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Abstract

While machine learning has proven to be a powerful data-driven solution to many real-
life problems, its use in sensitive domains has been limited due to privacy concerns. A
popular approach known as differential privacy offers provable privacy guarantees, but
it is often observed in practice that it could substantially hamper learning accuracy. In
this paper we study the learnability (whether a problem can be learned by any algorithm)
under Vapnik’s general learning setting with differential privacy constraint, and reveal
some intricate relationships between privacy, stability and learnability. In particular, we
show that a problem is privately learnable if an only if there is a private algorithm that
asymptotically minimizes the empirical risk (AERM). In contrast, for non-private learning
AERM alone is not sufficient for learnability. This result suggests that when searching for
private learning algorithms, we can restrict the search to algorithms that are AERM. In
light of this, we propose a conceptual procedure that always finds a universally consistent
algorithm whenever the problem is learnable under privacy constraint. We also propose a
generic and practical algorithm and show that under very general conditions it privately
learns a wide class of learning problems. Lastly, we extend some of the results to the more
practical (e, §)-differential privacy and establish the existence of a phase-transition on the
class of problems that are approximately privately learnable with respect to how small §
needs to be.

Keywords: differential privacy, learnability, characterization, stability, privacy-preserving
machine learning

1. Introduction

Increasing public concerns regarding data privacy have posed obstacles in the development
and application of new machine learning methods as data collectors and curators may no
longer be able to share data for research purposes. In addition to addressing the original goal
of information extraction, privacy-preserving learning also requires the learning procedure
to protect sensitive information of individual data entries. For example, the second Netflix
Prize competition was canceled in response to a lawsuit and Federal Trade Commission
privacy concerns, and the National Institute of Health decided in August 2008 to remove
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aggregate Genome-Wide Association Studies (GWAS) data from the public web site, after
learning about a potential privacy risk.

A major challenge in developing privacy-preserving learning methods is to quantify formally
the amount of privacy leakage, given all possible and unknown auxiliary information the
attacker may have, a challenge in part addressed by the notion of differential privacy
(Dwork, 2006; Dwork et al., 2006b). Differential privacy has three main advantages over
other approaches: (1) it rigorously quantifies the privacy property of any data analysis
mechanism; (2) it controls the amount of privacy leakage regardless of the attacker’s resource
or knowledge, (3) it has useful interpretations from the perspectives of Bayesian inference and
statistical hypothesis testing, and hence fits naturally in the general framework of statistical
machine learning, e.g., see (Dwork and Lei, 2009; Wasserman and Zhou, 2010; Smith, 2011;
Lei, 2011; Wang et al., 2015), as well as applications involving regression (Chaudhuri et al.,
2011; Thakurta and Smith, 2013) and GWAS data (Yu et al., 2014), etc.

In this paper we focus on the following fundamental question about differential privacy and
machine learning: What problems can we learn with differential privacy? Most literature
focuses on designing differentially private extensions of various learning algorithms, where
the methods depend crucially on the specific context and differ vastly in nature. But with the
privacy constraint, we have less choice in developing learning and data analysis algorithms.
It remains unclear how such a constraint affects our ability to learn, and if it is possible to
design a generic privacy-preserving analysis mechanism that is applicable to a wide class of
learning problems.

Our Contributions We provide a general answer to the relationship between learnability
and differential privacy under Vapnik’s General Learning Setting (Vapnik, 1995) in four
aspects.

1. We characterize the subset of problems in the General Learning Setting that can be
learned under differential privacy. Specifically, we show that a sufficient and necessary
condition for a problem to be privately learnable is the existence of an algorithm that is
differentially private and asymptotically minimizes the empirical risk. This characterization
generalizes previous studies of the subject (Kasiviswanathan et al., 2011; Beimel et al.,
2013a) that focus on binary classification in discrete domain under the PAC learning model.
Technically, the result relies on the now well-known intuitive observation that “privacy
implies algorithmic stability” and the argument in Shalev-Shwartz et al. (2010) that shows
a variant of algorithmic stability is necessary for learnability.

2. We also introduce a weaker notion of learnability, which only requires consistency for
a class of distributions ©. Problems that are not privately learnable (a surprisingly large
class that includes simple problems such as 0-1 loss binary classification in continuous
feature domain (Chaudhuri and Hsu, 2011)) are usually private ©-learnable for some “nice”
distribution class ®. We characterize the subset of private ®-learnable problems that are
also (non-privately) learnable using conditions analogous to those in distribution-free private
learning.
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3. Inspired by the equivalence between privacy learnability and private AERM, we propose
a generic (but impractical) procedure that always finds a consistent and private algorithm
for any privately learnable (or ®-learnable) problems. We also study a specific algorithm
that aims at minimizing the empirical risk while preserving the privacy. We show that
under a sufficient condition that relies on the geometry of the hypothesis space and the data
distribution, this algorithm is able to privately learn (or ®-learn) a large range of learning
problems including classification, regression, clustering, density estimation and etc, and
it is computationally efficient when the problem is convex. In fact, this generic learning
algorithm learns any privately learnable problems in the PAC learning setting (Beimel et al.,
2013a). It remains an open problem whether the second algorithm also learns any privately
learnable problem in the General Learning Setting.

4. Lastly, we provide a preliminary study of learnability under the more practical (e, d)-
differential privacy. Our results reveal that whether there is separation between learnability
and approximate private learnability depends on how fast § is required to go to 0 with
respect to the size of the data. Finding where the exact phase transition occurs is an open
problem of future interest.

Our primary objective is to understand the conceptual impact of differential privacy and
learnability under a general framework and the rates of convergence obtained in the analysis
may be suboptimal. Although we do provide some discussion on polynomial time approxi-
mations to the proposed algorithm, learnability under computational constraints is beyond
the scope of this paper.

Related work While a large amount of work has been devoted to finding consistent (and
rate optimal) differentially private learning algorithms in various settings (e.g., Chaudhuri
et al., 2011; Kifer et al., 2012; Jain and Thakurta, 2013; Bassily et al., 2014), the characteri-
zation of privately learnable problems were only studied in a few special cases.

Kasiviswanathan et al. (2011) showed that, for binary classification with a finite discrete
hypothesis space, anything that is non-privately learnable is privately learnable under the
agnostic Probably Approximately Correct (PAC) learning framework, therefore “finite VC-
dimension” characterizes the set of private learnable problems in this setting. Beimel et al.
(2013a) extends Kasiviswanathan et al. (2011) by characterizing the sample complexity
of the same class of problems, but the result only applies to the realizable (non-agnostic)
case. Chaudhuri and Hsu (2011) provided a counter-example showing that for continuous
hypothesis space and data space, there is a gap between learnability and learnability
under privacy constraint. They proposed to fix this issue by either weakening the privacy
requirement to labels only or by restricting the class of potential distribution. While
meaningful in some cases, these approaches do not resolve the learnability problem in
general.

A key difference of our work from Kasiviswanathan et al. (2011); Chaudhuri and Hsu (2011);
Beimel et al. (2013a) is that we consider a more general class of learning problems and
provide a proper treatment in a statistical learning framework. This allows us to capture a
wider collection of important learning problems (see Figure 1(a) and Table 1).
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It is important to note that despite its generality, Vapnik’s general learning setting still does
not nearly cover the full spectrum of private learning. In particular, our results do not apply
to improper learning (learning using a different hypothesis class) as considered in Beimel
et al. (2013a) or to structural loss minimization (the loss function jointly take all data points
as input) considered in Beimel et al. (2013b). Also, our results do not address the sample
complexity problem, which remains open in the general learning setting even for learning
without privacy constraints.

Our characterization of private learnability (and private ®-learnability) in Section 3 uses a
recent advance in the characterization of general learnability given by Shalev-Shwartz et al.
(2010). Roughly speaking, they showed that a problem is learnable if and only if there exists
an algorithm that (i) is stable under small perturbation of training data, and (ii) behaves
like empirical risk minimization (ERM) asymptotically. We also makes use of a folklore
observation that “Privacy = Stability = Generalization”. The connection of privacy and
stability appeared as early as 2008 in a conference version of Kasiviswanathan et al. (2011).
Further connection to “generalization” recently appeared in blog posts!, stated as a theorem
in Appendix F of Bassily et al. (2014), and was shown to hold with strong concentration in
Dwork et al. (2015b).

Dwork et al. (2015b) is part of an independent line of work (Hardt and Ullman, 2014; Bassily
et al., 2015; Dwork et al., 2015a; Blum and Hardt, 2015) on adaptive data analysis, which
also stems from the observation that privacy implies stability and generalization. Comparing
to adaptive data analysis works, our focus is quite different. Adaptive data analysis work
focus on the impact of k on how fast the maximum absolute error of k-adaptively chosen
queries goes to 0 as a function of n, while this paper is concerned with whether the error
can go to 0 at all for each learning problem when we require the learning algorithm be
differentially private with € < co. Nonetheless, we acknowledge that Theorem 7 in Dwork
et al. (2015b) provides an interesting alternative proof for “differentially private learners
have small generalization error”, when choosing the statistical query as evaluating a loss
function at a privately learned hypothesis. The connection is not quite obvious and we
provide a more detailed explanation in Appendix B.

The main tool used in the construction of our generic private learning algorithm in Section 4
is the Exponential Mechanism (McSherry and Talwar, 2007), which provides a simple and
differentially-private approximation to the maximizer of a score function among a candidate
set. In the general learning context, we use the negative empirical risk as the utility function,
and apply the exponential mechanism to a possibly pre-discretized hypothesis space. This
exponential mechanism approach was used in Bassily et al. (2014) for minimizing convex and
Lipschitz functions. The sample discretization procedure has been considered in Chaudhuri
and Hsu (2011) and Beimel et al. (2013a). Our scope and proof techniques are different.
Our strategy is to show that, under some general regularity conditions, the exponential
mechanism is stable and behaves like ERM. Our sublevel set condition has the same flavor

1. For instance, Frank McSherry described in a blog post an example of exploiting dif-
ferential  privacy  for  measure  concentration  http://windowsontheory.org/2014/02/04/
differential-privacy-for-measure-concentration/; Moritz Hardt discussed the connection
of differential privacy to stability and generalization in his blog post http://blog.mrtz.org/2014/01/
13/false-discovery.
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as that in the proof of Bassily et al. (2014, Theorem 3.2), although we do not need the loss
function to be convex or Lipschitz.

Stability, privacy and generalization were also studied in Thakurta and Smith (2013) with
different notions of stability. More importantly, their stability is used as an assumption
rather than a consequence, so their result is not directly comparable to ours.

