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Abstract

The statistical analysis of massive and complex data sets will require the development of
algorithms that depend on distributed computing and collaborative inference. Inspired
by this, we propose a collaborative framework that aims to estimate the unknown mean
θ of a random variable X. In the model we present, a certain number of calculation
units, distributed across a communication network represented by a graph, participate in
the estimation of θ by sequentially receiving independent data from X while exchanging
messages via a stochastic matrix A defined over the graph. We give precise conditions on
the matrix A under which the statistical precision of the individual units is comparable to
that of a (gold standard) virtual centralized estimate, even though each unit does not have
access to all of the data. We show in particular the fundamental role played by both the
non-trivial eigenvalues of A and the Ramanujan class of expander graphs, which provide
remarkable performance for moderate algorithmic cost.

Keywords: distributed computing, collaborative estimation, stochastic matrix, graph
theory, complexity, Ramanujan graph

1. Introduction

A promising way to overcome computational problems associated with inference and predic-
tion in large-scale settings is to take advantage of distributed and collaborative algorithms,
whereby several processors perform computations and exchange messages with the end-goal
of minimizing a certain cost function. For instance, in modern data analysis one is frequently
faced with problems where the sample size is too large for a single computer or standard
computing resources. Distributed processing of such large data sets is often regarded as a
possible solution to data overload, although designing and analyzing algorithms in this set-
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ting is challenging. Indeed, good distributed and collaborative architectures should maintain
the desired statistical accuracy of their centralized counterpart, while retaining sufficient
flexibility and avoiding communication bottlenecks which may excessively slow down com-
putations. The literature is too vast to permit anything like a fair summary within the
confines of a short introduction—the papers by Duchi et al. (2012), Jordan (2013), Zhang
et al. (2013), and references therein contain a sample of relevant work.

Similarly, the advent of sensor, wireless, and peer-to-peer networks in science and tech-
nology necessitates the design of distributed and information-exchange algorithms (Boyd
et al., 2006; Predd et al., 2009). Such networks are designed to perform inference and
prediction tasks for the environments they are sensing. Nonetheless, they are typically
characterized by constraints on energy, bandwidth, and/or privacy, which limit the sen-
sors’ ability to share data with each other or with a hub for centralized processing. For
example, in a hospital network, the aim is to make safer decisions by sharing information
between therapeutic services. However, a simple exchange of database entries containing
patient details can pose information privacy risks. At the same time, a large percentage
of medical data may require exchanging high-resolution images, the centralized processing
of which may be computationally prohibitive. Overall, such constraints call for the design
of communication-constrained distributed procedures, where each node exchanges informa-
tion with only a few of its neighbors at each time instance. The goal in this setting is
to distribute the learning task in a computationally efficient way, and make sure that the
statistical performance of the network matches that of the centralized version.

The foregoing observations have motivated the development and analysis of many local
message-passing algorithms for distributed and collaborative inference, optimization, and
learning. Roughly speaking, message-passing procedures are those that use only local com-
munication to approximately achieve the same end as global (i.e., centralized) algorithms,
which require sending raw data to a central processing facility. Message-passing algorithms
are thought to be efficient by virtue of their exploitation of local communication. They have
been successfully involved in kernel linear least-squares regression estimation (Predd et al.,
2009), support vector machines (Forero et al., 2010), sparse L1 regression (Mateos et al.,
2010), gradient-type optimization (Tsitsiklis et al., 1986; Bertsekas and Tsitsiklis, 1997), and
various online inference and learning tasks (Bianchi et al., 2011a,b, 2013). An important
research effort has also been devoted to so-called averaging and consensus problems, where a
set of autonomous agents—which may be sensors or nodes of a computer network—compute
the average of their opinions in the presence of restricted communication capabilities and
try to agree on a collective decision (e.g., Blondel et al., 2005; Olshevsky and Tsitsiklis,
2011).

However, despite their rising success and impact in machine learning, little is known
regarding the statistical properties of message-passing algorithms. The statistical perfor-
mance of collaborative computing has so far been studied in terms of consensus (i.e., whether
all nodes give the same result), with perhaps mean convergence rates (e.g., Olshevsky and
Tsitsiklis, 2011; Duchi et al., 2012; Zhang et al., 2013). While it is therefore proved that
using a network, even sparse (i.e., with few connections), does not degrade the rate of con-
vergence, the problem of whether it is optimal to do this remains unanswered, including for
the most basic statistics. For example, which network properties guarantee collaborative
calculation performances equal to those of a hypothetical centralized system? The goal
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of this article is to give a more precise answer to this fundamental question. In order to
present in the clearest way possible the properties such a network must have, we undertake
this study for the most simple statistic possible: the mean.

In the model we consider, there are a number of computing agents (also known as
nodes or processors) that sequentially estimate the mean of a random variable by regularly
updating an estimate stored in their memory. Meanwhile, they exchange messages, thus
informing each other about the results of their latest computations. Agents that receive
messages use them to directly update the value in their memory by forming a convex
combination. We focus primarily on the properties that the communication process must
satisfy to ensure that the statistical precision of a single processor—that only sees part
of the data—is similar to that of an inaccessible centralized intelligence that could tackle
the whole data set at once. The literature is surprisingly quiet on this question, which
we believe is of fundamental importance if we want to provide concrete tradeoffs between
communication constraints and statistical accuracy.

This paper makes several important contributions. First, in Section 2 we introduce
communication network models and define a performance ratio allowing us to quantify
the statistical quality of a network. In Section 3 we analyze the asymptotic behavior of
this performance ratio as the number of data items t received online sequentially per node
becomes large, and give precise conditions on communication matrices A so that this ratio is
asymptotically optimal. Section 4 goes one step further, connecting the rate of convergence
of the ratio with the behavior of the eigenvalues of A. In Section 5 we present the remarkable
Ramanujan expander graphs and analyze the tradeoff between statistical efficiency and
communication complexity for these graphs with a series of simulation studies. Lastly,
Section 6 provides several elements for analysis of more complicated asynchronous models
with delays. A short discussion follows in Section 7. For clarity, proofs are gathered in
Section 8.

2. The model

Let X be a square-integrable real-valued random variable, with EX = θ and Var(X) = σ2.
We consider a set {1, . . . , N} of computing entities (N ≥ 2) that collectively participate in
the estimation of θ. In this distributed model, agent i sequentially receives an i.i.d. sequence

X
(i)
1 , . . . , X

(i)
t , . . . , distributed as the prototype X, and forms, at each time t, an estimate

of θ. It is assumed throughout that the X
(i)
t are independent when both t ≥ 1 and i ∈

{1, . . . , N} vary.

In the absence of communication between agents, the natural estimate held by agent i
at time t is the empirical mean

X̄
(i)
t =

1

t

t∑
k=1

X
(i)
k .

