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Abstract

The JMLR study Do we need hundreds of classifiers to solve real world classification
problems? benchmarks 179 classifiers in 17 families on 121 data sets from the UCI repository
and claims that “the random forest is clearly the best family of classifier”. In this response,
we show that the study’s results are biased by the lack of a held-out test set and the exclusion
of trials with errors. Further, the study’s own statistical tests indicate that random forests
do not have significantly higher percent accuracy than support vector machines and neural
networks, calling into question the conclusion that random forests are the best classifiers.
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1. Errors in Results

The authors state that they used the following training procedure for 102 of the 121
benchmarked data sets, which were not already divided into training and test sets:

“One training and one test set are generated randomly (each with 50% of the
available patterns) [...]. This couple of sets is used only for parameter tuning (in
those classifiers which have tunable parameters), selecting the parameter values
which provide the best accuracy on the test set. [...] Then, using the selected
values for the tunable parameters, a 4-fold cross validation is developed using the
whole available data. [...] The test results is the average over the 4 test sets.”

This procedure is incorrect because it does not use a held-out test set. Since half
the test examples are also used as a validation set for hyperparameter tuning, select-
ing hyperparameters which maximize accuracy on the validation set will by definition
inflate performance on half the test examples. This error has likely inflated the re-
ported performance of at least some of the benchmarked classifiers with tunable hy-
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perparameters (based on the descriptions in the original paper, these include rrlda R,
sda t, PenalizedLDA t, sparseLDA R, fda t, mda t, pda t, rda R, hdda R, rbf m, rbf t,
rbfDDA t, mlp m, mlp C, mlp t, avNNet t, mlpWeightDecay t, nnet t, pcaNNet t, pnn m,
elm m, elm kernel m, lvq R, lvq t, dkp C, svm C, svmlight C, LibSVM w, svmRadial t,
svmRadialCost t, svmLinear t, svmPoly t, lssvmRadial t, rpart t, rpart2 t, ctree t,
ctree2 t, JRip t, C5.0 t, MultiBoostAB LibSVM w, Bagging LibSVM w, rf t, RRF t, cfor-
est t, parRF t, RRFglobal t, MultiScheme w, knn R, knn t, IBk w, pls t, spls R, multi-
nom t, CVParameterSelection w, gaussprRadial t and possibly others). The authors
justify the procedure by stating that:

“We must emphasize that, since parameter tuning and testing use different data
sets, the final result can not be biased by parameter optimization, because the
set of parameter values selected in the tuning stage is not necessarily the best
on the test set.”

While hyperparameter tuning and testing do technically use different sets of examples, since
one is a subset of the other, the two sets must be disjoint to avoid bias.

Further, the authors did not follow the stated procedure: the test evaluation does not
use cross-validation since the 4 test sets1 are not independent. For instance, trains, the
smallest benchmark with 10 examples, has two examples in each test set, with the following
indices: {2, 9}, {4, 9}, {4, 9}, and {4, 7}. This means that examples 4 and 9 are given three
times the weight of examples 2 and 7 when calculating the test accuracy, and the other six
examples are ignored. This negates the purpose of cross-validation, which is to give equal
importance to every example.

The results are also biased by the exclusion of trials with errors. If a classifier is
unable to run a particular benchmark, that benchmark is excluded when calculating the
classifier’s mean percent accuracy—but it is not excluded for classifiers that ran it successfully.
Effectively, each classifier is evaluated on a slightly different set of benchmarks, so the mean
percent accuracies are not directly comparable. We re-evaluated the mean percent accuracy
of the top 8 classifiers on only the benchmarks successfully run by all 8, and found that a
neural network, elm kernel matlab, was competitive with random forests (Table 1), even
having the highest mean accuracy (albeit by a very small, insignificant, margin). Still, this
neural network also had the highest number of failures (which did not count toward mean
accuracy).

2. Flawed Conclusions

The conclusion that “The random forest is clearly the best family of classifiers” is flawed.
The paper gives three arguments for why random forests are the best family: “The eight
random forest classifiers are included among the 25 best classifiers having all of them low
ranks”, “The family RF has the lowest minimum rank (32.9) and mean (46.7), and also a
narrow interval (up to 60.5), which means that all the RF classifiers work very well”, and “3
out of [the] 5” best classifiers are random forests.

The problem with the first two arguments is that the notion of a “best family” is not
well defined, and is sensitive to the choice of classifiers included in each family. For instance,

1. Partitions are available at http://persoal.citius.usc.es/manuel.fernandez.delgado/papers/jmlr/data.tar.gz.
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Rank Classifier
Mean % accuracy

# failed
Original Corrected

1 elm kernel matlab 81.96 81.84 7

2 rf caret 82.30 81.78 1

3 rforest R 81.93 81.58 1

4 parRF caret 81.96 81.32 0

5 svm C 81.81 81.30 2

6 svmRadialCost caret 81.43 81.17 6

7 svmPoly caret 81.19 81.06 6

8 svmRadial caret 81.04 80.82 6

Table 1: Mean percent accuracy of the top 8 classifiers reported in Fernández-Delgado et al.
(“Original”) and when re-evaluated on only the benchmarks successfully run by all
8 (“Corrected”). The number of benchmarks which failed to run for each classifier
is also shown. A neural network, elm kernel m, has the highest mean percent
accuracy, followed by three random forest models and then four support vector
machine models.

the worst-performing neural network is the direct parallel perceptron (Fernandez-Delgado
et al. (2011)), developed by the authors of the original paper and designed to favour extreme
computational efficiency over accuracy. Similarly, the worst rule-based classifier, ZeroR w, is
a baseline that always predicts the majority class. Mean accuracy conflates these classifiers
with others in the same family that are designed to favour accuracy. Also, larger families
will tend to have greater variance, with a lower minimum rank and a higher maximum rank.