2. Background
2.1 Learnability under the General Learning Setting

In the General Learning Setting of Vapnik (1995), a learning problem is characterized by a
triplet (Z,H,/). Here Z is the sample space (with a o-algebra). The hypothesis space H
is a collection of models such that each h € H describes some structures of the data. The
loss function ¢ : H x Z — R measures how well the hypothesis h explains the data instance
z € Z. For example, in supervised learning problems Z = X x ) where X is the feature
space and ) is the label space; ‘H defines a collection of mapping h : X — Y; and ¢(h, z)
measures how well h predicts the feature-label relationship z = (z,y) € Z. This setting
includes problems with continuous input/output in potentially infinite dimensional spaces
(e.g. RKHS methods), hence is much more general than PAC learning. In addition, the
general learning setting also covers a variety of unsupervised learning problems, including
clustering, density estimation, principal component analysis (PCA) and variants (e.g., Sparse
PCA, Robust PCA), dictionary learning, matrix factorization and even Latent Dirichlet
Allocation (LDA). Details of these examples are given in Table 1 (the first few are extracted
from Shalev-Shwartz et al. (2010)).

To account for the randomness in the data, we are primarily interested in the case where the
data Z = {z1,...,z,} € Z™ are independent samples drawn from an unknown probability
distribution D on Z. We denote such a random sample by Z ~ D". For a given distribution
D, let R(h) be the expected loss of hypothesis h and R(h, Z) the empirical risk from a
sample Z € Z™:

R(h) = Boupl(h, ), R(h, 7) = % ane(h, ).
=1

The optimal risk R* = infpcy R(h) and we assume that it is achieved by an optimal h* € H.
Similarly, the minimal empirical risk R*(Z) = infyey R(h, Z) is achieved by h*(Z) € H. For
a possibly randomized algorithm A : Z™ — H that learns some hypothesis A(Z) € H given
data sample 7, we say A is consistent if

lim Ez.pn (Epoa(z)R(R) — R*) = 0. (1)

n—oo

In addition, we say A is consistent with rate £(n) if

Ez~pn (Epoaz)R(h) — R*) < &(n), where lim &(n) — 0. (2)

n—oo
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SQ = PSQ. (7"SuLQ”, Blum et. al. 05)

PAC = PPAC @ Logistic * Stochastic
e e el e R e, Regression convex
Kasiviswanathan et. al., 08) optimization
Generalized
Linear model

SQ=PSQ

@ Linear Regression @ RKHS Learning @ K-means clustering
Kernel SVM

* Multiclass classification

. . . Matrix factorization
* Density estimation
Recommender system

General Learning Setting

(a) Ilustration of general learning setting. Examples of known DP extensions are circled in maroon.

PAC = PPAC

(“What can be learned privately?”,
Kasiviswanathan et. al., 08)

SQ=PSQ

Private Learnability = 3 Private AERM

NOT Privately Learnable = A Private AERM

General Learning Setting

(b) Our characterization of private learnable problems in the general learning setting (in blue).

Figure 1: The Big Picture: illustration of general learning setting and our contribution in
understanding differentially private learnability.
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Problem Hypothesis class H Zor X xY Loss function ¢
Binary classification | H C {f: {0,1}7 — {0,1}} {0, 1} x {0,1} | 1(h(z) #y)
Regression HC{f:[0,1]" = R} [0,1]¢ x R |h(z) —y|?
Density Estimation Bounded distributions on Z | Z ¢ R? —log(h(z))
K-means Clustering | {S C R?: |S| = k} ZCR? InEl;LlHC —z|]?
RKHS classification | Bounded RKHS RKHSx{0,1} | max{0,1— y(z,h)}
RKHS regression Bounded RKHS RKHSxR [{z, h) — y|?
Sparse PCA Rank-r projection matrices | R? lhz — 2||> + A|hllx
Robust PCA All subspaces in R? R¢ |Pr(z) — 2|1 + Arank(h)
Matrix Completion | All subspaces in R? RY x {1,0}* IglellIllﬂy o (b—1)||* + Arank(h)
Dictionary Learning | All dictionaries € R**" R¢ l];rrel]iRr}th —2|]® + Allb]lx
Non-negative MF All dictionaries € Rixr R¢ bmﬂi{n |hb — z||?
eRY
Subspace Clustering | A set of k rank-r subspaces | R? I;IIGI}ILIHPb(Z) —z|)?
Topic models (LDA) | {P(word|topic)} Documents — max . logPy n(w)
be{P(Topic)} wez

Table 1: An illustration of problems in the General Learning setting.

Since the distribution D is unknown, we cannot adapt the algorithm A to D, especially when
privacy is a concern. Also, even if A is pointwise consistent for any distribution D, it may
have different rates for different D and potentially be arbitrarily slow for some D. This makes
it hard to evaluate whether A indeed learns the learning problem and forbids the study of the
learnability problem. In this study, we adopt the stronger notion of learnability considered
in Shalev-Shwartz et al. (2010), which is a direct generalization of PAC-learnability (Valiant,
1984) and agnostic PAC-learnability (Kearns et al., 1992) to the General Learning Setting
as studied by Haussler (1992).

Definition 1 (Learnability, Shalev-Shwartz et al., 2010) A learning problem is learn-
able if there exists an algorithm A and rate £(n), such that A is consistent with rate £(n)
for any distribution D defined on Z.

This definition requires consistency to hold universally for any distribution D with a uniform
(distribution-independent) rate £(n). This type of problem is often called distribution-free
learning (Valiant, 1984), and an algorithm is said to be universally consistent with rate £(n)
if it realizes the criterion.

2.2 Differential privacy

Differential privacy requires that if we arbitrarily perturb a database by only one data
point, the output should not differ much. Therefore, if one conducts a statistical test
for whether any individual is in the database or not, the false positive and false negative
probabilities cannot both be small (Wasserman and Zhou, 2010). Formally, define “Hamming
distance”

d(Z,2") =#{i=1,..,n:2 # 2}}. (3)
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Definition 2 (e-Differential Privacy, Dwork, 2006) An algorithm A is e-differentially
private, if

P(A(Z) € H) < exp(e)P(A(Z') € H)
for~ Z, Z' obeying d(Z,Z') =1 and any measurable subset H C H.

There are weaker notions of differential privacy. For example (e, §)-differential privacy allows
for a small probability § where the privacy guarantee does not hold. In this paper, we will
mainly work with the stronger e-differential privacy. In Section 6 we discuss the problem of
(¢, 0)-differential privacy and extend some of the results to this setting.

Our objective is to understand whether there is a gap between learnable problems and
privately learnable problems in the general learning setting, and to quantify the tradeoff
required to protect privacy. To achieve this objective, we need to show the existence of an
algorithm that learns a class of problems while preserving differential privacy. More formally,
we define

Definition 3 (Private learnability) A learning problem is privately learnable with rate
&(n) if there exists an algorithm A that satisfies both universal consistency (as in Definition 1)
with rate £(n) and e-differential privacy with privacy parameter € < oo.

We can view the consistency requirement Definition 3 as a measure of utility. This utility
is not a function of the observed data, however, but rather how the results generalize to
unseen data.

The following lemma shows that the above definition of private learnability is actually
equivalent to a seemingly much stronger condition with a vanishing privacy loss e.

Lemma 4 If there is an e-DP algorithm that is consistent with rate £&(n) for some constant

0 < e < o0, then there is a % (e° — e~ €)-DP algorithm that is consistent with rate (y/n).

The proof, given in Appendix A.1, uses a subsampling theorem adapted from Beimel et al.
(2014, Lemma 4.4).

There are many approaches to design differentially private algorithms, such as noise perturba-
tion using Laplace noise (Dwork, 2006; Dwork et al., 2006b) and the Exponential Mechanism
(McSherry and Talwar, 2007). Our construction of generic differentially private learning
algorithms applies the Exponential Mechanism to penalized empirical risk minimization. Our
argument will make use of a general characterization of learnability described below.

2.3 Stability and Asymptotic ERM

An important breakthrough in learning theory is a full characterization of all learnable
problems in the General Learning Setting in terms of stability and empirical risk minimization
(Shalev-Shwartz et al., 2010). Without assuming uniform convergence of empirical risk,
Shalev-Shwartz et al. showed that a problem is learnable if and only if there exists a “strongly
uniform-RO stable” and “always asymptotically empirical risk minimization” (Always AERM)
randomized algorithm that learns the problem. Here “RO” stands for “replace one”. Also,
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any strongly uniform-RO stable and “universally” AERM (weaker than “always” AERM)
learning rule learns the problem consistently. Here we give detailed definitions.

Definition 5 (Universally/Always AERM, Shalev-Shwartz et al., 2010) A (possi-
bly randomized) learning rule A is Universally AERM if for any distribution D defined on

domain Z R X
Ezpn [EhNA(Z)R(h, Z) - R*(2)| -0, as n— oo

where R*(Z) is the minimum empirical risk for data set Z. We say A is Always AERM, if
i addition,

sup EhNA(Z)]:?(h, Z)—R*(Z) =0, as n— 0.

zezn
Definition 6 (Strongly Uniform RO-Stability, Shalev-Shwartz et al., 2010) An
algorithm A is strongly uniform RO-stable if

sup  sup  |Epoaq2)l(h, 2) — Epoaznyl(h, 2)| = 0 as n — oo.
2€Z z,Z' € 2",
d(z,z"y=1

where d(Z,Z") is defined in (3), in other word, Z and Z' can differ by at most one data
point.

Since we will not deal with other variants of algorithmic stability in this paper (e.g.,
hypothesis stability (Kearns and Ron, 1999), uniform stability (Bousquet and Elisseeff, 2002)
and leave-one-out (LOO) stability in Mukherjee et al. (2006)), we simply call Definition 6
stability or uniform stability. Likewise, we will refer to e-differential privacy as just “privacy’
although there are several other notions of privacy in the literature.

i

3. Characterization of private learnability

We are now ready to state our main result. The only assumption we make is the uniform
boundedness of the loss function. This is also assumed in Shalev-Shwartz et al. (2010) for
the learnability problem without privacy constraints. Without loss of generality, we can
assume 0 < 4(h, z) < 1.

Theorem 7 Given a learning problem (Z,H,{), the following statements are equivalent.
1. The problem is privately learnable.
2. There exists a differentially private universally AERM algorithm.
3. There exists a differentially private always AERM algorithm.

The proof is simple yet revealing, we will present the arguments for 2 = 1 (sufficiency of
AERM) in Section 3.1 and 1 = 3 (necessity of AERM) in Section 3.2. 3 = 2 follows trivially
from the definition of “always” and “universal” AERM.

The theorem says that we can stick to ERM-like algorithms for private learning, despite
that ERM may fail for some problems in the (non-private) general learning setting (Shalev-
Shwartz et al., 2010). Thus a standard procedure for finding universally consistent and
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Stability
¥

Privacy

Learngbility

Private Learnability

Figure 2: A summary of the relationships of various notions revealed by our analysis.

differentially private algorithms would be to approximately minimize the empirical risk using
some differentially private procedures (Chaudhuri et al., 2011; Kifer et al., 2012; Bassily
et al., 2014). If the utility analysis reveals that the method is AERM, we do not need
to worry about generalization as it is guaranteed by privacy. This consistency analysis is
considerably simpler than non-private learning problems where one typically needs to control
generalization error either via uniform convergence (VC-dimension, Rademacher complexity,
metric entropy, etc) or to adopt the stability argument (Shalev-Shwartz et al., 2010).

