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Abstract

We consider the problem of predicting an outcome variable on the basis of a small number
of covariates, using an interpretable yet non-additive model. We propose convex regression
with interpretable sharp partitions (CRISP) for this task. CRISP partitions the covariate
space into blocks in a data-adaptive way, and fits a mean model within each block. Unlike
other partitioning methods, CRISP is fit using a non-greedy approach by solving a convex
optimization problem, resulting in low-variance fits. We explore the properties of CRISP,
and evaluate its performance in a simulation study and on a housing price data set.

Keywords: convex optimization, interpretability, non-additivity, non-parametric regres-
sion, prediction

1. Introduction

Classification and regression trees (CART) are immensely popular for flexible and non-
additive predictive modeling, despite the fact that they date back more than thirty years
(Breiman et al., 1984). The trees are fit using a two-stage process in which the tree is
first greedily “grown” to some maximum size, and then “pruned” to avoid overfitting. The
final tree with K terminal nodes can be visually displayed as a decision tree with K − 1
splits, or equivalently as K disjoint boxes that completely partition the covariate space.
CART has stood the test of time, because its output is highly interpretable and it can
easily incorporate complex non-additive relationships between features. However, it is a
greedy procedure, and a small perturbation of the data can produce a very different tree.
The high variability of the fitted values can compromise the scientific utility of the tree,
as well as the tree’s prediction accuracy on test data. While an ensemble approach, like
random forests, can reduce CART’s variability, this comes at the expense of interpretability
(Breiman, 2001).

Two other well-known methods for flexible and non-additive predictive modeling are
multivariate adaptive regression splines (MARS) (Friedman, 1991) and thin-plate splines
(TPS) (Duchon, 1977). The MARS fit is a weighted sum of basis functions, which are
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greedily chosen and some of which involve pairs of features. TPS fits the observed data,
regularized by smoothness penalties. In the case of two covariates x1 and x2 and a response
y, the TPS fit is the solution to

minimize
f

n∑
i=1

[yi − f(x1i, x2i)]
2 + λ

∫ ∫
R2

‖∇2f(x1, x2)‖2F dx1 dx2.

The fits from MARS and TPS are incredibly flexible, but can be less interpretable than the
fits from CART.

In recent years, the statistical community has been very interested in formulating pre-
dictive models as solutions to convex optimization problems. However, to the best of our
knowledge, no proposals have been made for flexible, non-additive, and interpretable mod-
eling via convex optimization. To close this gap, we propose a non-greedy procedure whose
fits have a block structure reminiscent of CART. Our proposal, convex regression with in-
terpretable sharp partitions (CRISP), is the solution to a convex optimization problem with
predictions that are much less variable than those of CART. Also unlike CART, CRISP bor-
rows information across the blocks, and is able to adequately model the data when the mean
model is smooth. Thus our method provides a compromise between the interpretability of
CART and the flexibility of MARS and TPS. In this paper, we consider the low-dimensional
setting in which there are a small number of covariates of interest (p � n). We leave an
extension to the p > n setting to future work.

CRISP has a number of attractive properties:

• CRISP can accommodate interactions between pairs of covariates in a flexible way.
This is useful when the impact of one covariate may depend on the value of another
covariate, but there is not strong a priori knowledge about the form of the interaction.

• CRISP fits a piecewise constant model, which is easily interpreted by even those with
limited statistical background.

• CRISP is formulated as a convex optimization problem. Thus we can solve for the
global optimum, and can derive an expression for CRISP’s degrees of freedom.

The remainder of this paper is organized as follows. In Section 2, we introduce our
method and present an algorithm to implement it. We compare our method to existing
approaches using simulated data in Section 3. In Section 4, we derive some properties of
the method. In Section 5, we discuss connections between our method and other work. We
illustrate our method on a housing price data set in Section 6. We consider a modification
to our proposal in Section 7, and close with the discussion in Section 8. Proofs are in the
Appendix.

2. Convex Regression with Interpretable Sharp Partitions

Throughout most of this paper, for ease of exposition, we focus on the case of p = 2 features.
An extension to the case of p > 2 is given in Section 7.

We first present an overview of the CRISP approach. We wish to predict a random
variable y ∈ R using x1, x2 ∈ R. We assume that y = f(x1, x2) + ε, where ε is a mean-zero
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Figure 1: In (a), the mean model f(x1, x2) used to generate data. In (b), each of the 50
squares represents an observation (x1, x2, y) with y = f(x1, x2) + ε with ε ∼
N(0, 1). In (c), there are q2 = 64 bins of (x1, x2) values, whose boundaries
coincide with the octiles ( ) of x1 and x2. In (d), CRISP estimates f(x1, x2)
to be constant within each bin, and furthermore encourages adjacent bins to take
on the same value. When applied to the data in (b) with q = 8, this leads to an
estimated f(x1, x2) with four blocks. In (e), we show the heat scale legend.

error term, and f is an unknown function that we wish to estimate. An example of f(x1, x2)
is displayed in Figure 1(a). Figure 1(b) displays a training set of n i.i.d. observations of
(x1, x2, y). We first partition the feature space into q2 bins, as shown in Figure 1(c) with
q = 8. The CRISP approach estimates f(x1, x2) to be constant within each bin, and further
encourages f to take on the same value at adjacent bins; this leads to constant-valued blocks.
The CRISP output is shown in Figure 1(d); there are four estimated blocks. More details
about this simulation set-up are provided in Section 3.

2.1 Notation and Goal of CRISP

We now introduce some new notation, and provide further intuition for CRISP, before
presenting the optimization problem for CRISP in Section 2.2.

As is shown in Figure 1(c), we wish to estimate the mean model f(x1, x2) for a q×q grid
of bins, where f(x1, x2) is estimated to be constant within each bin. Let M ∈ Rq×q denote
a mean matrix whose element M(i)(j) contains the mean for pairs of covariate values within
a quantile range of the observed predictors x1,x2 ∈ Rn. For example, M(1)(2) represents the

mean of the observations with x1 less than the 1
q -quantile of x1, and x2 between the 1

q - and
2
q -quantiles of x2. In Figure 1(c), the corner grid bins correspond to M(1)(1), M(8)(1), M(8)(8),
and M(1)(8), starting at the top-left corner of the grid and moving counter-clockwise. In
CRISP, our goal is to estimate the q × q matrix M on the basis of y ∈ Rn, which contains
n noisy observations from various bins of M .

In the example shown in Figure 1, we partition the feature space into an 8 × 8 grid
(shown in Figure 1(c)), which translates to estimating an 8 × 8 matrix M . Therefore,
instead of estimating f(x1, x2) over the entire joint range of x1 and x2, we need only
estimate the 64 elements of M . Furthermore, CRISP borrows information across bins of
the grid by encouraging pairs of neighboring rows and columns of M∗ to be equal, leading
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to an estimated mean model with a block structure. For instance, in Figure 1(d), M is
estimated to have four blocks, or regions of feature space over which f(x1, x2) is constant.
Consequently, the CRISP solution M∗ shown in Figure 1(d) only has 4 unique elements,
while M is an 8× 8 matrix. If we examined the estimate M∗, we would see that all pairs
of neighboring rows and neighboring columns of M∗ are identical, except for one pair of
columns and one pair of rows.

While the true mean model in this example has a block structure (as seen in Figure 1(a)),
we will show in Section 3 that CRISP can perform well even when the true mean model
is smooth. The data in this example were uniformly distributed in the covariate space.
CRISP is most suitable for data applications where observations are distributed throughout
the covariate space. Highly correlated covariates will lead to an insufficient amount of data
to estimate the mean model over the entire covariate space.

