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Abstract

We develop a method for estimating well-conditioned and sparse covariance and inverse co-
variance matrices from a sample of vectors drawn from a sub-Gaussian distribution in high
dimensional setting. The proposed estimators are obtained by minimizing the quadratic
loss function and joint penalty of `1 norm and variance of its eigenvalues. In contrast to
some of the existing methods of covariance and inverse covariance matrix estimation, where
often the interest is to estimate a sparse matrix, the proposed method is flexible in estimat-
ing both a sparse and well-conditioned covariance matrix simultaneously. The proposed
estimators are optimal in the sense that they achieve the mini-max rate of estimation in
operator norm for the underlying class of covariance and inverse covariance matrices. We
give a very fast algorithm for computation of these covariance and inverse covariance matri-
ces which is easily scalable to large scale data analysis problems. The simulation study for
varying sample sizes and variables shows that the proposed estimators performs better than
several other estimators for various choices of structured covariance and inverse covariance
matrices. We also use our proposed estimator for tumor tissues classification using gene
expression data and compare its performance with some other classification methods.

Keywords: Sparsity, Eigenvalue Penalty, Penalized Estimation

1. Introduction

With the recent surge in data technology and storage capacity, today’s statisticians often
encounter data sets where sample size n is small and number of variables p is very large:
often hundreds, thousands and even million or more. Examples include gene expression
data and web search problems [Clarke et al. (2008), Pass et al. (2006.)]. For many of
the high dimensional data problems, the choice of classical statistical methods becomes
inappropriate for making valid inference. The recent developments in asymptotic theory
deal with increasing p as long as both p and n tend to infinity at some rate depending upon
the parameters of interest.

The estimation of covariance and inverse covariance matrix is a problem of primary
interest in multivariate statistical analysis. Some of the applications include: (i) Principal
component analysis (PCA) [Johnstone and Lu (2004), Zou et al. (2006)]:, where the goal is
to project the data on “best” k-dimensional subspace, and where best means the projected
data explains as much of the variation in original data without increasing k. (ii) Discrimi-
nant analysis [Mardia et al. (1979)]:, where the goal is to classify observations into different
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classes. Here estimates of covariance and inverse covariance matrices play an important
role as the classifier is often a function of these entities. (iii) Regression analysis: If inter-
est focuses on estimation of regression coefficients with correlated (or longitudinal) data, a
sandwich estimator of the covariance matrix may be used to provide standard errors for the
estimated coefficients that are robust in the sense that they remain consistent under mis-
specification of the covariance structure. (iv) Gaussian graphical modeling [Meinshausen
and Bühlmann (2006), Wainwright et al. (2006), Yuan and Lin (2007),Yuan (2009)]:, the
relationship structure among nodes can be inferred from inverse covariance matrix. A zero
entry in the inverse covariance matrix implies conditional independence between the corre-
sponding nodes.

The estimation of large dimensional covariance matrix based on few sample observations
is a difficult problem, especially when n � p (here an � bn means that there exist positive
constants c and C such that c ≤ an/bn ≤ C). In these situations, the sample covariance
matrix becomes unstable which explodes the estimation error. It is well known that the
eigenvalues of sample covariance matrix are over-dispersed which means that the eigen-
spectrum of sample covariance matrix is not a good estimator of its population counterpart
[Marcenko and Pastur (1967), Karoui (2008a)]. To illustrate this point, consider Σp = Ip, so
all the eigenvalues are 1. A result from [Geman (1980)] shows that if entries of Xi’s are i.i.d
(let Xi’s have mean zero and variance 1) with a finite fourth moment and if p/n→ θ < 1,
then the largest sample eigenvalue l1 satisfies:

l1 → (1 +
√
θ)2, a.s

This suggests that l1 is not a consistent estimator of the largest eigenvalue σ1 of population
covariance matrix. In particular if n = p then l1 tends to 4 whereas σ1 is 1. This is also
evident in the eigenvalue plot in Figure 2.1. The distribution of l1 also depends on the
underlying structure of the true covariance matrix. From Figure 2.1, it is evident that the
smaller sample eigenvalues tend to underestimate the true eigenvalues for large p and small
n. For more discussion on this topic, see Karoui (2008a).

To correct for this bias, a natural choice would be to shrink the sample eigenvalues
towards some suitable constant to reduce the over-dispersion. For instance, Stein (1975)
proposed an estimator of the form Σ̃ = ŨΛ(λ̃)Ũ , where Λ(λ̃) is a diagonal matrix with
diagonal entries as transformed function of the sample eigenvalues and Ũ is the matrix of the
eigen-vectors. In another interesting paper Ledoit and Wolf (2004) proposed an estimator
that shrinks the sample covariance matrix towards the identity matrix. In another paper,
Karoui (2008b) proposed a non-parametric estimation of spectrum of eigenvalues and show
that his estimator is consistent in the sense of weak convergence of distributions.

The covariance matrix estimates based on eigen-spectrum shrinkage are well-conditioned
in the sense that their eigenvalues are well bounded away from zero. These estimates are
based on the shrinkage of the eigenvalues and therefore invariant under some orthogonal
group i.e. the shrinkage estimators shrink the eigenvalues but eigenvectors remain un-
changed. In other words, the basis (eigenvector) in which the data are given is not taken
advantage of and therefore the methods rely on premise that one will be able to find a good
estimate in any basis. In particular, it is reasonable to believe that the basis generating the
data is somewhat nice. Often this translates into the assumption that the covariance matrix

346



JPEN Estimation of Covariance and Inverse Covariance Matrices

has particular structure that one should be able to take advantage of. In these situations,
it becomes natural to perform certain form of regularization directly on the entries of the
sample covariance matrix.

Much of the recent literature focuses on two broad classes of regularized covariance
matrix estimation. i) The one class relies on natural ordering among variables, where one
often assumes that the variables far apart are weekly correlated and ii) the other class where
there is no assumption on the natural ordering among variables. The first class includes the
estimators based on banding and tapering [Bickel and Levina (2008b), Cai et al. (2011)].
These estimators are appropriate for a number of applications for ordered data (time series,
spectroscopy, climate data). However for many applications including gene expression data,
prior knowledge of any canonical ordering is not available and searching for all permutation
of possible ordering would not be feasible. In these situations, an `1 penalized estimator
becomes more appropriate which yields a permutation-invariant estimate.

To obtain a suitable estimate which is both well-conditioned and sparse, we introduce
two regularization terms: i) `1 penalty for each of the off-diagonal elements of matrix
and, ii) penalty proportional to the variance of the eigenvalues. The `1 minimization
problems are well studied in the covariance and inverse covariance matrix estimation lit-
erature [Friedman et al. (2008), Banerjee et al. (2008), Ravikumar et al. (2011), Bein and
Tibshirani (2011), Maurya (2014) etc.]. Rothman (2012) proposes an `1 penalized log-
likelihood estimator and shows that estimator is consistent in Frobenius norm at the rate of
OP

(√
{(p+ s) log p}/n

)
, as both p and n approach to infinity. Here s is the number of non-

zero off-diagonal elements in the true covariance matrix. In another interesting paper Bein
and Tibshirani (2011) propose an estimator of covariance matrix as penalized maximum
likelihood estimator with a weighted lasso type penalty. In these optimization problems,
the `1 penalty results in sparse and a permutation-invariant estimator as compared to other
lq, q 6= 1 penalties. Another advantage is that the `1 norm is a convex function which makes
it suitable for large scale optimization problems. A number of fast algorithms exist in the
literature for covariance and inverse covariance matrix estimation [(Friedman et al. (2008),
Rothman et al. (2008)]. The eigenvalues variance penalty overcomes the over-dispersion in
the sample covariance matrix so that the estimator remains well-conditioned.