This result does not imply that privacy is helping the algorithm to learn in any sense, as the
simplicity is achieved at the cost of having a smaller class of learnable problems. A concrete
example of a problem being learnable but not privately learnable is given in (Chaudhuri and
Hsu, 2011) and we will revisit it in Section 3.3. For some problems where ERM fails, it may
not be possible to make it AERM while preserving privacy. In particular, we were not able
to privatize the problem in Section 4.1 of Shalev-Shwartz et al. (2010).

To avoid any potential misunderstanding, we stress that Theorem 7 is a characterization
of learnability, not learning algorithms. It does not prevent the existence of a universally
consistent learning algorithm that is private but not AERM. Also, the characterization given
in Theorem 7 is about consistency, and it does not claim anything on sample complexity.
An algorithm that is AERM may be suboptimal in terms of convergence rate.

3.1 Sufficiency: Privacy implies stability

A key ingredient in the proof of sufficiency is a well-known heuristic observation that
differential privacy by definition implies uniform stability, which is useful in its own right.

Lemma 8 (Privacy = Stability) Assume 0 < {(h,z) < 1, any e-differentially private
algorithm satisfies (e — 1)-stability. Moreover if € < 1 it satisfies 2e-stability.

10
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The proof of this lemma comes directly from the definition of differential privacy so it is
algorithm independent. The converse, however, is not true in general (e.g., a non-trivial
deterministic algorithm can be stable, but not differentially private.)

Corollary 9 (Privacy + Universal AERM = Counsistency) If a learning algorithm
A is e(n)-differentially private and A is universally AERM with rate £(n), then A is
universally consistent with rate £(n) + e<™ — 1 = O(&(n) + €(n)).

The proof of Corollary 9, provided in the Appendix, combines Lemma 8 and the fact that
consistency is implied by stability and AERM (Theorem 28). Our Theorem 28 is based on
minor modifications of Theorem 8 in Shalev-Shwartz et al. (2010). In fact, Corollary 9 can
be stated in a stronger per distribution form, since universality is not used in the proof. We
will revisit this point when we discuss a weaker notion of private learnability below.

Lemma 4 and Corollary 9 together establishes 2 = 1 in Theorem 7.

If for a problem privacy and always AERM cannot coexist, then the problem is not privately
learnable. This is what we will show next.

3.2 Necessity: Consistency implies Always AERM

To prove that the existence of an always AERM learning algorithm is necessary for any
private learnable problems, it suffices to construct such a learning algorithm from

or each learnable problem. any universally consistent learning algorithm.

Lemma 10 (Consistency + Privacy = Private Always AERM) If A is a univer-
sally consistent learning algorithm satisfying e-DP with any € > 0 and consistent with rate

&(n), then there is another universally consistent learning algorithm A’ that is always AERM

with rate £(\/n) and satisfies %(66 ~ ¢ )-DP.

Lemma 10 is proved in Appendix A.2. The proof idea is to run A on a size O(y/n) random
subsample of Z, which will be universally consistent with a slower rate, differentially private
with €(n) — 0 (Lemma 27), and at the same time always AERM. The last part uses an
argument in Lemma 24 of Shalev-Shwartz et al. (2010) which appeals to the universality of
A’s consistency on a specific discrete distribution supported on the given data set Z.

As pointed out by an anonymous reviewer, there is a simpler proof by invoking Theorem 10
of Shalev-Shwartz et al. (2010) that says any consistent and generalizing algorithm must
be AERM and a result (e.g., Bassily et al., 2014, Appendix F) that says “privacy =
generalization”. This is a valid observation. But their Theorem 10 is proven using a detour
through “generalization”, which leads to a slower rate than what we are able to obtain in
Lemma 10 using a more direct argument.

3.3 Private Learnability vs. Non-private Learnability

Now we have a characterization of all privately learnable problems, a natural question to
ask is that whether any learnable problem is also privately learnable. The answer is “yes”

11



WANG, LEI AND FIENBERG

for learning in Statistical Query (SQ)-model and PAC Learning model (binary classification)
with finite hypothesis space, and is “no” for continuous hypothesis space (Chaudhuri and
Hsu, 2011).

By definition, all privately learnable problems are learnable. But now that we know that
privacy implies generalization, it is tempting to hope that privacy can help at least some
problem to learn better than any non-private algorithm. In terms of learnability, the question
becomes: Could there be a (learnable) problem that is ezclusively learnable through private
algorithms? We now show that such a problem does not exist.

Proposition 11 If a learning problem is learnable by an e-DP algorithm A, then it is also
learnable by a non-private algorithm.

The proof is given in Appendix A.3. The idea is that A(Z) defines a distribution over H.
Pick an z € Z. If z ¢ Z, algorithm A" = A. Otherwise, A'(Z) samples from a slightly
different distribution than A(Z) that does not affect the expectation much.

On the other hand, not all learnable problems are privately learnable. This can already
be seen from Chaudhuri and Hsu (2011), where the gap between learning and private
learning is established. We revisit Chaudhuri and Hsu’s example in our notation under the
general learning setting and produce an alternative proof by showing that differential privacy
contradicts always AERM, then invoking Theorem 7 to show the problem is not privately
learnable.

Proposition 12 (Chaudhuri and Hsu, 2011, Theorem 5) There exists a problem that
is learnable by a non-private algorithm, but not privately learnable. In particular, any private
algorithm cannot be always AERM in this problem.

We describe the counterexample and re-establish the impossibility of private learning for
this problem using the contrapositive of Theorem 7, which suggests that if privacy and
always AERM algorithm cannot coexist for some problem, then the problem is not privately
learnable.

Consider the binary classification problem with X = [0,1], Y = {0, 1} and 0-1 loss function.
Let H be the collection of threshold functions that output h(x) =1 if x > h and h(x) =0
otherwise. This class has VC-dimension 1, and hence the problem is learnable.

Next we will construct K = [exp(e,n)| data sets such that if K — 1 of them obey AERM,
the remaining one cannot be. Let n = 1/exp(en), K := [1/n]. Let hi, ha,...,hg be a
disjoint thresholds such that they are at least n apart and [h; — /3, h; + n/3] are disjoint
intervals.

If we take Z; C [h; —n/3, h; + n/3] with half of the points in [h; — 1/3, h;) and the other
half in (h;, h; +n/3] and we label each data point in it with 1(z > h;), then empirical risk

R(hi, Z;) =0Vi=1,..., K. So for any AERM learning rule, E;,4(z,)R(h, Z;) — 0 for all 4.
For some sufficiently large n, EhNA(Zi)R(h, Z;) < 0.1.

12
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Now consider 7,

K
P(A(Zy) & [l —n/3, b1 +1/3]) = > P(A(Z1) € [hi — n/3, hi +n/3]),
=2

since these intervals are disjoint. Then by the definition of e-DP,
P(A(Z1) € [hi —n/3,hi +n/3]) 2 exp(—en)P(A(Z;) € [hi —n/3,hi +n/3]).  (4)

It follows that P(A(Z;) € [hi — n/3,hi +n/3]) > 0.9 otherwise EhNA(Zi)R(h> Z;) > 0.1,
therefore
P(A(Z1) ¢ [h —n/3, b1 +n/3]) > K exp(—en)0.9 > 0.9, (5)

A~

and Ky 4.z, R(h, Z;) > 0.9 x 1 = 0.9, which violates the “always AERM” condition that

requires [, 4 ZI)R(h, Z1) < 0.1. Therefore, the problem is not privately learnable.

As is pointed out by an anonymous reviewer, the same conclusion of this impossibility result of
privately learning thresholds on [0, 1] can be drawn numerically through the characterization
of the sample complexity (Beimel et al., 2013a), via the bound that depends logarithmically
on the log(|H|) and on [0, 1] this number is infinite. The above analysis provides different
insights about the problem. We will be using it again for understanding the separation of
learnability and learnability under (e, §)-Differential Privacy later in Section 6.

3.4 Private ©D-learnability

The above example implies that even very simple learning problems may not be privately
learnable. To fix this caveat, note that most data sets of practical interest have nice
distributions. Therefore, it makes sense to consider a smaller class of distributions, e.g.,
smooth distributions that have bounded kth order derivative, or those having bounded total
variation. These are common assumptions in non-parametric statistics, such as kernel density
estimation, smoothing spline regression and mode clustering. Similarly, in high dimensional
statistics, there are often assumptions on the structures of the underlying distribution, such
as sparsity, smoothness, and low-rank conditions.

Definition 13 ((Private) ©-learnability) We say a learning problem (Z,H,() is ©-
learnable if there exists a learning algorithm A that is consistent for every unknown distribu-
tion D € ®. If in addition, the problem is ©-learnable under e-differential privacy for some
0 <€ < o0, then we say the problem is privately ®-learnable.

Almost all of our arguments hold in a per distribution fashion, therefore they also hold for
any such subclass ©. The only exception is the necessity of “always AERM” (Lemma 10),
where we used the universal consistency on an arbitrary discrete uniform distribution in
the proof. The characterization still holds if the class © contains all finite discrete uniform
distributions. For general distribution classes, we characterize private ®-learnability using a
weaker “universally AERM” (instead of “always AERM”) under the assumption that the
problem itself is learnable in a distribution-free setting without privacy constraints.

13
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Lemma 14 (private D-learnability = private ©-universal AERM) If an e-DP al-
gorithm A is ©-universally consistent with rate £&(n) and the problem itself is learnable in a

distribution-free sense with rate &'(n), then there exists a ®-universally consistent learning
algorithm A’ that is ®-universally AERM with rate 12¢'(n*/*) + \% +&(y/n) and satisfies

%(e6 —e )-DP.

The proof, given in Appendix A.4, shows that the algorithm A’ that applies A to a random
subsample of size |y/n] is AERM for any distribution in the class D.

Theorem 15 (Characterization of private ©-learnability) A problem is privately ©-
learnable if there exists an algorithm that is ©-universally AERM and differentially private
with privacy loss e(n) — 0. If in addition, the problem is (distribution-free and non-privately)
learnable, then the converse is also true.

Proof The “if” part is exactly the same as the argument in Section 3.1, since both Lemma 8
and Lemma 9 holds for each distribution independently. Under the additional assumption
that the problem itself is learnable (distribution-free and non-privately), the “only if” part
is given by Lemma 14. |

This result may appear to be unsatisfactory due to the additional assumption of learnability.
It is clearly a strong assumption because many problems that are ®-learnable for a practically
meaningful ® are not actually learnable. We provide one such example here.