Equivalently, processor i is initialized with X
(i)
1 and performs its estimation via the iteration

X̄
(i)
t+1 =

tX̄
(i)
t +X

(i)
t+1

t+ 1
, t ≥ 1.
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Let > denote transposition and assume that vectors are in column format. Letting Xt =

(X
(1)
t , . . . , X

(N)
t )> and X̄t = (X̄

(1)
t , . . . , X̄

(N)
t )>, we see that

X̄t+1 =
tX̄t + Xt+1

t+ 1
, t ≥ 1. (1)

In a more complicated collaborative setting, besides its own measurements and computa-
tions, each agent may also receive messages from other processors and combine this infor-
mation with its own conclusions. At its core, this message-passing process can be modeled
by a directed graph G = (V ,E ) with vertex set V = {1, . . . , N} and edge set E . This graph
represents the way agents communicate, with an edge from j to i (in that order) if j sends
information to i. Furthermore, we have an N ×N stochastic matrix A = (aij)1≤i,j≤N (i.e.,

aij ≥ 0 and for each i,
∑N

j=1 aij = 1) with associated graph G , i.e., aij > 0 if and only if
(j, i) ∈ E . The matrix A accounts for the way agents incorporate information during the

collaborative process. Denoting by θ̂t = (θ̂
(1)
t , . . . , θ̂

(N)
t )> the collection of estimates held

by the N agents over time, the computation/combining mechanism is assumed to be as
follows:

θ̂t+1 =
t

t+ 1
Aθ̂t +

1

t+ 1
Xt+1, t ≥ 1,

with θ̂1 = (X
(1)
1 , . . . , X

(N)
1 )>. Thus, each individual estimate θ̂

(i)
t+1 is a convex combination

of the estimates θ̂
(j)
t held by the agents over the network at time t, augmented by the new

observation X
(i)
t+1.

The matrix A models the way processors exchange messages and collaborate, ranging
from A = IN (the N ×N identity matrix, i.e., no communication) to A = 11>/N (where
1 = (1, . . . , 1)>, i.e., full communication). We note in particular that the choice A = IN
gives back iteration (1) with θ̂t = X̄t. We also note that, given a graph G , various choices
are possible for A. Thus, aside from a convenient way to represent a communication channel
over which agents can retrieve information from each other, the matrix A can be seen as a
“tuning parameter” on G to improve the statistical performance of θ̂t, as we shall see later.
Important examples for A include the choices

A1 =
1

2



1 1
1 0 1

1 0 1
...

...
...

...
...

...
...

...
...

1 0 1
1 0 1

1 1


(2)

and

A2 =
1

3



2 1
1 1 1

1 1 1
...

...
...

...
...

...
...

...
...

1 1 1
1 1 1

1 2


(3)
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(unmarked entries are zero).

It is easy to verify that for all t ≥ 1,

θ̂t =
1

t

t−1∑
k=0

AkXt−k. (4)

Thus, denoting by ‖ · ‖ the Euclidean norm (for vector or matrices), we may write, for all
t ≥ 1,

E‖θ̂t − θ1‖2 =
1

t2
E
∥∥∥∥ t−1∑
k=0

Ak(Xt−k − θ1)

∥∥∥∥2

(since Ak is a stochastic matrix)

=
1

t2

t∑
k=1

E
∥∥∥At−k(Xk − θ1)

∥∥∥2
,

by independence of X1, . . . ,Xt. It follows that

E‖θ̂t − θ1‖2 ≤ E‖X1 − θ1‖2 ×
1

t2

t−1∑
k=0

‖Ak‖2

≤ E‖X1 − θ1‖2 ×
N

t
.

In the last inequality, we used the fact that Ak is a stochastic matrix and thus ‖Ak‖2 ≤ N
for all k ≥ 0. We can merely conclude that E‖θ̂t − θ1‖2 → 0 as t → ∞ (mean-squared

error consistency), and so θ̂
(i)
t → θ in probability for each i ∈ {1, . . . , N}. Put differently,

the agents asymptotically agree on the (true) value of the parameter, independently of the
choice of the (stochastic) matrix A—this property is often called consensus in the distributed
optimization literature (see, e.g., Bertsekas and Tsitsiklis, 1997). We insist on the fact that
in our framework, consensus is obvious, and is not the question we are looking at here.

The consensus property, although interesting, does not say anything about the positive
(or negative) impact of the graph on the comparative performances of estimates with respect
to a centralized version. To clarify this remark, assume that there exists a centralized

intelligence that could tackle all data X
(1)
1 , . . . , X

(1)
t , . . . , X

(N)
1 , . . . , X

(N)
t at time t, and

take advantage of these sample points to assess the value of the parameter θ. In this ideal
framework, the natural estimate of θ is the global empirical mean

X̄Nt =
1

Nt

N∑
i=1

t∑
k=1

X
(i)
k ,

which is clearly the best we can hope for with the data at hand. However, this estimate is
to be considered as an unattainable “gold standard” (or oracle), insofar as it uses the whole
(N× t)-sample. In other words, its evaluation requires sending all examples to a centralized
processing facility, which is precisely what we want to avoid.
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Figure 1: Convergence of individual nodes’ estimates with and without message-passing.

Thus, a natural question arises: can the message-passing process be tapped to ensure

that the individual estimates θ̂
(i)
t achieve statistical accuracy “close” to that of the gold

standard X̄Nt? Figure 1 illustrates this pertinent question.
In the trials shown, i.i.d. uniform random variables on [0, 1] are delivered online to

N = 5 nodes, one to each at each time t. With message-passing (here, A = A2), each node
aggregates the new data point with data it has seen previously and messages received from
its nearest neighbors in the network. We see that all of the five nodes’ updates seem to
converge with a performance comparable to that of the (unseen) global estimate X̄Nt to
the mean 0.5. In contrast, in the absence of message-passing (A = I5), individual nodes’
estimates do still converge to 0.5, but at a slower rate.

To deal with this question of statistical accuracy satisfactorily, we first need a criterion
to compare the performance of θ̂t with that of X̄Nt. Perhaps the most natural one is the
following ratio, which depends upon the matrix A:

τt(A) =
E
∥∥(X̄Nt − θ)1

∥∥2

E‖θ̂t − θ1‖2
, t ≥ 1.

The more this ratio is close to 1, the more the collaborative algorithm is statistically efficient,
in the sense that its performance compares favorably to that of the centralized gold standard.
In the remainder of the paper, we call τt(A) the performance ratio at time t.

Of particular interest in our approach is the stochastic matrix A, which plays a crucial
role in the analysis. Roughly, a good choice for A is one for which τt(A) is not too far
from 1, while ensuring that communication over the network is not prohibitively expensive.
Although there are several ways to measure “complexity” of the message-passing process,
we have in mind a setting where the communication load is well-balanced between agents,
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in the sense that no node should play a dominant role. To formalize this idea, we define the
communication-complexity index C (A) as the maximal indegree of the edges of the graph G
associated with A, i.e., the maximal number of edges pointing to a node in G (by convention,
self-loops are counted twice when G is undirected). Essentially, A is communication-efficient
when C (A) is small with respect to N or, more generally, when C (A) = O(1) as N becomes
large.

To provide some context, C (A) measures in a certain sense the “local” aspect of message
exchanges induced by A. We have in mind node connection set-ups where C (A) is small,
perhaps due to energy or bandwidth constraints in the system’s architecture, or when for
privacy reasons data must not be sent to a central node. Indeed, a large C (A) roughly
means that one or several nodes play centralized roles—precisely what we are trying to
avoid. Furthermore, the decentralized networks we are interested in can be seen as being
more autonomous than high-C (A) ones, in the sense that having few network connections
means less things that can potentially break, as well as improved robustness due to the fact
that the loss of one node does not lead to destruction of the whole system. As examples,
the matrices A1 and A2 defined earlier have C (A1) = 3 and C (A2) = 4, respectively, while
the stochastic matrix A3 below has C (A3) = N + 1:

A3 =
1

N


1 1 1 · · · 1 1 1
1 N − 1
1 N − 1
...