Ledoit and Wolf (2004) proposed an estimator of covariance matrix as a linear combi-
nation of sample covariance and identity matrix. Their estimator of covariance matrix is
well-conditioned but it is not sparse. Rothman et al. (2008) proposed estimator of covariance
matrix based on quadratic loss function and `1 penalty with a log-barrier on the determinant
of covariance matrix. The log-determinant barrier is a valid technique to achieve positive
definiteness but it is still unclear whether the iterative procedure proposed in Rothman
et al. (2008) actually finds the right solution to the corresponding optimization problem.
In another interesting paper, Xue et al. (2012) proposed an estimator of covariance matrix
as a minimizer of penalized quadratic loss function over set of positive definite matrices. In
their paper, the authors solve a positive definite constrained optimization problem and es-
tablish the consistency of estimator. The resulting estimator is sparse and positive definite
but whether it overcomes the over-dispersion of the eigen-spectrum of sample covariance
matrix, is hard to justify. Maurya (2014) proposed a joint convex penalty as function of `1
and trace norm (defined as sum of singular values of a matrix) for inverse covariance matrix
estimation based on penalized likelihood approach.
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In this paper, we propose the JPEN (Joint PENalty) estimators for covariance and
inverse covariance matrices estimation and derive an explicit rate of convergence in both the
operator and Frobenius norm. The JPEN estimators achieves mini-max rate of convergence
under operator norm for the underlying class of sparse covariance and inverse covariance
matrices and hence is optimal. For more details see section §3. One of the major advantage
of the proposed estimators is that the proposed algorithm is very fast, efficient and easily
scalable to a large scale data analysis problem.

The rest of the paper is organized as following. The next section highlights some back-
ground and problem set-up for covariance and inverse covariance matrix estimation. In
section 3, we describe the proposed estimators and establish their theoretical consistency.
In section 4, we give an algorithm and compare its computational time with some other
existing algorithms. Section 5 highlights the performance of the proposed estimators on sim-
ulated data while an application of proposed estimator to real life data is given in section
6.

Notation: For a matrix M , let ‖M‖1 denote its `1 norm defined as the sum of absolute
values of the entries of M , ‖M‖F denote its Frobenius norm, defined as the sum of square
of elements of M , ‖M‖ denote its operator norm (also called spectral norm), defined as the
largest absolute eigenvalue of M , M− denotes matrix M where all diagonal elements are set
to zero, M+ denote matrix M where all off-diagonal elements are set to zero, σi(M) denote
the ith largest eigenvalue of M , tr(M) denotes its trace, det(M) denote its determinant,
σmin(M) and σmax(M) denote the minimum and maximum eigenvalues of M , |M | be its
cardinality, and let sign(M) be matrix of signs of elements of M . For any real x, let sign(x)
denotes sign of x, and let |x| denotes its absolute value.

2. Background and Problem Set-up

Let X = (X1, X2, · · · , Xp) be a zero-mean p-dimensional random vector. The focus of this
paper is the estimation of the covariance matrix Σ := E(XXT ) and its inverse Σ−1 from
a sample of independently and identically distributed data {X(k)}nk=1. In this section we
provide some background and problem setup more precisely.

The choice of loss function is very crucial in any optimization problem. An optimal esti-
mator for a particular loss function may not be optimal for another choice of loss function.
Recent literature in covariance matrix and inverse covariance matrix estimation mostly fo-
cuses on estimation based on likelihood function or quadratic loss function [Friedman et al.
(2008), Banerjee et al. (2008), Bickel and Levina (2008b), Ravikumar et al. (2011), Roth-
man et al. (2008), Maurya (2014)]. The maximum likelihood estimation requires a tractable
probability distribution of observations whereas quadratic loss function does not have any
such requirement and therefore fully non-parametric. The quadratic loss function is convex
and due to this analytical tractability, it is a widely applicable choice for many data analysis
problems.
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2.1 Proposed Estimators

Let S be the sample covariance matrix. Consider the following optimization problem.

Σ̂λ,γ = arg min
Σ=ΣT ,tr(Σ)=tr(S)

[
||Σ− S||22 + λ‖Σ−‖1 + γ

p∑
i=1

{
σi(Σ)− σ̄Σ

}2
]
, (2.1)

where σ̄Σ is the mean of eigenvalues of Σ, λ and γ are some positive constants. Note that
by penalty function ‖Σ−‖1, we only penalize off-diagonal elements of Σ. The eigenvalues
variance penalty term for eigen-spectrum shrinkage is chosen from the following points of
interest: i) It is easy to interpret and ii) this choice of penalty function yields a very fast
optimization algorithm. By constraint tr(Σ) = tr(S), the total variation in Σ̂λ,γ is same as

that in sample covariance matrix S, however the eigenvalues of Σ̂λ,γ are well-conditioned

than those of S. From here onwards we suppress the dependence of λ, γ on Σ̂ and denote
Σ̂λ,γ by Σ̂.

For γ = 0, the solution to (2.1) is the standard soft-thresholding estimator for quadratic
loss function and its solution is given by (see §4 for derivation of this estimator):

Σ̂ii = sii

Σ̂ij = sign(sij) max
(
|sij | −

λ

2
, 0
)
, i 6= j.

(2.2)

It is clear from this expression that a sufficiently large value of λ will result in sparse co-
variance matrix estimate. But estimator Σ̂ of (2.2) is not necessarily positive definite [for
more details here see Xue et al. (2012)]. Moreover it is hard to say whether it overcomes
the over-dispersion in the sample eigenvalues. The following eigenvalue plot (Figure (2.1))
illustrates this phenomenon for a neighbourhood type (see §5 for details on description of
neighborhood type of covariance matrix) covariance matrix. Here we simulated random
vectors from multivariate normal distribution with sample size n = 50 and number of co-
variates p = 20. As is evident from Figure 2.1, eigenvalues of sample covariance matrix
are over-dispersed as most of them are either too large or close to zero. Eigenvalues of the
proposed Joint Penalty (JPEN) estimator and PDSCE (Positive Definite Sparse Covariance
matrix Estimator (Rothman (2012)) of the covariance matrix are well aligned with those of
true covariance matrix. See §5 for detailed discussion. Another drawback of the estimator
(2.2) is that the estimate can be negative definite.

As argued earlier, to overcome the over-dispersion in eigen-spectrum of sample covari-
ance matrix, we include eigenvalues variance penalty. To illustrate its advantage, consider
λ = 0. After some algebra, let Σ̂ be the minimizer of (2.1), then it is given by:

Σ̂ = (S + γ t I)/(1 + γ), (2.3)

where I is the identity matrix, and t =
∑p

i=1 Sii/p. After some algebra, conclude that for
any γ > 0:

σmin(Σ̂) = σmin(S + γ t I)/(1 + γ)

≥ γ t

1 + γ
> 0
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Figure 2.1: Comparison of Eigenvalues of Covariance Matrices
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This means that the eigenvalues variance penalty improves S to a positive definite estimator
Σ̂. However the estimator (2.3) is well-conditioned but need not be sparse. Sparsity can
be achieved by imposing `1 penalty on the entries of covariance matrix. Simulations have
shown that, in general the minimizer of (2.1) is not positive definite for all values of λ > 0
and γ > 0. Here onwards we focus on correlation matrix estimation, and later generalize
the method for covariance matrix estimation.
To achieve both well-conditioned and sparse positive definite estimator we optimize the
following objective function in R over specific region of values of (λ, γ) which depends
upon sample correlation matrix K and λ, γ. Here the condition tr(Σ) = tr(S) reduces to
tr(R) = p, and t = 1. Consider the following optimization problem:

R̂K = arg min
R=RT ,tr(R)=p|(λ,γ)∈ŜK1

[
||R−K||2F + λ‖R−‖1 + γ

p∑
i=1

{
σi(R)− σ̄R

}2
]
, (2.4)

where
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ŜK1 =
{

(λ, γ) : λ, γ > 0, λ � γ �
√

log p
n ,∀ε > 0, σmin{(K + γI)− λ

2 ∗ sign(K + γI)} > ε
}
,

and σ̄R is mean of the eigenvalues of R. For instance when K is diagonal matrix, the set
ŜK1 is given by:

ŜK1 =
{

(λ, γ) : λ, γ > 0, λ � γ �
√

log p
n , ∀ε > 0, λ < 2(γ − ε)

}
.

The minimization in (2.4) over R is for fixed (λ, γ) ∈ ŜK1 . The proposed estimator of
covariance matrix (based on regularized correlation matrix estimator R̂K) is given by
Σ̂K = (S+)1/2R̂K(S+)1/2, where S+ is the diagonal matrix of the diagonal elements of
S. Furthermore Lemmas 3.1 and 3.2, respectively show that the objective function (2.4) is
convex and estimator given in (2.4) is positive definite.