Example 1 Let the data space be [0, 1], the hypothesis space be the class of all finite subset
of [0,1] and the loss function £(h,z) = 1,¢41,. This problem is not learnable, and not even
D-learnable when © is the class of all discrete distributions with finite number of possible
values. But it is ©-learnable when ® is further restricted with an upper bound on the total
number of possible values.

Proof For any discrete distribution with a finite support set, there is an h € H such that
the optimal risk is 0. Assume the problem is learnable with rate £(n), then for some n
&(n) < 0.5. However, we can always construct a uniform distribution over 3n elements
and it is information-theoretically impossible for any estimators based on n samples from
the distribution to achieve a risk better than 2/3. The problem is therefore not learnable.
When we assume an upper bound N on the maximum number of bins of the underlying
distribution, then the ERM which outputs just the support of all observed data will be
universally consistent with rate {(n) = N/n. [ ]

It turns out that we cannot hope to completely remove the assumption from Theorem 15.
The following example illustrates that some form of qualification (implied by the learnability
assumption) is necessary for the converse statement to be true.

Example 2 Consider the learning problem in Example 1. Let ® be the class of all continuous
distributions. There is a learning problem that is s privately ©-learnable but no private
AERM algorithm exists.

14
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Proof Let the learning problem be that in Example 1 and ® be the class of all continuous
distributions defined on [0, 1]. Consider The learning algorithm A(Z) always returns h = ().
The optimal risk for any continuous distribution is 1 because any finite subset is of measure
0, output ) is 0-consistent and 0-generalizing, but not AERM, since the minimum empirical
risk is 0. A is also O-differentially private, therefore the problem is privately ®-learnable for
® being the set of all continuous distributions.

However, it is not privately D-learnable via an AERM, i.e., no private AERM algorithm
exists for this problem. We prove this by contradiction. Assume an e-DP AERM algorithm
exists, the subsampling lemma ensures the existence of an ¢(n)-DP AERM algorithm A’
with e(n) — 0. A’ is therefore generalizing by stability, and it follows that the A’ has
risk £y, /(7 R(h) converging to 0. But there is no h € H such that R(h) < 1, giving the
contradiction. |

Interestingly, this problem is ®-learnable via a non-private AERM algorithm, which always
outputs h = Z. This is O-consistent, 0-AERM but not generalizing. This example suggests
that ®-learnability and learnability are quite different because for learnable problems, if an
algorithm is consistent and AERM, then it must also be generalizing (Shalev-Shwartz et al.,
2010, Theorem 10).

3.5 A generic learning algorithm

The characterization of private learnability suggests a generic (but impractical) procedure
that learns all privately learnable problems (in the same flavor as the generic algorithm in
Shalev-Shwartz et al. (2010) that learns all learnable problems). This is to solve

argmin |:€+ sup (EhNA(z)R(h, Z) — inf R(h, Z))} , (6)
(Ae) : ZEeZn het
A Zn A,
A is eDP

or to privately ©-learn the problem when (6) is not feasible

argmin [e + sup Ezpn (EhNA(Z)R(h, Z) — inf R(h, Z))] . (7)
(Ae) : DeED heH
A:ZM 5 H,
A is e-DP

Theorem 16 Assume the problem is learnable. If the problem is private learnable, (6) will
always output a universally consistent private learning algorithm. If the problem is private
D-learnable, (7) will always output a D-universally consistent private learning algorithm.

Proof If the problem is private learnable, by Theorem 7 there exists an algorithm 4 that
is €(n)-DP and always AERM with rate £(n) and €(n) + £(n) — 0. This A is a witness
in the optimization so we know that any minimizer of (6) will have a objective value that
is no greater than e(n) + £(n) for any n. Corollary 9 concludes its universal consistency.
The second claim follows from the characterization of private ©-learnability in Theorem 15. B
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Algorithm 1 Exponential Mechanism for regularized ERM

Input: Data points Z = {z1,...,2,} € Z", loss function ¢, regularizer g,, privacy
parameter €(n) and a hypothesis space H.
1. Construct utility function q(h,Z) = =137  l(h,z) — gu(h), and its sensitivity

Aq = suppeyacz,z=1la(h, Z) — q(h, Z')| < 5 subhey ez [U(h, 2)] -
2. Sample h € H with probability P(h) exp(g(g()]q(h, 7Z)).
Output: h.

It is of course impossible to minimize the supremum over any data Z, nor is it possible to
efficiently search over the space of all algorithms, let alone DP algorithms. But conceptu-
ally, this formulation may be of interest to theoretical questions related to the search of
private learning algorithms and the fundamental limit of machine learning under privacy
constraints.

4. Private learning for penalized ERM

Now we describe a generic and practical class of private learning algorithms, based on the
idea of minimizing the empirical risk under privacy constraint:

L 1
minimize F(Z,h) = - ;f(h, zi) + gn(h). (8)

The first term is empirical risk and the second term vanishes as n increases so that this
estimator is asymptotically ERM. The same formulation has been studied before in the
context of differentially private machine learning (Chaudhuri et al., 2011; Kifer et al., 2012),
but our focus is more generic and does not require the objective function to be convex,
differentiable, continuous, or even have a finite dimensional Euclidean space embedding,
hence covers a larger class of learning problems.

Our generic algorithm for differentially private learning is summarized in Algorithm 1. It
applies the exponential mechanism (McSherry and Talwar, 2007) to penalized ERM. We

note that this algorithm implicitly requires that fH exp(g(ggq(h, Z))dh < oo, otherwise the
distribution is not well-defined and it does not make sense to talk about differential privacy.
In general, if H is a compact set with a finite volume (with respect to a base measure, such as
the Lebesgue measure or counting measure), then such a distribution always exists. We will
revisit this point and discuss the practicality of this assumption in the Section 5.3.

Using the characterization results developed so far, we are able to give sufficient conditions for
consistency of private learning algorithms without having to establish uniform convergence.
Define the sublevel set as

Sza={h € H|F(Z,h) <t+ inf F(Z,h)}, (9)
S

where F'(h,Z) is the regularized empirical risk function defined in (8). In particular, we
assume the following conditions:
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4 N Regularity ' ™
Exponential conditions | Asymptotic
Mechanism AL&AD ERM
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Uniform RO
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*Dashed box works for any DP algorithms (including Exp. Mech.)

Figure 3: Ilustration of Theorem 17: conditions for private learnability in general learning
setting.
A1. Bounded loss function: 0 < ¢(h,z) <1 for any he H,z € Z.

A2. Sublevel set condition: There exist constant positive integer ng, positive real number
to, and a sequence of regularizer g, satisfying supjcy |gn(h)| = o(n), such that for any

0<t<t0,n>no
1(H) > <1>p
E . pon <K(=), 10
P <M(SZ,t) N t (10)

where K = K(n),p = p(n) satisfy log K 4+ plogn = o(n). Here the measure u may
depend on context, such as Lebesgue measure (# is continuous) or counting measure (H is
discrete).

The first condition of boundedness is common. It is assumed in Vapnik’s characterization
for ERM learnability and Shalev-Shwartz et al.’s general characterization of all learnable
problems. In fact, we can always consider H to be a sublevel set such that the boundedness
condition holds. For the second condition, the intuition is that we require the sublevel set
to be large enough such that the sampling procedure will return a good hypothesis with
large probability. u(S;) is a critical parameter in the utility guarantee for the exponential
mechanism (McSherry and Talwar, 2007). Also, it is worth pointing out that A2 implies
that the exponential distribution is well-defined.

Theorem 17 (General private learning) Let (Z,H,() be any problem in the general
learning setting. Suppose we can choose g, such that A.1 and A.2 are satisfied with
(p, K, gn, no, to) for a distribution D, then Algorithm 1 satisfies €(n)-privacy and is consistent
with rate

9[logK + (P + 2) lOg TL] + 2€(n) + sup |gn(h)| (11)
ne(n) heH

§(n) =

In particular, if e(n) = o(1), suppey |gn(h)] = o(1) and log K + plogn = o(ne(n)) for all D
(in ©) Algorithm 1 privately learns (D-learns) the problem.

We give an illustration of the proof in Figure 3. The detailed proof, based on the stability
argument (Shalev-Shwartz et al., 2010), is deferred to Appendix A.5.
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To see that Theorem 17 actually contains a large number of problems in the general learning
setting. We provide concrete examples that satisfy A1l and A2 below for both privately
learnable and privately ®-learnable problems that can be learned using Algorithm 1.

4.1 Examples of privately learnable problems

We start from a few cases where Algorithm 1 is universally consistent for all distributions.

Example 3 (Finite discrete H) Suppose H can be fully encoded by M -bits, then
(S u(H) = HITH =27,

since there are at least 1 optimal hypothesis for each function and now p is the counting
measure. In other word, we can take K = 2M and p = 0 in the (11). Plug this into

the expression and take g, = 0, e(n) = /(M +logn)/n, we get a rate of consistency
&(n) = O(%). In addition, if we can find a data-independent covering set for a
continuous space, then we can discretize the space and the result same results follow. This
observation will be used in the construction of many private learning algorithms below.

Example 4 (Lipschitz functions/Hélder class) Let H be a compact, Bp-reqular subset
of R satisfying (B NH) > Bou(B) for any £, ball B C RY that is small enough. Assume
that F(Z,-) is L-Lipschitz on H: for any h,h' € H,

Then for sufficiently small t, we have Lebesgue measure
(St > By (t/1)*

and Condition A.2 holds with K = M(H)ﬁp_lLd, p = d. Furthermore, if we take e(n) =

\/d(log L+logn)+log(u(7i)/6p)’ the algorithm is O <\/d(log L+logn)+log(u(M)/Bp) sup|gn(h)> ;
" " heH

consistent.

This shows that condition A2 holds for a large class of low-dimensional problems of interest
in machine learning and one can learn the problem privately without actually needing
to find a covering set algorithmically. Specifically, the example includes many practically
used methods such as logistic regression, linear SVM, ridge regression, even multi-layer
neural networks, since the loss functions in these methods are jointly bounded in (Z, h) and
Lipschitz in h.

The example also raises an interesting observation that while differentially private classi-
fication is not possible in a distribution-free setting for 0-1 loss function (Chaudhuri and
Hsu, 2011), it is learnable under smoother surrogate loss, e.g., logistic loss or hinge loss. In
other words, private learnability and computational tractability both benefit from the same
relaxation.
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The Lipschitz condition still requires the dimension of the hypothesis space to be o(n). Thus
it does not cover high-dimensional machine learning problems where d > n, nor does it
contain the example of Shalev-Shwartz et al. (2010) that ERM fails.

For high dimensional problems where d grows with n, typically some assumptions or
restrictions need to be made either on the data or on the hypothesis space (so that it
becomes essentially low-dimensional). We give one example here for the problem of sparse
regression.