...
...

...
...

...
...

1 N − 1

 . (5)

Thus, from a network complexity point of view, A1 and A2 are preferable to A3 where node
1 has the flavor of a central command center.

Now, having defined τt(A) and C (A), it is natural to suspect that there will be some kind
of tradeoff between implementing a low-complexity message-passing algorithm (i.e., C (A)
small) and achieving good asymptotic performance (i.e., τt(A) ≈ 1 for large t). Our main
goal in the next few sections is to probe this intuition by analyzing the asymptotic behavior
of τt(A) as t → ∞ under various assumptions on A. We start by proving that τt(A) ≤ 1
for all t ≥ 1, and give precise conditions on the matrix A under which τt(A) → 1. Thus,
thanks to the benefit of inter-agent communication, the statistical accuracy of individual
estimates may be asymptotically comparable to that of the gold standard, despite the fact
that none of the agents in the network have access to all of the data. Indeed, as we shall
see, this stunning result is possible even for low-C (A) matrices. The take-home message
here is that the communication process, once cleverly designed, may “boost” the individual
estimates, even in the presence of severe communication constraints. We also provide an
asymptotic development of τt(A), which offers valuable information on the optimal way to
design the communication network in terms of the eigenvalues of A.

3. Convergence of the performance ratio

Recall that a stochastic square matrix A = (aij)1≤i,j≤N is irreducible if for every pair of
indices i and j, there exists a nonnegative integer k such that (Ak)ij is not equal to 0. The
matrix is said to be reducible if it is not irreducible.
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Proposition 1 We have 1
N ≤ τt(A) ≤ 1 for all t ≥ 1. In addition, if A is reducible, then

τt(A) ≤ 1− 1

N + 1
, t ≥ 1.

It is apparent from the proof of the proposition (all proofs are found in Section 8) that
the lower bound 1/N for τt(A) is achieved by taking A = IN , which is clearly the worst
choice in terms of communication. This proposition also shows that the irreducibility of
A is a necessary condition for the collaborative algorithm to be statistically efficient, for
otherwise there exists ε ∈ (0, 1) such that τt(A) ≤ 1− ε for all t ≥ 1.

We recall from the theory of Markov chains (e.g., Grimmett and Stirzaker, 2001) that
for a fixed agent i ∈ {1, . . . , N}, the period of i is the greatest common divisor of all positive
integers k such that (Ak)ii > 0. When A is irreducible, the period of every state is the same
and is called the period of A. The following lemma describes the asymptotic behavior of
τt(A) as t tends to infinity.

Lemma 2 Assume that A is irreducible, and let d be its period. Then there exist projectors
Q1, . . . , Qd such that

τt(A)→ 1∑d
`=1 ‖Q`‖2

as t→∞.

The projectors Q1, . . . , Qd in Lemma 2 originate from the decomposition

Ak =
d∑
`=1

λk`Q` +
∑
γ∈Γ

γkQγ(k),

where λ1 = 1, . . . , λd are the eigenvalues of A (distinct) of unit modulus, Γ the set of
eigenvalues of A of modulus strictly smaller than 1, and Qγ(k) certain N × N matrices
(see Theorem 8 in the proofs section). In particular, we see that τt(A) → 1 as t → ∞ if
and only if

∑d
`=1 ‖Q`‖2 = 1. It turns out that this condition is satisfied if and only if A

is irreducible, aperiodic (i.e., d = 1), and bistochastic, i.e.,
∑N

i=1 aij =
∑N

j=1 aij = 1 for all

(i, j) ∈ {1, . . . , N}2. This important result is encapsulated in the next theorem.

Theorem 3 We have τt(A) → 1 as t → ∞ if and only if A is irreducible, aperiodic, and
bistochastic.

Theorem 3 offers necessary and sufficient conditions for the communication matrix A to
be asymptotically statistically efficient. Put differently, under the conditions of the theorem,
the message-passing process conveys sufficient information to local computations to make
individual estimates as accurate as the gold standard for large t. We again stress that this
theorem is new and different from results obtained in the consensus literature. The theorem
shows that one machine, on its own, if it is well-informed, does as good a job as a virtual
central machine that has access to all the data.

In the context of multi-agent coordination, an example of such a communication network
is the so-called (time-invariant) equal neighbor model (Tsitsiklis et al., 1986; Olshevsky and
Tsitsiklis, 2011), in which

aij =

{
1/|N (i)| if j ∈ N (i)

0 otherwise,
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where
N (i) =

{
j ∈ {1, . . . , N} : aij > 0

}
is the set of agents whose value is taken into account by i, and |N (i)| its cardinality. Clearly,
the communication matrix A is stochastic, and also bistochastic as soon as A is symmetric
(bidirectional model). Assuming in addition that the directed graph G associated with A
is connected means that A is irreducible. Moreover, if aii > 0 for some i ∈ {1, . . . , N}, then
A is also aperiodic, so the conditions of Theorem 3 are fulfilled.

Another way to choose an irreducible, aperiodic, and bistochastic matrix on an undi-
rected graph is by letting aij = 1/max(1 + d(i), 1 + d(j)), where d(i) is the degree of node
i; following this, aii is set to that which is needed to make each row sum to 1.

It is also interesting to note that there exist low-C (A) matrices that meet the require-
ments of Theorem 3. This is for instance the case of matrices A1 and A2 in (2) and (3),
which are irreducible, aperiodic, and bistochastic, and satisfy C (A) ≤ 4. Also note that the
matrix A3 in (5), though irreducible, aperiodic, and bistochastic, should be avoided because
C (A3) = N + 1.

We stress that the irreducibility and aperiodicity conditions are inherent properties of
the graph G , not A, insofar as these conditions do not depend upon the actual values of
the nonzero entries of A. This is different for the bistochasticity condition, which requires
knowledge of the coefficients of A. In fact, as observed by Sinkhorn and Knopp (1967), it
is not always possible to associate such a bistochastic matrix with a given directed graph
G . To be more precise, consider G = (gij)1≤i,j≤N , the transpose of the adjacency matrix
of the graph G —that is, gij ∈ {0, 1} and gij = 1 ⇔ (j, i) ∈ E . Then G is said to have
total support if, for every positive element gij , there exists a permutation σ of {1, . . . , N}
such that j = σ(i) and

∏N
k=1 gkσ(k) > 0. The main theorem of Sinkhorn and Knopp (1967)

asserts that there exists a bistochastic matrix A of the form A = D1GD2, where D1 and
D2 are N ×N diagonal matrices with positive diagonals, if and only if G has total support.
The algorithm to induce A from G is called the Sinkhorn-Knopp algorithm. It does this by
generating a sequence of matrices whose rows and columns are normalized alternately. It is
known that the convergence of the algorithm is linear, and upper bounds have been given
for its rate of convergence (e.g., Knight, 2008).

Nevertheless, if for some reason we face a situation where it is impossible to associate a
bistochastic matrix with the graph G , Proposition 4 below shows that it is still possible to
obtain information about the performance ratio, provided A is irreducible and aperiodic.

Proposition 4 Assume that A is irreducible and aperiodic. Then

τt(A)→ 1

N‖µ‖2
as t→∞,

where µ is the stationary distribution of A.