2.2 The Optimization Problem

The CRISP optimization problem balances the trade-off between fitting the data and en-
couraging a block structure. We estimate M by solving the convex optimization problem

minimize
M∈Rq×q

1

2

n∑
i=1

(yi − Ω(M , x1i, x2i))
2 + λP (M). (1)

In (1), the function Ω extracts the element of M corresponding to the bin to which the
observation (x1i, x2i) belongs. For instance, in Figure 1(c), Ω(M , 0,−1) = M(4)(2). Note
that Ω is explicitly defined in Appendix A. Furthermore, λ ≥ 0 is a tuning parameter, and
the penalty P is defined as

P (M) =

q−1∑
i=1

[∥∥Mi· −M(i+1)·
∥∥
2

+
∥∥M·i −M·(i+1)

∥∥
2

]
, (2)

where Mi· and M·i denote the ith row and column of M , respectively. The sum of squared
errors in (1) encourages the estimate of M to fit the data, while the group lasso penalty
(Yuan and Lin, 2006) in (2) encourages pairs of neighboring rows (or columns) to be exactly
identical. This leads to the formation of constant-valued blocks, which are comprised of
multiple bins of the q× q grid. Appendix B discusses other possible penalties that could be
used in (1).

We now rewrite (1) in a way that will be useful later. We introduce a vectorized form

of M , which is denoted by m = vec(M) =
(
(M·1)

T , (M·2)
T , · · · , (M·q)

T
)T

where M·i
is the ith column of M . The correspondence between M and m is shown in Figure 10
of Appendix A. In what follows, we will switch between using the matrix M and the
vectorized m. Then (1) can be rewritten as

minimize
m∈Rq2

1

2
‖y −Qm‖22 + λ

q−1∑
i=1

[‖Rim‖2 + ‖Cim‖2] , (3)

where each row of Q ∈ Rn×q2 contains q2 − 1 elements that equal 0, and a single 1, such
that Qi·m = Ω(M , x1i, x2i), where Qi· indicates the ith row of Q. (Though Q is a function
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of x1 and x2, we suppress this to simplify the notation.) In (3), Ri,Ci ∈ Rq×q2 extract
differences between neighboring rows and columns of M (i.e., Rim = Mi· −M(i+1)· and
Cim = M·i −M·(i+1)). An example of Q and explicit definitions of Q, Ri, and Ci are

in Appendix A. We let A =
(
RT

1 , · · · , RT
q−1, C

T
1 , · · · , CT

q−1
)T ∈ R2q(q−1)×q2 , and then

rewrite (3) as

minimize
m∈Rq2 ,z∈R2q(q−1)

1

2
‖y −Qm‖22 + λ

q−1∑
i=1

[‖z1i‖2 + ‖z2i‖2] subject to Am = z, (4)

where z =
(
(z11)

T , · · · , (z1(q−1))
T , (z21)

T , · · · , (z2(q−1))
T
)T

with z1i, z2i ∈ Rq.
While (1), (3), and (4) have the same solution, it is most convenient to derive an

algorithm to solve CRISP using the parameterization in (4). Throughout this paper, we
will alternate between using the notation M∗ and m∗, where m∗ = vec(M∗), to represent
the CRISP solution to (4). The training set predictions for CRISP are given by ŷ = Qm∗.

2.3 An Algorithm for CRISP

We solve for the global optimum of the convex optimization problem (4) using the alternating
directions method of multipliers (ADMM) algorithm (Boyd et al., 2011). This is summarized
in Algorithm 1. Additional details are in Appendix C.

Algorithm 1 — Alternating Directions Method of Multipliers for Equation (4)

1. Let u =
(
(u11)

T , . . . , (u1(q−1))
T , (u21)

T , . . . , (u2(q−1))
T
)T

denote the scaled dual

variables. Initialize m(0) := 0, z(0) := 0, and u(0) := 0.

2. For k = 1, 2, . . ., until the primal and dual residuals satisfy a stopping criterion:

(a) m(k) :=
[
QTQ+ ρATA

]−1 [
QTy + ρAT (z(k−1) − u(k−1))

]
(b) z

(k)
1i := (Rim

(k) + u
(k−1)
1i )(1− λ/(ρ‖Rim

(k) + u
(k−1)
1i ‖2))+,

z
(k)
2i := (Cim

(k) + u
(k−1)
2i )(1− λ/(ρ‖Cim(k) + u

(k−1)
2i ‖2))+ for i = 1, . . . , q − 1

(c) u(k) := u(k−1) +Am(k) − z(k)

In Algorithm 1, the computational bottleneck occurs in Step 2(a). Evaluating the q-
banded matrixQTQ+ρATA has a one-time cost of O(n+q4) operations, and computing its
LU factorization requires an additional O(q4) operations. Then Step 2(a) can be performed
in O(q3) operations (Boyd and Vandenberghe, 2004). Therefore, Algorithm 1 requires an
initial step of O(n+ q4) operations, followed by a per-iteration complexity of O(q3).

On a Macbook Pro with a 2.0 GHz Intel Sandy Bridge Core i7 processor, our Python

implementation of CRISP with n = q = 50 takes 20.1 seconds for a sequence of 20 λ values.
For n = q = 100 and n = q = 200, the run times are 84.7 and 383.6 seconds, respectively.
Increasing n while holding q constant has little effect on the run times; this is consistent with
the discussion in the previous paragraph. Thus even for very large n, the computational
time is reasonable.
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We chose to solve CRISP using an ADMM algorithm, as ADMM works well in related
problems. For example, in the context of trend filtering, Ramdas and Tibshirani (forth-
coming) found that their ADMM implementation converged more reliably across a variety
of tuning parameter values and sample sizes than the primal-dual interior point method of
Kim et al. (2009). In our setting, an interior point algorithm for CRISP involves solving
a dense system of equations at each iteration, which has a computational complexity of
O(q6). Additionally, an interior point method would not recover the exact block structure
(any strictly feasible solution would have no zero row or column differences). In contrast,
we directly recover the block structure of our estimated mean model from the z variables
of our ADMM algorithm. Furthermore, ADMM algorithms typically converge to moder-
ate accuracy within only tens of iterations (Boyd et al., 2011), which is acceptable in our
setting.

The value of λ can be chosen using K-fold cross-validation. Alternatively, λ can be
selected using approaches based on Akaike’s information criterion (AIC; Akaike, 1973) or
Bayesian information criterion (BIC; Schwarz, 1978) using the degrees of freedom estimator
proposed in Section 4.1. The roles of λ and q in controlling the granularity of the model
are further characterized in Sections 4.2 and 4.3.

3. Simulations

In this section, we compare the performance of CRISP to CART, TPS, and competing
methods. We consider a variety of mean models, as well as smaller (n = 100) and larger
(n = 10, 000) training set sample sizes.

3.1 Methods

We generate data with either n = 100 or n = 10, 000, and p = 2. We independently
sample each element of x1 and x2 from a Unif[−2.5, 2.5] distribution, and then take y =
f(x1,x2) + ε, where ε ∼ MVN(0, σ2In) with σ = 1 for n = 100 and σ = 10 for n = 10, 000.
Note that we use the notation MVN to indicate a multivariate normal distribution.

We consider four mean models for f(x1, x2); these are displayed in the top panel of
Figure 2, and defined in detail in Appendix D. In Scenario 1, the mean model is additive
in x1 and x2. Scenario 2 is similar to Scenario 1, but the mean model is non-additive. The
mean model in Scenario 3 is piecewise constant, with the cut points for x2 depending on
x1. Finally, Scenario 4 is a smooth mean model.

For each scenario, we generate 200 data sets and estimate M using CRISP (with
q = 100) and several competitors: FLAM (implemented with the R package flam (Pe-
tersen, 2014)); CART (implemented with the R package rpart (Therneau et al., 2014));
TPS (implemented with the R package fields (Nychka et al., 2014)); a linear model with
predictors x1, x2, and their interaction; and an “oracle” linear model based on knowing a
priori which regions of the mean model take on a constant value.
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For each of the four scenarios, we plot mean squared prediction error1 versus degrees
of freedom (a notion that will be discussed extensively in Section 4.1). CRISP and FLAM
are fit over a sequence of exponentially decreasing λ values, with the degrees of freedom
estimated using (6) and a result from Petersen et al. (forthcoming), respectively. TPS is fit
over a sequence of degrees of freedom. For CART, we vary the number of terminal nodes in
the tree, and average the estimator (7) over the replicates in order to estimate the degrees
of freedom for each number of terminal nodes. Note that the number of degrees of freedom
of CART is non-monotonic for small numbers of terminal nodes (as seen in Figure 3).