Example 5 (Best subset selection) Consider H = {h € R? : ||h|jop < s, ||hl2 < 1} and
let ¢(h,z) be an L-Lipschitz loss function. The solution can only be chosen from (‘j) < d°®
different s-dimensional subspaces. We can apply Algorithm 1 twice to first sample a support
set S with utility function being the —minpey, F(Z, h), and then sample a solution in the
chosen s-dimensional subspace. By the composition theorem this two-stage procedure is
differentially private. Moreover, by the arguments in Example 3 and Example 4 respectively,
we have an u(S;) > (é)s for the subset selection and p(Sy) > (£)* for the low-dimensional
regression. Note that p = 0 in both cases and the dependency on the ambient dimension d is
on the logarithm. The first stage ensures that for the chosen support set S, minpey g, F(Z, h)
is close to minpey F(Z, h) by O(%) in expectation and ( the second stage ensures
that the sampled hypothesis from Hg would have objective function close to mingey F(Z, h)
by O(slogL+slogn+log(u(Hs)/ﬁp))_

ne(n)

add up) of O(S(logd+logn+L\)f+log(“(HS)/ﬁp)) if we choose e(n) =1/y/n.

n

This leads to an overall rate of consistency (they simply

4.2 Examples of privately ®-learnable problems.

For problems where private learnability is impossible to achieve, we may still apply Theo-
rem 17 to prove the weaker private ©-learnability for some specific class of distributions.

Example 6 (Finite Representation Dimension in the General Learning Setting)
For binary classification problems with 0-1 loss (PAC learning), this has been well-studied. In
particular, Beimel et al. (2013a) characterized the sample complexity of privately learnable
problems using a combinatorial condition they call a “Probabilistic Representation”, which
basically involves finding a finite, data-independent set of hypotheses to approrimate any
hypothesis in the class. Their claim is that if the “representation dimension” is finite,
then the problem is privately learnable, otherwise it is not. We can extend the notion of
probabilistic representation beyond the finite discrete and countably infinite hypothesis class
considered in Beimel et al. (2013a) to cases when the problem is not privately learnable (e.g,
learning threshold functions on [0,1]). The existence of probabilistic representation for all
distributions in ® would lead to a D-universally private learning algorithm.

Another way to define a class of distribution ® is to assume the existence of a reference
distribution that is close to any distribution of interest as in Chaudhuri and Hsu (2011).

Example 7 (Existence of a public reference distribution) 7o deal with the 0-1 loss
classification problems on a continuous hypothesis domain, Chaudhuri and Hsu (2011) assume
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that there exists a data-independent reference distribution D*, which by multiplying a fixed
constant on its density, uniformly dominates any distributtion of interest. This essentially
produces a subset of distributions ©. The consequence is that one can build an e-net of H
with metric defined on the risk under D* and this will also be a (looser) covering set of any
distribution D € 2, thereby learning the problem for any distribution in the set.

The same idea can be applied to the general learning setting. For any fized reference
distribution D* defined on Z and constant c,

D={D=(2,F,P)|Pp(z € A) < cPp«(z € A) for VA € F}

18 a valid set of distributions and we are able to ©-privately learn this problem whenever
we can construct a sufficiently small cover set with respect to D* and reduce the problem
to Example 5. This class of problems includes high-dimensional and infinity dimensional
problems such as density estimation, nonparametric regression, kernel methods and essentially
any other problems that are strictly learnable (Vapnik, 1998), since they are characterized by
one-sided uniform convergence (and the corresponding entropy condition).

4.3 Discussion on uniform convergence and private learnability

Uniform convergence requires that Ez.pn suppcy |R(h, Z) — R(h)| — 0 for any distribution
D with a distribution independent rate. Most machine learning algorithms rely on uniform
convergence to establish consistency result (e.g., through complexity measure such as VC-
dimension, Rademacher Complexity, covering and bracketing numbers and so on). In fact,
the learnability of ERM algorithm is characterized by the one-sided uniform convergence
(Vapnik, 1998), which is only slightly weaker than requiring uniform convergence on both
sides.

A key point in Shalev-Shwartz et al. (2010) is that the learnability (by any algorithm)
in general learning setting is no longer characterized by variants of uniform convergence.
However, the class of privately learnable problems is much smaller. Clearly, uniform
convergence is not sufficient for a problem to be privately learnable (see Section 3.3), but is
it necessary?

In binary classification with discrete domain (agnostic PAC Learning), since VC-dimension
being finite characterizes the class of privately PAC learnable problems, the necessity of
uniform convergence is clear. This could also be more explicitly seen from Beimel et al.
(2013a) where the probabilistic representation dimension is a form of uniform convergence
on its own.

In the general learning setting, the problem is still open. We were not able to prove that
private learnability implies uniform convergence, but we could not construct a counter
example either. All our examples in this section do implicitly or explicitly uses uniform
convergence, which seems to hint at a positive answer.
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5. Practical concerns

5.1 High confidence private learning via boosting

We have stated all results so far in expectation. We can easily convert these to the
high-confidence learning paradigm by applying Markov’s inequality, since convergence in
expectation to the minimum risk implies convergence in probability to the minimum risk.
While the 1/§ dependence on the failure probability § is not ideal, we can apply a similar
meta-algorithm “boosting” (Schapire, 1990) as in Shalev-Shwartz et al. (2010, Section 7)
to get a log(1/0) rate. The approach is similar to cross-validation. Given a pre-chosen
positive integer a, the original boosting algorithm randomly partitions the data into (a + 1)
subsamples of size n/(a + 1), and applies Algorithm 1 on the first a partitions, obtaining a
candidate hypotheses. The method then returns the one hypothesis with smallest validation
error, calculated using the remaining subsample. To ensure differential privacy, our method
instead uses the exponential mechanism to sample the best candidate hypothesis, where the
logarithm of sampling probability is proportional to the negative validation error.

Theorem 18 (High-confidence private learning) If an algorithm A privately learns a

problem with rate £(n) and privacy parameter €(n), then the boosting algorithm A’ with
n ) log(3/6)+1
log(3/n)+1 ) ° Vvn

a= log% 1§ max {e ( }—diﬁer@ntially private, its output h obeys

Loy los3/9)

R(h) — R* < e <10g(3/ri;)+1) n

for an absolute constant C' with probability at least 1 — §.

5.2 Efficient sampling algorithm for convex problems

Our proposed exponential sampling based algorithm is to establish a more explicit geometric
condition upon which AERM holds, hence the algorithm may not be computationally
tractable. Ignoring the difficulty of constructing the e-covering set of an exponential number
of elements, sampling from the set alone is not a polynomial time algorithm. But we can
solve a subset of the continuous version of our Algorithm 1 described in Theorem 17 in
polynomial time to arbitrary accuracy (see also Bassily et al. (2014, Theorem 3.4)).

Proposition 19 If n=t 3" U(h, 2;) + gn(h) is convex in h and H is a convex set, then the
sampling procedure in Algorithm 1 can be solved in polynomial time.

Proof When n= '3  l(h,z) + gn(h) is convex, the utility function g(h,Z) is concave
in h. The density to be sampled from in Algorithm 1 is proportional to exp(%) and
is log-concave. The Markov chain sampling algorithm in Applegate and Kannan (1991) is
guaranteed to produce a sample from a distribution that is arbitrarily close to the target

distribution (in the total variation sense) in polynomial time. |

21



WANG, LEI AND FIENBERG

5.3 Exponential mechanism in infinite domain

As we mention earlier, the results in Section 4 based on the exponential mechanism im-
plicitly assumes certain regularity conditions that ensures the existence of a probability
distribution.

When #H is finite, the existence is trivial. On the other hand, an infinite set H is tricky in
that there may not exist a proper distribution that satisfies P(h) e7531ZM) for at least
some ¢(Z, h). For instance, if # = R and ¢(Z,h) = 1 then [, e 12N gn — o0, Such
distributions that are only defined up to scale with no finite normalization constants are
called improper distributions. In case of finite dimensional non-compact set, this translates
into an additional assumption on the loss function and the regularization term.

Things get even trickier when H is an infinite dimensional space, such as a subset of a
Hilbert space. While probability measures can still be defined, no density function can be
defined on such spaces. Therefore, we cannot use exponential mechanism to define a valid
probability distribution.

The practical implication is that exponential mechanism is really only applicable to cases
when the hypothesis space H allows for definitions of densities in the usual sense, or then H
can be approximated by such a space. For example, a separable Hilbert space can be studied
by finite-dimensional projections. Also, we can approximate RKHS induced by translation
invariant kernels via random Fourier features (Rahimi and Recht, 2007).

6. Results for learnability under (e, §)-differential privacy
Another way to weaken the definition of private learnability is through (e, §)-approximate
differential privacy.

Definition 20 (Dwork et al., 2006a) An algorithm A obeys (e, d)-differential privacy if
for any Z,Z" such that d(Z,Z") < 1, and for any measurable set S C H

PhNA(Z)(h € S) < 6EPhNA(Z/)(h € S) + 4.

We define a version of the problem to be

Definition 21 (Approximately Private Learnability) We say a learning problem is
A(n)-approzimately privately learnable for some pre-specified family of rate A(n) if for some
€ <00, 0(n) € A(n), there exists a universally consistent algorithm that is (e,(n))-DP.

This is a completely different subject to study and the class of approximately privately
learnable problems could be substantially larger than the pure privately learnable problems.
Moreover, the picture may vary with respect to how small d(n) is required to be. In this
section, we present our preliminary investigation on this problem.

Specifically, we will consider two questions:

1. Does the existence of an (€, d)-DP always AERM algorithm characterize the class of
approximately private learnable problems?
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2. Are all learnable problems approximately privately learnable for different choices of

A(n)?

The minimal requirement in the same flavor of Definition 3 would be to require A(n) =
{6(n)|0(n) — 0}. The learnability problem turns out to be trivial under this definition due
to the following observation.

Lemma 22 For any algorithm A that acts on Z, A’ that runs A on a randomly chosen
subset of Z of size \/n is (0, \F) -DP.

Proof Let Z and Z’ be adjacent datasets that differs only in data point i. For any 7 and
any S € o(H).

PA'(Z)e S)=P1(A(Z) e Slie DP(ie I)+P(A(Zr) € Sli ¢ I)P(i ¢ 1)

Pr(A(Zr) € Sli e DP(i € I) +Pr(A(Z7) € Sli ¢ T)P(i ¢ I)

P(A(Z) € S) + [Pr(A(Z;) € Sli € I) = Pr(A'(Z;) € Sli € )P(i € I)
<PA(Z')eS)+Piel)

— OP(A(Z) € §) + \/15

This verifies the (0,1/4/n)-DP of algorithm A’. [ |

The above lemma suggests that if 6(n) = o(1) is all we need for the approzimately private
learnability, then any consistent learning algorithm can be made approximately DP by simply
subsampling. In other words, any learnable problem is also learnable under approximate
differential privacy.

