theorem gives an oracle inequality for the estimators
of the emission distributions provided the penalty is adequately chosen. It is proved in
Section

Theorem 7 (Adaptive estimation) Assume [H1]-[H4], [HF] and [HD]. Assume also
that for all M, £y, € FK. LetV be a compact neighborhood of Q* such that, for all Q € V,
H(Q,G(f*)) # 0 and [H1]-[H3] holds for Q. Then, there exists a positive constant A*
(depending on V, £*, Cr o and Cr ) and positive constants Ny and p* (depending on Cr o
and Cr  (Scenario A) or on Q*, Cro and Cr o (Scenario B)) such that, if

,Mlog N

N, M) >
pen(N,M) > p N

then for all x > 0, for all N > Ny, for any permutation Tny € Gk, with probability larger
than 1 — (e —1)"le™® — P (IPTN Q]P’ZN ¢ V), there exists T € T+ such that

K K
> i = vl < 4 s {311 = il + peniv, 0
k=1 k=1

A . T

Q" — Pry QB [+ — Pryt 341 .
Remark 8 As usual in HMM or mixture model, it is only possible to estimate the model
up to label switching of the hidden states, this is the meaning of the permutation Ty .

Remark 9 An important consequence of the theorem is that a right choice of the penalty
leads to a rate minimazx adaptive estimator up to a log N term, see Corollary below.
For this purpose, one has to choose an estimator Q of Q* which is, up to label switching,
consistent with controlled rate. One possible choice is a spectral estimator.

To apply Theorem B one has to choose an estimator Q with controlled behavior, to be
able to evaluate the probability of the event {P,, QP,, € V} and the rate of convergence
of Pr, QIP’TN and P, 7. One possibility is to use the spectral estimator described in Section
To get the following result (proved in Section , we propose to use the spectral
estimator with, for each N, the dimension My chosen such that n3(®yy,, ) = O((log N)'/4),
see Section [5] for a definition of 7s3.

Corollary 10 With this choice of Q, under the assumptions of Theoremlj , there exists a
sequence of permutations Tn € O such that as N tends to infinity,

K K
* P . * * 1OgN
E D = frawli3| = O (inf S D (1Ff = Fir sl + pen(N, M) 3 + :
k=1 M k=1 N

Thus, choosing pen(N, M) = pM log N/N for a large p leads to the minimax asymptotic
rate of convergence up to a power of log N. Indeed, standard results in approximation
theory (see [DeVore and Lorentz| (1993) for instance) show that one can upper bound the
approximation error || fi — f; ll2 by O(M ~7) where s > 0 denotes a regularity parameter.

10
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Then the trade-off is obtained for M D ~ (N/log N )ﬁ, which leads to the quasi-optimal
rate (N/log N )_ﬁ for the nonparametric estimation when the minimal smoothness of
the emission densities is s. Notice that the algorithm automatically selects the best M
leading to this rate.

To implement the estimator, it remains to choose a value for p in the penalty. The
calibration of this parameter is a classical issue and could be the subject of a full paper. In
practice one can use the slope heuristic as in Baudry et al.| (2012).

5. Nonparametric Spectral Method

This section is devoted to a short description of the nonparametric spectral method for sake
of completeness: we describe the algorithm, and give the results we need to support the use
of spectral estimators to initialize our algorithm. A detailed study of the nonparametric
spectral method is given in De Castro et al. (2015).

The following procedure (see Algorithm describes a tractable approach to estimate the
transition matrix in a way that can be used for the penalized least squares estimator of the
emission densities, and also for the estimation of the projections of the emission densities
that may be used to initialize the least squares algorithm. The procedure is based on
recent developments in parametric estimation of HMMs. For each fixed M, we estimate the
projection of the emission distributions on the basis ®,; using the spectral method proposed
in Anandkumar et al.| (2012). As the authors of the latter paper explain, this allows further
to estimate the transition matrix (we use a modified version of their estimator), and we set
the estimator of the stationary distribution as the stationary distribution of the estimator
of the transition matrix. The computation of those estimators is particularly simple: it
is based on one SVD, some matrix inversions and one diagonalization. One can prove,
with overwhelming probability, all matrix inversions and the diagonalization can be done
rightfully, see De Castro et al| (2015). In the following, when A is a (p X ¢) matrix with
p>q, A denotes the transpose matrix of A, A(k,1) its (k,1)th entry, A(.,[) its Ith column
and A(k,.) its kth line. When v is a vector of size p, we denote by Diag[v] the diagonal
matrix with diagonal entries v; and, by abuse of notation, Diag[v] = Diag[v'].

We now state a result which allows to derive the asymptotic properties of the spectral
estimators. Let us define:

M

n3(®ar) = sup D> (a(y1)es(y2)ee(ys) — va(yh)es(ys) e (ys))?.
Y,y €Y3 a,b,c=1

Note that in the examples (Spline), (Trig.) and (Wav.) we have
3
n3(®nr) < CpM>

where C,, > 0 is a constant. The following theorem is proved in |De Castro et al. (2015).
Its statement concerns (Scenario B) (same chain sampling) and the interested reader may
consult De Castro et al.| (2015) for its statement under (Scenario A).

11
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Algorithm 1: Nonparametric spectral estimation of HMMs
Data: An observed chain (Y1,...,Yy) and a number of hidden states K.
Result: Spectral estimators @, Q and (fark)rex-

[Step 1] Consider the following empirical estimators: For any a,b,c in {1,..., M},
Las(a) == % S0 0a (V™) Mar(a,b, ) == & Y 0a()n (V3 )ee (157,
Nar(a,0) = % Toh 0a (¥ )en(17), Par(a,0) = 4 T wa(V )V ).

[Step 2] Let U be the M x K matrix of orthonormal right singular vectors of Py,
corresponding to its top K singular values.

[Step 3] Form the matrices for all b € {1,..., M},
B(b) := (UTPyU)1U™My(.,b,.)U.

[Step 4] Set © a (K x K) random unitary matrix uniformly drawn and form the
matrices for all k € {1,..., K}, C(k) := M, (UO)(b, k)B(b).

[Step 5] Compute R a (K x K) unit Euclidean norm columns matrix that diagonalizes
the matrix C(1): R™'C(1)R = Diag[(A(1,1),...,A(1, K))].

[Step 6] Set for all k, k' € X, A(k, k) :== (R™1C(k)R)(K, k') and Oy := UOA.

[Step 7] Consider the emission laws estimator f.= ( ka) rex defined by for all k € X,
Fark =N O (m, k).

[Step 8] Set 7 := (UT0,) "UTLy,.
[Step 9] Consider the transition matrix estimator:
Q := Ty (U OuDiagla]) " UTNLT(04,0)7),

where Il denotes the projection onto the convex set of transition matrices,
and define 7 as the stationary distribution of Q.

Theorem 11 (Spectral estimators) Assume that [H1]-[H4] hold. Then, there exist
positive constant numbers Mg, z(Q*), C(Q*,§*) and N(Q*,F*) such that the following
holds. For any x > z(Q*), for any § € (0,1), for any M > Mgz~, there exists a permu-
tation Ty € &k such that the spectral method estimators fM,k, # and Q satisfy: For any
N > N(Q*, §)n3(®ar)?x(—log ) /62, with probability greater than 1 — 25 — 4e™%,

v —1logd n3(Par)

||f]7t4,k - fM,TM(k)HQ < C(Q*7%*> 5 \/ﬁ \/55
|7 = Bry 2 < C(QF,§) _éog‘s "3%) NG

* AT * v—10g57]3(q)M)
”Q _PT]\/[Q]P)TJw” S C(Q )3,*) 6 \/N \/E

12
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6. Numerical experiments

6.1 General description

In this section we present the numerical performances of our method. We recall that the
experimenter knows nothing about the underlying hidden Markov model but the number
of hidden states K. In this set of experiments, we consider the regular histogram basis or
the trigonometric basis for estimating emission laws given by beta laws from a single chain
observation of length N = 50,000.

Our procedure is based on the computation of the empirical least squares estimators
gnr defined as minimizers of the empirical contrast vy on the space S (Q, M) where Q is
an estimator of the transition matrix (for instance the spectral estimation of the transition
matrix). Since the function vy is non-convex, we use a second order approach estimating
a positive definite matrix (using a covariance matrix) within an iterative procedure called
CMAES for Covariance Matrix Adaptation Evolution Strategy, see Hansen| (2006). Using
this latter algorithm, we search for the minimum of vy with starting point the spectral
estimation of the emission laws.

Then, we estimate the size of the model thanks to

A~

i : X
(p) €arg |~ min {'YN(QM) +p

3)

MlogN}
N )

where the penalty term p has to be tuned and the maximum size of the model My x can
be set by the experimenter in a data-driven procedure.

Indeed, we shall apply the slope heuristic to adjust the penalty term and to choose
Miax- As presented in [Baudry et al.|(2012)), the minimum contrast function M +— yn(gar)
should have a linear behavior for large values of M. The experimenter has to consider
Max large enough in order to observe this linear stabilization, as depicted in Figure
The slope of the linear interpolation is then (p/2)log N/N (recall that the sample size N
is fixed here) where p is the slope heuristic choice on how p should be tuned. Another
procedure (theoretically equivalent) consists in plotting the function p M (p) which is a
non-increasing piecewise constant function. The estimated p is such that the largest drop
(called “dimension jump”) of this function occurs at point p/2. We illustrate this procedure
in Figure |3| where one can clearly point the jump and deduce the size M.

To summarize, our procedure reads as follows.

1. For all M < Max, compute the spectral estimations (Q, 7) of the transition matrix
and its stationary distribution and the spectral estimation f of the emission laws.
This is straightforward using the procedure described by [Step1-9] in Section

2. For all M < Mpax, compute a minimum §ps of the empirical contrast function ~yy
using “Covariance Matrix Adaptation Evolution Strategy”, see [Hansen| (2006). Use
the estimation f of the spectral method as a starting point of CMAES.