2.2 Our Contribution

The main contributions are the following:
i) The proposed estimators are both sparse and well-conditioned simultaneously. This ap-
proach allows to take advantage of a prior structure if known on the eigenvalues of the true
covariance and the inverse covariance matrices.
ii) We establish theoretical consistency of proposed estimators in both operator and Frobe-
nius norm. The proposed JPEN estimators achieves the mini-max rate of convergence in
operator norm for the underlying class of sparse and well-conditioned covariance and inverse
covariance matrices and therefore is optimal.
iii) The proposed algorithm is very fast, efficient and easily scalable to large scale optimiza-
tion problems.

3. Analysis of JPEN Method

Def: A random vector X is said to have sub-Gaussian distribution if for each t ≥ 0 and
y ∈ Rp with ‖y‖2 = 1, there exist 0 < τ <∞ such that

P{|yT (X − E(X))| > t} ≤ e−t2/2τ (3.1)

Although the JPEN estimators exists for any finite 2 ≤ n < p < ∞, for theoretical con-
sistency in operator norm we require s log p = o(n) and for Frobenius norm we require
(p + s) log p = o(n) where s is the upper bound on the number of non-zero off-diagonal
entries in true covariance matrix. For more details, see the remark after Theorem 3.1.

3.1 Covariance Matrix Estimation

We make the following assumptions about the true covariance matrix Σ0.
A0. Let X := (X1, X2, · · · , Xp) be a mean zero vector with covariance matrix Σ0 such that
each Xi/

√
Σ0ii has sub-Gaussian distribution with parameter τ as defined in (3.1).

A1. With E = {(i, j) : Σ0ij 6= 0, i 6= j}, the |E| ≤ s for some positive integer s.
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A2. There exists a finite positive real number k̄ > 0 such that 1/k̄ ≤ σmin(Σ0) ≤
σmax(Σ0) ≤ k̄.

Assumption A2 guarantees that the true covariance matrix Σ0 is well-conditioned (i.e.
all the eigenvalues are finite and positive). A well-conditioned means that [Ledoit and
Wolf (2004))] inverting the matrix does not explode the estimation error. Assumption
A1 is more of a definition which says that the number of non-zero off diagonal elements
are bounded by some positive integer. Theorem 3.1 gives the rate of convergence of the
proposed correlation based covariance matrix estimator (2.4). The following Lemmas show
that optimization problem in (2.4) is convex and the proposed JPEN estimator (2.4) is
positive definite.

Lemma 1. The optimization problem in (2.4) is convex.

Lemma 2. The estimator given by (2.4) is positive definite for any 2 ≤ n <∞ and p <∞.

Theorem 3.1. Let (λ, γ) ∈ ŜK1 and Σ̂K be as defined in (2.4). Under Assumptions A0,
A1, A2,

‖R̂K −R0‖F = OP

(√s log p

n

)
and ‖Σ̂K − Σ0‖ = OP

(√(s+ 1)log p

n

)
, (3.2)

where R0 is true correlation matrix.

Remark: 1. The JPEN estimator Σ̂K is mini-max optimal under the operator norm.
In (Cai et al. (2015)), the authors obtain the mini-max rate of convergence in the operator
norm of their covariance matrix estimator for the particular construction of parameter space

H0(cn,p) :=
{

Σ : max1≤i≤p
∑p

i=1 I{σij 6= 0} ≤ cn,p

}
. They show that this rate in operator

norm is cn,p
√
log p/n which is same as that of Σ̂K for 1 ≤ cn,p =

√
s.

2. Bickel and Levina (2008a) proved that under the assumption of
∑

j=1 |σij |q ≤ c0(p)
for some 0 ≤ q ≤ 1, the hard thresholding estimator of the sample covariance matrix for
tuning parameter λ �

√
(log p)/n is consistent in operator norm at a rate no worse than

OP

(
c0(p)

√
p( log pn )(1−q)/2

)
where c0(p) is the upper bound on the number of non-zero ele-

ments in each row. Here the truly sparse case corresponds to q = 0. The rate of convergence
of Σ̂K is same as that of Bickel and Levina (2008a) except in the following cases:
Case (i) The covariance matrix has all off diagonal elements zero except last row which
has
√
p non-zero elements. Then c0(p) =

√
p and

√
s =

√
2
√
p− 1. The operator norm

rate of convergence for JPEN estimator is OP

(√√
p (log p)/n

)
where as rate of Bickel and

Levina’s estimator is OP

(√
p (log p)/n

)
.

Case (ii) When the true covariance matrix is tri-diagonal, we have c0(p) = 2 and s = 2p−2,
the JPEN estimator has rate of

√
p log p/n whereas the Bickel and Levina’s estimator has

rate of
√
log p/n.

For the case
√
s � c0(p) and JPEN has the same rate of convergence as that of Bickel and

Levina’s estimator.
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3. The operator norm rate of convergence is much faster than Frobenius norm. This
is due to the fact that Frobenius norm convergence is in terms of all eigenvalues of the
covariance matrix whereas the operator norm gives the convergence of the estimators in
terms of the largest eigenvalue.

4. Our proposed estimator is applicable to estimate any non-negative definite covariance
matrix.

Note that the estimator Σ̂K is obtained by regularization of sample correlation matrix
in (2.4). In some application it is desirable to directly regularize the sample covariance
matrix. The JPEN estimator of the covariance matrix based on regularization of sample
covariance matrix is obtained by solving the following optimization problem:

Σ̂S = arg min
Σ=ΣT ,tr(Σ)=tr(S)|(λ,γ)∈ŜS1

[
||Σ− S||2F + λ‖Σ−‖1 + γ

p∑
i=1

{σi(Σ)− σ̄Σ}2
]
, (3.3)

where

ŜS1 =
{

(λ, γ) : λ, γ > 0, λ � γ �
√

log p
n ,∀ε > 0, σmin{(S + γtI)− λ

2 ∗ sign(S + γtI)} > ε},

and S is sample covariance matrix. The minimization in (3.3) over Σ is for fixed (λ, γ) ∈ ŜS1 .
The estimator Σ̂S is positive definite and well-conditioned. Theorem 3.2 gives the rate of
convergence of the estimator Σ̂S in Frobenius norm.

Theorem 3.2. Let (λ, γ) ∈ ŜS1 , and let Σ̂S be as defined in (3.3). Under Assumptions A0,
A1, A2,

‖Σ̂S − Σ0‖F = OP

(√(s+ p)log p

n

)
(3.4)

As noted in Rothman (2012) the worst part of convergence here comes from estimating
the diagonal entries.

3.1.1 Weighted JPEN Estimator for the Covariance Matrix Estimation

A modification of estimator R̂K is obtained by adding positive weights to the term (σi(R)−
σ̄R)2. This leads to weighted eigenvalues variance penalty with larger weights amounting to
greater shrinkage towards the center and vice versa. Note that the choice of the weights al-
lows one to use any prior structure of the eigenvalues (if known) in estimating the covariance
matrix. The weighted JPEN correlation matrix estimator R̂A is given by :

R̂A = arg min
R=RT ,tr(R)=p|(λ,γ)∈ŜK,A

1

[
||R−K||2F + λ‖R−‖1 + γ

p∑
i=1

ai{σi(R)− σ̄R}2
]
, (3.5)

where

Ŝ
K,A
1 =

{
(λ, γ) : λ � γ �

√
log p
n , λ ≤ (2 σmin(K))(1+γ max(Aii)

−1)
(1+γ min(Aii))−1p

+ γ min(Aii)
p

}
,

353



Ashwini Maurya

and A = diag(A11, A22, · · ·App) with Aii = ai. The proposed covariance matrix estimator
is Σ̂K,A = (S+)1/2R̂A(S+)1/2. The optimization problem in (3.5) is convex and yields

a positive definite estimator for each (λ, γ) ∈ Ŝ
K,A
1 . A simple excercise shows that the

estimator Σ̂K,A has same rate of convergence as that of Σ̂S .

3.2 Estimation of Inverse Covariance Matrix

We extend the JPEN approach to estimate a well-conditioned and sparse inverse covariance
matrix. Similar to the covariance matrix estimation, we first propose an estimator for in-
verse covariance matrix based on regularized inverse correlation matrix and discuss its rate
of convergence in Frobenious and operator norm.

Notation: We shall use Z and Ω for inverse correlation and inverse covariance matrix
respectively.
Assumptions: We make the following assumptions about the true inverse covariance ma-
trix Ω0. Let Σ0 = Ω−1

0 .
B0. Same as the assumption A0.
B1. With H = {(i, j) : Ω0ij 6= 0, i 6= j}, the |H| ≤ s, for some positive integer s.
B2. There exist 0 < k̄ <∞ large enough such that (1/k̄) ≤ σmin(Ω0) ≤ σmax(Ω0) ≤ k̄.