To get around this triviality, we need to specify a sufficiently fast rate of §(n) going to 0.
While it is common to require that §(n) = o(1/poly(n)) ? for cryptographically strong privacy
protection, requiring §(n) = o(1/n) is already enough to invalidate the above subsampling
argument and makes the problem of learnability a non-trivial one.

Again, the question is whether AERM characterizes approximately private learnability and
whether there is a gap between the class of learnable and approximately privately learnable
problems.

Here we show that the “folklore” Lemma 8 and subsampling lemma (Lemma 27) can be

extended to work with (e, )-DP and then we provide a positive answer to the first question.

Lemma 23 (Stability of (¢,)-DP) If A is (¢,6)-DP, and 0 < {(h,z) < 1, then A is
(e€ — 1+ 0)-Strongly Uniform RO-stable.

2. Here the notation “o(1/poly(n))” means “decays faster than any polynomial of n”. A sequence a(n) =
o(1/poly(n)) if and only if a(n) = o(n™") for any r > 0.

23



WANG, LEI AND FIENBERG

Proof For any Z, Z’ such that d(Z,Z’) < 1 and for any z € Z. Let the event E = {h|p(h) >
/
p'(h)},

i (0.2) = Eneaizy0,2)| = | [ )t~ [ o(n, 20ty

< Sup U(h, z) /Ep(h) —p'(h)dh < /Ep(h) —p'(h)dh =P az)(h € E) =P gz (h € E)
§(e€ — 1)Ph~A(Z’)(h S E) + (5 S 6E -1 + 5

The last line applies the definition of (e, d)-DP. [ |

Lemma 24 (Subsampling Lemma of (¢,d)-DP) If A is (¢,0)-DP, then A’ that acts on
a random subsample of Z of size yn obeys (¢',0")-DP with ¢ = log(1 + ve®(ef — 1)) and
0" = yecd.

Proof For any event E € o(H), let i be the coordinate where Z and Z’ differs
Prar(z)(h € E) = YPyponzp(h ~ Eli € I) + (1 = ¥)Phoaz,(h ~ Eli ¢ I)
=VPpa(zy(h ~ Eli € I) + (1 = 7)Ppa(z,)(h ~ Eli € I)
=YPpna(zy)(h ~ Eli € I) = VPhronizyy(h ~ Eli € I) + 4Py a(z;)(h ~ Eli € I)
+ (1 =7)Phoa(zy(h ~ Eli ¢ I)
=Ppa(zy(h € E) +V[Ppaz)(h ~ Eli € I) = Ppoacz,)(h ~ Eli € I)]
<Ppa(z)(h € E) + (e = 1)Ppoazy(h ~ Eli € I) + 70, (12)
where in last line, we apply (€, )-DP of A.
It remains to show that Pp,.a(z;)(h ~ E|i € I) is similar to P, 4(z)(h € E). First,
Phosar(zy(h € E) =Ppoazyy(h € Eli € I) + (1 = 7)Pps(zy)(h € Eli ¢ ). (13)

Denote 7y = {I|i € I}, Iy = {I|i ¢ I}. We known |Z;| = ( 1), and || = (”V_nI) and
|Z1|/|Z2| = yn/(n — yn). For every I € Iy there are pre(:lsely ~vn elements J € Z; such
that d(I,J) = 1. Likewise, for every J € Zj, there are n — yn elements I € Zy such that
d(1,J) = 1. It follows by symmetry that if we apply (¢,6)-DP to 1/yn of each I € I
and change I to their corresponding J € 7y, then each J € Z; will receive (n — yn)/yn

“contribution” in total from the sum over all I € 7.

Phoazy(h € Eli ¢ I) = |I | Z Phoa(z;)(h € E)

€T
Iz ]ZZ Phoa(zy)(h € E)
2 Iels j=1
|Z,1] 1 n—m_
>’I2! |Z1 | 2 n e “(Ppoa(zy)(h € E) = 9)
JeIy

!L! > e (Phoaizy(h € B)=6) = e Phopzy(h € Elie I) —e ™5
JeTy
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Substitute into (13), we get

1 (1—~)e €
— Py oaz(hEE)+ —————4.
TF Ao e E B e

We further relax the upper bound to a simple form e‘Pj, . 4/( Z/)(h € E) + 6 and substitute
into (12), we have

]P)hN.A(Z})(h S E|Z S I) <

]P)hNA’(Z)(h c E) < (1 + ’}/66(66 — 1))Ph~A’(Z’)(h S E) + ’)/5 + ’)/(66 — 1)(5,

which concludes the proof. |

Using the above two lemmas, we are able to establish the same result which says that AERM
characterizes the approximate private learnability for certain classes of A(n).

Theorem 25 A problem is A(n)-approzimately privately learnable implies that there exists
an always AERM algorithm that is (e(n),n='/2e6(\/n))-DP for some e(n) — 0 and 6(/n) €
A(n). The converse is also true if n="/2e5(\/n) € A(n).

Proof If we have an always AERM algorithm with &, (n) that is (e(n),d(n))-DP for
d(n) € A(n). Then by Lemma 23, this algorithm is strongly uniform RO-stable with
rate e — 1 + §(n). By Theorem 28, the algorithm is universally consistent with rate
Eerm(n) + ecn) — 1 4 d(n). This establishes the “if” part.

To see the “only if” part, by definition if a problem is A(n)-approximately privately learnable
with € and 6(n) € A(n). Then by Lemma 24 with v = 1/y/n, we get an algorithm that
obeys the privacy condition. It remains to prove always AERM, which requires exactly the
same arguments in the proof of Lemma 10. Details are omitted. |

Note that the results above suggest that in the two canonical settings A(n) = o(1/n) or
A(n) = o(1/poly(n)), existence of a private AERM algorithm that satisfies the stronger
constraint e(n) = o(1) characterizes the learnability.

The next question that whether any learnable problems are also approximately privately
learnable would depend on how fast d(n) is required to decay. We know that when we only
have A(n) = o(1), all learnable problems are approximately privately learnable, and when
we have A(n) = {0}, only a strict subset of these problems is privately learnable. The
following result establishes that when 6(n) needs to go to 0 with a sufficiently fast rate,
there is separation between learnability and approximately private learnability.

Proposition 26 Let A(n) = {3(n)|d(n) < §(n)} for some sequence 6(n) — 0. The following
statements are true.

e All learnable problems are A(n)-approzimately privately learnable, if 6(n) = w(1/n).

e There exists a problem that is learnable but not A(n)-approximately privately learnable,
if S(n) < exp(—e(n?)n?)

n

Proof The first claim follows from the same argument in Lemma 22. If a problem is
learnable, there exists a universally consistent learning algorithm A. The algorithm that
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Slower 5 ( n ) Faster

< { | : n?lo ;n
w(1l/n) ~ O(e &)
Learnability Learnability
= £
Approx. Private Learnability Approx. Private Learnability

Figure 4: Mlustration of Proposition 26 and the open problem.

applies A on a & (n)-fraction random subsample of the dataset is (0, 4(n))-DP and universally
consistent with rate £(nd(n)). Since 6(n) = w(1/n), nd(n) — oc.

We now show that when we require a fast decaying d(n), then suddenly the example in
Section 3.3 due to Chaudhuri and Hsu (2011) becomes not approximately privately learnable
even for (¢,0)-DP. Let Z, Z' be two completely different data sets, by repeatedly applying
the definition of (e, d)-DP, for any set S C H

P(A(Z) € 8) < e"P(A(Z) € 8) + ) _elT0 < "P(A(Z)) € §) + mel"™ 16,
i=1
When we shift the inequality around, we get

P(A(Z') € S) < e P(A(Z') € S) — e~*nd.

Consider the same example in Section 3.3 where we hope to learn a threshold on [0, 1].
Assuming there exists an algorithm A that is universally AERM and (e(n),d(n))-DP for
€(n) < oo and (n) < 0.4ne™".

Everything up to (4) remains exactly the same. Now, apply the above implication of
(e,0)-DP, we can replace (4) for each i = 2, ..., K, by

P(A(Z1) € [hi = n/3, hi +n/3]) = exp(—en)P(A(Z;) € [hi —1/3, hi +1/3]) — nd(n).
Then (5) becomes
P(A(Z1) ¢ [h1 —n/3,h1 +1/3]) > K exp(—en)0.9 — Ke™“nd(n) > 0.9 > 0.5,

where the last inequality follows by K > exp(en) and §(n) < 0.4ne™". This yields the same
contradiction to always AERM of A on Z3, which requires P(A(Z1) ¢ [h1 —n/3,h1+1/3]) <
0.1. Therefore, such AERM does not exist. By the contrapositive of Theorem 25, the

problem is not approximately privately learnable for 5 (n) < M. |
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The bound can be further improved to exp(—e(n)n)/n if we directly work with universal
consistency on various distributions rather than through always AERM on specific data
points. Even that is likely to be suboptimal as there might be more challenging problems
and less favorable packings to consider.

The point of this exposition, however, is to illustrate that (e, d)-DP alone does not close the
gap between learnability and private learnability. Additional relaxation on the specified rate
of decay on ¢ does. We now know that the phase transition occurs when §(n) is somewhere
between Q(exp(—n?logn)) and O(1/n); but there is still a substantial gap between the
upper and lower bounds. 3.

7. Conclusion and future work

In this paper, we revisited the question “What can we learned privately?” and considered
a broader class of statistical machine learning problems than those studied previously.
Specifically, we characterized the learnability under privacy constraint by showing any
privately learnable problems can be learned by a private algorithm that asymptotically
minimizes the empirical risk for any data, and the problem is not privately learnable
otherwise. This allows us to construct a conceptual procedure that privately learns any
privately learnable problem. We also propose a relaxed notion of private learnability called
private ®-learnability, which requires the existence of an algorithm that is consistent for any
the distribution within a class of distributions ®. We characterized private ®-learnability too
with a weaker notion of AERM. For problems that can be formulated as penalized empirical
risk minimization, we provide a sampling algorithm with a set of meaningful sufficient
conditions on the geometry of the hypothesis space and demonstrate that it covers a large
class of problems. In addition, we further extended the characterization to learnability under
(€, 9)-differential privacy and provided a preliminary analysis which establishes the existence
of a phase transition from all learnable problems being approximately private learnable to
some learnable problems being not approximately private learnable at some non-trivial rate
of decay on §(n).

Future work includes understanding the conditions under which privacy and AERM are
contradictory (recall that we only have one example on learning thresholding functions due
to Chaudhuri and Hsu 2011), characterizing the rate of convergence, searching for practical
algorithms that generically learns all privately learnable problems, and better understanding
the gap between learnability and approximate private learnability.