3.2 Results for n = 100

Results are shown in Figure 3. We see that both CRISP and TPS perform reasonably well
in terms of prediction error in all scenarios, regardless of the true mean model. FLAM
outperforms the other methods in Scenario 1, which is unsurprising as the mean model is
truly additive, and FLAM boils down to CRISP with an additivity constraint (Section 5.2).
However, FLAM performs poorly for mean models with substantial non-additivity (Scenar-
ios 2 and 4). Outside of Scenario 1, CART performs worse than TPS and CRISP. CRISP,
TPS, and CART all perform better than a linear model with an interaction in Scenarios
1–3. However, in Scenario 4, the mean model is well-approximated using a linear model.
We also fit MARS for all scenarios; however, performance was poor and the results are
omitted.

While CRISP and TPS have comparable prediction error, their fits are quite different.
In Figure 2, we show the estimated mean models for CRISP, TPS, and CART for a single
replicate of data in each scenario. CRISP provides fits that reflect the true mean model
well, even when the true mean model is smooth. While TPS has low prediction error, the
smooth fits from TPS are not easily interpreted and are far from the true mean model
in some scenarios. While the fits from CART reflect the mean model reasonably well in
Scenarios 1 and 2, the fits from CART in all scenarios are highly variable. CART fits from
different replicates of Scenario 4 are shown in Figure 4. The average variance of an element
of M∗ across the 200 replicates for Scenario 4 was 0.843 for CART, compared to 0.0935 for
CRISP and 0.0653 for TPS. The variance of CART’s fitted values is similarly inflated for
the other scenarios. Small perturbations of the data can produce very different qualitative
conclusions when examining CART’s fits.

3.3 Results for n = 10, 000

We compare CRISP to TPS and CART. Results are in Figures 2 and 5. Again, CRISP
performs well in all scenarios, and the CART fits are much more variable than those of
CRISP and TPS. The average variance of an element of M∗ across the 200 replicates
for Scenario 1 was 0.111 for CART, compared to 0.051 for CRISP and 0.083 for TPS. For
Scenario 2, the average variance was 1.42 for CART, compared to 0.056 for CRISP and 0.083
for TPS. For Scenario 3, the average variance was 0.692 for CART, compared to 0.077 for
CRISP and 0.129 for TPS. And finally, for Scenario 4, the average variance was 1.89 for

1. Mean squared prediction error is defined as 1
q2
‖M−M∗‖2F , where M ∈ Rq×q is the true mean matrix and

M∗ ∈ Rq×q is the estimate from a given method. For methods other than CRISP, M∗ was constructed
using the mean model estimate at the midpoint of each bin of the q × q grid.
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Figure 2: The mean models for Scenarios 1–4, as well as estimated mean models from
CRISP, CART, and TPS for the simulations considered in Section 3. Each fit is
from a single replicate of data, with the number of degrees of freedom indicated
in Figures 3 and 5 for n = 100 and n = 10, 000, respectively. The heat scale
legend is in Figure 1(e).
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Figure 3: Mean squared prediction error, as a function of the degrees of freedom, for the four
scenarios considered in the simulations of Section 3.2. The methods displayed are
CRISP ( ), FLAM ( ), TPS ( ), CART ( ), linear model with an interaction
( ), and the oracle linear model ( ). The oracle linear model is only fit for
Scenarios 1–3, for which the mean models have constant regions. Shaded bands
(only visible for CART) indicate point-wise 95% confidence intervals over the 200
replicate data sets. The linear models have a fixed number of degrees of freedom,
but are shown as horizontal lines. Asterisks indicate the degrees of freedom used
for the fits shown in Figure 2.

Figure 4: Fits for CART in Scenario 4 with n = 100 (as also shown in Figure 2) correspond-
ing to five additional replicates of data. The heat scale legend is in Figure 1(e).
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Figure 5: Results for n = 10, 000 for CRISP ( ), TPS ( ), and CART ( ) in the simu-
lations of Section 3.3. Details are as given in Figure 3.

CART, compared to 0.096 for CRISP and 0.061 for TPS. Notably, a large sample size is not
sufficient for producing stable CART fits, unless the signal-to-noise ratio is suitably large.

4. Properties of CRISP

In this section, we provide an unbiased estimator for CRISP’s degrees of freedom. We
also derive an analytical expression for the range of λ for which the solution to (4) takes a
constant value, m∗ =

(
1
n1Ty

)
1. Lastly, we discuss the role of q and λ in controlling the

granularity of CRISP. Throughout this section, we use A+ to denote the Moore-Penrose
pseudoinverse of a matrix A.

4.1 Degrees of Freedom

Suppose that Var(y) = σ2I, and let g(y) = ŷ denote the fit corresponding to some model-
fitting procedure g. Then the degrees of freedom of g is defined as 1

σ2

∑n
i=1 Cov(yi, ŷi)

(Hastie and Tibshirani, 1990; Efron, 1986).

The concept of degrees of freedom provides a common framework for comparing the
complexities of various models; this is particularly useful when the models under consider-
ation are complex or unrelated. Ye (1998) proposed a computationally-burdensome Monte
Carlo approach for estimating the degrees of freedom of a model-fitting procedure. In recent
years, unbiased estimators for the degrees of freedom have been derived for the lasso and
generalized lasso (Zou et al., 2007; Tibshirani and Taylor, 2012), among other methods.
These estimators allow us to characterize a model’s complexity, and also can be used in
order to develop an approach for tuning parameter selection based on Akaike’s information
criterion (AIC; Akaike, 1973) or Bayesian information criterion (BIC; Schwarz, 1978).

Problem (3) is equivalent to the problem

minimize
m

1

2
‖y −Qm‖22 + λ

q−1∑
i=1

[‖Rim‖2 + ‖Cim‖2] +
γ

2
‖m‖22 (5)

with γ = 0. In the rest of this section, we take γ to be a small positive constant, which
ensures strong convexity and enforces uniqueness of the solution.
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We now introduce some notation. First, we define C, the set of difference matrices
corresponding to equal neighboring rows or columns in the solution m∗ to (5). That is,
C = {Ai : ‖Aim

∗‖2 = 0} where A1 = R1,A2 = R2, . . . ,Aq−1 = Rq−1,Aq = C1,Aq+1 =
C2, . . . ,A2q−2 = Cq−1. Then we define A∗ to be the submatrix of A obtained by retaining

only the rows of A corresponding to matrices Ai ∈ C. Note that A∗ ∈ Rq|C|×q2 . We propose
to estimate the degrees of freedom of CRISP as

d̂fCRISP = Tr

Q
D + λP

∑
i:Ai /∈C

S2(Ai,m
∗)P + γI

−1PQT

 , (6)

where P = Iq2 −A+
∗ A∗, S2(Ai,m

∗) =
ATi Ai
‖Aim∗‖2 −

ATi Aim
∗m∗TATi Ai

‖Aim∗‖32
, and Q was defined in

(3). Recall that M∗ will tend to contain row-column blocks of constant value, as shown

in Figure 1(d). We define D = diag
(
h(m∗1), · · · , h(m∗q2)

)
, where h(m∗i ) is the ratio of the

number of observations in the block of M∗ that contains m∗i to the number of elements
of M∗ in the block of M∗ that contains m∗i . We use the notation MVN to indicate a
multivariate normal distribution.

Proposition 1 Assume y ∼ MVN(µ, σ2I). Then d̂fCRISP is an unbiased estimator of the
degrees of freedom of CRISP.

The following corollary indicates that the estimator (6) simplifies substantially when the
CRISP solution takes a particular form.

Corollary 2 Assume y ∼ MVN(µ, σ2I). If either all rows or all columns of M∗ are equal,
then the total number of blocks of M∗ is an unbiased estimator of the degrees of freedom.

In 100 replicate data sets with yi ∼ N(µi, σ
2), we compare the mean of (6) to the mean

of
1

σ2

n∑
i=1

(ŷi − µi) (yi − µi) , (7)

which provides a Monte Carlo estimate of 1
σ2

∑n
i=1 Cov(yi, ŷi), the true degrees of freedom

of CRISP. The results in Figure 6(a) empirically validate Proposition 1, showing that (6) is
an unbiased estimator of CRISP’s degrees of freedom. Note that the proofs of Proposition 1
and Corollary 2 can be found in Appendices E and F, respectively.