Let R̂K be a JPEN estimator for the true correlation matrix. By Lemma 3.2, R̂K is
positive definite. Define the JPEN estimator of inverse correlation matrix as the solution
to the following optimization problem,

ẐK = arg min
Z=ZT ,tr(Z)=tr(R̂−1

K )|(λ,γ)∈ŜK2

[
‖Z − R̂−1

K ‖
2 + λ‖Z−‖1 + γ

p∑
i=1

{σi(Z)− σ̄(Z)}2
]

(3.6)

where

ŜK2 =
{

(λ, γ) : λ, γ > 0, λ � γ �
√
log p

n
, ∀ε > 0,

σmin{(R̂−1
K + γt1I)− λ

2
∗ sign(R̂−1

K + γt1I)} > ε
}
,

and t1 is average of the diagonal elements of R̂−1
K . The minimization in (3.6) over Z is for

fixed (λ, γ) ∈ ŜK2 . The proposed JPEN estimator of inverse covariance matrix (based on reg-
ularized inverse correlation matrix estimator ẐK) is given by Ω̂K = (S+)−1/2ẐK(S+)−1/2,
where S+ is a diagonal matrix of the diagonal elements of S. Moreover (3.6) is a convex
optimization problem and ẐK is positive definite.

Next we state the consistency of estimators ẐK and Ω̂K .

Theorem 3.3. Under Assumptions B0, B1, B2 and for (λ, γ) ∈ ŜK2 ,

‖ẐK −R−1
0 ‖F = OP

(√s log p

n

)
and ‖Ω̂K − Ω0‖ = OP

(√(s+ 1) log p

n

)
(3.7)
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where R−1
0 is the inverse of true correlation matrix.

Remark:1. Note that the JPEN estimator Ω̂K achieves mini-max rate of convergence
for the class of covariance matrices satisfying assumption B0, B1, and B2 and therefore
optimal. The similar rate is obtained in Cai et al. (2015) for their class of sparse inverse
covariance matrices.

Next we give another estimate of inverse covariance matrix based on Σ̂S . Consider the
following optimization problem:

Ω̂S = arg min
Ω=ΩT ,tr(Ω)=tr(Σ̂−1

S )|(λ,γ)∈ŜS2

[
||Ω− Σ̂−1

S ||
2
F + λ‖Ω−‖1 + γ

p∑
i=1

{σi(Ω)− σ̄Ω}2
]
, (3.8)

where

ŜS2 =
{

(λ, γ) : λ, γ > 0, λ � γ �
√
log p

n
, ∀ε > 0,

σmin{(Σ̂−1
S + γ t2 I)− λ

2
∗ sign(Σ̂−1

S + γt2I)} > ε
}
,

and t2 is average of the diagonal elements of Σ̂S . The minimization in (3.8) over Ω is for
fixed (λ, γ) ∈ ŜS2 . The estimator in (3.8) is positive definite and well-conditioned. The
consistency result of the estimator Ω̂S is given in following theorem.

Theorem 3.4. Let (λ, γ) ∈ ŜS2 and let Ω̂S be as defined in (3.8). Under Assumptions B0,
B1, and B2,

‖Ω̂S − Ω0‖F = OP

(√(s+ p)log p

n

)
. (3.9)

3.2.1 Weighted JPEN Estimator for The Inverse Covariance Matrix

Similar to weighted JPEN covariance matrix estimator Σ̂K,A, a weighted JPEN estimator
of the inverse covariance matrix is obtained by adding positive weights ai to the term
(σi(Z) − 1)2 in (3.8). The weighted JPEN estimator is Ω̂K,A := (S+)−1/2ẐA(S+)−1/2,
where

ẐA = arg min
Z=ZT ,tr(Z)=tr(R̂−1

K )|(λ,γ)∈ŜK,A
2

[
||Z− R̂−1

K ||
2
F +λ‖Z−‖1 +γ

p∑
i=1

ai{σi(Z)−1}2
]
, (3.10)

with

Ŝ
K,A
2 =

{
(λ, γ) : λ � γ �

√
log p
n , λ ≤ (2 σmin(R−1

K ))(1+γt1max(Aii)
−1)

(1+γ min(Aii)−1p
+ γmin(Aii)

p

}
,

and A = diag(A11, A22, · · ·App) with Aii = ai. The optimization problem in (3.10) is convex

and yields a positive definite estimator for (λ, γ) ∈ Ŝ
K,A
2 . A simple excercise shows that the

estimator ẐA has similar rate of convergence as that of ẐK .
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4. An Algorithm

4.1 Covariance Matrix Estimation:

The optimization problem (2.4) can be written as:

R̂K = arg min
R=RT |(λ,γ)∈ŜK1

f(R), (4.1)

where

f(R) = ||R−K||2F + λ‖R−‖1 + γ

p∑
i=1

{σi(R)− σ̄(R)}2.

Note that
∑p

i=1{σi(R)− σ̄(R)}2 = tr(R2)− 2 tr(R) + p, where we have used the constraint
tr(R) = p. Therefore,

f(R) = ‖R−K‖2F + λ‖R−‖1 + γ tr(R2)− 2 γ tr(R) + p

= tr(R2(1 + γ))− 2tr{R(K + γI)}+ tr(KTK) + λ ‖R−‖1 + p

= (1 + γ){tr(R2)− 2/(1 + γ)tr{R(K + γI)}+ (1/(1 + γ))tr(KTK)}
+ λ ‖R−‖1 + p

= (1 + γ){‖R− (K + γI)/(1 + γ)‖2F + (1/(1 + γ))tr(KTK)}
+ λ ‖R−‖1 + p.

The solution of (4.1) is soft thresholding estimator and it is given by:

R̂K =
1

1 + γ
sign(K) ∗ pmax{abs(K + γ I)− λ

2
, 0} (4.2)

with (R̂K)ii = (Kii + γ)/(1 + γ), pmax(A, b)ij := max(Aij , b) is elementwise max function

for each entry of the matrix A. Note that for each (λ, γ) ∈ ŜK1 , R̂K is positive definite.

Choice of λ and γ: For a given value of γ, we can find the value of λ satisfying:

σmin{(K + γI)− λ

2
∗ sign(K + γI)} > 0 (4.3)

which can be simplified to

λ <
σmin(K + γI)

C12 σmax(sign(K))
.

For some C12 ≥ 0.5. Such choice of (λ, γ) ∈ ŜK1 , and the estimator R̂K is positive definite.
Smaller values of C12 yield a solution which is more sparse but may not be positive definite.

Choice of weight matrix A: For optimization problem in (3.5), the weights are cho-
sen in following way:
Let E be the set of sorted diagonal elements of the sample covariance matrix S.
i) Let k be largest index of E such that kth elements of E is less than 1. For i ≤ k, ai = Ei.
For k < i ≤ p, ai = 1/Ei.
ii) A = diag(a1, a2, · · · , ap), where aj = aj/

∑p
i=1 ai. Such choice of weights allows more

shrinkage of extreme sample eigenvalues than the ones in center of eigen-spectrum.
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4.2 Inverse Covariance Matrix Estimation:

To get an expression of inverse covariance matrix estimate, we replace K by R̂−1
K in (4.2),

where R̂K is a JPEN estimator of correlation matrix. We chose (λ, γ) ∈ ŜK2 . For a given γ,
we chose λ > 0 satisfying:

σmin{(R̂−1
K + γt1I)− λ

2
∗ sign(R̂−1

K + γt1I)} > 0 (4.4)

which can be simplified to

λ <
σmin(R̂−1

K + γt1I)

C12 σmax(sign(R̂−1
K ))

.