3. After the paper was accepted for publication, we became aware that the phase transition occurs sharply
at O(1/n). The result follows from a sharp lower bound of sample complexity in learning threshold
functions in Bun (2016, Theorem 4.5.2), which improves over a previously published result that requires
O(n~'=%) for any o > 0 in Bun et al. (2015). The consequence is that the general learning setting is
hard for (¢, 6)-DP too unless 6 becomes meaninglessly large for privacy purposes.
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Appendix A. Proofs of technical results

In this appendix, we provide detailed proofs to the technical results that in the main
text.

A.1 Privacy in subsampling

Proof [Proof of Lemma 4] Let A be the consistent e-DP algorithm. Consider A’ that apply

A to a random subsample of |\/n] data points. By Lemma 27 with v = @ < ﬁ, we get
the privacy claim. For the consistency claim, note that the given sample is an iid sample of
size y/n from the original distribution. [ |

Lemma 27 (Subsampling theorem) If Algorithm A is e-DP for Z € Z™ for any n =
1,2,3, ..., then the algorithm A’ that output the result of A to a random subsample of size
yn data points preserves 2y(e¢ — e~ €)-DP.

Proof [Proof of Lemma 27 (Subsampling theorem)] This is a corollary of Lemma 4.4 in
Beimel et al. (2014). To be self-contained, we reproduce the proof here in our notation.

Recall that A’ is the algorithm that first randomly subsample yn data points then apply
A. Let Z and Z’ be any neighboring databases and assume they differ on the ith data
point. Let S C [n] be the indices of the random subset of the entries that are selected, and
R C [n]\{i} be a index size of size yn — 1. We apply the law of total expectation twice and
argue that for any adjacent Z, Z’, any event £ C H,

Prowz)(h € E)  Pronizs)(h € Bli € S) + (1 = 1)Phoaizs)(h € Eli ¢ S)
Phow(zy(h € E)  APhoazy)(h € Eli € ) + (1= 7)Ppazs)(h € Eli ¢ S)

~ 2reppy P(R) [(VPh~a(zs) (h € EIS = RU{i}) + (1 = )Proszs) (h € EIS =R U{j},j #9)]
S repn i PR) [1Pheazy) (b € BIS = RU{i}) + (1= 1)Pheazy) (h € BIS = RU {j},j #1)|

By the given condition that A is e-DP, we can replace R U {i} with R U {j} for an arbitrary
4 with bounded changes in the probability and the above likelihood ratio can be upper
bounded by

(Ve +1=7)Eremp{i},j#iPra(zg)(REEIS=RU{J})  ~yecq1—y  14y(ef—1)
(e H1-NErem\ {i},j#2iPrra(zg) (REEIS=RULY) — ye~c+l—y — 1+ry(ec=1)"
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By definition, the privacy loss of the algorithm A’ is therefore

¢ <log(1+~[ef —1]) —log (1+~[e “—1]).

Note that € > 0 implies that —1 <e ™ —1 < 0 and 0 < ¢ — 1 < co. The result follows by
applying the property of the natural logarithm:

2
log(1+$)§glii_m for 0 <z < o0
x24+zx x
1 1 > — > for —1<x2<0
og( +x)_21+m_1+x o ==
to upper bound the expression. [ |

A.2 Characterization of private learnability

Privacy implies stability Lemma 8 says that an e-differentially private algorithm is
(e — 1)-stable (and also 2e-stable if € < 1).

Proof [Proof of Lemma 8] Construct Z’ by replacing an arbitrary data point in Z with 2" and
let the probability density/mass defined by A(Z) and A(Z’) be p(h) and p’(h) respectively,
then we can bound the stability as follows

|Epeaz)l(h, z) — Epoa(zryl(h, 2)|

/hﬁ(h, 2)p(h)dh — /hg(hvz)p'(h)dh‘ _

/h 0, 2)(p(h) — () dh

<l [ g - [ By
hyz p(h)>p (h) p(h)=p/(h) p'(h)

<(ef - 1)/ P (h)dh < (€ — 1),
p(h)>p’(h)

For e < 1 we have exp(e) — 1 < 2e.

Stability + AERM =- consistency

Theorem 28 (Randomized version of Shalev-Shwartz et al. 2010, Theorem 8)
If any algorithm is &1(n)-stable and & (n)-AERM then it is consistent with rate £(n) =

1(n) + & (n).
Proof

We will show the following the two steps as in Shalev-Shwartz et al. (2010)
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1. Uniform RO stability = On average stability < On average generalization
2. AERM + On average generalization = consistency
The definition of these quantities is self-explanatory.

To show that “stability implies generalization”, we have

)Ezwn (Eh~A(Z)R(h> — Epeaz) R, Z)) ‘

1 n
:’EZN'Dn (EZNDEhNA(Z)E(hH Z) — ﬁEhNA(Z) Z f(h, Zz)> ‘
=1

ST £ SUWETURIEES SERI) |

< sup ‘EhNA(Z)g(ha ) = Bpoaznyllh, 2 )‘ < &i(n),
2,20 eZn d(2,2())=1,2'e Z

where Z() is obtained by replacing the ith entry of Z with 2. Next, we show that
“generalization and AERM implies consistency”. Let h* € arginfycy R(h). By definition, we
have Ez.pn R(h*, Z) = R*. Tt follows that

Ezpn [EncazyR(h) — R*] = Ezopn [Epe ) R(h) — R(R*, Z))
= Ezpn [Epeaz)R(h) — Bheaz)R(h, Z)] + Ezpn [EneazyR(h, Z) —
< Ezepn [Breacz) R(h) — Eneaz)R(h, Z)] + Ezopn [Epeacn) R(h, Z) —
<&i(n) +&((n).

(h*, Z)]

R
R (2)]

Privacy + AERM = consistency Proof [Proof of Corrollary 9] It follows by combining
Lemma 8 and Theorem 28. |

Necessity Proof [Proof of Lemma 10| We construct an algorithm A’ by subsampling the
data points using a random subset of \/n and then running A. The privacy claim follows
from Lemma 27 directly.

To prove the “always AERM” claim, we adapt the proof of Lemma 24 in Shalev-Shwartz
et al. (2010). For any fixed data set Z € Z",

R(A'(2),2) = R(Z) = Egic 221~ | vy | RIA(Z'), Z) = B (2)]
= Ey Unif(z) v [R(A(Z'), Z) — R*(Z)| no duplicates

Erumit(z)e) | RAZ'), 2) = B (2)]

P(no duplicates)

)
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where Unif(Z) is the uniform distribution defined on the n points in Z. We need to
condition on the event that there are no duplicates for the second equality to hold because
7' is a subsample taken without replacements. The last inequality is by the law of total
expectation and the non-negativity of the conditional expectation. But P(no duplicates) =

H}@J_l(l —i/n) >1-— ZZ.L;/DEJ_I i/n > 1/2. By universal consistency, A is consistent on

the discrete uniform distribution defined on Z, so

R(A'(2),2) = R*(Z) < 2By _uuigzyin) |R(A(Z'), Z) — R¥(Z)| < 26(/n).

It is obvious that A’ is consistent with rate y/n as it applies A on a random sample of size
Vvn. By Lemma 4, A’ is 2n~1/2(e¢ — =€) differentially private. By Corollary 9, the new
algorithm A’ is universally consistent. [ |

A.3 Proofs for Section 3.3

Proof [Proof of Proposition 11] If A(Z) is a continuous distribution, we can pick h € H at
any point where A(Z) has finite density and set A'(Z)|z € Z to be h with probability 1/n
and the same as A(Z) with probability 1 — 1/n. This breaks privacy because conditioned
on two databases with z or without z, A, the probability ratio of outputting h is co.

If A(Z) is a discrete distribution or a mixed distribution, it must have the same support of
Prea(z)(h)
Preaz
any Z,7' € Z". Specifically, let the discrete set of point mass be H if H\H # 0, then we
can use the same technique as in the continuous case by adding a small probability 1/n on

H\H when z € Z.

If H = #, then H is a discrete set, if |H| < n, then by boundedness and Hoeffding, ERM is
a deterministic algorithm that learns any learnable problem. On the other hand, if |H| > n,
then by pigeon hole principle, there always exists a hypothesis A that has probability smaller
than 1/n in A(Z) for any Z € Z™ and we can construct A’ by outputting a sample of A(Z)
if z is not observed and outputting a sample A(Z)|.A(Z) # h whenever z is observed.

the point mass for all Z. Otherwise it violates DP because we need < exp(ne) for

The consistency of A’ follows easily as its risk is at most 1/n larger than that of A. [ |

A.4 Proofs for characterization of private ©-learnability

Proof [Proof of Lemma 14] Let A’ be the algorithm that applies A to a random subsample
of size |y/n]. If we can show that, for any D € D,

(a) the empirical risk of A’ converges to the the optimal population risk R* in expectation;

(b) the empirical risk of the ERM learning rule also converges to R* in expectation,
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then by triangle inequality, the empirical risk of A’ must also converge to the empirical risk
of ERM, i.e., A" is ®-universal AERM.

We will start with (a). For any distribution D € D, we have

Esnon RA(2), 2) = Bz B2y ym RA(Z), )

=E . plLva) [L\@ R(A(Z"),Z") + E g1 pn-1vm) <WR(A(Z')’Z/')>]

i | L RAE), 2) 4 " R < e ravm.

The last inequality uses the boundedness of the loss function to get R(A(Z'), Z') <1 and
the D-consistency of A to bound the excess risk of Ez R(A(Z")).

To show (b), we need to exploit the assumption that the problem is (non-privately) learnable.
By Shalev-Shwartz et al. (2010, Theorem 7), the problem being learnable implies that
there exists a universally consistent algorithm B (not restricted to ©), that is universally

AERM with rate 3¢’ (ni) + % and stable with rate % Moreover, by Shalev-Shwartz
et al. (2010, Theorem &), B’s stability and AERM implies that B is also generalizing,
with rate 6£ (ni) + %. Here the term “generalizing” means that the empirical risk is

close to the population risk. Therefore, we can establish (b) via the following chain of
approximations

Generalithion of B
EZNDnR*(Z) ? EZNDnR(B(Z), Z) =~ R(B(Z)) ~ R*.
AERM of B Consistency of B

More precisely,

‘EZNDnR*(Z) ~ R

< ‘EZND”R*(Z) —Ez~pnR

<Be'(nd) + jﬁ] + [6€'(n

+ ]EZNDTJ% ~ R(B(Z),2)| + |R(B(2), Z) — R*|

181 ety 200 ety 36
)+ %] + [3§ (n )+ \/ﬁ] 125( \/ﬁ

ST
P

)+ (15)

Combine (14) and (15), we obtain the AERM of A’ with rate 12¢'(n'/4) + % +&(y/n) as
required. The privacy of A’ follows from Lemma 27. |

A.5 Proof for Theorem 17

We first present the proof for Theorem 17. Recall that the roadmap of the proof is summarized
in Figure 3.