4.2 Range of λ that Yields a Constant Solution

CRISP has a single tuning parameter λ, which we typically will select via cross-validation
or a related approach. Here, we derive the minimum value of λ such that m∗ =

(
1
n1Ty

)
1,

corresponding to a fit in which all elements of m∗ are equal.

Lemma 3 The solution to (4) is constant (i.e., m∗ =
(
1
n1Ty

)
1) if and only if

λ ≥ max
1≤i≤q−1

{‖d∗1i‖2, ‖d∗2i‖2} ,

11
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Figure 6: In (a), we compare the degrees of freedom calculated using our estimator (7)
(y-axis) from Section 4.1 to the unbiased, Monte Carlo estimator (6) (x-axis).
Varying λ gives the solid line, and the dashed line indicates y = x. In (b), we
plot the value of the objective of (4) at m∗(λ), the minimizer of (4) at λ, for a
replicate of data as λ varies. We compare two ways of finding a λ large enough
such that m∗(λ) =

(
1
n1Ty

)
1, which results in the objective shown as . We

take λ = max1≤i≤q−1 {‖d1i‖2, ‖d2i‖2} with either d being the solution to (8)
( ) or d = (AT )+QT

(
y −

(
1
n1Ty

)
1
)

( ). The former ( ) matches
the result of Lemma 3 in Section 4.2.

where d∗ = (d∗T11 · · · d∗T1(q−1) d
∗T
21 . . . d∗T2(q−1))

T is the solution to

minimize
d

max
1≤i≤q−1

{‖d1i‖2, ‖d2i‖2} subject to QT

(
y −

(
1

n
1Ty

)
1

)
= ATd. (8)

Recall that the matrix Q was defined in (3). Taking λ = max1≤i≤q−1

{
‖d̃1i‖2, ‖d̃2i‖2

}
for

any feasible vector d̃ for (8) will give a value of λ sufficiently large so m∗ is constant. For
example, we can choose d̃ = (AT )+QT

(
y −

(
1
n1Ty

)
1
)
. However, choosing λ in accordance

with Lemma 3 will give the minimum value of λ such that m∗ =
(
1
n1Ty

)
1. The opti-

mization problem (8) can be solved using a standard convex solver, such as SDPT3 via
CVX in MATLAB (Grant and Boyd, 2008, 2014). An illustration of Lemma 3 is provided in
Figure 6(b).

4.3 Controlling the Granularity of CRISP

Both q and λ control the granularity of the final CRISP model: q controls the size of the
grid used to construct M , and λ controls the number of blocks in the final fitted CRISP
model. For a range of very small λ values, there will be q2 blocks; for larger λ values, the
CRISP solution will have a smaller number of blocks.

Given that q and λ both influence the number of blocks in the final fitted CRISP model,
one might wonder whether it is necessary to have both q and λ. We illustrate the value of
both q and λ through some simple examples.

12
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4.3.1 Choice of q

In principle, q may be chosen to equal n. This means that each bin of the q× q grid would
contain at most one observation. However, when n is large, choosing q = n can lead to
excessive computational time, memory burden, and variance in the fit. Instead, we aim to
choose q to be large enough to allow for adequate granularity, but not excessively large.
What constitutes adequate granularity will depend on the context of the problem.

In our analyses, we choose to treat q as a fixed parameter that is chosen prior to fitting
CRISP. However, if desired, q could be chosen by K-fold cross validation.

4.3.2 Choice of λ

To illustrate the role of λ, consider taking λ = 0 in (3), and treating q as a tuning parameter
rather than a fixed value. When λ = 0, (3) contains only a sum of squared errors term, so
the estimate within each bin is the mean value of the observations in that bin. For bins
without any observations, we estimate the corresponding element of M to be the overall
mean of y.

For the mean models shown in Figure 2, we compare CRISP to (3) with λ = 0 and
q chosen adaptively. We focus on the general findings here, but detailed results are given
in Appendix H. When the true mean model is piecewise constant with boundaries that
are well-approximated by a grid of bins (as in Scenarios 1–3), CRISP and (3) with λ = 0
and variable q perform similarly. However, CRISP is clearly superior at estimating the
smooth mean model of Scenario 4 (Figure 12), as it is able to borrow information across
bins, instead of simply fitting the mean of observations within each bin. CRISP also allows
the granularity of the fitted model to vary adaptively over the covariate space, as shown
in Figure 13(a) of Appendix H. The blocks of this mean model perfectly align with a grid
that has q = 3, but the mean model only has 4 blocks. While (3) with λ = 0 and q = 3 fits
9 blocks, CRISP correctly identifies 4 blocks (Figures 13(b) and 13(c) of Appendix H).

5. Connections to Other Methods

In this section, we establish connections between CRISP and two previous proposals.

5.1 Connection to One-Dimensional Fused Lasso

Suppose that for a given value of λ, the CRISP fit involves only one covariate: that is,
M∗ = m̃1Tq or M∗ = 1qm̃

T for some m̃ ∈ Rq. We will now show that in this setting,
the CRISP solution can be recovered by solving a one-dimensional fused lasso problem
(Tibshirani et al., 2005).

Before presenting Lemma 4, we introduce some notation. DefineD = [I(q−1)×(q−1) 0(q−1)×1]−
[0(q−1)×1 I(q−1)×(q−1)] to be the first difference matrix. Define ỹ ∈ Rq such that ỹi is the
mean outcome value of the observations in the ith row of the q × q grid used to construct
M . Let ni denote the number of observations in the ith row of the q × q grid used to
construct M . Define W ∈ Rq×q to be the diagonal matrix with entries

√
n1,
√
n2, . . . ,

√
nq.

13
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Lemma 4 Suppose that, for some value of λ, the CRISP solution is of the form M∗ = m̃1Tq
for some m̃ ∈ Rq. Then m̃ is the solution to the problem

minimize
m̃∈Rq

1

2
‖W (ỹ − m̃)‖22 + λ

√
q ‖Dm̃‖1 . (9)

If instead M∗ = 1qm̃
T , then a result similar to Lemma 4 holds, with modifications to the

definitions of W and ỹ.
Equation 9 is a weighted fused lasso problem with response vector ỹ and weights√

n1,
√
n2, . . . ,

√
nq. When q = n, (9) simplifies to a standard one-dimensional fused lasso

problem.

Corollary 5 If q = n and M∗ = m̃1Tn , then m̃ is the solution to the one-dimensional
fused lasso problem

minimize
m̃∈Rn

1

2
‖Py − m̃‖22 + λ

√
n ‖Dm̃‖1 , (10)

where P is the permutation matrix that orders the elements of x1 from least to greatest.

If instead M∗ = 1nm̃
T , then Corollary 5 holds with P defined to be the permutation

matrix that orders the elements of x2 from least to greatest.

5.2 Connection to Fused Lasso Additive Model

In this subsection, we will establish that CRISP is a generalization of the fused lasso additive
model (FLAM) proposal of Petersen et al. (forthcoming). FLAM fits an additive model in
which each covariate’s fit is estimated to be piecewise constant with adaptively-chosen knots.

For simplicity, assume that q = n. Consider a modification of CRISP in which we impose
additivity on the mean matrix M . That is, we assume f(x1, x2) = θ0 + f1(x1) + f2(x2),
where θ0 is an overall mean, and f1 and f2 are mean-zero over the training observations. We
introduce the n-vectors θ1 and θ2, where f1(xi1) = θ1i and f2(xi2) = θ2i for all i = 1, . . . , n.
Thus the additivity constraint for the (i, j) element of M , M(i)(j), can be expressed as

M(i)(j) = θ0 + θ1i + θ2j for i = 1, . . . , n; j = 1, . . . , n with 1Tθ1 = 1Tθ2 = 0. (11)

Lemma 6 CRISP (1)–(2) with q = n and with the additional additivity constraint (11) is
equivalent to FLAM with p = 2, which is the solution to the optimization problem

minimize
θ0∈R,θ1,θ2∈Rn

1

2
‖y − (θ01 + θ1 + θ2)‖22 + λ (‖DP1θ1‖1 + ‖DP2θ2‖1)

subject to 1Tθ1 = 1Tθ2 = 0,

(12)

where λ ≥ 0 is a tuning parameter, Pj is the permutation matrix that orders the elements
of xj from least to greatest, and D = [I(n−1)×(n−1) 0(n−1)×1] − [0(n−1)×1 I(n−1)×(n−1)] is
the first difference matrix.