3. Tune the penalty term using the slope heuristic procedure and select M.

4. Return the emission laws of the solution of point (2) for M = M.

13
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Note that the size M of the projection space for the spectral estimator has been set as the
one chosen by the slope heuristic for the empirical least squares estimators.

All the codes of the numerical experiments are available at https://mycore.core-cloud.
net/public.php?service=files&t=44459ccb178a3240cfb8712£27a28d75. We shall in-
dicate that the slope heuristic has been done using CAPUSHE| the Matlab graphical user
interface presented in Baudry et al.| (2012).

6.2 Complexity

A crucial step of our method lies in computing the empirical least squares estimators gys.
One may struggle to compute gps since the function vy is non-convex. It follows that
an acceptable procedure must start from a good approximation of gy;. This is done by
the spectral method. Observe that the key leitmotiv throughout this paper is a two steps
estimation procedure that starts by the spectral estimator. This latter has rate of conver-
gence of the order of N~%/(2573) and seems to be a good candidate to initialize an iterative
scheme that will converge towards gps. It follows that the main consuming operations in
our algorithm are the following steps.

e The computation of the tensor M, of the empirical law of three consecutive obser-
vations where we use three loops of size M and one loop of size N so the complexity
is O(NM?),

« The singular value decomposition of P/ in the spectral method (complexity: O(M?3)),

e The computation of the minimum of the empirical contrast function: cost of one
evaluation of the empirical contrast function O(K3M?3) = O(M?) times the number
f(M, K) of evaluations while minimizing the empirical contrast. Recall that we start
from the spectral estimator solution to get the minimum so a constant number of
evaluation is enough in practice, say stopeval =1le4 using CMAES.

We have to compute the minimal contrast value for all models of size M = 1,..., Mnax
where Mpax has to be chosen so that one can apply the slope heuristic. We deduce that
the overall complexity of our algorithm is O(( f(Mmax, K) K>V N)M2..) where f(Mmax, K)
is the number of evaluations of vy while minimizing the empirical contrast. Since we use
the spectral estimator as a starting point of the minimization of the empirical contrast,
we believe that f(Mpax, K) can be considered as constant, say le4. Note that the upper
bound M.« has to be large enough in order to observe a linear stabilization of M +— gy,
see [Baudry et al.| (2012) for instance. Moreover, recall that the trade-off between the

approximation bias and the penalty term (accounting for the standard error of the empirical

D
law) is obtained for M ~ (N/log N)2+D where s > 0 denotes the minimal smoothness
parameter of the emission laws. In order to properly apply the slope heuristic, it is enough

D
to consider models with this order of magnitude, so that My.x = O((N/log N)z+D). It
follows that the overall complexity of our procedure can be expressed in terms of the minimal
smoothness parameter s of the emission laws as

Complexity = O(NH%) 7

14
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Figure 1: Variance comparison of the spectral and empirical least squares estimators. The
upper curve (in red) present the performance (median value of the variance over 40
iterations) of the spectral method while the lower curve (in blue) the performance
of the empirical least squares estimator. For each curve, we have plotted a shaded
box plot representing the first and third quartiles.

as soon as K = O(N'/3) which is a reasonable assumption. Nevertheless, this theoretical
bound is unknown for the practitioner since it involves the unknown minimal smoothness
parameter s > 0. For chains of length O(1eb), we have witnessed that one can afford a
maximal model size M.x < 50 and this allows to consider problems where typical sizes of
M ranges between 1 and 50. All numerical experiments of this paper fall in this frame.

6.3 Comparison of the Variances

The quadratic loss can be expressed as a variance term and a bias term as follows
VI<k<K YM2>0, |fi—fillz=Ifi— Firel3 + 155 = Firsl3

where f]@,k is the orthogonal projection of f;7 on P, and fk is any estimator such that fk
belongs to Pas. Note that the bias term || fi — f3; /|2 does not depend on the estimator I
Hence, the variance term
. AL . £ pk 2
Variancey (f) = min max |[fy = far-gl2

accounts for the performances of the estimator fk.

As depicted in Figure [I] we have compared, for each M, the variance terms obtained
by the spectral method and the empirical least squares method over 40 iterations on chains
of length N = 5e4. We have considered K = 2 hidden states whose emission variables

are distributed with respect to beta laws of parameters (2,5) and (4,2). This numerical
experiment consolidates the idea that the least squares method significantly improves upon
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——7(9m)
- - -Intercept| |

M M

Figure 2: Slope heuristic to choose M: the experimenter may observe a linear stabilization
of the empirical contrast vy for estimating beta emission laws of parameters (2, 5)
and (4,2). We have K = 2 hidden states and N = 5e4 samples along a single
chain. On the left panel we have used the trigonometric basis as approximation
space, the stabilization occurs on the points M = 30 to M = 50 and the interpo-
lation of the slope leads to M = 23. On the right panel we have considered the
trigonometric basis, the stabilization occurs on the points M = 20 to M = 50
and it leads to M = 21.

45 45
40 T 40
35 - 35
30 - 30

T 25

T 20

Il Il Il Il L L
0 50 100 150 200 250 0 5 10 15 20
p

Figure 3: Slope heuristic to choose M: the experimenter observes the largest drop of the
function p — M(p) at 1.1 so that p = 2.2 and M = 23. We have K = 2 hidden
states and a single chain of length N = 5e4. We have used the histogram basis
as approximation space.

the spectral method. Indeed, even for small values of M, one may see in Figure [I| that the
variance term is divided by a constant factor.

6.4 Histogram Basis and Trigonometric Basis as Approximation Spaces

An illustrative example of our method can be given using the histogram basis (regular basis
with M bins) or the trigonometric basis. In the following experiments, we have K = 2

16
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2,57 250

- - - True density
—— Spectral method
—— Empirical Contrast method

0.5
0
-0. - - - : ’ -0.5 : : : : ,
05 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Emission law 1 Emission law 2
250 250
2 L
- - -True density
—— Spectral method
1.5¢ —— Empirical contrast method |-2[

0 02 04 06 08 1 0 02 04 06 08 1

Figure 4: Estimators of the emissions densities (beta laws of parameters (2,5) and (4, 2))
from the observation of a single chain of length N = 5e4. On the top panels,
we have used the histogram basis (M = 23). On the bottom panels, we have
considered the trigonometric basis (M = 21).

hidden states and emission laws given by beta laws of parameters (2,5) and (4,2). Recall
we observe a single chain of length N = 5e4.

We begin with the computation of the minimum contrast function M +— ~(gas), as
depicted in Figure 2 Observe that the slope of this function unquestionably stabilizes at a
critical value refer to as p/2 in both the histogram and the trigonometric case. This leads
to an adaptive choice of M = 23 for the histogram basis and M = 21 for the trigonometric
basis, see Figures 2] and

Furthermore, one can see on Figure ] that our method also qualitatively improves upon
the spectral method in both the histogram and the trigonometric case.
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Figure 5: Estimation of three densities given by beta laws of parameters (1.5,5), (6,6) and
(7,2) from a single chain of length N = 5e4. We have used the histogram basis
and we have found M = 25 using the slope heuristic.

6.5 Three States

Our method can be performed for K > 2 as illustrated in Figure In this example
K = 3, the sample size is N = 5e4 and the emission laws are three beta distributions with
parameters (1.5,5), (6,6) and (7,2). Note that the number of hidden states K does not
really impact on the complexity of the algorithm as we have seen in Section [6.2]

In this example, we were able to observe a linear stabilization of the minimum contrast
function. The slope heuristic procedure led to an adaptive choice M = 25.

7. Discussion

We have proposed a penalized least squares method to estimate the emission densities of
the hidden chain when the transition matrix of the hidden chain is full rank and the emis-
sion probability distributions are linearly independent. The algorithm may be initialized
using spectral estimators. The obtained estimators are adaptive rate optimal up to a log
factor, where adaptivity is upon the family of emission densities. The results hold under an
assumption on the parameter that holds generically. We have proved that this assumption
is always verified when there are two hidden states. We did not find a general argument to
prove that the assumption always holds when K > 2, and a natural question is to ask if,
when the number of hidden states is K > 2, this assumption is also always verified.

It is proved in |Alexandrovich et al.| (2016]) that identifiability holds as soon as f7, ..., fx are
distinct densities. The identifiability is obtained in that case using the marginal distribution
of dimension 2K + 1, that is the marginal distribution of Y7, ..., Yok 1. Thus, to get consis-
tent estimators, one needs to use the joint distribution of 2K + 1 consecutive observations.
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Though linear independence is generically satisfied, one may wonder what happens when
emission densities are not far to be linearly dependent. Simulations in |[Lehéricy| (2015) show
that estimation becomes harder. In those practical situations where estimation becomes dif-
ficult, it is observed that the Gram matrix of ff,..., fx has an eigenvalue close to 0. On
the theoretical side, the proof of Theorem [6] uses the linear independence of the emission
densities by using that Gram matrices are positive. An interesting problem would be to
investigate if it is possible to estimate the emission densities with the classical adaptive
rate for density estimation when the emission densities are linearly dependent (though all
distinct). It is possible using model selection to get the classical rate for the estimation of
the density of 2K 4 1 consecutive observations, but it does not seem obvious to see whether
this rate can be transferred to the estimators of the emission densities. This is the subject
of further work, see Lehéricy, (2016).

Another question arising from our work is whether it is possible to adapt to different smooth-
nesses of the emission densities.