To illustrate this result, take N = 2 and consider the graph G with (symmetric) adja-
cency matrix 11> (i.e., full communication). Various stochastic matrices may be associated
with G , each with a certain statistical performance. For α > 1 a given parameter, we may
choose for example

Hα =
1

α

(
1 α− 1
1 α− 1

)
.
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When α = 2, we have τt(H2)→ 1 by Theorem 3. More generally, using Proposition 4, it is
an easy exercise to prove that, as t→∞,

τt(Hα)→ α2

2 + 2(α− 1)2
.

We see that the statistical performance of the local estimates deteriorates as α becomes
large, for in this case τt(Hα) gets closer and closer to 1/2. This toy model exemplifies the
role the stochastic matrix is playing as a “tuning parameter” to improve the performance
of the distributed estimate.

4. Convergence rates

Theorem 3 gives precise conditions ensuring τt(A) = 1 + o(1), but does not say anything
about the rate (i.e., the behavior of the second-order term) at which this convergence occurs.
It turns out that a much more informative limit may be obtained at the price of the mild
additional assumption that the stochastic matrix A is symmetric (and hence bistochastic).

Theorem 5 Assume that A is irreducible, aperiodic, and symmetric. Let 1 > γ2 ≥ · · · ≥
γN > −1 be the eigenvalues of A different from 1. Then

τt(A) =
1

1 + 1
t

∑N
`=2

1−γ2t`
1−γ2`

.

In addition, setting

S (A) =
N∑
`=2

1

1− γ2
`

and Γ(A) = max
2≤`≤N

|γ`|,

we have, for all t ≥ 1,

1− S (A)

t
≤ τt(A) ≤ 1− S (A)

t
+ Γ2t(A)

S (A)

t
+
(S (A)

t

)2
.

Clearly, we thus have

t
(
1− τt(A)

)
→ S (A) as t→∞.

The take-home message is that the smaller the coefficient S (A), the better the matrix
A performs from a statistical point of view. In this respect, we note that S (A) ≥ N −
1 (uniformly over the set of stochastic, irreducible, aperiodic, and symmetric matrices).
Consider the full-communication matrix

A0 =
1

N
11>, (6)

which models a saturated communication network in which each agent shares its information
with all others. The associated communication topology, which has C (A0) = N + 1, is
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roughly equivalent to a centralized algorithm and, as such, is considered inefficient from
a computational point of view. On the other hand, intuitively, the amount of statistical
information propagating through the network is large so S (A0) should be small. Indeed, it
is easy to see that in this case, γ` = 0 for all ` ∈ {2, . . . , N} and S (A0) = N −1. Therefore,
although complex in terms of communication, A0 is statistically optimal.

Remark 6 Interestingly, as pointed out by a referee, S (A) has a graph theoretic interpre-
tation as the Kemeny constant of the Markov chain A2, and may be written in terms of
hitting times. Consequently, for a number of graphs it is easy to compute—see Jadbabaie
and Olshevsky (2015) for example.

For a comparative study of statistical performance and communication complexity of
matrices, let us consider the sparser graph associated with the tridiagonal matrix A1 defined
in (2). With this choice, γ` = cos (`−1)π

N (Fiedler, 1972), so that

S (A1) =
N−1∑
`=1

1

1− cos2 `π
N

=
N2

6
+ O(N) as N →∞. (7)

Thus, we lose a power of N but now have lower communication complexity C (A1) = 3.
Let us now consider the tridiagonal matrix A2 defined in (3). Noticing that 3A2 =

2A1 + IN , we deduce that for the matrix A2, γ` = 1
3 + 2

3 cos (`−1)π
N , 2 ≤ ` ≤ N . Thus, as

N →∞,

S (A2) =
N2

9
+ O(N). (8)

By comparing (7) and (8), we can conclude that the matrices A1 and A2, which are both low-
C (A), are also nearly equivalent from a statistical efficiency point of view. A2 is nevertheless
preferable to A1, which has a larger constant in front of the N2. This slight difference
may be due to the fact that most of the diagonal elements of A1 are zero, so that agents
i ∈ {2, . . . , N − 1} do not integrate their current value in the next iteration, as happens for
A2. Furthermore, for large N , the performance of A1 and A2 are expected to dramatically
deteriorate in comparison with those of A0, since S (A1) and S (A2) are proportional to
N2, while S (A0) is proportional to N .

Figure 2 shows the evolution of τt(A) for N fixed and t increasing for the matrices
A = A0, A1, A2 as well as the identity IN . As expected, we see convergence of τt(Ai) to 1,
with degraded performance as the number of agents N increases. Also, we see that the lack
of message-passing for IN means it is statistically inefficient, with constant τt(IN ) = 1/N
for all t.

The discussion and plots above highlight the crucial influence of S (A) on the perfor-
mance of the communication network. Indeed, Theorem 5 shows that the optimal order for
S (A) is N , and that this scaling is achieved by the computationally-inefficient choice A0—
see (6). Thus, a natural question to ask is whether there exist communication networks that
have S (A) proportional to N and, simultaneously, C (A) constant or small with respect
to N . These two conditions, which are in a sense contradictory, impose that the absolute
values of the non-trivial eigenvalues γ` stay far from 1, while the maximal indegree of the
graph G remains moderate. It turns out that these requirements are satisfied by so-called
Ramanujan graphs, which are presented in the next section.
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Figure 2: Evolution of τt(Ai) with t for different values of N , for A = A0, A1, A2, and IN .

5. Ramanujan graphs

In this section, we consider undirected graphs G = (V ,E ) that are also d-regular, in the sense
that all vertices have the same degree d; that is each vertex is incident to exactly d edges.
Recall that in this definition, self-loops are counted twice and multiple edges are allowed.
However, in what follows, we restrict ourselves to graphs without self-loops and multiple
edges. In this setting, the natural (bistochastic) communication matrix A associated with
G is A = 1

dG, where G = (gij)1≤i,j≤N is the adjacency matrix of G (gij ∈ {0, 1} and
gij = 1⇔ (i, j) ∈ E ). Note that C (A) = d.

The matrix G is symmetric and we let d = µ1 ≥ µ2 ≥ · · · ≥ µN ≥ −d be its (real)
eigenvalues. Similarly, we let 1 = γ1 ≥ γ2 ≥ · · · ≥ γN ≥ −1 be the eigenvalues of A,
with the straightforward correspondence γi = µi/d. We note that A is irreducible (or,
equivalently, that G is connected) if and only if d > µ2 (see, e.g., Shlomo et al., 2006,
Section 2.3). In addition, A is aperiodic as soon as µN > −d. According to the Alon-
Boppana theorem (Nilli, 1991) one has, for every d-regular graph,

µ2 ≥ 2
√
d− 1− oN (1),

where the oN (1) term is a quantity that tends to zero for every fixed d as N →∞. Moreover,
a d-regular graph G is called Ramanujan if

max
(
|µ`| : µ` < d

)
≤ 2
√
d− 1.

In view of the above, a Ramanujan graph is optimal, at least as far as the spectral gap
measure of expansion is concerned. Ramanujan graphs fall in the category of so-called
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expander graphs, which have the apparently contradictory features of being both highly
connected and at the same time sparse (for a review, see Shlomo et al., 2006).