The proof of Lemma 6 follows from algebraic manipulation.
CRISP (1)–(2) with the additivity constraint (11) is also equivalent to FLAM when the

`2 norms in the penalty (2) are changed to `1 or `∞ norms. These alternative penalties are
discussed further in Appendix B.

Lemma 6 can be generalized in order to establish that CRISP with q < n is equivalent
to a version of FLAM that re-weights the loss function in (12) appropriately.
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6. Data Application

We consider predicting median house value on the basis of median income and average
occupancy, measured for 20,640 neighborhoods in California. The data set was originally
considered in Pace and Barry (1997) and is publicly available from the Carnegie Mellon
StatLib data repository (lib.stat.cmu.edu).

For this analysis, we focus on predicting median house value for the central area of
the covariate space. In particular, we filter the neighborhoods to select those with median
incomes and average occupancies that both fall within the central 95% of the covariate
distribution, which results in 18,662 neighborhoods to be analyzed. Further details are
provided in Appendix I. To illustrate the impact that the size of the data set may have on
the preferred analysis approach, we consider five different training set sizes: 100, 500, 1000,
5000, and 11,198 (which corresponds to 60% of the observations). We use the observations
not selected for the training set as the test set. For each training set size, we consider 10
different data samples. We compare the performance of CRISP (with q = 100) to CART
and TPS.

Figure 7 shows that income is positively associated with house value. Occupancy is
not strongly associated with house value in low-income neighborhoods. However, among
neighborhoods with median incomes exceeding around $50,000, neighborhoods with mostly
single or double occupancy tend to have more expensive homes than those with higher
occupancies and the same income. This is perhaps because single people and couples without
children have more disposable income to spend on housing than families at the same income
level.

In Figure 7, we show estimated mean models from CRISP for two different values of
λ. The larger value of λ has slightly worse prediction performance, but has a simple block
structure reminiscent of CART. The smaller value of λ gives better prediction performance
with a more complex fit structure that resembles the fits from TPS. This illustrates how
CRISP’s tuning parameter, λ, balances the trade-off between interpretability and prediction
performance.

While the fit from CART in Figure 7 is quite interpretable, CART gives highly-variable
fits across different splits of the data. This is illustrated in Figure 8. The average variance
of predictions from CART across the 10 splits of data is more than three times that of
CRISP and TPS. For larger training sets, the variance decreases, though the variability
of the CART predictions remains much larger than that of CRISP and TPS. In Figure 8,
we also see that CART’s performance in terms of test set mean squared error (MSE) is
worse than CRISP and TPS, but becomes increasingly similar with larger sample sizes. For
example, in Figure 9, we show the results for the largest training set sample considered
(n = 11, 198). We see that all three methods perform very similarly in terms of test set
MSE, and provide qualitatively similar estimated mean models. As the available sample
size increases, the differences between CRISP, TPS, and CART in terms of prediction
performance and interpretability of fits become less pronounced.
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Figure 7: We consider predicting median house value on the basis of median income and
average occupancy using a training set of size n = 100, as considered in Section 6.
We plot the average value for 10 data samples of test set MSE divided by the
variance of the training set outcome. We plot this scaled test set MSE versus λ
for CRISP ( ), and show the minimum scaled test set MSE achieved by CART
( ), TPS ( ), and an intercept-only model ( ). Estimated mean
models for CRISP are shown for a larger value of λ (indicated by ) and a
smaller value (indicated by ). The estimated mean models shown for CART
and TPS correspond to the tuning parameter with the minimum test set MSE.
The heat scale legend for the median house value is shown.
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Figure 8: We plot the average variance of predictions and the minimum scaled test set
MSE (as defined in Figure 7) as a function of training set sample size for CRISP
( ), CART ( ), and TPS ( ) applied to the housing data considered
in Section 6.

Figure 9: Results using median income and average occupancy as predictors of median
house value using a training set of size n = 11, 198, as considered in Section 6.
Details are as in Figure 7.
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7. Extension to p > 2

We have assumed thus far that p = 2. In this case, the estimated mean model for the entire
covariate space can be summarized in a single plot, as in Figure 2.

We extend CRISP to the setting of p > 2 by constructing an additive model of bivariate
fits. That is, we estimate the fit for each of the p(p−1)

2 pairs of features, giving a bivariate fit
for each pair of covariates like those obtained in the setting of p = 2 and shown in Figure 2.
We assume that the mean model is additive in these fits. We restrict the model to pairwise
interactions between covariates for a couple of reasons. First, only considering pairwise
interactions increases interpretability and reduces model complexity. Our model fit with
pairwise interactions can be summarized using p(p−1)

2 plots, like those shown in Figure 2.
There is no analogous way to easily summarize the model if we were to include higher-order
interactions. Second, considering higher-order interactions would cause our model to suffer
from the curse of dimensionality. That is, as the number of covariates increases, the data
in any region of the p-dimensional space will become sparser and sparser: there would be an
insufficient density of data throughout the covariate space to reasonably estimate a mean
model with higher-order interactions.

We now present the details of our proposal for CRISP with p > 2. We consider interac-
tions between each pair of features, {(j, j′) : 1 ≤ j < j′ ≤ p}. For ease of notation, we refer

to the elements of this set using the index k ∈ (1, . . . ,K) where K = p(p−1)
2 . Recall that for

p = 2, the mean model for CRISP is E[y | x1,x2] = Qm, where m ∈ Rq2 is the vectorized
mean matrix and Q selects the elements of m corresponding to the covariate bins of the
elements of y. Recall that Q is a function of x1 and x2, though we suppress this to simplify
the notation. For p > 2, we consider the mean model

E[y | x1, . . . ,xp] = m01 +

K∑
k=1

Qkmk,

where m0 ∈ R is an intercept, mk ∈ Rq2 is the vectorized mean matrix for the pair of
features indexed by k, and Qk ∈ Rn×q2 selects the elements of mk corresponding to the
covariate bins for the pair of covariates indexed by k. We include the intercept m0 ∈ R in
our model, and assume that m1, . . . ,mK are mean-zero, to ensure identifiability.

When p > 2, we extend the CRISP optimization problem (4) as follows:

minimize
m0,mk,zk:k=1,...,K

1

2

∥∥∥∥∥y −
(
m01 +

K∑
k=1

Qkmk

)∥∥∥∥∥
2

2

+ λ

K∑
k=1

q−1∑
i=1

[
‖zk,1i‖2 + ‖zk,2i‖2

]
subject to Amk = zk,1

Tmk = 0,

(13)

whereA is as defined in Section 2.2. Thus ŷ = m∗01+
∑K

k=1Qkm
∗
k, where (m∗0,m

∗
1, . . . ,m

∗
K)

is the solution to (13).
Problem (13) can be solved using block coordinate descent (Tseng, 2001), which gives

Algorithm 2. We iterate through the pairs of covariates, and perform a partial minimization
(using Algorithm 1) for each mk, while keeping the others fixed. Using an argument similar
to that in Section 2.3, the computational complexity of Algorithm 2 is O(K(n + q4)) for
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an initial step and O(q3) for each iteration of Step 2(b) of Algorithm 2. In practice, the
number of iterations needed to achieve convergence in Step 2(b) of Algorithm 2 is relatively
small.

We present a block coordinate descent algorithm, since it is a natural extension of
Algorithm 1 to the p > 2 setting. However, CRISP with p � 2 can alternatively be fit
using generalized gradient descent, which allows the updates for each bivariate fit to be run
in parallel on a cluster.

Algorithm 2 — Block Coordinate Descent for CRISP with p > 2 (Equation (13))

1. Initialize m∗0 = 0 and m∗k = 0 for all k = 1, . . . ,K.

2. For k = 1, . . . ,K, 1, . . . ,K, . . ., until convergence of the objective of (13):

(a) Compute the residual rk = y −
(
m∗01 +

∑
k′ 6=kQk′m

∗
k′

)
.