8. Proofs

8.1 Proof of lemma [3l

In [Hsu et al| (2012)) it is proved that when [H1], [H2], [H3] hold and when the rank of
the matrix Oy := ((@m, fi)1<m<m,1<k<k is K, the knowledge of the tensor M), given by
My (a,b,c) = E(pa(Y1)ep(Ya)pc(Y3)) for all a,b,c in {1,..., M} allows to recover Oy and
Q up to relabelling of the hidden states. Thus, when [H1], [H2], [H3] and [H4] hold, the
knowledge of g@f" is equivalent to the knowledge of the sequence (Mjys)as, which allows
to recover Q and the sequence (Op/)as, up to relabelling of the hidden states, which allows
to recover £* = (ff,..., fi) up to relabelling of the hidden states, thanks to . See also
Gassiat et al.| (2016]).

8.2 Proof of Theorem [l

Throughout the proof N is fixed, and we write 7 (instead of vy) for the contrast function.

8.2.1 BEGINNING OF THE PROOF: ALGEBRAIC MANIPULATIONS

Let us fix some M and some permutation 7. Using the definitions of §p; and M, we can
write

N ~ . Qf*r
Y(Gyp) +pen(N, M) < v(gn) +pen(N, M) < ~y(g M ) + pen(N, M),

where f]’\*/[’T,1 = (f]’\‘J’T,l(l)7 ... 7f;4,7*1(K)) (here we use that f;\(mrl S fK). But we can
compute for all functions %1, to,

Y(t1) = v(t2) = lt1 — g*3—It2 — g*1I3—2v(t1 — t2)

where v is the centered empirical process
1 N
v(t) = 5 St vy vy - /tg*.
s=1
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This gives
. w112 Qf* | *112 . Qf* o
g5 — 9*12< Mlg ™ M7t — g*[l5+2v (g — g M~~') +pen(N, M) —pen(N, M)  (4)

x px . . Q. f*
Now, we denote by By = ||g@ i — g*||3 a bias term and we notice that gQ Ml =
gPTQPTT’fI*W. Then

Q,f* -~ Q,f* _ * £x * £x
Mr 1 2||g > et — g Q0| 342) g — g¥|13

IN

g - 9*13

IN

APT £* * X
2|g" Qi — g Q| 3428 .

But, using Schwarz inequality, ||g@vf — ¢gQ2fi||3 can be bounded by

M K
| Y mGn)Qulks k) Qulka, ks) = mo(ki)Qalkr, ka)Qa(ka, k3))

mi1,mz2,m3=1 kyi ko ks=1

s omn) (s ma) i oms) |

K
S( > (Wl(kl)Ql(khkQ)Q1(k2,k3)—7T2(/€1)Q2(/<?1,k2)Q2(’<¢2,k3))2)

k1,k2,k3=1
M K 9
S > [ o) om0
m1,mz2,m3=1 ki,ko,ks=1
< 3K*CE, (Ilm — moll3+21Q1 — Qall?) (5)

so that

Q.f* . N
lg¥ et = g3 < 6K3CE, (1P — w*I3+21P, QBT — Q*[1}) + 2B

Next we set Sy = UQS(Q, M) and

v(t—g*
T = sup [ =9
teSy Ht_g ||2+xM

for xs to be determined later. Then

. Qf* R Qf*
vy —g M) vy —9") (gt —g Tt

IN

i Qfy,
Z(laxs — 9" 13+22) + Zu(lg ¥ = — g*|134+a3,).
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Denoting by Ry, = ||g,; — ¢* |3 the squared risk, becomes
Ry < 6K°CY, (I[P — m[3+2P-QP] — Q°II%) + 2B + 22y (Ry, + 7))
+2Zn1 (6K°CS, ([P-7 — 7*(3+2]P-QP] — Q*|}) + 2B + 23;)

+2pen(N, M) — pen(N, M) — pen(N, M),
RM(l — QZM) < (2 —|—4ZM)BM + 2pen(N, M)

+(1+220)6K°CS (P-4 — 7 |3+2|P-QPT — Q*|3)
+2 sup(QZM/a:%W — peH(N> M/)) .
M/

To conclude it is then sufficient to establish that, with probability larger than 1 — (e —
1)~'e~*, it holds

1
sup Zyp <~ and  sup(2Zypa3, — pen(N, M')) < Ai,
M 4 M N
with A a constant depending only on Q* and f* and not on N, M,z. Thus we will have,
for any M, with probability larger than 1 — (e — 1)~!e™?,

1 T

§RM < 3By + 2pen(N, M) + QAN

+9C% 5 (I — 7 3+2(P-QPT — Q*[I})

which is the announced result.
The heart of the proof is then the study of Zp;. We introduce ups a projection of g* on
Sy and we split Zyy into two terms: Zyy < 42y + Zyr2 with

vt —um)
Zpa = sup
teSu Ht_uM||%+4$%4
Sl —g)
M2 =

luar = g* (13423,

Indeed u,; verifies: for all t € Sy,
[ure — g*ll2< ([t —g*l2 and  |lup — t][2< 2[t — g%|2-

8.2.2 DEVIATION INEQUALITY FOR Z)/2

Bernstein’s inequality for HMMs (see Appendix [A]) gives, with probability larger than
1—e%

v (usr — g%)| < 2\/QC*HUM g*II31lg* Hoo +2v2¢"[uas — g Hoo

Then, using a? + b* > 2ab, with probability larger than 1 — e™%:

v(u + z
lv(un — g*) < 2 /2C*Hg ”OO | % +2\@ .l MHOO lg* HOON

lurr — g ||2+~’UM T3y
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But any function ¢ in Sj; can be written

K
t= > w(k)Q(k1, k2)Q(k2, k3) fry ® fry ® fiy s

k1,k2,k3=1

with fi, € F for k =1,..., K, so that sup,cg,, [|t|lcc< C}’m. Then, with probability larger
than 1 — e M™%

ZM + 2 z —I—z
Zusa <\ 209" oy | S +4V2E Choe o (6)

8.2.3 DEVIATION INEQUALITY FOR Zj71

We shall first study the term sup;cp_ [v(t — unr)| where
B, = {t € S, Ht — uMH2§ O‘}.

Remark that, for all t € S(Q, M),

K K
[t3< > 7P (k)Q k1, ko) Q% (ko ks) Y C350%,C% 5 < K°C% .
k1,k2,k3=1 k1,k2,k3=1

Then, if t € By, ||t — unml2< 0 A 2K3/2C% ,. Notice also that for all ¢ € Sy, ||t — ups]leo<
QC%OO. Now Proposition [13[in Appendix [A| (applied to a countable dense set in B,) gives
that for any measurable set A such that P(A) > 0,

E 1 1 2C% 1
ap e =) € o 57 (g )+~ % (5m)
E (tselg?j\y(t up)]) <C [N +o Nlog PlA) + N log Py )|

E= W/O JH(@u) A Ndu+ (203 +2K32C3,)H (o) .

Here, for any integrable random variable Z, EA[Z] denotes E[Z1 4]/P(A).
We shall compute E later and find ops and ¢ such that

and

Vo>oy  E<(1+20% +2K%2C% ,)p(o)VN. (7)

(see Section . We then use Lemma 4.23 in Massart| (2007)) to write (for xpr > opr)
v (t = un)

o L 203 1
A <2 —1 foo ( >
B (%EZ [nt—umw%m@ ) =72 2 N Og P(A)

Finally, Lemma 2.4 in [Massart| (2007)) ensures that, with probability 1 — e™*M~*:

80(237 ) ZM+Z M+ 2
a:%w N CF o 22 N

22

c?

[v(t — unm)
— uMH%—I-Zl:E%V[

*

(8)

ZpM,1 = sup
teSnm Ht
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8.2.4 COMPUTATION OF THE ENTROPY AND FUNCTION ¢

The definition of H given in Proposition (13| shows that H(d) is bounded by the classical
bracketing entropy for L? distance at point &/ C’%OO (where C’%OO bounds the sup norm
of g*): H(6) < H(6/C% ., Su,L?). We denote by N(u,S,L*) = (ST the minimal
number of brackets of radius u to cover S. Recall that when t; and 5 are real valued
functions, the bracket [t1, t2] is the set of real valued functions t such that ¢ (-) < ¢(-) < ta(-),
and the radius of the bracket is ||ta — t1]|2. Now, observe that Sy = UQS(Q, M) is a set of
mixtures of parametric functions. Denoting k = (k1, k2, k3), Sys is included in

{ > wK) e @ fry @ frgy £>0, D k) =1,

ke{l,...,K}3 ke{l,...,K}3
fr; € FNSpan(epi,...,om), 1 =1,2,3}.

Set
A={f1® fa® f3, fi € FNSpan(e1,...,0onm), i = 1,2,3}.

Then following the proof in Appendix A of Bontemps and Toussile| (2013)), we can prove

s () [y (Gan))”

where C} depends on K and Cr 2. Denote B = FNSpan(p1,...,¢nm). Let a = (am)i<m<m €
RM and b = (bm)1<m<M € RM such that amm < by, m=1,...,M. Foreachm=1,..., M
and y € Y, let

bm otherwise

U (y) = {

Um(@/) = m + by — um ().