The argument that “3 out of [the] 5” best classifiers are random forests is also questionable.
The three best random forest classifiers are actually a single classifier (randomForest in R)
with different wrappers (parRF t is parallelized; parRF t and rf t use caret) and settings
for mtry, the number of features in each tree (parRF t uses a grid search of 2 to 8 in steps
of 2; rf t searches from 2 to 29 in steps of 3, and rforest R sets mtry =

√
#features), so

it would be more correct (but still not fully correct) to say that one out of the three best
classifiers is a random forest and two are support vector machines.

Most importantly, the results do not show that the best random forests perform any
better than the best support vector machines and neural networks. The authors conducted
paired t-tests showing that the differences in accuracy between the top-ranked random
forest parRF t and the other top eight models, including support vector machines, neural
networks and other random forests, are not statistically significant (left panel of Fig. 4 in
Fernández-Delgado et al.). This calls into question the conclusion that random forests are
the best classifiers.

The use of a paired t-test is itself incorrect, since the test assumes that the difference
between the two distributions under comparison is normally distributed, yet none of the
differences between parRF t and the other top 10 classifiers are normally distributed according
to a χ2 goodness-of-fit test for normality (Table 2). Also, before calculating the p values in
Fig. 4, missing values were imputed by setting accuracies for benchmarks with errors to 82%,
the mean accuracy of parRF t across all benchmarks. This biases the results because 82% is
an average over many benchmarks, some of which are so simple that every classifier achieves
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Classifier Normality p

elm kernel matlab 1e-29

rf caret 2e-43

rforest R 1e-36

svm C 2e-15

svmRadialCost caret 7e-13

svmPoly caret 5e-09

svmRadial caret 4e-14

avNNet caret 6e-10

C5.0 caret 1e-21

Table 2: p values that the differences between parRF t and each of the other top 10 classifiers,
across all benchmarks where both classifiers ran without errors, are not normally
distributed. All p values are significant, indicating that none of the differences are
normally distributed.

Classifier

Paired t-test p,
errors set to 82%

(Fig. 4 in
original paper)

Paired t-test p,
excluding errors

Wilcoxon signed-
rank p,

excluding errors

elm kernel matlab 1 0.5 0.4

rf caret 0.4 0.3 1

rforest R 1 0.9 0.1

svm C 0.8 1 0.8

svmRadialCost caret 0.5 0.6 0.6

svmPoly caret 0.3 0.4 0.4

svmRadial caret 0.1 0.2 0.1

avNNet caret 0.03 0.03 0.02

C5.0 caret 0.001 0.001 0.0001

Table 3: Using a Wilcoxon signed-rank test instead of a paired t-test, and removing missing
values rather than incorrectly imputing them, results in the same conclusions about
the significance of the differences between parRF t and each of the other top 10
classifiers.

100% accuracy and others of which are so difficult that most classifiers achieves below 30%
accuracy, so it is unreasonable to assume that a classifier would achieve 82% accuracy on
every failed benchmark. A hypothetical classifier that failed to run every benchmark would
be considered as good as parRF t according to this imputation method! However, using the
Wilcoxon signed-rank test, which does not make the same assumption of normality, and
removing benchmarks where either classifier gave an error rather than imputing to 82%,
results in the same conclusions about significance (Table 3).

To support the conclusion that parRF t is better than the second-ranked classifier
svm C, even though the paired t-test showed them to be statistically indistinguishable,
Fernández-Delgado et al. states that:
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“Although parRF t is better than svm C in 56 of 121 data sets, worse than svm C

in 55 sets, and equal in 10 sets, [...] svm C is never much better than parRF t:
when svm C outperforms parRF t, the difference is small, but when parRF t

outperforms svm C, the difference is higher [...]. In fact, calculating for each
data set the difference between the accuracies of parRF t and svm C, the sum of
positive differences (parRF is better) is 193.8, while the negative ones (svm C

better) sum [to] 139.8.”

parRF t and svm C are only equal for 8 benchmarks, not 10: the two benchmarks where
svm C gave an error are erroneously counted towards this total. Also, the quoted figures
are for rf t, not parRF t: the true figures, based on the online results, are 220.4 and 219.6.
The above statement does not imply that the difference between parRF t and svm C is
significant, since it is equivalent to saying that the difference in mean percent accuracy
between the two classifiers, across the 119 benchmarks where both ran without errors, is

220.4−219.6
119 benchmarks ≈ 0.007, a difference that the paired t-test already showed to be insignificant
(p = 0.834 in Fig. 4 of the original paper, or p = 0.8 using a Wilcoxon signed-rank test).
(Note that 0.007 does not exactly equal 82.0 − 81.8, the difference between the reported
mean percent accuracies of parRF t and svm C, because these accuracies are biased by the
exclusion of trials with errors as discussed in Section 1.) Notably, the difference between
rf t and svm C (193.8 vs 139.8), while larger, is also insignificant (Wilcoxon signed-rank p
= 0.8).

3. Availability of Code

Code to reproduce the three tables and calculate the sum of positive and negative accuracy
differences between pairs of classifiers is available as a supplement to this paper.
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