(b) Using Algorithm 1, solve

minimize
mk,zk

1

2
‖rk −Qkmk‖22 + λ

q−1∑
i=1

[
‖zk,1i‖2 + ‖zk,2i‖2

]
subject to Amk = zk.

Let m∗k denote the solution.

(c) Compute the intercept, m∗0 ← m∗0 + mean(m∗k), and center, m∗k ← m∗k −
mean(m∗k).

8. Discussion

We have presented CRISP, a method for fitting interpretable, flexible, and non-additive
predictive models. CRISP fits have an easily-interpreted block structure, which is somewhat
reminiscent of the fits from CART. But the fits from CRISP result from a non-greedy
procedure, and are much less variable than those of CART. In our numerical studies, the
prediction performance of CRISP is similar to TPS, and in many cases CRISP provides a
simpler and more interpretable fit.

Future work could consider an alternative penalization scheme. Recall that CRISP first
divides the covariate space into a q× q grid of bins. Our proposal only uses the information
about the bin into which each of the n observations falls, which is used to construct Q in
(4). Thus CRISP only makes use of the rankings of the observations for each covariate,
rather than the actual values of the covariates. A modification to (4) could allow us to more
heavily penalize the differences between pairs of neighboring rows or columns corresponding
to observations with similar values in a given covariate. This modification is not very
important when the covariate pairs are distributed uniformly over the covariate space, as
in our simulation study in Section 3.

In this paper, we have only considered the setting of p� n. An extension of CRISP to
larger p is left to future work.
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Figure 10: In (a), each of the 20 squares represents an observation (x1, x2, y). There are
q2 = 16 bins of (x1, x2) values, whose boundaries coincide with the quartiles
( ) of x1 and x2. In (b) and (c), we label the elements of M and m,
respectively, corresponding to each bin of (x1, x2) values. Additionally, in (b)
and (c), we show (x1i, x2i) = (0.4, 0.8), which is used in Appendix A to describe
the construction of Q.
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Appendix A. Notational Details

We first give an intuitive explanation of our vectorization scheme. Recall that each row of
Q ∈ Rn×q2 contains q2 − 1 elements that equal 0, and a single 1 that extracts an element
of m according to the covariate values for that observation. For example, consider the ith
row of Q for (x1i, x2i) = (0.4, 0.8) in Figure 10(a). These covariate values fall within the
2nd row and 3rd column of the 4×4 grid, meaning that M(2)(3) provides an estimate for yi.
After vectorizing M , M(2)(3) is m10, the 10th element of the mean vector. Note that we
can convert between the matrix and vector notation by taking the column number minus
one multiplied by q and adding the row number (e.g., (3− 1)× 4 + 2). The correspondence
between M and m is illustrated in Figures 10(b) and 10(c). Thus the ith row of Q would
contains all zeros, except a single 1 for the 10th element. Finally, (Qm)i = m10.

Before formally defining the function Ω and matrices Q, Ri for i = 1, . . . , q − 1, and
Ci for i = 1, . . . , q − 1 introduced in Section 2.2, we define a quantile function. We use
quantile(·) to denote the quantile range into which an element falls: quantile(x1i) = k if x1i
is between the k−1

q - and k
q -quantiles of x1. For example, if n = q = 4 and x1 = (9 3 5 2)T ,

then quantile(x11) = 4. Similarly, if n = 6, q = 3, and x1 = (7 2 3 8 1 5)T , then
quantile(x16) = 2.
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We define the function Ω as Ω(M , x1i, x2i) = M(a)(b) where a = quantile(x1i) and
b = quantile(x2i).

We construct Q ∈ Rn×q2 such that

[Q]jk =

{
1 if k = quantile(x1j) + q × (quantile(x2j)− 1)

0 otherwise
,

Ri ∈ Rq×q2 for i = 1, . . . , q − 1 such that

[Ri]jk =


1 if k = i+ q × (j − 1)

−1 if k = i+ 1 + q × (j − 1)

0 otherwise

,

and Ci ∈ Rq×q2 for i = 1, . . . , q − 1 such that

[Ci]jk =


1 if k = j + q × (i− 1)

−1 if k = j + q × i
0 otherwise

.

Appendix B. Alternative Penalties

A more general formulation of our proposal in (1) is

minimize
M∈Rq×q

1

2

n∑
i=1

(yi − Ω(M , x1i, x2i))
2

+ λ

q−1∑
i=1

[∥∥Mi· −M(i+1)·
∥∥
t

+
∥∥M·i −M·(i+1)

∥∥
t

]
, (14)

which is equivalent to (1) for t = 2. One might consider solving (14) for t =∞, which (like
t = 2) encourages pairs of neighboring rows or columns of M to be identical. We compare
the fit for t = 2 to that for t = ∞ in Figure 11(a)–(b). While t = ∞ gives desirable fits
similar to t = 2, the computational time required is much higher than that for t = 2. This
is because when adapted to t = ∞, Step 2(b) of Algorithm 1 no longer has a closed-form
solution (Duchi and Singer, 2009).

We also consider the use of t = 1 in (14); this encourages each element of M to equal
its four adjacent elements. However, using t = 1 gives very poor results: the bins of M
containing observations are estimated to be shrunken versions of their observed values, while
the bins of M without observations are estimated to be a common value (Figure 11(c)).
In a sense, the penalization for t = 1 is too local given the data sparsity (e.g., only q of q2

elements observed when q = n).
The results for t = 1 improve if an additional penalty is added to the objective function.

First, note that (14) can also be written as

minimize
M∈Rq×q

1

2

n∑
i=1

(yi − Ω(M , x1i, x2i))
2 + λ

(
‖MTDT ‖t,1 + ‖MDT ‖t,1

)
, (15)

where D = [I(q−1)×(q−1) 0(q−1)×1] − [0(q−1)×1 I(q−1)×(q−1)]. Motivated by a proposal from
van de Geer (2000), we add an additional penalty to (15) with t = 1,

minimize
M∈Rq×q

1

2

n∑
i=1

(yi − Ω(M , x1i, x2i))
2

+ λ
(
‖MTDT ‖1,1 + ‖MDT ‖1,1 + ‖DMDT ‖1,1

)
. (16)

21



Petersen, Simon, and Witten

Figure 11: The estimated mean model from solving (14) for (a) t = 2 (CRISP), (b) t =∞,
and (c) t = 1, as well as (d) the estimated mean model from solving (16). The
methods are described in detail in Appendix B. Note that q = n was used
for all methods. Data was generated for n = 50 from Scenario 2 (described in
Section 3). The locations of the 50 observations are outlined in each plot. The
heat scale legend is in Figure 1(e).

The penalty ‖DMDT ‖1,1 encourages |M(i)(j) + M(i−1)(j−1) −M(i−1)j −Mi(j−1)| to equal
zero, which results in a block structure as shown in Figure 11(d). While (16) outperforms
(14) with t = 1, CRISP with t = 2 yields better results.

Appendix C. Details of Algorithm 1

C.1 Derivation of Algorithm 1

The scaled augmented Lagrangian of (4) is

Lρ (m, z,u) =
1

2
‖y −Qm‖22 + λ

q−1∑
i=1

[‖z1i‖2 + ‖z2i‖2]

+
ρ

2

q−1∑
i=1

[
‖Rim− z1i + u1i‖22 + ‖Cim− z2i + u2i‖22

]
(17)

where u =
(
(u11)

T . . . (u1(q−1))
T (u21)

T . . . (u2(q−1))
T
)T

is the scaled dual variable. Solving

(4) using ADMM relies on initializing estimates m(0) := 0, z(0) := 0, and u(0) := 0 and
then iterating over three steps until convergence. At iteration k, the updates are

Step 1. m(k) := argmin
m

Lρ

(
m(k−1), z(k−1),u(k−1)

)
Step 2. z(k) := argmin

z
Lρ

(
m(k), z(k−1),u(k−1)

)
Step 3. u

(k)
1i := u

(k−1)
1i +Rim

(k) − z(k)1i for i = 1, . . . , q − 1

u
(k)
2i := u

(k−1)
2i +Cim

(k) − z(k)2i for i = 1, . . . , q − 1
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Note that Step 3 can equivalently be written as u(k) := u(k−1) +Am(k)− z(k). We provide
details regarding Steps 1 and 2 below.