Although the existence of Ramanujan graphs for any degree larger than or equal to 3
has been recently established by Marcus et al. (2015), their explicit construction remains
difficult to use in practice. However, a conjecture by Alon (1986), proved by Friedman
(2008) (see also Bordenave, 2015) asserts that most d-regular graphs are Ramanujan, in the
sense that for every ε > 0,

P
(

max
(
|µ2|, |µN |

)
≥ 2
√
d− 1 + ε

)
→ 0 as N →∞,

or equivalently, in terms of the eigenvalues of A,

P
(

max
(
|γ2|, |γN |

)
≥ 2
√
d− 1

d
+ ε
)
→ 0 as N →∞.

In both results, the limit is along any sequence going to infinity with Nd even, and the
probability is with respect to random graphs uniformly sampled in the family of d-regular
graphs with vertex set V = {1, . . . , N}.

In order to generate a random irreducible, aperiodic d-regular Ramanujan graph, we can
first generate a random d-regular graph using an improved version of the standard pairing
algorithm, proposed by Steger and Wormald (1999). We retain it if it passes the tests of
being irreducible, aperiodic, and Ramanujan as described above. Otherwise, we continue to
generate a d-regular graph until all these conditions are satisfied. Figure 3 gives an example
of a 3-regular Ramanujan graph with N = 16 vertices, generated in this way.

Figure 3: Randomly-generated 3-regular Ramanujan graph with N = 16 vertices.

Now, given an irreducible and aperiodic communication matrix A associated with a
d-regular Ramanujan graph G , we have, whenever d ≥ 3,

S (A) ≤ N − 1

1− 4(d−1)
d2

.

Thus, recalling that S (A) ≥ N − 1, we see that S (A) scales optimally as N while having
C (A) = d (fixed). This remarkable super-efficiency property can be compared with the
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full-communication matrix A0, which has S (A0) = N − 1 but inadmissible complexity
C (A0) = N + 1.

The statistical efficiency of these graphs is further highlighted in Figure 4. It shows
results for 3- and 5-regular Ramanujan-type matrices (A3 and A5) as well as the previous
results for non-Ramanujan-type matrices A0, A1, and A2 (see Figure 2).
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Figure 4: Evolution of τt(Ai) with t for different values of N , for A = A0, A1, A2 as before
with the addition of 3- and 5-regular Ramanujan-type matrices A3 and A5.

We see that A3 is already close to the statistical performance of A0, the saturated
network, and for all intents and purposes A5 is essentially as good as A0, even when there
are N = 1000 nodes; i.e., the statistical performance of the 5-regular Ramanujan graph is
barely distinguishable from that of the totally connected graph! Nevertheless, we must not
forget that the possibility of building such efficient networks in real-world situations will
ultimately depend on the specific application, and may not always be possible.

Next, assuming that the Ramanujan-type matrix A is irreducible and aperiodic, it is
apparent that there is a compromise to be made between the communication complexity of
the algorithm (as measured by the degree index C (A) = d) and its statistical performance
(as measured by the coefficient S (A)). Clearly, the two are in conflict. Upon this a question
arises: is it possible to reach a compromise in the range of statistical performances S (A)
while varying the communication complexity between d = 3 and d = N? The answer is
affirmative, as shown in the following simulation exercise.

We fix N = 200 and then for each d = 3, . . . , N :

(i) Generate a matrix Ad associated with a d-regular Ramanujan graph as before.
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(ii) Compute the (non-unitary) eigenvalues γ
(d)
2 , . . . , γ

(d)
N of the matrix Ad and evaluate

the sum

S (Ad) =
N∑
`=2

1

1−
(
γ

(d)
`

)2 .
(iii) Plot S (Ad) and βC (Ad) = βd as well as penalized sums S (Ad) + βC (Ad) for β ∈

{1/2, 1, 2, 4}, where β represents an explicit cost incurred when increasing the number
of connections between nodes.

Results are shown in Figure 5, where d? refers to the d for which the penalized sum S (Ad)+
βC (Ad) is minimized.
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Figure 5: Statistical efficiency vs communication complexity tradeoff for four different node
communication penalties β. d? is the d which minimizes S (Ad) + βC (Ad).

We observe that S (Ad) is decreasing whereas C (Ad) increases linearly. The tradeoff
between statistical efficiency and communication complexity can be seen as minimizing their
penalized sum, where β for example represents a monetary cost incurred by adding new
network connections between nodes. We see that the optimal d? and thus the number of
node connections decreases as the cost of adding new ones increases.

Next, let us investigate the tradeoffs involved in the case where we have a large but
fixed total number T of data to be streamed to N nodes, each receiving one new data value
from time t = 1 to time t = T/N . In this context, the natural question to ask is how many
nodes should we choose, and how much communication should we allow between them in
order to get “very good” results for a “low” cost? Here a low cost comes from both limiting
the number of nodes as well as the number of connections between them.

In the same set-up for Ad defined above, one way to look at this is to ask, for each
N , what is the smallest d ∈ {3, . . . , N} and therefore the smallest communication cost
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C (Ad) = d for which the performance ratio τt(Ad) is at least 0.99 after receiving all the data,
i.e., when t = T/N? Then, as there is also a cost associated with increasing N , minimizing
C (Ad?)/N (where d? is this smallest d chosen) should help us choose the number of nodes
N and the amount of connection C (Ad?) between them. The result of this is shown in
Figure 6 for T = 100 million data points.
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Figure 6: Optimizing the number of nodes N and the level of communication d required
between nodes to obtain a performance ratio τt(Ad) ≥ 0.99 given a large fixed
quantity of data T .

The minimum is found at (N, d?) = (710, 3), suggesting that with 100 million data
points, one can get excellent performance results (τt(Ad?) ≥ 0.99) for a low cost with
around 700 nodes, each connected only to three other nodes! Increasing N further raises
the cost necessary to obtain the same performance, both due to the price of adding more
nodes, as well as requiring more connections between them: d? must increase to 4, 5, and
so on.

6. Asynchronous models

The models considered so far assume that messages from one agent to another are imme-
diately delivered. However, a distributed environment may be subject to communication
delays, for instance when some processors compute faster than others or when latency and
finite bandwidth issues perturb message transmission. In the presence of such communi-
cation delays, it is conceivable that an agent will end up averaging its own value with an
outdated value from another processor. Situations of this type fall within the framework
of distributed asynchronous computation (Tsitsiklis et al., 1986; Bertsekas and Tsitsiklis,
1997). In the present section, we have in mind a model where agents do not have to wait
at predetermined moments for predetermined messages to become available. We thus allow
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some agents to compute faster and execute more iterations than others and allow commu-
nication delays to be substantial.

Communication delays are incorporated into our model as follows. For B a nonnegative
integer, we assume that the last instant before t where agent j sent a message to agent i is

t − Bij , where Bij ∈ {0, . . . , B}. Put differently, recalling that θ̂
(i)
t is the estimate held by

agent i at time t, we have

θ̂
(i)
t+1 =

1

t+ 1

N∑
j=1

aij(t−Bij)θ̂(j)
t−Bij +

1

t+ 1
X

(i)
t+1, t ≥ 1. (9)

Thus, at time t, when agent i uses the value of another agent j, this value is not necessarily

the most recent one θ̂
(j)
t , but rather an outdated one θ̂

(j)
t−Bij , where Bij represents the

communication delay. The time instants t − Bij are deterministic and, in any case, 0 ≤
Bij ≤ B, i.e., we assume that delays are bounded. Notice that some of the values t−Bij in

(9) may be negative—in this case, by convention we set θ̂
(j)
t−Bij = 0. Our goal is to establish

a counterpart to Theorem 3 in the presence of communication delays. As usual, we set

θ̂t = (θ̂
(1)
t , . . . , θ̂

(N)
t )>.