4.3 Computational Complexity

The JPEN estimator Σ̂K has computational complexity of O(p2) as there are at most 3p2

multiplications for computing the estimator Σ̂K . The other existing algorithm Glasso (Fried-
man et al. (2008)), PDSCE (Rothman (2012)) have computational complexity of O(p3). We
compare the computational timing of our algorithm to some other existing algorithms Glasso
(Friedman et al. (2008)), PDSCE (Rothman (2012)). The exact timing of these algorithm
also depends upon the implementation, platform etc. (we did our computations in R on a
AMD 2.8GHz processor). Following the approach Bickel and Levina (2008a), the optimal
tuning parameter (λ, γ) was obtained by minimizing the 5−fold cross validation error

(1/5)
5∑
i=1

‖Σ̂v
i − Σ−vi ‖1,

where Σ̂v
i is JPEN estimate of the covariance matrix based on v = 4n/5 observations,

Σ−vi is the sample covariance matrix using (n/5) observations. Figure 4.1 illustrates the
total computational time taken to estimate the covariance matrix by Glasso, PDSCE and
JPEN algorithms for different values of p for Toeplitz type of covariance matrix on log-log
scale (see section §5 for Toeplitz type of covariance matrix). Although the proposed method
requires optimization over a grid of values of (λ, γ) ∈ ŜK1 , our algorithm is very fast and
easily scalable to large scale data analysis problems.

5. Simulation Results

We compare the performance of the proposed method to other existing methods on sim-
ulated data for five types of covariance and inverse covariance matrices.

(i) Hub Graph: Here the rows/columns of Σ0 are partitioned into J equally-sized
disjoint groups: {V1∪V2 ∪, ...,∪ VJ} = {1, 2, ..., p}, each group is associated with a pivotal
row k. Let size |V1| = s. We set σ0i,j = σ0j,i = ρ for i ∈ Vk and σ0i,j = σ0j,i = 0 otherwise.
In our experiment, J = [p/s], k = 1, s+ 1, 2s+ 1, ..., and we always take ρ = 1/(s+ 1) with
J = 20.
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Figure 4.1: Timing comparison of JPEN,
Glasso, and PDSCE.

(ii) Neighborhood Graph: We first
uniformly sample (y1, y2, ..., yn) from a unit
square. We then set σ0i,j = σ0j,i = ρ

with probability (
√

2π)
−1
exp(−4‖yi−yj‖2).

The remaining entries of Σ0 are set to be
zero. The number of nonzero off-diagonal
elements of each row or column is restricted
to be smaller than [1/ρ] where ρ is set to be
0.245.

(iii) Toeplitz Matrix: We set
σ0i,j = 2 for i = j; σ0i,j = |0.75||i−j|
for |i − j| = 1, 2; and σ0i,j = 0 other-
wise.

(iv) Block Diagonal Matrix: In this
setting Σ0 is a block diagonal matrix with
varying block size. For p = 500 number of
blocks is 4 and for p = 1000 the number of
blocks is 6. Each block of covariance ma-
trix is taken to be Toeplitz type matrix as
in case (iii).

(v) Cov-I type Matrix: In this setting, we first simulate a random sample (y1, y2, ..., yp)

from standard normal distribution. Let xi = |yi|3/2∗(1+1/p1+log(1+1/p2)). Next we generate
multivariate normal random vectors Z = (z1, z2, ..., z5p) with mean vector zero and identity
covariance matrix. Let U be eigenvector corresponding to sample covariance matrix of Z.
We take Σ0 = UDU ′, where D = diag(x1, x2, ....xp). This is not a sparse setting but the
covariance matrix has most of eigenvalues close to zero and hence allows us to compare the
performance of various methods in a setting where most of eigenvalues are close to zero and
widely spread as compared to structured covariance matrices in (i)-(iv).

We chose similar structure of Ω0 for simulations. For all these choices of covariance
and inverse covariance matrices, we generate random vectors from multivariate normal dis-
tribution with varying n and p. We chose n = 50, 100 and p = 500, 1000. We compare
the performance of proposed covariance matrix estimator Σ̂K to graphical lasso [Friedman
et al. (2008)], PDSC Estimate [Rothman (2012)], Bickel and Levina’s thresholding estimator
(BLThresh) [Bickel and Levina (2008a)] and Ledoit-Wolf [Ledoit and Wolf (2004)] estimate
of covariance matrix. The JPEN estimate Σ̂K was computed using R software(version
3.0.2). The graphical lasso estimate of the covariance matrix was computed using R
package “glasso” (http://statweb.stanford.edu/ tibs/glasso/). The Ledoit-Wolf estimate
was obtained using code from (http://econ.uzh.ch/faculty/wolf/publications.html#9). The
PDSC estimate was obtained using PDSCE package (http://cran. r-project. org/web/
packages/PDSCE/index.html). The Bickel and Levina’s estimator was computed as per
the algorithm given in their paper. For inverse covariance matrix performance comparison
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Table 5.1: Covariance Matrix Estimation

Block type covariance matrix
n=50 n=100

p=500 p=1000 p=500 p=1000

Ledoit-Wolf 1.54(0.102) 2.96(0.0903) 4.271(0.0394) 2.18(0.11)
Glasso 0.322(0.0235) 3.618(0.073) 0.227(0.098) 2.601(0.028)

PDSCE 3.622(0.231) 4.968(0.017) 1.806(0.21) 2.15(0.01)
BLThresh 2.747(0.093) 3.131(0.122) 0.887(0.04) 0.95(0.03)

JPEN 2.378(0.138) 3.203(0.144) 1.124(0.088) 2.879(0.011)

Hub type covariance matrix
n=50 n=100

p=500 p=1000 p=500 p=1000

Ledoit-Wolf 2.13(0.103) 2.43(0.043) 1.07(0.165) 3.47(0.0477)
Glasso 0.511(0.047) 0.551(0.005) 0.325(0.053) 0.419(0.003)

PDSCE 0.735(0.106) 0.686(0.006) 0.36(0.035) 0.448(0.002)
BLThresh 1.782(0.047) 2.389(0.036) 0.875(0.102) 1.82(0.027)

JPEN 0.732(0.111) 0.688(0.006) 0.356(0.058) 0.38(0.007)

Neighborhood type covariance matrix
n=50 n=100

p=500 p=1000 p=500 p=1000

Ledoit-Wolf 1.36(0.054) 2.89(0.028) 1.1(0.0331) 2.32(0.0262)
Glasso 0.608(0.054) 0.63(0.005) 0.428(0.047) 0.419(0.038)

PDSCE 0.373(0.085) 0.468(0.007) 0.11(0.056) 0.175(0.005)
BLThresh 1.526(0.074) 2.902(0.033) 0.870(0.028) 1.7(0.026)

JPEN 0.454(0.0423) 0.501(0.018) 0.086(0.045) 0.169(0.003)

Toeplitz type covariance matrix
n=50 n=100

p=500 p=1000 p=500 p=1000

Ledoit-Wolf 1.526(0.074) 2.902(0.033) 1.967(0.041) 2.344(0.028)
Glasso 2.351(0.156) 3.58(0.079) 1.78(0.087) 2.626(0.019)

PDSCE 3.108(0.449) 5.027(0.016) 0.795(0.076) 2.019(0.01)
BLThresh 0.858(0.040) 1.206(0.059) 0.703(0.039) 1.293(0.018)

JPEN 2.517(0.214) 3.205(0.16) 1.182(0.084) 2.919(0.011)

Cov-I type covariance matrix
n=50 n=100

p=500 p=1000 p=500 p=1000

Ledoit-Wolf 33.2(0.04) 36.7(0.03) 36.2(0.03) 48.0(0.03)
Glasso 15.4(0.25) 16.1(0.4) 14.0(0.03) 14.9(0.02)

PDSCE 16.5(0.05) 16.33(0.04) 16.9(0.03) 17.5(0.02)
BLThresh 15.7(0.04) 17.1(0.03) 13.4(0.02) 17.5(0.02)

JPEN 7.1(0.042) 11.5(0.07) 8.4(0.042) 7.8(0.034)

we include glasso, CLIME (Cai et al. (2011)) and PDSCE. For each of covariance and in-
verse covariance matrix estimate, we calculate Average Relative Error (ARE) based on 50
iterations using following formula,

ARE(Σ, Σ̂) = |log(f(S, Σ̂)) − log(f(S,Σ0))|/|(log(f(S,Σ0))|,

where f(S, ·) is multivariate normal density given the sample covariance matrix S, Σ0 is the
true covariance, Σ̂ is the estimate of Σ0 based on one of the methods under consideration.
Other choices of performance criteria are Kullback-Leibler used by Yuan and Lin (2007) and
Bickel and Levina (2008a). The optimal values of tuning parameters were obtained over a
grid of values by minimizing 5−fold cross-validation as explained in §4. The average relative
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Table 5.2: Inverse Covariance Matrix Estimation