Details of Step 1

The optimality condition of (17) for m is

∂Lρ
∂m

= −QT (y −Qm) + ρ

q−1∑
i=1

[
RT
i (Rim− z1i + u1i) +CT

i (Cim− z2i + u2i)
]

= 0

or equivalently, −QT (y −Qm) + ρAT (Am+u− z) = 0. Therefore the update for Step 1

is m(k) :=
[
QTQ+ ρATA

]−1 [
QTy + ρAT (z(k−1) − u(k−1))

]
.

Details of Step 2

The proximal operator proxλf of λf is defined by proxλf (v) = argmin
x

(
f(x) + 1

2λ‖x− v‖
2
2

)
.

The minimization for Step 2 is separable in the z1i and z2i for i = 1, . . . , q − 1. The mini-
mization for z1i is

z
(k)
1i := argmin

z1i

[
λ ‖z1i‖2 +

ρ

2

∥∥∥Rim
(k) − z1i + u

(k−1)
1i

∥∥∥2
2

]
= proxλ

ρ
‖·‖2

(
Rim

(k) + u
(k−1)
1i

)
=
(
Rim

(k) + u
(k−1)
1i

)1− λ

ρ
∥∥∥Rim(k) + u

(k−1)
1i

∥∥∥
2


+

.

Similarly, the update for z2i is z
(k)
2i :=

(
Cim

(k) + u
(k−1)
2i

)(
1− λ

ρ
∥∥∥Cim(k)+u

(k−1)
2i

∥∥∥
2

)
+

.

C.2 Stopping Criterion

We use the stopping criterion for Algorithm 1 suggested in Boyd et al. (2011), stopping
when the primal residual r(k) = Am(k)− z(k) and dual residual s(k) = ρAT

(
z(k−1) − z(k)

)
are sufficiently small. Specifically, we check if

‖r(k)‖2 ≤
√

2q(q − 1)εabs+εrel max{‖Am(k)‖2, ‖z(k)‖2} and ‖s(k)‖2 ≤ qεabs+εrel‖ρATu(k)‖2

with εabs, εrel > 0. We use εabs = 10−4 and εrel = 10−2 in order to obtain the results
presented in Sections 3 and 6.

C.3 Varying Penalty Parameter

We can vary ρ from iteration to iteration in order to achieve better convergence and reduce
the dependence of performance on the initially chosen ρ. We adopt the scheme for varying
ρ that is reviewed in Boyd et al. (2011). Since we use the scaled dual variable, u must also
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be updated in conjunction with the updating of ρ. At the end of each iteration, we apply
the updates

(ρ(k+1),u(k+1)) :=


(τ incrρ(k),u(k)/τ incr) if ‖r(k)‖2 > δ‖s(k)‖2
(ρ(k)/τdecr, τdecru(k)) if ‖s(k)‖2 > δ‖r(k)‖2
(ρ(k),u(k)) otherwise

where δ, τ incr, τdecr > 1. We choose δ = 10 and τ incr = τdecr = 2. Updating ρ keeps the
norms of the residuals r(k) and s(k) within a factor of δ of one another. While convergence
of ADMM has only been proven for fixed ρ, varying ρ has been shown to work well in
practice (Boyd et al., 2011).

C.4 Modification to Provide Sparsity

Inspection of the updates for z∗1i and z∗2i in Algorithm 1 indicates that the ADMM algorithm
yields sparsity in z∗1i and z∗2i, but not necessarily exact equality of the rows and columns
of M∗. This is in effect a numerical issue: our algorithm might yield z1i = 0, but ‖M∗

i· −
M∗

(i+1)·‖2 = 1 × 10−8. To resolve this issue, we first determine the “blocks” of m∗ using

an initial run of Algorithm 1, and then solve (4) once more with constraints on the rows
and columns of M to enforce equality of the appropriate rows and columns. This second
optimization is performed simply to yield an estimate of M for which elements are exactly
equal within each block.

Appendix D. Details of Simulations in Section 3

The mean models f(x1, x2) used to generate data for Scenarios 1–4 in Section 3 are defined
as follows. Note that x1 and x2 are sampled uniformly from [−2.5, 2.5]. We define the

indicator function 1A(x) =

{
1 if x ∈ A
0 otherwise

.

Scenario 1: f(x1, x2) = sign(x1)× 1[0,∞)(x1 × x2)
Scenario 2: f(x1, x2) = −sign(x1 × x2)
Scenario 3: f(x1, x2) = −3 × 1[−2.5,−0.83)(x1) × 1[−2.5,−1.25)(x2) + 1[−2.5,−0.83)(x1) ×

1[−1.25,2.5](x2)−2×1[−0.83,0.83](x1)×1[−2.5,0)(x2)+2×1[−0.83,0.83](x1)×1[0,2.5](x2)−1(0.83,2.5](x1)×
1[−2.5,1.25)(x2) + 3× 1(0.83,2.5](x1)× 1[1.25,2.5](x2)

Scenario 4: f(x1, x2) = 10(
x1−2.5

3

)2
+
(
x2−2.5

3

)2
+1

+ 10(
x1+2.5

3

)2
+
(
x2+2.5

3

)2
+1

Each of the mean models f(x1, x2) defined above is centered and scaled such that∫ 2.5
−2.5

∫ 2.5
−2.5 f(x1, x2) dx1 dx2 = 0 and 1

25

∫ 2.5
−2.5

∫ 2.5
−2.5 f(x1, x2)

2 dx1 dx2 = 2.

Appendix E. Proof Sketch of Proposition 1

Proof Using the dual problem of (5) and Lemma 1 of Tibshirani and Taylor (2012), it can
be shown that g : Rn → Rn with ŷ = g(y) = (g1(y), . . . , gn(y))T is continuous and almost

differentiable. Thus, Stein’s lemma implies that df(ŷ) = E
[
Tr
(
∂g(y)
∂y

)]
. At the optimum
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of (5), we have

QT (y −Qm∗) = λ

q−1∑
i=1

[RT
i S1(Ri,m

∗) +CT
i S1(Ci,m

∗)] + γm∗, (18)

where S1(Ai,m
∗) =

{
Aim

∗

‖Aim∗‖2 if ‖Aim
∗‖2 6= 0

∈ {g : ‖g‖2 ≤ 1} if ‖Aim
∗‖2 = 0

.

We define C = {Ai : ‖Aim
∗‖2 = 0} where A1 = R1,A2 = R2, . . . ,Aq−1 = Rq−1,Aq =

C1,Aq+1 = C2, . . . ,A2q−2 = Cq−1. We define A∗ to be the submatrix of A with the rows
corresponding to Ai /∈ C removed, and let P = Iq2 −A+

∗ A∗, the projection onto the space
orthogonal to the row space of A∗. We left-multiply (18) by P to give

PQT (y −Qm∗) = λP
∑
i:Ai /∈C

AT
i Aim

∗

‖Aim∗‖2
+ γPm∗, (19)

since PAT
i S1(Ai,m

∗) = 0 if Ai ∈ C (i.e., ‖Aim
∗‖2 = 0). Because Pm∗ = m∗, (19) can

be rewritten as

PQT (y −QPm∗) = λP
∑
i:Ai /∈C

AT
i AiPm

∗

‖Aim∗‖2
+ γm∗. (20)

We letD = diag
(
h(m∗1), · · · , h(m∗q2)

)
, where h(m∗i ) is defined to be the ratio of the number

of observations in the block of M∗ that contains m∗i to the number of elements of M∗ in the
block of M∗ that contains m∗i . Note that PQTQP = DP . Thus PQTQPm∗ = Dm∗,
and (20) is equivalent to

PQTy = Dm∗ + λP
∑
i:Ai /∈C

AT
i AiPm

∗

‖Aim∗‖2
+ γm∗. (21)

We conjecture that there is a neighborhood around almost every y such that the blocks
of m∗ do not change. That is, C and P in (21) are constant with respect to y, and the
derivative of (21) with respect to y is

PQT =

D + λP
∑
i:Ai /∈C

S2(Ai,m
∗)P + γI

 ∂m∗

∂y
, (22)

where S2(Ai,m
∗) =

ATi Ai
‖Aim∗‖2 −

ATi Aim
∗m∗TATi Ai

‖Aim∗‖32
. Recall ŷ = Qm∗, so solving (22) for ∂m∗

∂y

and left-multiplying by Q gives

∂ŷ

∂y
= Q

D + λP
∑
i:Ai /∈C

S2(Ai,m
∗)P + γI

−1PQT ,
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where
(
D + λP

∑
i:Ai /∈C S2(Ai,m

∗)P + γI
)

is invertible as bothD and λP
∑

i:Ai /∈C S2(Ai,m
∗)P

are positive semi-definite. Therefore, the degrees of freedom is

E

Tr

Q
D + λP

∑
i:Ai /∈C

S2(Ai,m
∗)P + γI

−1PQT

 .
This establishes the unbiasedness of the estimator (6).