Then, if (¢m)i1<m<m € RM is such that for all m = 1,..., M, am < ¢m < by, then

. - M M M B )
Usp@) = um®)em®) < Y cmem®) < Y vom@)em(y) = UZ,(y).
m=1 m=1

m=1

Moreover,

M
1Uzs = Uanllz = I D [bm — aml-lomll3
m=1

2
< Ml[b— all3
using Cauchy-Schwarz inequality. Thus, one may cover B with brackets of form [U, 1,1;7 U a27b].

a
Also, for i =1,2,

M
U153 <11 D2 b + aml-loml I3

m;=1

< 2M(||all3 + [Ib]13)-
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U2

If now for some a’, b’ in RM | f; € [U} i i

ai b ], i =1,2,3, then
e fefseV,W]

with
V = Hlln{U’Ll bl 2 bQUa?’ b3’ Zlai27i3 S {1’ 2}}

and
W = maX{Uéll blU:ﬁ b2U2L3 b3 ’5171.27 i3 c {17 2}}7

pointwise. Moreover, one can see that

w-V| < ‘U% —U! max ‘
> bl 11| 1 2 2 3 3
a a0 G gae{1,2y | A% Ui
J1 72
a2 b2 2 2 max 11 - 333
‘ w2~ Uarp rgee{t,2y @M atb
a3 b3 3b3 max ‘ 1 - 2 2
‘ Ua jigee{1,2y @b Uiz
3
2 1 1 2
< S |Ukp = Unw| TL(JUb | + |02 )
i=1 j#i

so that
2 2 2
W =Vvi; < Ugi i), <HU;J',bJ' , ‘ Ui g 2>
= i
3 . . . .
< asn® Y6 = a3 TT (Hla 13 + 116713)
i=1 j#i
3 . .
< 192MPCEy Y |I0F = a'lls

=1

Thus one may cover A by covering the ball of radius Cr 2 in RM with hypercubes [a, b],
for which ||al|2, ||b]|2 are less than Cr 5. To get a bracket with radius w, it is enough that
|bF — at||3 < u2/(576M3C'j’%72), i =1,2,3. We finally obtain that

48303203\ M
N(u,A,L2)§< v3 ”) . (10)

u

We deduce from @D and that

N(u, Sy, L?) < (

u u

Cy ) Kool (48\/§M3/ 203, ) M

and then »
H(u, $31,12) < (K* — 1) log(1) + 8M K log <C2M> 7
u
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with C depending on K and Cr. To conclude we use that [j /log (%)dw < o(y/m+

log (%)), see [Baudry et al.| (2012). Finally we can write for o < M3/2;

/OU V H(u)du < C3v/'Mo (1 + | log <M§/2>) )

where C3 depends on K, Cr2 and Cr . Set

o(z) = C3V Mz (1 + | log <M;’/2>)

The function ¢ is increasing on |0, M?3/?], and ¢(z)/z is decreasing. Moreover ¢(o) >

J§ V/H(u)du and ¢*(0) > 0?H (o).

8.2.5 END OF THE PROOF, CHOICE OF PARAMETERS

As soon as N > C3/M? := Ny, we may define ops as the solution of equation ¢(x) = vV Na2.
Then, for all o > oy,

H(o) < plo)” s"ff‘j)a\/ﬁ.

o2
This yields, for all o > oy,

E < (1+420%  +2K%2C% ,)¢(0)VN,

which was required in
Moreover (2\%) < 20M as soon as Ty > oyr. Combining and (6]), we obtain, with

Z
o Mtz zZzm -tz
S ETEERE TR
Ty N xy N
where C** depends on K, Cr 2, Cr o, Q*. Now let us choose z); = 9*1\/012\4 + % with

0 such that 20 + 62 < (C**)~!/4. This choice entails: zp; > 07 'oy and 23, > 722452,
Then with probability 1 — e™*M~7:

probability 1 — e™#M~

ZM S C**

Zyr < C*(0 40 + 62).

We now choose zp = M which implies 3/~ e™*M = (e — 1)~!. Then, with probability
1—(e—1)"te 7,

VM  Zy < C™(20 4 6%) <

»Mr—‘
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and for all M,

Mtz 2tz
7 2 < C**
WESYEERS [UMCL‘M+CBM\/ N + N

A
Q
X
N
/~
Q
=
+
N
g
+
w
~_—
+
Q
X
N
=
+
w

Then, with probability 1 — (e — 1)"te™2, for all M,

M
Zyas, — O <29—1a§4 + (2071 + 1)) <20 1)~
N N
Then the result is proved as soon as

pen(N, M) > 2C** (2910?\4 + (2071 + 1)%) : (11)

It remains to get an upper bound for oj;. Recall that ops is defined as the solution of

equation Cg\/Mm(l +/log (MTJ)) = v/Nz2. Then we obtain that for some Cj4

om < C’4\/¥(1 + 4/log(N)),

«Mlog(N)
N

for some constant p* depending on Cr 3 and Cr « (Scenario A) or on Q*, Cr 2 and Cr
(Scenario B).

and holds as soon as
pen(N, M) > p

8.3 Proof of Theorem [6]
For any h € KX and Q € V, denote N(Q, h) = [|g@f" 0 — gQf"||2. What we want to prove

is that
c:=c(K,V,§)? := N(Q,2h) > 0.
QeVhekX |nlo20 [ [h[g
One can compute:
K
N(Q,h) = > m(k1)Q(k1, k2)Q(k2, k3)m (k1) Q(F1, ko) Q(ky, k3)

K1,k k3,kq k) k=1

3 3 3 3

i=1 i=1 =1 i=1

Let u = (uq,...,ux) be such that u;, i = 1,..., K, is the orthogonal projection of h; on
the subspace of L2(Y, £LP) spanned by ff ..., ff. Then

N(Q,h) =N(Q,u)+ M(Q,u,h —u) (12)
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where, for any a = (ay,...,ax) € L2(Y, LP)K
K

M(Q u,a) = > (k1) Q(k1, k2) Q(k2, kis)m (K} ) Q(k1, k3) Q(K5, k)

kl)k27k37ki7ké7kg:1

3 3 3
<H<aki7ak;> + Z<ak¢7ak_’i> H(fl; +ukj7f]:; + uk;) + Z<fl:1 + uklaf]:: +uk;> H<akj7ak;>) .

i=1 i=1 i i=1 i

Let A = Diag[n] with 7 the stationary distribution of Q. Then M (Q, u, a) may be rewritten
as:

M(Q,u,a) = Zz{(jzl <(QTAa)iv (QTAa) '><ai> aj><(Qa)i> (Qa) i)

+H{(Q" Aa)i, (QT Aa);) (£ + wy), (£ + u);) (QE* + )i, (Q(F* +u)
QA + )i, (QTA(E* +1u));){ai, a;) (QUE* + )i, (QE* + w));
QA + )i, (QTAE* + 1)) (£ + )i, (£ + u);)((Qa)i, (Qa)
H(QTAME* + )i, (QTA(F* + w));)(ai,0;)((Qa)i, (Qa);)
+{(Q" Aa)i, (Q" Aa);)((F* + u)i, (f* +u);){(Qa)i, (Qa);)
+((Q" 4a);, (QT Aa);){ai, a;) (QUE* + )i, (QF +w));)

All terms in this sum are non negative. Let us prove it for the first one, the argument for
the others is similar. Define V' the K x K matrix given by

Vi; = ((Q" Aa);, (Q" Aa);)((Qa);, (Qa);), ,j=1,....K.

V' is the Hadamard product of two Gram matrices which are non negative, thus V' is itself
non negative by the Schur product Theorem, see Schur (1911), and

K
> Viglaisaj) = /a(y)TVa(y)dy > 0.

ij=1
Thus we have that M(Q,u,a) is lower bounded by one term of the sum so that

K
M(Q,u,a) > (QTA(f* +u))s, (QTA(E* +w));){ai, aj) (QUE* + )i, (Q(E* +w));).

ij=1

The minimal eigenvalue of the Hadamard product of two non negative matrices is lower
bounded by the product of the minimal eigenvalues of each matrix, and we get

M(Qu,a) = (min A(QTAW* +w) ) (min A(QUE+w)) alp (13

=1,..K

where ||a]|3 = SF_; |lax]|3, and where, if h € L2V, £LP)X, Ai(h), ..., Ag(h) are the (non
negative) eigenvalues of the Gram matrix of hy,..., hg.
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Let now (Qp,hy,), be a sequence in V x K such that ¢ = lim, ]\L(IILHQ}I") Let u,, be the

vector of the orthogonal projections of the coordinate functions of h,, on the subspace of
L2(Y, £P) spanned by ff ..., ff-. Notice that

g = llwnlle + Iy — w3
Let Ci 2 be the upper bound of the norm of elements of K. We have, for any n > 1,
Ih, |G < K(Ci2 +2CF2)?

so that for any n > 1,
Hunﬂa* < K(C]QQ + 2C]:72)2.

Since (Qp,uy,)n is a bounded sequence in a finite dimensional space it has a limit point
(Q,u). Now, using and the non negativity of M(Q,,u,,h, — u,), we get on the
converging subsequence

> L N(Qmun) . N(Qau)
c> lim = .
n—too K(Cik 2+ 2Cr2)? K(Ck2+2Cr2)?

Since Q € V, Tq C Tq~ so that ||ul|@> |lul/q+. Thus if |[ullq+# 0, ||ul|@# 0, and using
Lemma |3) N(Q,u) # 0 so that ¢ > 0 in this case.

Consider now the situation where ||ul/q~= 0. Since lim;, 4 ||u,|@+= 0, there exists n;
and 7 € Tq+ such that for all n > ny, one has ||un||(2Q*: SR g + ff - f:(k)H%, and it
is possible to exchange the states in the transition matrix using 7 so that we just have to
consider the situation where HunHQQ*: |lu,||3 for large enough n.

Figenvalues of Gram matrices of functions are continuous in the functions so that using

and we get

N
c¢> lim 5 (Qn, un) 5
n—+oo |[upl5+[/h, — w3

(i (@740

i=1,...

|h, — un”%

in \;(Qf* >liminf )
i, X QE ) e B T — w2

Under assumptions [H1] and [H4], QT Af* is a vector of linearly independent functions
and Qf* also, so that

<i=1,.i.r,fK )\z‘(QTAf*)) (l:1mK )\i(Qf*)> _

_ 2
Thus, if lim inf [hn—un3 7 > 0 we obtain ¢ > 0.
2

=100 Juy, [Z+hn,—u, |

_ 2
If now it holds that liminf, e %
|Ihy, — u,ll2 = o(]|uy|2) and we have

c¢> lim = lim ———~ (14)
notoeuplf [lunl3+H[bn —wnllf oo flug 3

= 0. On a subsequence it holds that

28



ESTIMATION OF NONPARAMETRIC HMMS

with (u,), a sequence of vectors of functions in the finite dimensional space spanned by
iy, [ Writing

(un)i(y) _ [bnl2 (un)i(y) _ [ba||2 {(hn — )i + (un)i(y) _ (h, — un)l}
[anlla [[anlla ol fluall2 |2 a2 4

it follows that for i =1,..., K,

TR ) (15)
n—+oo ) lup2
since for all n and all i = 1,..., K, [ (e u”hnH(; nhy) dy = 0, and it holds that HEnHQ -1

and [l — wallo/lunll> = o(1).