Block type covariance matrix
n=50 n=100

p=500 p=1000 p=500 p=1000

Glasoo 4.144(0.523) 1.202(0.042) 0.168(0.136) 1.524(0.028)
PDSCE 1.355(0.497) 1.201(0.044) 0.516(0.196) 0.558(0.032)
CLIME 4.24(0.23) 6.56(0.25) 6.88(0.802) 10.64(0.822)

JPEN 1.248(0.33) 1.106(0.029) 0.562(0.183) 0.607(0.03)

Hub type covariance matrix
n=50 n=100

p=500 p=1000 p=500 p=1000

Glasoo 1.122(0.082) 0.805(0.007) 0.07(0.038) 0.285(0.004)
PDSCE 0.717(0.108) 0.702(0.007) 0.358(0.046) 0.356(0.005)
CLIME 10.5(0.329) 10.6(0.219) 6.98(0.237) 10.8(0.243)

JPEN 0.684(0.051) 0.669(0.003) 0.34(0.024) 0.337(0.002)

Neighborhood type covariance matrix
n=50 n=100

p=500 p=1000 p=500 p=1000

Glasoo 1.597(0.109) 0.879(0.013) 1.29(0.847) 0.428(0.007)
PDSCE 0.587(0.13) 0.736(0.014) 0.094(0.058) 0.288(0.01)
CLIME 10.5(0.535) 11.5(0.233) 10.5(0.563) 11.5(0.245)

JPEN 0.551(0.075) 0.691(0.008) 0.066(0.042) 0.201(0.007)

Toeplitz type covariance matrix
n=50 n=100

p=500 p=1000 p=500 p=1000

Glasoo 2.862(0.475) 2.89(0.048) 2.028(0.267) 2.073(0.078)
PDSCE 1.223(0.5) 1.238(0.065) 0.49(0.269) 0.473(0.061)
CLIME 4.91(0.22) 7.597(0.34) 5.27(1.14) 8.154(1.168)

JPEN 1.151(0.333) 2.718(0.032) 0.607(0.196) 2.569(0.057)

Cov-I type covariance matrix
n=50 n=100

p=500 p=1000 p=500 p=1000

Glasoo 54.0(0.19) 190.(5.91) 14.7(0.37) 49.9(0.08)
PDSCE 28.8(0.19) 45.8(0.32) 16.9(0.04) 26.9(0.08)
CLIME 59.8(0.82) 207.5(3.44) 15.4(0.03) 53.7(0.69)

JPEN 26.3(0.36) 7.0(0.07) 15.7(0.08) 23.5(0.3)

error and their standard deviations (in percentage) for covariance and inverse covariance
matrix estimates are given in Table 5.1 and Table 5.2, respectively. The numbers in the
bracket are the standard errors of relative error based on the estimates using different
methods. Among all the methods JPEN and PDSCE perform similar for most of choices of
n and p for all five type of covariance matrices. This is due to the fact that both PDSCE and
JPEN use quadratic optimization function with a different penalty function. The behavior
of Bickel and levina’s estimator is quite good in Toepltiz case where it performs better than
the other methods. For this type of covariance matrix, the entries away from the diagonal
decay to zero and therefore soft-thresholding estimators like BLThresh perform better in this
setting. However for neighorhood and hub type covariance matrix which are not necessarily
banded type, Bickel and Levina estimator is not a natural choise as their estimator would
fail to recover the underlying sparsity pattern. The performance of Ledoit-Wolf estimator is
not very encouraging for Cov-I type matrix. The Ledoit-Wolf estimator shrinks the sample
covariance matrix towards identity and hence the eigenvalues estimates are highly shrunk
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Figure 5.1: Heat-map of zeros identified in covariance matrix out of 50 realizations. White
color is 50/50 zeros identified, black color is 0/50 zeros identified.
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towards one. This is also visible in eigenvalues plot in Figure 5.2 and Figure 5.3. For
Cov-I type covariance matrix where most of eigenvalues are close to zero and widely spread,
the performance of JPEN estimator is impressive. The eigenplot in Figure 5.3 shows that
among all the methods, estimates of eigenvalues of JPEN estimator are most consistent with
true eigenvalues. This clearly shows the advantage of JPEN estimator of covariance matrix
when the true eigenvalues are dispersed or close to zero. The eigenvalues plot in Figure
5.2 shows that when eigen-spectrum of true covariance matrix are not highly dispersed, the
JPEN and PDSCE estimates of eigenavlues are almost the same. This phenomenon is also
apparent in Figure 2.1. Also Ledoit-Wolf estimator heavily shrinks the eigenvalues towards
the center and thus underestimates the true eigen-spectrum.

For inverse covariance matrix, we compare glasso, CLIME and PDSCE estimates with
proposed JPEN estimator. The JPEN estimator Ω̂K outperforms other methods for the
most of the choices of n and p for all five types of inverse covariance matrices. Additional
simulations (not included here) show that for n ≈ p, all the underlying methods perform sim-
ilarly and the estimates of their eigenvalues are also well aligned with true values. However
in high dimensional setting, for large p and small n, their performance is different as seen in
simulations of Table 5.1 and Table 5.2. Figure 5.1 shows the recovery of non-zero and zero
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Figure 5.2: Eigenvalues plot for n = 100, p = 50 based on 50 realizations for neighborhood
type of covariance matrix
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entries of true covariance matrix based on JPEN estimator Σ̂K based on 50 realizations.
The estimtor recovers the true zeros for about 90% of times for Hub and Neighborhood
type of covariance matrix. It also reflect the recovery of true structure of non-zero entries
and actual pattern among the rows/columns of covariance matrix. To see the implication
of eigenvalues shrinkage penalty as compared to other methods, we plot (Figure 5.2) the
eigenvalues of estimated covariance matrix for n = 100, p = 50 for neighborhood type of
covariance matrix. The JPEN estimates of eigen-spectrum are well aligned with true ones
and closest being PDSC estimates of eigenvalues. Figure 5.3 shows the recovery of eigen-
values based on estimates using different methods for Cov-I type covariance matrix. For
this particular simulation, the eigenvalues are choosen differently than the one described
in (v) of §5. The eigenvalues of true covariance matrix are taken to be very diverse with
maximum about 106 and smallest eigenvalue about 10−6. For Cov-I type of matrix, JPEN
estimates of eigenvalues are better than other methods.
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Figure 5.3: Eigenvalues plot for n = 100, p = 100 based on 50 realizations for Cov-I type
matrix
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6. Colon Tumor Classification Example

In this section, we compare performance of JPEN estimator of inverse covariance matrix
for tumors classification using Linear Discriminant Analysis (LDA). The gene expression
data (Alon et al. (1999) consists of 40 tumorous and 22 non-tumorous adenocarcinoma
tissue. After preprocessing, data was reduced to a subset of 2,000 gene expression values
with the largest minimal intensity over the 62 tissue samples (source: http://genomics-
pubs.princeton.edu/oncology /affydata/index.html). In our analysis, we reduced the number
of genes by selecting p most significant genes based on logistic regression. We obtain esti-
mates of inverse covariance matrix for p = 50, 100, 200 and then use LDA to classify these
tissues as either tumorous or non-tumorous (normal). We classify each test observation x
to either class k = 0 or k = 1 using the LDA rule

δk(x) = arg max
k

{
xT Ω̂µ̂k −

1

2
µ̂kΩ̂µ̂k + log(π̂k)

}
, (6.1)

where π̂k is the proportion of class k observations in the training data, µ̂k is the sample
mean for class k on the training data, and Ω̂ := Σ̂−1 is an estimator of the inverse of the
common covariance matrix on the training data computed. Tuning parameters λ and γ were
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chosen using 5-fold cross validation. To create training and test sets, we randomly split the
data into a training and test set of sizes 42 and 20 respectively; following the approach used
by Wang et al. (2007), the training set has 27 tumor samples and 15 non-tumor samples.
We repeat the split at random 100 times and measure the average classification error. Since

Table 6.1: Averages and standard errors of classification errors over 100 replications in %.

Method p=50 p=100 p=200

Logistic Regression 21.0(0.84) 19.31(0.89) 21.5(0.85)
SVM 16.70(0.85) 16.76(0.97) 18.18(0.96)
Naive Bayes 13.3(0.75) 14.33(0.85) 14.63(0.75)
Graphical Lasso 10.9(1.3) 9.4(0.89) 9.8(0.90)
Joint Penalty 9.9(0.98) 8.9(0.93) 8.2(0.81)

we do not have separate validation set, we do the 5-fold cross validation on training data.
At each split, we divide the training data into 5 subsets (fold) where 4 subsets are used
to estimate the covariance matrix and one subset is used to measure the classifier’s perfor-
mance. For each split, this procedure is repeated 5 times by taking one of the 5 subsets as
validation data. An optimal combination of λ and γ is obtained by minimizing the 5-fold
cross validation error.