Let κ(t) be the smallest ` such that for all (k0, . . . , k`) ∈ {1, . . . , N}`+1 satisfying∏`
j=1 akj−1kj > 0, we have

t− `−
∑̀
j=1

Bkj−1kj ≤ B.

Observe that t − ` −
∑`

j=1Bkj−1kj is the last time before t when a message was sent from
agent k0 to agent k` via k1, . . . , k`−1. Accordingly, κ(t) is nothing but the smallest number
of transitions needed to return at a time instant earlier than B, whatever the path. We
note that κ(t) is roughly of order t, since

1

B + 1
≤ lim inf

t→∞

κ(t)

t
≤ lim sup

t→∞

κ(t)

t
≤ 1.

From now on, it is assumed that A = A1, i.e., the irreducible, aperiodic, and symmetric
matrix defined in (2). Besides its simplicity, this choice is motivated by the fact that A1 is
communication-efficient while its associated performance obeys

τt(A) ≈ 1− N2

6t

for large t and N . The main result of the section now follows.

Theorem 7 Assume that X is bounded and let A = A1 be defined as in (2). Then, as
t→∞,

E
∥∥∥∥ t

κ(t)
θ̂t − θ1

∥∥∥∥2

= O

(
1

t

)
.

The advantages one hopes to gain from asynchronism are twofold. First, a reduction of
the synchronization penalty and a potential speed advantage over synchronous algorithms,
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perhaps at the expense of higher communication complexity. Second, a greater implemen-
tation flexibility and tolerance to system failure and uncertainty. On the other hand, the
powerful result of Theorem 7 comes at the price of assumptions on the transmission net-
work, which essentially demand that communication delays Bij are time-independent. In
fact, we find that the introduction of delays considerably complicates the consistency anal-
ysis of τt(A) even for the simple case of the empirical mean. This unexpected mathematical
burden is due to the fact that the introduction of delays makes the analysis of the variance
of the estimates quite complicated.

7. Conclusions and future work

This article has introduced new ideas which show how units collaborating among them-
selves can “boost” the statistical properties of the individual estimates by appropriately
sharing information. Clearly, calculating the mean is a “simple” task with respect to cur-
rent applications—our main motivation was to open a new front in this research direction.
The obvious next step is to deal with more realistic problems in maximum likelihood, pre-
diction, and learning.

As kindly pointed out by a referee, casting the problem using a single irreducible and
aperiodic matrix A is a much more constrained approach than simply asking what are
“good” communication schemes on a given graph and letting A be random and depend on
t, i.e., At. In this more general case, we could have many more zeros than the graph’s
adjacency matrix, the case of random pairwise gossip being an example. There may be
interesting choices of At that lead to good convergence properties. This is a promising
direction for future research.

8. Proofs

We start this section by recalling the following important theorem, whose proof can be found
for example in Foata and Fuchs (2004, Theorems 6.8.3 and 6.8.4). Here and elsewhere, A
stands for the stochastic communication matrix.

Theorem 8 Let λ1, . . . , λd be the eigenvalues of A of unit modulus (with λ1 = 1) and Γ be
the set of eigenvalues of A of modulus strictly smaller than 1.

(i) There exist projectors Q1, . . . , Qd such that, for all k ≥ N ,

Ak =

d∑
`=1

λk`Q` +
∑
γ∈Γ

γkQγ(k),

where the matrices {Qγ(k) : k ≥ N, γ ∈ Γ} satisfy Qγ(k)Qγ′(k
′) = Qγ(k + k′) if

γ = γ′, and 0 otherwise. In addition, for all γ ∈ Γ, limk→∞ γ
kQγ(k) = 0.

(ii) The sequence (Ak)k≥0 converges in the Cesàro sense to Q1, i.e.,

1

t

t∑
k=0

Ak → Q1 as t→∞.
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8.1 Proof of Proposition 1

According to (4), since Ak is a stochastic matrix, we have

θ̂t − θ1 =
1

t

t−1∑
k=0

Ak(Xt−k − θ1).

Therefore, it may be assumed, without loss of generality, that θ = 0. Thus,

τt(A) =
E
∥∥X̄Nt1∥∥2

E‖θ̂t‖2
.

Next, let Ak = (a
(k)
ij )1≤i,j≤N . Then, for each i ∈ {1, . . . , N},

θ̂
(i)
t =

1

t

t−1∑
k=0

N∑
j=1

a
(k)
ij X

(j)
t−k, t ≥ 1.

By independence of the samples,

E
(
θ̂

(i)
t

)2
=
σ2

t2

t−1∑
k=0

N∑
j=1

(
a

(k)
ij

)2
.

Upon noting that E(X̄Nt)2 = σ2

Nt , we get

τt(A) =
NE
(
X̄Nt

)2
E
(
θ̂

(1)
t

)2
+ · · ·+ E

(
θ̂

(N)
t

)2
=

t∑t−1
k=0 ‖Ak‖2

.

Since each Ak is a stochastic matrix, ‖Ak‖2 ≤ N and, by the Cauchy-Schwarz inequality,
‖Ak‖ ≥ 1. Thus, 1

N ≤ τt(A) ≤ 1, the lower bound being achieved when A is the identity
matrix.

Let us now assume that A is reducible, and let C ( {1, . . . , N} be a recurrence class.
Arguing as above, we obtain that for all i ∈ C,

E
(
θ̂

(i)
t

)2
=
σ2

t2

t−1∑
k=0

N∑
j=1

(
a

(k)
ij

)2 ≥ σ2

t2

t−1∑
k=0

∑
j∈C

(
a

(k)
ij

)2
.

Since C is a recurrence class, the restriction of A to entries in C is a stochastic matrix as
well. Thus, setting N1 = |C|, by the Cauchy-Schwarz inequality,

E
(
θ̂

(i)
t

)2 ≥ { σ2

tN1
if i ∈ C

σ2

tN otherwise.
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To conclude,

τt(A) =
σ2/t∑

i∈C E
(
θ̂

(i)
t

)2
+
∑

i/∈C E
(
θ̂

(i)
t

)2
≤ 1

1 + (N −N1)/N

≤ N

N + 1
,

since N −N1 ≥ 1.

8.2 Proof of Lemma 2

As in the previous proof, we assume that θ = 0. Recall that

θ̂t =
1

t

t−1∑
k=0

AkXt−k, t ≥ 1.

Thus, for all t ≥ 1,

E‖θ̂t‖2 =
1

t2
E
∥∥∥∥ t−1∑
k=0

AkXt−k

∥∥∥∥2

=
1

t2

t−1∑
k=0

E‖AkXt−k‖2

(by independence of X1, . . . ,Xt)

=
1

t2
EX>1

( t−1∑
k=0

(Ak)>Ak
)

X1.

Denote by λ1 = 1, . . . , λd the eigenvalues of A of modulus 1, and let Γ be the set of
eigenvalues γ of A of modulus strictly smaller than 1. According to Theorem 8, there exist
projectors Q1, . . . , Qd and matrices Qγ(k) such that for all k ≥ N ,

Ak =

d∑
`=1

λk`Q` +
∑
γ∈Γ

γkQγ(k).