Let us return to general considerations on the function N(-,-). As it may be seen from
its formula, N(Q,h) is polynomial in the variables Qm-, ( i*,fj*>, <ﬁi,fj*), <ﬁi,ﬁj>, 1,] =
1,...,K. Let D(Q,h) denote the part of N(Q,h) which is homogeneous of degree 2 with
respect to the variable h, that is

K
D(Qafl) = Z 7~r(k1)Q(k1,k‘2)Q(k;2,k3)( )Q( é)Q(/@é,kg)
k1,ka,k3,kq kK k=1
3 3
=1 J# i=1 GG i j

One gets o o )
N(Q,h) = D(Q, 1) + O (|[B]}3)

where the O(-) depends only on f*. Let us first notice that D(-,-) is always non negative.
Indeed, since for all Q € V and all h € (L2(), £L”))X one has N(Q, h) > 0, it holds

vQ e, vhe (L2.£2)%, 2R 4 o(lhl) > 0
2
so that, since for all A € R, D(Q, A\h) = A\2D(Q, h),
YQ eV, Vh e (LAY, £P)E, D(Q,h) > 0. (17)

Then we obtain from

)-

Let b = (b1,...,bx) be a limit point of the sequence (m)n We then have

c> hmlnfD(Qn,
—+o00 | nH2

c>D(Q,b).

Now, using we get that

/bkdﬁDzo, k=1,..., K.
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Thus there exists a K x K matrix U such that b” = U(f*)T and U1; = 0, and equation

leads to

Z{(QTAUG*UTAQ) (6");; (QE*QT). +(QT4¢"4Q) (ve ™) (QG*QT).

— .7 .3 2% .3 .3
Z?-]

+(@a6 Q) (@), (QuervTQT), LS {(Qravera) wen),, (a6 QT

,J 2,7 - 1,7 1,
+(QTAUG*AQ) (QUG*QT)j (G*),; + (UG, ; (QUG*QT)j (QTAG*AQ) }

i,j i i i,j

with G* the K x K Gram matrix such that (G*);; = (7, f;),i=1,..., K.

This is the quadratic form D in U;;,i=1,...,K, j=1,..., K — 1 defined in Section
This quadratic form is non negative, and as soon as it is positive, we get that ¢ > 0. But
the quadratic form D is positive as soon as its determinant is non zero, that is if and only

if H(Q,G(f*)) # 0.
8.4 Proof of Lemma [5]

Here we specialize to the situation where K = 2. In such a case, f* = (f7, f), and

«_(1=p" p
Q_< ¢ 1=

for some p*, ¢* in [0,1] for which 0 < p* <1, 0 < ¢* <1, p* #1 — ¢*. Now

a —a
U =
for some real numbers « and 3, and brute force computation gives D(Q,b) = Dmoz2 +
2D1 a3 + Ds 2/3? with, denoting p = Q(1,2) and ¢ = Q(2,1):

2D
WJ)ZU =201 = p)’Iff = BIPIFIPIQ = p) 5 + o512 = p) fF + pfINFF = 5112

+4p(1 —p) (A = p)fi +pf3,aff + (1 =) f3) (. I - 1P

+20°|1f5 = BN lafi + (1 - a) 512

+2(1-p)* (L= p)ff + 2S5, f1 = 1) 1717

+20° (aff + (L= @) f3, 11 = B2 I

+4p(1 —p){afi + (1 =) f3, /T — (0= p) T + 0S5, fT = [T f5)

+A(L = (L =p)ff + 2S5, f1 = B = A =D fi + o3
+4p((L=p)fT +pf5, [T = [ 11— BNA=p) T +pf5,a/f + (1 —a)f3),
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@JF?;DQ’Q =2¢°fF = BIPIAIPIQA = p) fF + o012+l aff + (L= 1M = 11
+4(1 = q)q (X = p)ff +pf3,aft + A=) f3) U, O — 517
+2(1—@)?Ilf = IR 1P e + (1= a) f51°
+2¢2 (1 —p)ff + s 1 — )12
+2(1—q)? ((aff + (L= )3, 11 = £ 1 212
+4q(1 — @) {afT + (L =) 3 7 = BN =) ff + 283, 1 = I 13)
+4q(aft + A=) f3, T = U = BXA =p)ff +pf3,aff + A=) f3)
+4(1 = g)aft + (L= ) f3, [T = )5, /1 = I)llaft + (1 — @) 3117,

and:

W =201 —p)qllfr = SIPIAIPNE = p) ST+ pf]1
+2[pg+ (L =p)(1 =) (A= p)ff +pf3,aft + (L= a)f3) (T, DI = FI1°
+ (=) +pf3aff + (L= ) 17 = 511
+2p(1 = QllfF = BIPIS 1P lafT + 1 — ) f311
+2q(1—p) (L= p)f +0f3, 15— B2 IFIP
+2p(1—q) ((aff + A=) fs. 15 = B
+2pg(afi + (L= q) f3, fi = 5L = p) T +pf3s fr = ) 13)
+2(1—p)(X —q)aff + A=) f5, fr — )L =) fT +pf5, [T — [T f3)
+q((L=p)ff +pf5, 11 = BT [ = I =) fi +pfs1
+2(1=p)afi + A=) f3, 7 = BN = XA =p)ff +pf3,afT + A=) f3)
+2(1 =) (L = p)ff +pf3, T = NS T = BN =) ff +pf3,afT + A=) f3)
+2p(aff + (L= Q) f3, f1 = S5 1 — f)llaft + (1= a) f3)1*

We have:

H(Q,G(f*)) = D11D2o — Dig-
We shall now write H(Q, G(f*)) using

(f1. 13)
Il 212
for which the range is [1, 00[?>x[0, 1[. Doing so, we obtain a polynomial P; in the variables

ni, ng, a, p and q.
First observe that, by symmetry,

n1 = [|fTllz, n2 = [ fll2, a =

Pl (nl,ng,a,p, q) = Pl (n27n17a7 qap) )
so that it is sufficient to prove that the polynomial P; is positive on the domain

1§n2§n1, (18)
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and0<a<land0<p#q<l.
Furthermore, consider the change of variable

g=1—p+d

then we have a polynomial P» in the variables ni, no, a, p and d which factorizes with

p?(1 — a®)d*n3n3(1 +d — p)?
(1+a) '

Dividing by this factor, one gets a polynomial P3 which is homogeneous of degree 8 in ny
and ng, so that one may set ny = 1 and keep b = ny €]0, 1] (observe that we have used
to reduce the problem to the domain ng/n; < 1) and obtain a polynomial P; in the
variables b, a, p and d. It remains to prove that Pj is positive on Dy = {b €]0,1],a €
[0,1],p €]0,1],d €]p — 1,0[U]0, p[}.

Consider now the following change of variables

1 y? 22 (tz)2 —1

1422’ “ 1+ 92’ p an

b -~
14227 (14+t2)(1+22)’

mapping (z,y,2,t) € R* onto (b,a,p,d) € D5 = {b €]0,1],a € [0,1],p € [0,1[,d €]p — 1, p[}
which contains D4. This change of variables maps P, onto a rational fraction with positive
denominator, namely

1+ 1+ ) 1+ 22 1 +2%)°

So it remains to prove that its numerator Ps, which is polynomial, is positive on R*. An
expression of P5 can be found in Appendix [Bl Observe that Ps is polynomial in 2,2, 22
and t? and there are only three monomials with negative coefficients. These monomials can
be expressed as sum of squares using others monomials, namely:

o —182'212 4 27212 4 19792'2t* = 18212 4 9(28 — 26¢2)% + 197021244,
o —108210t% + 197022t* + 49528 = 43928 + 56(x* — 26¢2)% + 19142'2¢* + 442210,
o and —11428? + 9722* + 19142'2t* = 9152* + 57(2% — 25¢2)2 4 18572 12¢4.
Thus Ps is equal to 144 more a sum of squares, hence it is positive. This proves that

H(Q,G(f*)) is always positive.

8.5 Proof of Theorem [7]

Let K ={h =f —f* f ¢ FX}. Using Theoremwe get that for all x > 0, for all N > Ny,
with probability 1 — (e — 1)"'e™%, one has for any permutation 7y,

« L
'N
11805 (1Q* — Bry QP I + 17 — Py #3)

lg-g*15 < 6inf {llg* — g9 |3 + pen(V, M)} + A (19)
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Notice that writing

K

Tny2,ys) = Y. (Pry@) (k1) (Pry QPL) (1, ko) (Pry QP ) (o, Kis)
k1,ko,kz=1

X e (o) Y1) Forn (k) W2) Frng (1) (U3)

and applying Theorem@we get that, on the event P, Q]P’IN € V, there exists 7 € T+ such
that

K
* n 1 ~ wy QPL £

2 570 = Frvw 13 < ey el — gt T3, (20)
k=1 » V5

Now by the triangular inequality
. P, QP f* A * f* P QPT f*
g — " ¥l < lg = gl + l9¥ " — g7 T, (21)

Similarly to , we have

* £ P A]P’T ,f* T .
Jg@° " — Frn BB < 3KPCY, [ — eyl +21Q° — P QRLF] . (22)

In the same way,

(9" = 9% (1,92, 35) =
K

S0 k)Q k) QF (ks ko) (i, () £, () i (us) = Fine, (0) Firaa (92) Py (93))

k1,k2,k3=1

so that
lg* = g |5 < BKPCEymax{|[ff — firsll3, k=1,...,K}.