Appendix F. Proof of Corollary 2

Proof This corollary pertains to the setting in which either all rows of M∗ are equal (i.e.,
Ri ∈ C for all i) or all columns of M∗ are equal (i.e., Ci ∈ C for all i). In this setting,
we will show PS2(Ai,m

∗) = 0 for any Ai /∈ C using two facts: (1) Aim
∗ = ci1q for some

ci ∈ R and (2) PAT
i = vi1

T
q for some vi ∈ Rq2 . These facts follow from the assumption

that either all rows or all columns of M∗ are equal. Consider some Ai /∈ C. We have

PS2(Ai,m
∗) =

PAT
i Ai

‖Aim∗‖2
− PA

T
i Aim

∗m∗TAT
i Ai

‖Aim∗‖32

=
PAT

i Ai

‖Aim∗‖2
−

(vi1
T
q )(ci1q)(ci1

T
q )Ai

c2i q‖Aim∗‖2

=
PAT

i Ai

‖Aim∗‖2
−

vi1
T
qAi

‖Aim∗‖2

=
PAT

i Ai

‖Aim∗‖2
− PAT

i Ai

‖Aim∗‖2
= 0.

Therefore, the estimator (6) with γ = 0 simplifies to Tr[QD−1PQT ] = Tr[D−1PQTQ].
Recall that D is a diagonal matrix with Dii = h(m∗i ) = N0

i /Ni, where N0
i and Ni are

the number of observations and the number of elements, respectively, in the block of M∗

containing m∗i . Note that (PQTQ)ii equals n0i /Ni, where n0i is the number of observations
corresponding to m∗i . Thus

Tr[D−1PQTQ] =

q2∑
i=1

(PQTQ)ii
Dii

=
∑

i:m∗i observed

Ni

N0
i

n0i
Ni

=
∑

i:m∗i observed

n0i
N0
i

,

which equals the total number of blocks of M∗ since the n0i ’s for a block sum to N0
i .
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Appendix G. Proof of Lemma 3

Proof If m∗ =
(
1
n1Tny

)
1q2 solves (3), then there exist q-vectors d1i,d2i with ‖d1i‖2 ≤ λ

and ‖d2i‖2 ≤ λ such that

QT

(
y −

(
1

n
1Tny

)
1q

)
=

q−1∑
i=1

[
RT
i d1i +CT

i d2i
]
, (23)

since Q1q2 = 1q. Let d = (dT11 · · · dT1(q−1) d
T
21 . . . dT2(q−1))

T . Then (23) can be rewritten
as

QT

(
y −

(
1

n
1T
ny

)
1q

)
= ATd. (24)

Note that m∗ =
(
1
n1Tny

)
1q2 for a certain λ if and only if (24) is satisfied for some d for

which ‖d1i‖2 ≤ λ, ‖d2i‖2 ≤ λ for i = 1, . . . , q − 1. We find the d∗ corresponding to the
minimum λ for which m∗ =

(
1
n1Tny

)
1q2 by solving the convex optimization problem

minimize
d

max
1≤i≤q−1

{‖d1i‖2, ‖d2i‖2} subject to QT

(
y −

(
1

n
1Tny

)
1q

)
= ATd.

Thus m∗ =
(
1
n1Tny

)
1q2 if and only if λ ≥ max1≤i≤q−1 {‖d∗1i‖2, ‖d∗2i‖2} .

Appendix H. Simulations Illustrating Performance of (3) with λ = 0 and
Variable q

We illustrate how (3) with λ = 0 over a range of q values performs compared to CRISP
for a variety of scenarios. We generate data with n = 100 by independently sampling each
element of x1 and x2 from a Unif[−2.5, 2.5] distribution, and then taking y = f(x1,x2)+ε,
where ε ∼ MVN(0, In). The four mean models f(x1,x2) we consider are shown in Figure 12.
Note that these are the same mean models we consider extensively in Section 3.

For each mean model, we generate 1000 replicates of data and estimate the mean model
using (3) with λ = 0 and various q. We plot the MSE, squared bias, and variance of the
mean model estimate as a function of q in Figure 12. In Scenarios 1 and 2, q = 2 has
the best performance, which is unsurprising given the mean model structure. Using q = 2,
there will be four bins whose boundaries roughly coincide with the true boundaries of the
mean model. As q increases, the bias increases in an oscillating fashion where even values
of q give better performance than odd ones. This is because odd values of q will not tend
to have bins with boundaries that coincide with the true boundaries the mean model. As q
increases, most of the q2 bins will not have observations in them, and their estimates will
be the mean of y. Thus the variance decreases as many bins take on the same value, but
the squared bias continues to increase. In Scenarios 3 and 4, the minimum MSE occurs at
q = 4, not q = 2 as in Scenarios 1 and 2. This is because the mean models in Scenarios 3
and 4 are more complex and not well-estimated using only 2× 2 grid of bins.

We also consider the performance for an additional mean model, shown in Figure 13(a).
The same simulation set-up was used as for Scenarios 1–4 above. Though the blocks of the
true mean model perfectly align with a grid that has q = 3, there are only 4 distinct blocks.
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Figure 12: The top row of figures shows the mean models f(x1, x2) used to generate data
in each of the four scenarios in Appendix H. The bottom row of figures shows
the performance of the method of (3) with λ = 0 as a function of q in terms of
MSE ( ), squared bias ( ), and variance ( ). The MSE for CRISP with
q = n and optimal λ is shown ( ) for comparison.
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Figure 13: In (a), we plot the mean model f(x1, x2) used to generate data for the simulation
described in Appendix H. In (b), we show the estimated mean model from the
method of (3) with λ = 0 and q = 3. In (c), we show the estimated mean model
from CRISP with q = n. In (d), we show the performance of the method of (3)
with λ = 0 as a function of q in terms of MSE ( ), squared bias ( ), and
variance ( ). The MSE for CRISP with q = n and optimal λ is shown ( )
for comparison.

The method of (3) with λ = 0 unsurprisingly has the best performance for q = 3, which is
shown in Figure 13(d). The estimated mean model from using q = 3 and λ = 0 has q2 = 9
blocks, as shown in Figure 13(b), since there is no adaptive shrinking together of blocks.
However, CRISP is able to adaptively determine that only 4 blocks are needed, as shown
in the estimated mean model in Figure 13(c). This example illustrates how CRISP is able
to adaptively determine the amount of granularity over the covariate space. With λ = 0,
the amount of granularity is constant across the covariate space.

Appendix I. Details of Data Application

In Section 6, we analyze housing data with the outcome of median house value and predictors
of median income and average occupancy. We plot median income versus average occupancy
in Figure 14. Note that 37 neighborhoods had an average occupancy larger than 10 and
are omitted from the plot. The mean of average occupancy for these neighborhoods with
an average occupancy greater than 10 was 88. In Figure 14, we outline the central 95%
of the data in both covariates. That is, the 2.5% and 97.5% quantiles are shown for both
covariates. We restrict our analysis to observations that fall in the central 95% of the data
for both covariates. Of the original 20,640 neighborhoods, this excludes 1978 observations,
leaving 18,662 observations for analysis.
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