Therefore,

t−1∑
k=0

(Ak)>Ak =

t−1∑
k=0

(Āk)>Ak

=

t−1∑
k=0

( d∑
`=1

λ̄k` Q̄` +
∑
γ∈Γ

γ̄kQ̄γ(k)

)>( d∑
j=1

λkjQj +
∑
γ∈Γ

γkQγ(k)

)

=

t−1∑
k=0

d∑
`,j=1

λ̄k`λ
k
j Q̄
>
` Qj + o(t).
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Here, we have used Cesàro’s lemma combined with the fact that, by Theorem 8, for any
γ ∈ Γ, limk→∞ γ

kQγ(k) = 0.
Since A is irreducible, according to the Perron-Frobenius theorem (e.g., Grimmett and

Stirzaker, 2001, page 240), we have that λ` = e
2πi(`−1)

d , 1 ≤ ` ≤ d. Accordingly,

λ̄`λj = e
2πi(j−`)

d = 1⇔ j = `.

Thus,
t−1∑
k=0

(Ak)>Ak = t

d∑
`=1

Q̄>` Q` + O(1) + o(t).

Letting Q =
∑d

`=1 Q̄
>
` Q`, we obtain

tE‖θ̂t‖2 = EX>1 QX1 + EX>1

(
1

t

t−1∑
k=0

(Ak)>Ak −Q
)

X1 (10)

= EX>1 QX1 + o(1)

=
d∑
`=1

E‖Q`X1‖2 + o(1).

Denoting by Q`,ij the (i, j)-entry of Q`, we conclude

tE‖θ̂t‖2 =
d∑
`=1

E
N∑
i=1

( N∑
j=1

Q`,ijX
(j)
1

)2

+ o(1)

= σ2
d∑
`=1

N∑
i,j=1

Q2
`,ij + o(1)

(by independence of X
(1)
1 , . . . , X

(N)
1 )

= σ2
d∑
`=1

‖Q`‖2 + o(1).

Lastly, recalling that E‖X̄Nt1‖2 = σ2

t , we obtain

τt(A) =
1∑d

`=1 ‖Q`‖2 + o(1)
=

1∑d
`=1 ‖Q`‖2

+ o(1).

8.3 Proof of Theorem 3

Sufficiency. Assume that A is irreducible, aperiodic, and bistochastic. The first two
conditions imply that 1 is the unique eigenvalue of A of unit modulus. Therefore, according
to Lemma 2, we only need to prove that the projector Q1 satisfies ‖Q1‖ = 1.

Since A is bistochastic, its stationary distribution is the uniform distribution on the set
{1, . . . , N}. Moreover, since A is irreducible and aperiodic, we have, as k →∞,

Ak → 1

N

1 1 . . . 1
...

...
...

...
1 1 . . . 1

 .
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By comparing this limit with that of the second statement of Theorem 8, we conclude by
Cesàro’s lemma that

Q1 =
1

N

1 1 . . . 1
...

...
...

...
1 1 . . . 1

 .

This implies in particular that ‖Q1‖ = 1.

Necessity. Assume that τt(A) tends to 1 as t → ∞. According to Proposition 1, A
is irreducible. Thus, by Lemma 2, we have

∑d
`=1 ‖Q`‖2 = 1. Observe, since each Q` is

a projector, that ‖Q`‖ ≥ 1. Therefore, the identity
∑d

`=1 ‖Q`‖2 = 1 implies d = 1 and
‖Q1‖ = 1. We conclude that A is aperiodic.

Then, since A is irreducible and aperiodic, we have, as k →∞,

Ak →

µ
...
µ

 ,

where µ is the stationary distribution of A, represented as a row vector. Comparing once
again this limit with the second statement of Theorem 8, we see that

Q1 =

µ
...
µ

 .

Thus, ‖Q1‖2 = N‖µ‖2 = 1. In particular, letting µ = (µ1, . . . , µN ), we have

N
N∑
i=1

µ2
i =

N∑
i=1

µi.

This is an equality case in the Cauchy-Schwarz inequality, from which we deduce that µ
is the uniform distribution on {1, . . . , N}. Since µ is the stationary distribution of A, this
implies that A is bistochastic.

8.4 Proof of Proposition 4

If A is irreducible and aperiodic, then by Lemma 2, τt(A) → 1
‖Q1‖2 as t → ∞. But, as

k →∞,

Ak →

µ
...
µ

 ,

where the stationary distribution µ of A is represented as a row vector. By the second
statement of Theorem 8, we conclude that ‖Q1‖2 = N‖µ‖2.
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8.5 Proof of Theorem 5

Without loss of generality, assume that θ = 0. Since A is irreducible and aperiodic, the
matrix Q in the proof of Lemma 2 is Q = Q>1 Q1. Moreover, since A is also bistochastic, we
have already seen that as k →∞,

Ak → 1

N

1 1 . . . 1
...

...
...

...
1 1 . . . 1

 . (11)

However, by the second statement of Theorem 8, the above matrix is equal to Q1. Thus,
the projector Q1 is symmetric, which implies Q = Q1.

Next, we deduce from (10) that

τt(A) =
σ2

EX>1 QX1 + EX>1
(

1
t

∑t−1
k=0(Ak)>Ak −Q

)
X1

=
σ2

σ2 + EX>1
(

1
t

∑t−1
k=0A

2k −Q
)
X1

, (12)

by symmetry of A and the fact that EX>1 QX1 = σ2. The symmetric matrix A can be put
into the form

A = UDU>,

where U is a unitary matrix with real entries (so, U> = U−1) and D = diag(1, γ2, . . . , γN ),
with 1 > γ2 ≥ · · · ≥ γN > −1. Therefore, as k →∞,

1

t

t−1∑
k=0

A2k = U

(
1

t

t−1∑
k=0

D2k

)
U> → U


1 0 . . . 0
0 0 . . . 0
...

...
...

...
0 0 . . . 0

U>.

However, by (11) and Cesàro’s lemma,

1

t

t−1∑
k=0

A2k → Q as k →∞.

It follows that Q = UMU>, where

M =


1 0 . . . 0
0 0 . . . 0
...

...
...

...
0 0 . . . 0

 .
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Thus,

1

t

t−1∑
k=0

A2k −Q = U

(
1

t

t−1∑
k=0

D2k −M
)
U>

= U

(
1

t

t−1∑
k=0

diag
(
0, γ2k

2 , . . . , γ2k
N

))
U>

= Udiag

(
0,

1

t

1− γ2t
2

1− γ2
2

, . . . ,
1

t

1− γ2k
N

1− γ2
N

)
U>.

Next, set

α` =
1

t

1− γ2t
`

1− γ2
`

, 2 ≤ ` ≤ N,

and let U = (uij)1≤i,j≤N . With this notation, the (i, j)-entry of the matrix 1
t

∑t−1
k=0A

2k−Q
is

N∑
`=2

ui`α`uj`.

Hence,

X>1

(
1

t

t−1∑
k=0

A2k −Q
)

X1 =
N∑
i=1

X
(i)
1

N∑
j=1

( N∑
`=2

ui`α`uj`

)
X

(j)
1 .

Thus,

EX>1

(
1

t

t−1∑
k=0

A2k −Q
)

X1 = σ2
N∑
i=1

N∑
`=2

ui`α`ui`

= σ2
N∑
i=1

N∑
`=2

α`u
2
i`

= σ2
N∑
`=2

α`

=
σ2

t

N∑
`=2

1− γ2t
`

1− γ2
`

.