Thus collecting , , , and with an appropriate choice of A* we get Theorem

8.6 Proof of Corollary

We shall apply Theorem [11| where, for each N, we define dy such that (—logdy)/d3 =
(log N)'/2. Notice first that dy goes to 0 and that My tends to infinity as N tends to
infinity, so that for large enough N, My > Mz«. By denoting 7y the 77, given by
Theorem |11| we get that for all z > z(Q*), for all N > N(Q*, §*)xlog N, with probability
1—[4+(e—1)"Ye ™ — 26y,

N . + ey |log N
I = Pr o< C(Q,§)y = V2
and
N A N log N
1Q" —Pr QP 1< C(Q"§)| 5~V

33



DE CASTRO, GASSIAT AND LACOUR

We first obtain that

. N A
limsup E [\Q* - IPTNQPZN”2 <

N—+o00 log N
VN
C(Q*,§%)v1og N

+

C(Q*,S*)z/ Oolimsup}P’

0 N—+o00

1Q* — P, QPL |> ﬁ) d <

C(QY, §)%z(Q*) + C(Q*, §)? /:;)[4 +(e— 1) Ye %dz < 400
so that oo N
A o)
E[|Q" - P, QP |2 =0 (ng ) .

Similarly, one has E [||7* — P, #||?] = O (lo}g’VN>. We also obtain, by taking z = N/(log N)'/4,
that

lim sup P (IP’TN QpZ ¢ v) — 0,
N—+o0o

so that, using Theorem |Z|7 we get for some 7 € Tq~,

. N [ ; o
limsupP ( —— | > 1ff = fr-torywll3 — inf § D I1f7 = firell3 + pen(N, M)

R ~ T 1 —
~1Q° = Pry QB -7 ~ Byl | 2 ) < (e~ )7,

Thus, by integration and the previous results, Corollary [I0] follows.
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Appendix A. Concentration Inequalities

We first recall results that hold both for (Scenario A) (where we consider N i.i.d. samples
(Yl(s),Y2(s)7 3(8))5:1 of three consecutive observations) and for (Scenario B) (where we
consider consecutive observations of the same chain).

The following proposition is the classical Bernstein’s inequality for (Scenario A) and
is proved in Paulin (2015]), Theorem 2.4, for (Scenario B).

Proposition 12 Let t be a real valued and measurable bounded function on V3. LetV =
E[t?(Z1)]. There exists a positive constant ¢* depending only on Q* such that for all 0 <

A< 1/2vV2Htoo) -

N * 2
] _ __ 2NV (23)

log E exp [Azws)—w(zs)) SRS

so that for all x > 0,

P (i (t(Zs) —Et(Z,)) > 2V2Nc*Va + 2ﬂc*utuoox> <e (24)

s=1

We now state a deviation inequality, which comes from |[Massart| (2007) Theorem 6.8 and
Corollary 6.9 for (Scenario A). For (Scenario B) the proof of the following proposition
follows mutatis mutandis from the proof of Theorem 6.8 (and then Corollary 6.9) in Massart
(2007)) the early first step being equation ([23)). Recall that when t; and ¢, are real valued
functions, the bracket [t1, to] is the set of real valued functions ¢ such that ¢1 () < ¢(-) < ta().
For any measurable set A such that P(A) > 0, and any integrable random variable Z, denote
EAIZ] = E[Z14]/P(A).

Proposition 13 Let T be some countable class of real valued and measurable functions
on V3. Assume that there exists some positive numbers o and b such that for allt € T,
Itlco< b and E[t?(Z1)] < o2.

Assume furthermore that for any positive number 8, there exists some finite set By of brack-
ets covering F such that for any bracket [t1,t2] € Bs, |[t1 —t2]l o< b and E[(t1 — t2)%(Z1)] <
62. Let 1) denote the minimal cardinality of such a covering. Then, there exists a positive
constant C* depending only on Q* such that: for any measurable set A,

N . 1 L

and for all positive number x

N
P (squ Z (t(Zs) —Et(Zs)) > C*[E + oV Nx + b:L‘]) < exp(—z),
t€T s=1

where

Jo \/N/OU JH(u) A Ndu + (b+ 0)H(o).
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Appendix B. Expression of Polynomial P;

Computer assisted computations (available at https://mycore.core-cloud.net/public.
php?service=files&t=db7b8cla2bcbccalb7dcdabecab84374) give that:

Ps =

144 - 114 t°2 x°8 - 108 t°2 x~10 - 18 t"2 x"12 +
192 t°2 + 128 t™4 + 256 t76 + 176 t°8 + 576 x"2 + 624 t72 x"2 +

672 t74 x"2 + 1776 t76 x™2 + 1152 £78 x"2 + 972 x4 + 720 t°2 x4 +
1884 t~4 x"4 + 5496 t76 x~4 + 3360 t78 x"4 + 900 x"6 + 264 t"2 x"6 +
3556 t™4 x"6 + 9920 t76 x"6 + 5728 t°8 x"6 + 495 x"8 +

4551 t~4 x°8 + 11424 t76 x"8 + 6264 t°8 x"8 + 162 x~10 +

3810 t™4 x~10 + 8592 t°6 x~10 + 4512 t°8 x~10 +

27 x™12 + 1979 t74 x~12 + 4120 t7°6 x~12 +

2096 t°8 x~12 + 576 t74 x"14 + 1152 t76 x"14 + 576 t°8 x"14 +

72 t°4 X716 + 144 t76 X716 + 72 t78 x°16 + 144 y~2 + 480 t72 y~2 +
784 t~4 yT2 + 704 t76 y"2 + 256 t°8 y°2 + 576 x°2 y°2 +

2064 t°2 "2 y°2 + 4192 t74 x72 yU2 + 4496 t76 x72 y°2 +

1792 t78 x72 y™2 + 1080 x~4 y~2 + 4104 t72 x"4 y~2 +

10760 t°4 x~4 y~2 + 13528 t76 x"4 y~2 + 5792 t°8 x"4 y°2 +

1224 x°6 y~2 + 5016 t°2 x76 y~2 + 17592 t74 x76 y 2 +

25032 t°6 x"6 y~2 + 11232 t78 x76 y~2 + 900 x"8 y~2 +

4224 £°2 x78 y©2 + 19924 t°4 x°8 y~2 + 30776 t76 x"8 y"2 +

14176 t°8 x™8 y~2 + 432 x710 y~2 + 2520 t72 x~10 y~2 +

15584 t~4 x~10 y~2 + 25336 t76 x"10 y~2 + 11840 t78 x"10 y~2 +

108 x~12 y™2 + 936 t72 x"12 y~2 + 7916 t°4 x"12 y°2 +

13456 t°6 x"12 y~2 + 6368 t°8 x"12 y~2 + 144 t°2 x"14 y°2 +

2304 t4 x"14 y°2 + 4176 t76 x"14 y~2 + 2016 t78 x"14 y~2 +

288 t74 x"16 y~2 + 576 t76 x~16 y~2 + 288 t"8 x"16 y 2 + 144 y 4 +
480 t72 y"4 + 624 t74 yT4 + 384 t76 y4 + 96 t78 yT4 + 576 x"2 y"4 +
2208 t°2 x°2 y~4 + 3392 t74 x"2 y"4 + 2464 t76 x"2 y~4 +

704 t78 x"2 y~4 + 1188 x~4 y~4 + 5256 t°2 x4 y4 +

9636 t4 x4 y~4 + 8256 t76 x"4 y"4 + 2688 t78 x"4 y~4 +

1548 x"6 y~4 + 8112 t°2 x"6 y~4 + 18076 t74 x°6 y 4 +

18008 t°6 x"6 y~4 + 6496 t"8 x"6 y"4 + 1359 x"8 y~4 +

8598 t°2 x"8 y~4 + 23375 t~4 x"8 y~4 + 26392 t76 x"8 y 4 +

10256 t°8 x°8 y~4 + 810 x~10 y~4 + 6156 t°2 x~10 y4 +

20442 t~4 x~10 y~4 + 25656 t°6 x~10 y~4 + 10560 t"8 x"10 y 4 +

243 X712 y™4 + 2574 t72 X712 y~4 + 11299 t74 x"12 y™4 +

15848 t°6 x~12 y~4 + 6880 t°8 x~12 y"4 + 432 t°2 x"14 y~4 +

3456 t74 x"14 y~4 + 5616 t76 x"14 y~4 + 2592 t78 x"14 y 4 +

432 t74 x"16 y~4 + 864 t76 x"16 y°4 + 432 t°8 x"16 y"4 +

216 x™4 y~6 + 720 t72 x"4 y"6 + 952 t"4 x4 y°6 + 608 t°6 x"4 y°6 +
160 t°8 x™4 y~6 + 648 x76 y~6 + 2592 t"2 x"6 y°6 +

4168 t~4 x™6 y~6 + 3152 t76 x"6 y°6 + 928 t°8 x"6 y°6 +

918 x™8 y"6 + 4428 t°2 x"8 y~6 + 8502 t"4 x"8 y6 +

7392 t°6 x"8 y~6 + 2400 t"8 x"8 y~6 + 756 x~10 y°6 +

4392 t°2 x~10 y~6 + 10036 t"4 x~10 y~6 + 9920 t°6 x~10 y~6 +

3520 t°8 x~10 y~6 + 270 x"12 y~6 + 2268 t~2 x"12 y°6 +

6766 t~4 x"12 y"6 + 7808 t76 x~12 y~6 + 3040 t°8 x"12 y6 +

432 t72 x"14 y°6 + 2304 t"4 x"14 y°6 + 3312 t76 x"14 y"6 +

36
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1440 t°8 x"14 y°6 + 288 t~4 x~16 y~6 + 576 t"6 x"16 y~6 +