For readability, we denote €(n) by simply e.
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Recall that the objective function is F'(h, Z) = 1 3" | £(h, z;) + g,,(h) and the corresponding

utility function q(h, Z) = —F(h,Z). By the boundedness assumption, it is easy to show
that if we replace one data point in any Z with something else, then sensitivity

2
heH,d(Z,2")=1 n
Then by McSherry and Talwar (2007, Theorem 6), Algorithm 1 that outputs h € ‘H with
P(h) o exp(55;4(h, Z)) naturally ensures e-differential privacy.

Denote shorthand F* :=inf ey F(Z, h) and ¢* :== —F*, we can state an analog of the utility
theorem of the exponential mechanism in (McSherry and Talwar, 2007).

Lemma 29 (Utility) Assuming e < logn (otherwise the privacy protection is meaningless
anyway), if assumption A1, A2 hold for distribution D, then
9[(p+2)logn + log K|

EzpnEpa(2)9(Z,h) > —Ezpn F* — e . (17)

Proof By the boundedness of ¢ and g
1
a(Z.h) === U(h,z) = gn(h) > =(1+((n)).

By Lemma 7 in McSherry and Talwar (2007) (translated to our case),

Ppoazyla(Z,h) < —F* —2t] < Me—rj‘?ty (18)

w(St)

Apply (16), take expectation over the data distribution on both sides, and applying assump-
tion A2, we get
ent

EzopnProaz) [0(Z,h) < —F* =2t < Kt e~ = ¢~ G HoslKoplogt . =7 (19)

[(p+2) log n-Hog(K)]

4
Taket = - , by the assumption that € < logn, we get log(nt) > 0. Substitute
t into the expression of 7 we obtain

v = %t —log K + plogt = 2logn + plog(nt) > 2logn,

and therefore
EznpnPhroa(z) [4(Z,h) < —F* = 2t] <n”2.

Denote Py 4(7) [¢(Z,h) < —F* — 2t] =: p, we can then bound the expectation from below
as follows:

EZND”EhNA(Z)Q(Za h) ZEZNDW(_F* — Qt)(l - p) +  min q(Z, h)EZNan

heH,ZeZn
>Egnpn(—F* = 2t) + (=1 = ((n)) n~?
81(p+2)logn + log( K
>~ Bgupnpt - DB U] o002
2)1 log(K
S By — 9[(p+2)logn + log(K)]
en
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Now we can say something about the learning problem. In particular, the AERM follows
directly from the utility result and stability follows from the definition of differential privacy.

Lemma 30 (Universal AERM) Assume A1 and A2, and € < logn (so Lemma 29 holds),

then
Ezupn [EneanB(h, 2) - B(2)] < Mo+ 2)loan +logW/K)] | o)

ne

Proof This is a simple consequence of boundedness and Lemma, 29.
Ez~pn [EhNA(Z)R(h7 Z) - R*(Z)]

1 1
:EZND"EhNA(Z)E Z U(h,2;) = Ezupn Hﬁf - Z U(h, z;)

1
<Ez~pnEpaz) [n Z C(h, zi) + gn(h)| — Epea(z)gn(h)

—Ezpn il%f [rlz Z €(h, z) + gn(h)| + s%p(gn(h))

=Ezpn(=F* = Epon29(Z, b)) + Sup gn(h) = Epa(z)gn(h)

§9[(p +2)logn + log(1/K)] | 2¢(n).

ne

The last step applies Lemma 29 and supy, |g,(h)| < {(n) as in Assumption A2 by using the
fact that supy, gn(h) — Egn(h) < 2supy, |gn(h)| for any distribution of h the expectation is
taken over. ]

The above theorem shows that Algorithm 1 is asymptotic ERM. By Theorem 8, the fact
that this algorithm is e-differential private implies that it is 2e-stable. Now the proof follows
by applying Theorem 28 which says that stability and AERM of an algorithm certify its
consistency. Noting that this holds for any distribution D completes our proof for learnability
in Theorem 17.

A.6 Proofs of other technical results

High confidence private learning. Proof [Proof of Theorem 18] The algorithm .4
privately learns the problem with rate £(n) implies that
EzepnEpaz)R(h) — R* < €(n).
Let h ~ A(Z) and Z ~ D", by Markov’s inequality, with probability at least 1 —1/e,
R(h) — R* < e&(n).
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If we split the data randomly into a + 1 parts of size n/(a + 1) and run A on the first a
partitions, then we get h; ~ A(Z;). Then with probability at lest 1 — (1/e)?, at least one of

them has risk n
in R(h;) — R* <
%ﬁ(ﬂ _%%+1

)- (20)

Since the (a + 1)th partition are iid data, and ¢ is bounded, we can apply Hoeffding’s
inequality and union bound, so that with probability 1 —d; for all j =1,...,a+ 1

R(hy, Zusr) - Rihy) < ([ 222200, 1)

This means that if exponential mechanism picked the one with the best validation risk it
will be almost as good as the one with the best risk. Assume h; is the one that achieves the
best validation risk.

Now it remains to bound the probability that exponential mechanism pick an h € {hy, ..., hs}
that is much worse than hq.

Recall that the utility function is the negative validation risk which depends only on the
last partition I,1.
1
X, h)=——+"— E li(z, h).
q( ) ) n/(a+1) Z(ZU )

1€1q41

This is in fact a random function of the data because we are picking the the validation set
I,+1 randomly from the data. Suppose we arbitrarily replace one data point j from the
dataset, the distribution of the output of function ¢(Z,h) is a mixture of the two cases:
Jj € Iuy1 and j ¢ I,4q. Since in the first case, ¢(Z, h) = q(Z’, h) for all h, sensitivity for this
case is 0. In the second case, by the boundedness assumption, the sensitivity is at most
2(a 4 1)/n. For the exponential mechanism guarantee € differential privacy, it suffices to
take the sensitivity parameter to be 2(a + 1)/n.

By the utility theorem of the exponential mechanism,

P{RMJ>IﬂhQ—%8@$f£}:T§aq <, (22)

Combine (20)(21) and(22) we get

n log(2a/01) = 8(nlogn + loga)

P
a+1)Jr 2n en/(a+1)

R(h) — R* > e€(

] <n T4+ 0;+e %

Now by appropriately choosing n = log(3/d)/logn, a = log(3/d), 61 = /3, we get

n log(21og(3/9)) + log(3/0)
1og(3/5)+-1)*‘\/ on

8(log(3/9) + loglog(3/9)) <5
en/(log(3/0) + 1) -

P|R(h) — R* > e€(
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log(3/8)+1

combine the terms and take ¢ = Tn o we get the bound of the excess risk in the

theorem.

To get the privacy claim, note that we are applying A on disjoint partitions of the data so
the privacy parameter does not aggregate. Take the worst over all partitions, we get the

overall privacy loss max {e (log(37n) +1> , 1og(:'://g)+1} as stated in the theorem. |

The Lipschitz example. Proof [Proof of Example 4| Let h* € argming 4, F(Z, h), the
Lipschitz condition dictates that for any h,

[E(h) = F(R")] < L[k = h*|lp.

Choose a small enough t < #y such that h is in the small neighborhood of ~A*, and we can
construct a function F that within the sublevel set 8¢, such that the above inequality (when
we replace F' with F) is equality, then for any h € S;,, F(h) > F(Z,h). Verify that the
sublevel set of F'(h), denoted by S; always contains ;. In addition, we can compute the
measure M(S}) explicitly, since the function is a cone and

L|h = h*[ly = |[F(h) = F(h*)| = F(h) — F(h*) <t,

therefore )
S = {h | LIh =, <1},

Since H is By-regular, u(B NH) > Byu(B) for any £, ball B C R% the measure of the
sublevel set can be lower bounded by 3, times the volume of the ¢, ball with radius ¢/L and
since §; C &, we have

1(S) = w(St) = B (B(t/L)) = By (/L)

as required. |

Appendix B. Alternative proof of Corollary 9 via Dwork et al. (2015b,
Theorem 7)

In this Appendix, we describe how the results in Dwork et al. (2015b) can be used to obtain
the forward direction of our characterization without going through a stability argument.
We first restate the result here in our notation:

Lemma 31 (Theorem 7 in Dwork et al. 2015b) Let B be an e-DP algorithm such that
gwen a dataset Z, B oulputs a function from Z to [0,1]. For any distribution D over
Z and random wvariable Z ~ D", we let ¢ ~ B(Z). Then for any B > 0, 7 > 0 and
n > 12log(4/B)/72, setting e < 7/2 ensures

Py(2),2~Dn

E.pé(s) — - 3 0(2)

z€Z

ZT] <p.
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This lemma was originally stated to prove the claim that privately generated mechanisms
for answering statistical queries always generalize.

For statistical learning problems, we can simply take the statistical query ¢ to be the loss
function ¢(h, -) parameterized by h € H. If an algorithm A that samples from a distribution
on H upon observing data Z is e-DP, then B : Z — (¢(A(Z),-) is also e-DP. The result
therefore reduces to that the empirical risk and population risk are close with high probability.
Due to the boundedness assumption, we can translate the high probability result to the
expectation form, which verifies the definition of “generalization”.

However, “generalization” alone still does not imply “consistency”, as we also need

1 .
Eg5(2) > p(z) = R = 1nin E..pé(z)
z2€Z

as Z gets large, which does not hold for all DP-output ¢. But when ¢ = £(h,-), it can be
obtained if we assume A is AERM. This is shown via the following inequality

1 1 1 . * «
EZGID"E(ﬁNB(Z)g Z qb(Z) — ]E:ZG’DTL g’lelg E Z ¢(Z) S EZG'D"E Z (;5 (Z) = E(b (Z) = R 5
z€Z z€Z z€Z

where ¢* = ¢(h*,-) and h* is an optimal hypothesis function. This wraps up the proof of
consistency.

The above proof of “consistency” via Lemma 31 and “AERM”, however, leads to a looser
bound comparing to our result (Corollary 9) when the additional assumption on n and

7 (equivalently €) is active, i.e., when % <0 (ﬁ) In this case it only implies a

n)
&(n) + lc\’%‘ bound due to that e-DP implies ¢-DP for any € > e. Our proof of Corollary 9
is considerably simpler and more general in that it does not require any assumption on the

number of data points n.

This can easily lead to worse overall error bound for very simple learning problems with
sufficiently fast rate. For example, in the problem of learning the mean of X € [0, 1], let the
loss function be |z —h[!Y. Consider the e(n)-DP algorithm that outputs ERM—I—Laplace(ﬁ)

where €(n) is chosen to be n=9/10, This algorithm is AERM with rate &(n) = % =
~9/10y

O(n~1). By Corollary 9 we get an overall rate of O(n while through Lemma 31 and

the argument that follows, we only get O(n~1/2).
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