We conclude from (12) that

τt(A) =
1

1 + 1
t

∑N
`=2

1−γ2t`
1−γ2`

.

This shows the first statement of the theorem. Using the inequality 1
1+x ≥ 1− x, valid for

all x ≥ 0, we have

τt(A) ≥ 1− 1

t

N∑
`=2

1− γ2t
`

1− γ2
`

≥ 1− S (A)

t
.
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Finally, evoking the inequality 1
1+x ≤ 1− x+ x2, valid for all x ≥ 0, we conclude

τt(A) ≤ 1− 1

t

N∑
`=2

1− γ2t
`

1− γ2
`

+

(
1

t

N∑
`=2

1− γ2t
`

1− γ2
`

)2

≤ 1− S (A)

t
+ Γ2t(A)

S (A)

t
+
(S (A)

t

)2
.

8.6 Proof of Theorem 7

From now on, we fix k0 ∈ {1, . . . , N} and let Z
(i)
t = tθ̂

(i)
t for any i ∈ {1, . . . , N}. Thus, for

all t ≥ 1,

Z
(k0)
t =

N∑
k=1

ak0kZ
(k)
t−Bk0k−1 +X

(k0)
t ,

and

Z
(k0)
t =

N∑
k1,k2=1

ak0k1ak1k2Z
(k2)
t−Bk0k1−Bk1k2−2 +

N∑
k1=1

ak0k1X
(k1)
t−Bk0k1−1 +X

(k0)
t . (13)

Our first task is to iterate this formula. To do so, we need additional notation. For ` a
positive integer and k ∈ {1, . . . , N}, let K`(k) be the set of vectors in {1, . . . , N}`+1 of the
form (k0, k1, . . . , k`−1, k) such that w(K`(k)) > 0, where

w
(
K`(k)

)
= ak0k1ak1k2 . . . ak`−2k`−1

ak`−1k.

In particular, by our choice of A, we have w(K`(k)) = 2−` for any k. Next, we set

∆
(
K`(k)

)
= `+Bk0k1 +Bk1k2 + · · ·+Bk`−2k`−1

+Bk`−1k.

When ` = 0, then by convention K0(k) = (k0), w(K0(k)) = 1 if k = k0 and 0 otherwise,
and ∆(K0(k)) = 0.

We are now ready to iterate (13). To do so, observe that

Z
(k0)
t =

N∑
k=1

∑
Kκ(t)(k)

w
(
Kκ(t)(k)

)
Z

(k)

t−∆(Kκ(t)(k))

+

κ(t)−1∑
`=0

N∑
k=1

∑
K`(k)

w
(
K`(k)

)
X

(k)

t−∆(K`(k))

def
= R1

t +R2
t . (14)

By the definition of κ(t), for all k ∈ {1, . . . , N}, t−∆(Kκ(t)(k)) ≤ B. Since X is bounded,
we deduce that there exists C > 0 such that

|R1
t | ≤ C

N∑
k=1

∑
Kκ(t)(k)

w
(
Kκ(t)(k)

)
.
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This implies that |R1
t | ≤ C. To see this, note that Aκ(t) is a stochastic matrix and that for

all k ∈ {1, . . . , N}, ∑
Kκ(t)(k)

w
(
Kκ(t)(k)

)
= (Aκ(t))k0k.

The analysis of the term R2
t is more delicate. The difficulty arises from the fact that this

term is not a sum of independent random variables, and therefore its components must be
grouped. Since each Bij is smaller than B and ∆(K`(k)) = x implies x ≥ `, we obtain

R2
t =

κ(t)−1∑
`=0

N∑
k=1

(B+1)`∑
x=0

∑
K`(k):∆(K`(k))=x

w
(
K`(k)

)
X

(k)
t−x

=

(B+1)(κ(t)−1)∑
x=0

N∑
k=1

x∑
`=bx/(B+1)c+1

∑
K`(k):∆(K`(k))=x

w
(
K`(k)

)
X

(k)
t−x

(b·c is the floor function). By independence of the X
(i)
j , we get

Var(R2
t ) = σ2

(B+1)(κ(t)−1)∑
x=0

N∑
k=1

( x∑
`=bx/(B+1)c+1

∑
K`(k):∆(K`(k))=x

w
(
K`(k)

))2

.

Recalling that w(K`(k)) = 2−`, we obtain

Var(R2
t ) = σ2

(B+1)(κ(t)−1)∑
x=0

N∑
k=1

( x∑
`=bx/(B+1)c+1

1

2`

∣∣∣K`(k) : ∆
(
K`(k)

)
= x

∣∣∣)2

.

Next, consider the Markov chain (Yn)n≥0 with transition matrix A such that Y0 = k0.
Observe that

P
(
Y` = k,

∑̀
j=1

BYj−1Yj = x− `
)

=
1

2`

∣∣∣K`(k) : ∆
(
K`(k)

)
= x

∣∣∣.
Moreover, for fixed x, the events{∑̀

j=1

BYj−1Yj = x− `
}
,
⌊ x

B + 1

⌋
+ 1 ≤ ` ≤ x,

are disjoint since the Bij are nonnegative. Thus,

x∑
`=bx/(B+1)c+1

1

2`

∣∣∣K`(k) : ∆
(
K`(k)

)
= x

∣∣∣ ≤ 1,

and so,

Var(R2
t ) ≤ σ2

(B+1)(κ(t)−1)∑
x=0

N∑
k=1

1 = σ2N
(
(B + 1)κ(t)−B

)
. (15)

26



The Statistical Performance of Collaborative Inference

The expectation of R2
t is easier to compute. Indeed, since each A` is a stochastic matrix,

ER2
t = θ

κ(t)−1∑
`=0

N∑
k=1

∑
K`(k)

w
(
K`(k)

)
= θ

κ(t)−1∑
`=0

N∑
k=1

(A`)k0k = θκ(t).

Combining (14), (15), and the fact that |R1
t | ≤ C, we obtain

E
(

t

κ(t)
θ̂

(k0)
t − θ

)2

= E
(
R1
t

κ(t)
+

R2
t

κ(t)
− θ
)2

= E
(
R2
t − ER2

t

κ(t)
+

R1
t

κ(t)

)2

= O

(
1

κ(t)

)
.

The result follows from the identity 1/κ(t) = O(1/t).

Acknowledgments

Gérard Biau would like to acknowledge support for this project from the Institut univer-
sitaire de France. The authors also thank the Action Editor and two referees for valuable
comments and insightful suggestions, which led to a substantial improvement of the paper.

References

N. Alon. Eigenvalues and expanders. Combinatorica, 6:83–96, 1986.

D.P. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed Computation: Numerical Meth-
ods. Athena Scientific, Belmont, 1997.

P. Bianchi, G. Fort, W. Hachem, and J. Jakubowicz. Convergence of a distributed parameter
estimator for sensor networks with local averaging of the estimates. In Proceedings of the
36th IEEE International Conference on Acoustics, Speech and Signal Processing, 2011a.

P. Bianchi, G. Fort, W. Hachem, and J. Jakubowicz. Performance analysis of a distributed
Robbins-Monro algorithm for sensor networks. In Proceedings of the 19th European Signal
Processing Conference, 2011b.
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