288 t78 x"16 y~6 + 108 x"8 y~8 + 360 t~2 x"8 y~8 + 468 t74 x"8 y°8 +
288 t76 x"8 Y8 + 72 t"8 x"8 y"8 + 216 x~10 y°8 + 864 t~2 x~10 y°8 +
1368 t°4 x"10 y~8 + 1008 t6 x~10 y~8 + 288 t°8 x"10 y~8 +

108 x"12 y™8 + 648 t72 x"12 y~8 + 1404 t~4 x"12 y°8 +

1296 t76 x"12 y™8 + 432 t78 x~12 y~8 + 144 t°2 x"14 y°8 +

576 t~4 x"14 y™8 + 720 t°6 x"14 y~8 + 288 t"8 x"14 y°8 +

72 t°4 x716 y°8 + 144 t76 x"16 y™8 + 72 t78 x"16 y™8 + 192 z°2 +
416 t°2 z°2 + 288 t74 z"2 + 320 t76 z"2 + 256 t78 z°2 +

912 x°2 z°2 + 1664 t72 x°2 z°2 + 1248 t74 x72 272 +

2304 t76 x°2 z°2 + 1808 t"8 x"2 z"2 + 1728 x"4 z°2 +

2520 t72 x4 z°2 + 2776 t74 x"4 z°2 + 7624 t76 x"4 z°2 +

5640 t°8 x4 z"2 + 1704 x"6 z°2 + 1736 t°2 x"6 z°2 +

4664 t~4 x°6 z"2 + 14808 t76 x"6 z"2 + 10176 t°8 x"6 z"2 +

966 x"8 z"2 + 494 t°2 x"8 z"2 + 6098 t74 x"8 z°2 +

18218 t76 x°8 z 2 + 11648 t78 x"8 z"2 + 324 x"10 z"2 +

36 t°2 x°10 z°2 + 5468 t°4 x~10 z"2 + 14444 t°6 x°10 z°2 +

8688 t°8 x"10 z"2 + 54 x"12 z"2 + 6 t°2 x"12 z°2 +

3002 t74 x°12 z°2 + 7186 t76 x"12 z"2 + 4136 t°8 x"12 z"2 +

896 t™4 x"14 z"2 + 2048 t76 x"14 z"2 + 1152 t78 x"14 z°2 +

112 t74 x716 z°2 + 256 t76 x"16 22 + 144 t78 x"16 z°2 +

480 y°2 z™2 + 1312 t72 y™2 z°2 + 1888 t74 y°2 272 +

1760 76 y™2 z°2 + 704 t78 y™2 z"2 + 1776 x°2 y™2 z°2 +

5248 t°2 x°2 y°2 z°2 + 9504 t74 x"2 y°2 z°2 +

10624 t76 x°2 y™2 z"2 + 4592 t78 x"2 y°2 z°2 + 3096 x"4 y°2 z°2 +
9904 t72 x4 y°2 z"2 + 23104 t74 x4 yU2 272 +

30288 t76 x74 y©2 z72 + 13992 t78 x74 y~2 z72 + 3144 x76 y"2 z72 +
11344 t72 x76 y~2 z72 + 35712 t74 x76 y"2 z72 +
53424 t76 x76 y~2 z72 + 25912 t78 x76 y"2 z72 + 2064 x"8 y"2 z"2 +

9016 t72 x78 y™2 z72 + 38552 t74 x78 y~2 z72 +

63192 t76 x78 y~2 z"2 + 31592 t78 x78 y~2 z72 + 936 x710 y"2 z72 +
5248 t72 x710 yT2 z72 + 29072 t74 x710 y©2 z72 +

50464 t76 x710 y~2 z72 + 25704 t78 x710 y~2 z72 + 216 x712 y"2 z72 +
1872 t72 x712 y©2 272 + 14192 t74 x712 y©2 z72 +

26056 t76 x712 y~2 z72 + 13520 t78 x712 y"2 z72 +

264 t72 x714 yT2 z72 + 3896 t74 x714 y"2 z72 +

7808 t76 x"14 yT2 z72 + 4176 t78 x714 y"2 z72 +

448 t74 x716 y©2 z72 + 1024 t76 x716 y"2 z72 +

576 t78 x716 y~2 z72 + 480 y™4 z72 + 1632 t72 y"4 z72 +

2208 t74 y"4 z72 + 1440 t76 y"4 z72 + 384 t78 y"4 z72 +

1632 x72 y™4 z72 + 6528 t72 x72 y"4 z72 + 10688 t74 x72 y"4 z72 +
8320 t76 x72 y"4 z72 + 2528 t78 x72 y"4 z72 + 3240 x74 y"4 z72 +
14280 t72 x74 y™4 z72 + 27448 t74 x74 y™4 z72 +

25048 t76 x74 y™4 z"2 + 8640 t78 x74 y"4 z72 + 3936 x76 y"4 z72 +
19992 t72 x76 y~4 z"2 + 46552 t74 x76 y"4 z72 +

49352 t76 x76 y"4 z"2 + 18856 t78 x76 y"4 z72 + 3198 x78 y"4 z72 +
19518 t72 x78 y~4 z"2 + 55218 t74 x78 y"4 z72 +

66170 t76 x"8 y"4 z72 + 27272 t78 x78 y~4 z"2 + 1836 x710 y"4 z72 +
13332 t72 x710 y™4 z72 + 44988 t74 x710 y"4 z72 +

59580 t76 x710 y~4 z"2 + 26088 t78 x710 y"4 z"2 + 486 x712 y"4 z72 +

5214 t72 x712 y"4 z72 + 22994 t74 x712 y°4 z72 +
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34194 £76 x712 y™4 z72 + 15928 t78 x712 y"4 z72 +

792 t72 x714 y"4 z72 + 6312 t74 x714 y"4 z72 +

11136 t76 x714 y™4 z"2 + 5616 t78 x714 y"4 z72 +

672 t74 x716 y"4 z72 + 1536 t76 x716 y"4 z72 +

864 t78 x716 y"4 z72 + 720 x74 y"6 z72 + 2480 t72 x74

3472 t74 x74 yT6 z72 + 2384 t76 x74 y'6 z72 + 672 t78 -

1728 x76 y™6 z72 + 7440 t72 x76 y°6 z72 + 13072 t74 x

10736 t76 x76 y"6 z72 + 3376 t78 x"6 y"6 z"2 + 2268 x

11484 t72 x78 y76 z72 + 23812 t74 x"8 y°6 z72 +

22276 t76 x"8 y"6 z"2 + 7680 t78 x"8 y"6 z"2 + 1800 x710 y"6 z72 +

10568 t72 x710 y°6 z72 + 25560 t74 x710 y°6 z"2 +

26872 t76 x710 y"6 z72 + 10080 t78 x710 y"6 z"2 + 540 x712 y"6 z72 +

4836 t72 x712 y©6 z72 + 15420 t74 x712 y©6 z72 +

18964 t76 x712 y™6 z"2 + 7840 t78 x712 y"6 z72 +

792 t72 x714 y©6 z72 + 4520 t74 x714 yT6 z72 +

7040 t76 x714 y°6 z"2 + 3312 t78 x714 y'6 z72 +

448 t74 x716 y"6 z72 + 1024 t76 x716 yT6 z72 +

576 t78 x716 y"6 z72 + 360 x"8 y™8 z72 + 1224 t72 x"8 y"8 z"2 +

1656 t74 x”8 y™8 z"2 + 1080 t76 x"8 y"8 z72 + 288 t78 x"8 y"8 z72 +

576 x710 y™8 z72 + 2448 t72 x710 y™8 z"2 + 4176 t74 x710 y"8 z72 +

3312 t76 x710 y™8 z"2 + 1008 t78 x710 y"8 z72 + 216 x712 y"8 z72 +

1488 t72 x712 y™8 z72 + 3616 t74 x712 y°8 z72 +

3640 t76 x712 y™8 z72 + 1296 t78 x712 y"8 z72 +

264 t72 x714 y™8 z72 + 1208 t74 x714 y"8 z72 +

1664 t76 x714 y™8 z72 + 720 t78 x714 y°8 z72 +

112 £t74 x716 y™8 z72 + 2566 t76 x716 y"8 z72 + 144 t78 x716 y"8 z"2 +

128 z74 + 288 t72 z74 + 352 t74 z74 + 384 t76 z74 + 256 t78 z74 +

352 x72 z74 + 1056 t72 x72 z74 + 1408 t74 x72 z74 +

1952 t76 x72 z74 + 1504 t78 x72 z74 + 764 x4 z74 +

2104 t72 x74 z74 + 2616 t74 x4 z74 + 5016 t76 x74 z74 +

4252 t78 x4 z74 + 804 x76 z74 + 1912 t72 x76 z74 +

2920 t74 x76 z74 + 8536 t76 x76 z74 + 7364 t78 x76 z74 +

471 x"8 z74 + 898 t72 x78 z74 + 2694 t74 x°8 z74 +

10058 t76 x”8 z74 + 8335 t78 x78 z74 + 162 x710 z74 +

262 t72 x710 z74 + 2164 t74 x710 z74 + 7980 t76 x710 z74 +

6226 t78 x710 z74 + 27 x712 z74 + 42 t72 x712 z74 +

1182 t74 x712 z74 + 4018 t76 x712 z74 + 2979 t78 x712 z74 +

352 t74 x714 z74 + 1152 t76 x714 z74 + 832 t78 x714 z74 +

44 t74 x716 z74 + 144 £t76 x716 z74 + 104 t78 x716 z74 +

784 y"2 z74 + 1888 t72 y"2 z74 + 2208 t74 y"2 z74 +

1888 t76 y™2 z74 + 784 t78 y"2 z74 + 2080 x"2 y"2 z74 +

5600 t72 x72 y72 z74 + 8832 t74 x72 y'2 z74 + 9952 t76 x72 y"2 z74 +

4640 t78 x72 y"2 z74 + 3368 x74 y"2 z74 + 9440 t72 x74 y"2 z74 +
6 x4

z"2
y~6
~6 2
~6 2~

NN N
+ o+ N

y~6
x~4
~6 y
-8 y

18928 t74 x74 y~2 z"4 + 25952 t y'2 z74 +

13224 t78 x74 y~2 z74 + 2840 x76 y"2 z74 + 9056 t72 x76 y"2 z74 +
25872 t74 x76 yT2 z74 + 42464 t76 x76 y 2 z74 +