The average classification errors with standard errors over the 100 splits are presented in
Table 6.1. Since the sample size is less than the number of genes, we omit the inverse sample
covariance matrix as it is not well defined and instead include the naive Bayes’ and support
vector machine classifiers. Naive Bayes has been shown to perform better than the sample
covariance matrix in high-dimensional settings (Bickel and Levina (2004). Support Vector
Machine (SVM) is another popular choice for high dimensional classification tool. Among
all the methods covariance matrix based LDA classifiers perform far better than Naive
Bayes, SVM and Logistic Regression. For all other classifiers the classification performance
deteriorates for increasing p. For larger p, i.e., when more genes are added to the data set,
the classification performance of JPEN estimate based LDA classifier initially improves but
it deteriorates for large p. For p = 2000, the classifier based on inverse covariance matrix has
accuracy of 30%. This is due to the fact that as dimension of covariance matrix increases,
the estimator does not remain very informative.

7. Summary

We have proposed and analyzed regularized estimation of large covariance and inverse co-
variance matrix using joint penalty. The proposed JPEN estimators are optimal under
spectral norm for underlying classes of sparse and well-conditioned covariance and inverse
covariance matrices. We also establish its theoretical consistency in Frobenius norm. One
of its biggest advantage is that the optimization carries no computational burden and and
the resulting algorithm is very fast and easily scalable to large scale data analysis problems.
The extensive simulation shows that the proposed estimators performs well for a number
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of structured covariance and inverse covariance matrices. Also when the eigenvalues of un-
derlying true covariance matrix are highly dispersed, it outperforms other methods (based
on simulation analysis). The JPEN estimator recovers the sparsity pattern of the true co-
variance matrix and provides a good approximation of the underlying eigen-spectrum and
hence we expect that PCA will be one of the most important application of the method.
Although the proposed JPEN estimators of covariance and inverse covariance matrix do not
require any assumption on the structure of true covariance and inverse covariance matrices
respectively, any prior knowledge of structure of true covariance matrix might be helpful to
choose a suitable weight matrix and hence improve estimation.
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Appendix A.

Proof of Lemma 3.1
Let

f(R) = ‖R−K‖2 + λ‖R−‖1 + γ

p∑
i=1

{σi(R)− σ̄R}2. (.1)

where σ̄R is the mean of eigenvalues of R. Due to the constraint tr(R) = p, we have σ̄R = 1.
The third term of (.1) can be written as

p∑
i=1

{σi(R)− σ̄R}2 = tr(R2)− 2 tr(R) + p

We obtain,

f(R) = tr(R2)− 2 tr(RK) + tr(K2) + λ‖R−‖1 + γ{tr(R2)− 2 tr(R) + p}
= tr(R2(1 + γ))− 2 tr(K + γ I) + tr(K2) + λ‖R−‖1 + p

= (1 + γ)‖R− (K + γ I)/(1 + γ)‖2 + tr(K2) + λ‖R−‖1 + p

(.2)

This is quadratic in R with a `1 penalty to the off-diagonal entries of R, therefore a convex
function in R.

Proof of Lemma 3.2 The solution to (.2) satisfies:

2(R− (K + γI))(1 + γ)−1 + λ
∂‖R−‖1
∂R

= 0 (.3)

where ∂‖R−‖1
∂R is given by:

∂‖R−‖1
∂R

=


1 : if Rij > 0
−1 : if Rij < 0
τ ∈ (−1, 1) : if Rij = 0

Note that ‖R−‖1 has same value irrespective of sign of R, therefore the right hand side of
(.2) is minimum if :

sign(R) = sign(K + γI) = sign(K)

∀ε > 0, using (.3), σmin{(K + γI)− λ
2 sign(K)} > ε gives a (λ, γ) ∈ ŜK1 and such a choice of

(λ, γ) guarantees the estimator to be positive definite.
Remark: Intuitively, a larger γ shrinks the eigenvalues towards center which is 1, a larger
γ would result in positive definite estimator, whereas a larger λ results in sparse estimate.
A combination of (λ, γ) results in a sparse and well-conditioned estimator. In particular
case, when K is diagonal matrix, the λ < 2 ∗ γ.

Proof of Theorem 3.1 Define the function Q(.) as following:

Q(R) = f(R)− f(R0)
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where R0 is the true correlation matrix and R is any other correlation matrix. Let R =
UDUT be eigenvalue decomposition of R, D is diagonal matrix of eigenvalues and U is
matrix of eigenvectors. We have,

Q(R) = ‖R−K‖2F + λ‖R−‖1 + γ tr(D2 − 2 D + p)

− ‖R0 −K‖2F − λ‖R−0 ‖1 − γ tr(D
2
0 − 2 D0 + p)

(.4)

R0 = U0D0U
T
0 is eigenvalue decomposition of R0. Let Θn(M) := {∆ : ∆ = ∆T , ‖∆‖2 =

Mrn, 0 < M < ∞ }. The estimate R̂ minimizes the Q(R) or equivalently ∆̂ = R̂ − R0

minimizes the G(∆) = Q(R0 + ∆). Note that G(∆) is convex and if ∆̂ be its solution,
then we have G(∆̂) ≤ G(0) = 0. Therefore if we can show that G(∆) is non-negative
for ∆ ∈ Θn(M), this will imply that the ∆̂ lies within sphere of radius Mrn. We require

rn = o
(√

(p+ s) log p/n
)

.

‖R−K‖2F − ‖R0 −K‖2F = tr(RTR− 2RTK +KTK)− tr(RT0 R0 − 2R0S +KTK)

= tr(RTR−RT0 R0)− 2 tr((R−R0)TK)

= tr((R0 + ∆)T (R0 + ∆)−RT0 R0)− 2 tr(∆TK)

= tr(∆T∆)− 2 tr(∆T (K −R0))

Next, we bound term involving K in above expression, we have

|tr(∆T (R0 −K))| ≤
∑
i 6=j
|∆ij(R0ij −Kij)|

≤ max
i 6=j

(|R0ij −Kij |)‖∆−‖1

≤ C0(1 + τ)

√
log p

n
‖∆−‖1 ≤ C1

√
log p

n
‖∆−‖1

holds with high probability by a result (Lemma 1) from Ravikumar et al. (2011) on the
tail inequality for sample covariance matrix of sub-Gaussian random vectors and where
C1 = C0(1 + τ), C0 > 0. Next we obtain upper bound on the terms involving γ in (.4). we
have,

tr(D2 − 2D)− tr(D2
0 − 2D0)

= tr{R2 −R2
0} − 2 tr{R−R0)} = tr(R0 + ∆)2 − tr(R2

0)

= 2 tr(R0∆) + tr(∆T∆) ≤ 2
√
s‖∆‖F + ‖∆‖2F .

using Cauchy-Schwarz inequality. To bound the term λ(‖R−‖1−‖R−0 ‖1) = λ(‖∆−+R−0 ‖1−
‖R−0 ‖1), let E be index set as defined in Assumption A.2 of Theorem 3.2. Then using the
triangle inequality, we obtain,

λ(‖∆− +R−0 ‖1 − ‖R
−
0 ‖1) = λ(‖∆−E +R−0 ‖1 + ‖∆−

Ē
‖1 − ‖R0‖1)

≥ λ(‖R−0 ‖1 − ‖∆
−
E‖1 + ‖∆−

Ē
‖1 − ‖R−0 ‖1)

≥ λ(‖∆−
Ē
‖1 − ‖∆−E‖1)
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Let λ = (C1/ε)
√
log p/n, γ = (C1/ε1)

√
log p/n, where (λ, γ) ∈ ŜK1 , we obtain,

G(∆) ≥ tr(∆T∆)(1 + γ)− 2 C1

{√ log p

n
(‖∆−‖1) +

1

ε1

√
s log p

n
‖∆‖F

}
+
C1

ε

√
log p

n

(
‖∆−

Ē
‖1 −∆−E‖1

)
≥ ‖∆‖2F (1 + γ)− 2C1

√
log p

n

(
‖∆−

Ē
‖1 + ‖∆−E‖1

)
C1

ε

√
log p

n

(
‖∆−

Ē
‖1 −∆−E‖1

)
− 2C1

ε1

√
s log p

n
‖∆‖F .