23192 t78 x76 y"2 z74 + 1524 x78 y~2 z74 + 6072 t72 x78 y"2 z74 +
25016 t74 x78 yT2 z74 + 46792 t76 x"8 y"2 z74 +

26900 t78 x"8 y"2 z"4 + 576 x710 y"2 z"4 + 3184 t72 x710 y"2 z74 +
17216 t74 x710 y™2 z74 + 35024 t76 x710 y™2 z74 +

20928 t78 x710 y"2 z74 + 108 x712 y"2 z74 + 1008 t72 x712 y°2 z74 +
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7584 t74 x712 y"2 z74 + 16968 t76 x712 y"2 z74 +

10572 t78 x712 y72 z74 + 120 t72 x714 y"2 z74 +

1816 t74 x714 y~2 z™4 + 4736 t76 x"14 y~2 z"4 +

3136 t78 x714 y"2 z74 + 176 t74 x716 y°2 z74 +

576 t76 x716 y"2 z74 + 416 t78 x716 y"2 z74 + 624 y"4 z74 +
2208 t72 y"4 z74 + 3168 t74 y°4 z74 + 2208 t76 y"4 z74 +

624 t7°8 y"4 z74 + 1600 x"2 y™4 z74 + 6976 t72 x"2 y"4 z74 +
12672 t74 x"2 y"4 z™4 + 10816 t76 x"2 y°4 z74 +

3520 t78 x72 y"4 z74 + 3364 x"4 y 4 z74 + 14456 t72 x"4 y 4 z74 +

29416 t74 x4 y"4 z74 + 29016 t76 x4 y"4 z74 +

10692 t78 x4 y™4 z74 + 3452 x76 y 4 z74 + 17336 t72 x76 y"4 z74 +
43896 t74 x76 y"4 z74 + 51032 t76 x°6 y"4 z74 +

21020 t78 x76 y"4 z74 + 2495 x"8 y™4 z"4 + 14658 t72 x"8 y°4 z74 +
45814 t74 x"8 y"4 z74 + 61162 t76 x"8 y"4 z74 +

27607 t78 x78 y"4 z74 + 1242 x710 y"4 z74 + 8892 t72 x710 y™4 z74 +
33262 t74 x710 y"4 z74 + 49644 t76 x710 y"4 z74 +

24234 t78 x710 y"4 z74 + 243 x712 y"4 z74 + 2914 t72 x712 y*4 z74 +
14758 t74 x712 y~4 z74 + 25538 t76 x712 y"4 z74 +

13643 t78 x712 y™4 z74 + 360 t72 x714 y°4 z"4 +

3336 t74 x714 y"4 z74 + 7296 t76 x714 y"4 z74 +

4416 t78 x714 y"4 z74 + 264 t74 x716 y"4 z74 +

864 t76 x716 y"4 z74 + 624 t78 x716 y"4 z74 + 952 x74 y"6 z74 +

3472 t72 x74 y©6 z74 + 5232 t74 x74 y™6 z74 + 3856 t76 x74 y°6 z74 +
1144 £78 x74 y™6 z74 + 1544 x76 y~6 z74 + 7760 t72 x"6 y°6 z74 +
15696 t74 x76 y~6 z"4 + 14288 t76 x"6 y 6 z74 +

4808 t78 x76 y"6 z74 + 1942 x78 y"6 z"4 + 10532 t72 x"8 y°6 z74 +
24556 t74 x"8 y"6 z74 + 25380 t76 x"8 y"6 z74 +

9414 t78 x78 y"6 z"4 + 1332 x710 y"6 z74 + 8408 t72 x710 y76 z74 +
22952 t74 x710 y©6 z74 + 26776 t76 x710 y°6 z74 +

10900 t78 x710 y™6 z74 + 270 x712 y™6 z74 + 2972 t72 x712 y"6 z74 +
11492 t74 x712 y™6 z74 + 16244 t76 x712 y"6 z74 +

7486 t78 x712 y76 z74 + 360 t72 x714 y°6 z74 +

2632 t74 x714 y©6 z74 + 4992 t76 x714 y"6 z74 +

2752 t78 x714 y°6 z74 + 176 t74 x716 y°6 z74 +

576 t76 x716 y°6 z74 + 416 t78 x716 y"6 z"4 + 468 x"8 y"8 z74 +

1656 t72 x"8 y™8 z74 + 2376 t74 x"8 y™8 z74 + 1656 t76 x"8 y"8 z74 +
468 t78 x™8 y™8 z74 + 504 x710 y"8 z74 + 2448 t72 x710 y"8 z74 +
4752 t74 x710 y™8 z74 + 4176 t76 x710 y°8 z74 +

1368 t78 x710 y™8 z74 + 108 x712 y~8 z74 + 1024 t72 x712 y™8 z74 +
3136 t74 x712 y™8 z74 + 3656 t76 x712 y"8 z74 +

1436 t78 x712 y"™8 z74 + 120 t72 x714 y"8 z74 +

760 t74 x714 y"8 z74 + 1280 t76 x714 y°8 z74 +

640 t78 x714 y"8 z74 + 44 t74 x716 y'8 z74 + 144 t76 x716 y°8 z74 +
104 t78 x716 y™8 z74 + 2566 z76 + 320 t72 z76 + 384 t74 z76 +

352 t76 z76 + 160 t78 z76 + 272 x72 z76 + 2566 t72 x72 z76 +

1120 t74 x72 z76 + 1408 t76 x72 z76 + 784 t78 x72 z76 +

232 x74 z76 + 456 t72 x74 z76 + 2104 t74 x74 z76 +

2712 t76 x74 z76 + 1856 t78 x74 z76 + 96 x76 z76 + 472 t72 x76 z76 +
2072 t74 x76 z76 + 3208 t76 x76 z76 + 2792 t78 x76 z76 +

24 x78 z76 + 298 t72 x"8 z76 + 1178 t74 x"8 z76 + 2686 t76 x"8 z76 +
2870 t78 x78 z76 + 108 t72 x710 z76 + 396 t74 x710 z76 +

39



DE CASTRO, GASSIAT AND LACOUR

1668 t76 x~10 z”6 + 2020 t78 x710 z76 + 18 t72 x712 z76 +
66 t74 x712 z76 + 726 t76 x712 z76 + 934 t78 x712 z76 +

192 t76 x714 z76 + 266 t78 x"14
32 t78 x716 z76 + 704 y"2 z76 +

1888 t74 y~2 z~
1136 x72 y~2 z~

6 +
6 +

1312 t76 y~2
3456 t72 x72

5248 t76 x72 y"2 z76 + 2416 t78
5200 t72 x74 y~"2 z76 + 9152 t74
11696 t76 x74 y~2 z76 + 6232 t78 x74 y~2 z76 + 1144 x76 y°2 z76 +
3760 t72 x76 y"2 z76 + 9984 t~

4
16720 t76 x76 y~2 z76 + 10120 t~
4

1752 t72 x™8 y~2 z76 + 7592 t~

16024 t76 x"8 y~2 z76 + 10880 t~

z76 + 24 t76 x716 z76 +
1760 t72 y°2 z76 +

z76 + 480 t78 y°2 z76 +

y 2 z76 + 5152 t74 x72 y~2
x"2 y°2 z76 + 1768 x74 y~2
x"4 y"2 z76 +

X
8
X
8

6y
x~6
~8 y~
x"8

2 z
y~2
2 z
y©2

544 t72 x710 y"2 z76 + 3952 t74 x710 y"2 z76 +

10304 t76 x710 y~2 z"6 + 7848 t78 x710 y~2 z76 +

72 72 x712 y©2 z76 + 1160 t74 x712 y"2 z76 +

4192 t76 x712 y©2 z76 + 3680 t78 x712 y"2 z76 +

128 t74 x714 y~2 z76 + 952 t76 x714 y°2 z76 +

1016 t78 x714 y~2 z76 + 96 t76 x"16 y~2 z76 + 128 t78 x716
384 y"4 z76 + 1440 t72 y™4 z76 + 2208 t74 y*4 z76 +

"6 + 480 t78 y"4 z76 + 608 x72 y"4 z76 +

1632 t76 y°4 z
"2 x72 y°4 z7
2272 £t78 x"2 y

3200 t

~4 5~

6 + 6848 t74
6 + 1760 x~

15128 t74 x74 y~4 z"6 + 16008

19576
11168
17242
13230
10092
10476

2448 t76 x710 y™8 z76 + 864 t78 x710 y~8 z~
184 t72 x712 y™8 z76 + 1064 t74 x712 y8 z~

t
t~
t
t
t
t

4
8
~4
~8
4
~8

x”
x”
x~
x”
X
X

"4 z
4 z
4 z
4z

~10 y°4
~10 y°4
3186 t74 x"1

5278 t78 x~1
1704 t76 x"1

2y4z
2y4 =z
4 y°4 z

"6 + 25176
"6 + 832 x7

4
t
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