Also because ‖∆−E‖1 =
∑

(i,j)∈E,i 6=j ∆ij ≤
√
s‖∆−‖F ,

−2C1

√
log p

n
‖∆−

Ē
‖1 +

C1

ε

√
log p

n
‖∆−

Ē
‖

1
≥
√
log p

n
‖∆−

Ē
‖1
(
− 2C1 +

C1

ε

)
≥ 0

for sufficiently small ε. Therefore,

G(∆) ≥ ‖∆‖2F
(
1 +

C1

ε1

√
log p

n

)
− C1

√
s log p

n
‖∆+‖F {1 + 1/ε+ 2/ε1}

≥ ‖∆‖2F
[
1 +

C1

ε1

√
log p

n
− C1

M
{1 + 1/ε+ 2/ε1}

]
≥ 0,

for all sufficiently large n and M . Which proves the first part of theorem. To prove the
operator norm consistency, we have,

‖Σ̂K − Σ0‖ = ‖Ŵ R̂Ŵ −WKW‖
≤ ‖Ŵ −W‖‖R̂−K‖‖Ŵ −W‖

+‖Ŵ −W‖(‖R̂‖‖W‖+ ‖Ŵ‖‖K‖) + ‖R̂−K‖‖Ŵ‖‖W‖.

using sub-multiplicative norm property ‖AB‖ ≤ ‖A‖‖B‖. Since ‖K‖ = O(1) and ‖R̂ −
K‖F = O(

√
s log p
n ) these together implies that ‖R̂‖ = O(1) . Also,

‖Ŵ 2 −W 2‖ = max
‖x‖2=1

p∑
i=1

|(ŵ2
i − w2

i )|x2
i ≤ max

1≤i≤p
|(ŵ2

i − w2
i )|

p∑
i=1

x2
i

= max
1≤i≤p

|(ŵ2
i − w2

i )| = O
(√ log p

n

)
.

holds with high probability by using a result (Lemma 1) from Ravikumar et al. (2011).
Next we shall shows that ‖Ŵ −W‖ � ‖Ŵ 2 −W 2‖, (where A�B means A=OP (B) and
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B=OP (A)). We have,

‖Ŵ −W‖ = max
‖x‖2=1

p∑
i=1

|(ŵi − wi)|x2
i = max

‖x‖2=1

p∑
i=1

|
( ŵ2

i − w2
i

ŵi + wi

)
|x2
i

�
p∑
i=1

|(ŵ2
i − w2

i )|x2
i = C3‖Ŵ 2 −W 2‖.

where we have used the fact that the true standard deviations are well above zero, i.e.,
∃ 0 < C3 <∞ such that 1/C3 ≤ w−1

i ≤ C3 ∀ i = 1, 2, · · · , p, and sample standard deviation

are all positive, i.e, ŵi > 0 ∀ i = 1, 2, · · · , p. Now since ‖Ŵ 2−W 2‖ � ‖Ŵ −W‖, this follows
that ‖Ŵ‖ = O(1) and we have ‖Σ̂K −Σ0‖2 = O

( s log p
n + log p

n

)
. This completes the proof.

Proof of Theorem 3.2 Let

f(Σ) = ||Σ− S||2F + λ‖Σ−‖1 + γ

p∑
i=1

{σi(Σ)− σ̄Σ}2,

Similar to the proof of theroem (3.1), define the function Q1(.) as following:

Q1(Σ) = f(Σ)− f(Σ0)

where Σ0 is the true covariance matrix and Σ is any other covariance matrix. Let Σ = UDUT

be eigenvalue decomposition of Σ, D is diagonal matrix of eigenvalues and U is matrix of
eigenvectors. We have,

Q1(Σ) = ‖Σ− S‖2F + λ‖Σ−‖1 + γ tr(D2)− (tr(D))2/p

− ‖Σ0 − S‖2F − λ‖Σ−0 ‖1 − γ tr(D
2
0)− (tr(D0))2/p

(.5)

where A = diag(a1, a2, · · · , ap) and Σ0 = U0D0U
T
0 is eigenvalue decomposition of Σ0. Write

∆ = Σ− Σ0, and let Θn(M) := {∆ : ∆ = ∆T , ‖∆‖2 = Mrn, 0 < M <∞ }. The estimate
Σ̂ minimizes the Q(Σ) or equivalently ∆̂ = Σ̂−Σ0 minimizes the G(∆) = Q(Σ0 + ∆). Note
that G(∆) is convex and if ∆̂ be its solution, then we have G(∆̂) ≤ G(0) = 0. Therefore
if we can show that G(∆) is non-negative for ∆ ∈ Θn(M), this will imply that the ∆̂ lies

within sphere of radius Mrn. We require
√

(p+ s) log p = o
(√

n
)

.

‖Σ− S‖2F − ‖Σ0 − S‖2F = tr(ΣTΣ− 2ΣTS + STS)− tr(ΣT
0 Σ0 − 2Σ0S + STS)

= tr(ΣTΣ− ΣT
0 Σ0)− 2 tr((Σ− Σ0)S)

= tr((Σ0 + ∆)T (Σ0 + ∆)− ΣT
0 Σ0)− 2 tr(∆TS)

= tr(∆T∆)− 2 tr(∆T (S − Σ0))
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Next, we bound term involving S in above expression, we have

|tr(∆(Σ0 − S))| ≤
∑
i 6=j
|∆ij(Σ0ij − Sij)|+

∑
i=1

|∆ii(Σ0ii − Sii)|

≤ max
i 6=j

(|Σ0ij − Sij |)‖∆−‖1 +
√
pmax
i=1

(|Σ0ii − Sii|)
√∑

i=1

∆2
ii

≤ C0(1 + τ) max
i

(Σ0ii)
{√ log p

n
‖∆−‖1 +

√
p log p

n
‖∆+‖2

}
≤ C1

{√ log p

n
‖∆−‖1 +

√
p log p

n
‖∆+‖2

}
holds with high probability by a result (Lemma 1) from Ravikumar et al. (2011) where
C1 = C0(1 + τ) maxi(Σ0ii), C0 > 0 and ∆+ is matrix ∆ with all off-diagonal elements set to
zero. Next we obtain upper bound on the terms involving γ in (3.7). we have,

tr(D2)− (tr(D))2/p− tr(D2
0)− (tr(D))2/p

= tr(Σ2)− tr(Σ2
0)− (tr(Σ))2/p+ (tr(Σ0))2/p

(i) tr(Σ2)− Σ2
0))

≤ tr(Σ0 + ∆)2 − tr(Σ0)2

= tr(∆)2 + 2 tr(∆2Σ0) ≤ tr(∆)2 + C1

√
s‖∆‖F

(ii) tr((Σ))2 − (tr(Σ0))2

= (tr(Σ0 + ∆))2 − (tr(Σ0))2

≤ (tr(∆))2 + 2 tr(Σ0) tr(∆) ≤ p ‖∆‖2F + 2 k̄p
√
p‖∆+‖F .

Therefore the γ term can be bounded by 2‖∆‖2F + (C1
√
s + 2

√
pk̄)‖∆‖F . We bound the

term involving λ as in similar to the proof of Theorem 3.1. For λ � γ �
√

log p
n , the proof

follows very similar to Theorem 3.1.

Proof of Theorem 3.3. To bound the cross product term involving ∆ and R̂−1
K , we

have,

|tr((R−1
0 − R̂

−1
K )∆)| = |tr(R−1

0 (R̂K −R0)R̂−1
K ∆)|

≤ σ1(R−1
0 )|tr((R̂K −R0)R̂−1

K ∆)|
≤ k̄σ1(R̂−1

K )|tr((R̂K −R0)∆)|
≤ k̄k̄1|tr((R̂K −R0)∆)|.

where σmin(R̂K) ≥ (1/k̄1) > 0, is a positive lower bound on the eigenvalues of JPEN esti-
mate R̂K of correlation matrix R0. Such a constant exist by Lemma 3.2. Rest of the proof
closely follows as that of Theorem 3.1.

Proof of Theorem 3.4. We bound the term tr((Ω̂S − Ω0)∆) similar to that in proof
of Theorem 3.3. Rest of the proof closely follows to that Theorem 3.2.
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