
Journal of Machine Learning Research 17 (2016) 1-35 Submitted 6/15; Revised 2/16; Published 3/16

DSA: Decentralized Double Stochastic
Averaging Gradient Algorithm

Aryan Mokhtari aryanm@seas.upenn.edu

Alejandro Ribeiro aribeiro@seas.upenn.edu

Department of Electrical and Systems Engineering

University of Pennsylvania

Philadelphia, PA 19104, USA

Editor: Mark Schmidt

Abstract
This paper considers optimization problems where nodes of a network have access to summands
of a global objective. Each of these local objectives is further assumed to be an average of a
finite set of functions. The motivation for this setup is to solve large scale machine learning
problems where elements of the training set are distributed to multiple computational elements.
The decentralized double stochastic averaging gradient (DSA) algorithm is proposed as a solution
alternative that relies on: (i) The use of local stochastic averaging gradients. (ii) Determination of
descent steps as differences of consecutive stochastic averaging gradients. Strong convexity of local
functions and Lipschitz continuity of local gradients is shown to guarantee linear convergence of
the sequence generated by DSA in expectation. Local iterates are further shown to approach the
optimal argument for almost all realizations. The expected linear convergence of DSA is in contrast
to the sublinear rate characteristic of existing methods for decentralized stochastic optimization.
Numerical experiments on a logistic regression problem illustrate reductions in convergence time
and number of feature vectors processed until convergence relative to these other alternatives.

Keywords: decentralized optimization, stochastic optimization, stochastic averaging gradient,
linear convergence, large-scale optimization, logistic regression

1. Introduction

We consider machine learning problems with large training sets that are distributed into a network
of computing agents so that each of the nodes maintains a moderate number of samples. This leads
to decentralized consensus optimization problems where summands of the global objective function
are available at different nodes of the network. In this class of problems agents (nodes) try to
optimize the global cost function by operating on their local functions and communicating with
their neighbors only. Specifically, consider a variable x ∈ Rp and a connected network of size N
where each node n has access to a local objective function fn : Rp → R. The local objective function
fn(x) is defined as the average of qn local instantaneous functions fn,i(x) that can be individually
evaluated at node n. Agents cooperate to solve the global optimization problem

x̃∗ := argmin
x

N∑
n=1

fn(x) = argmin
x

N∑
n=1

1

qn

qn∑
i=1

fn,i(x). (1)

The formulation in (1) models a training set with a total of
∑N
n=1 qn training samples that are

distributed among the N agents for parallel processing conducive to the determination of the optimal
classifier x̃∗ (Bekkerman et al. (2011); Tsianos et al. (2012a); Cevher et al. (2014)). Although we
make no formal assumption, in cases of practical importance the total number of training samples∑N
n=1 qn is very large, but the number of elements qn available at a specific node is moderate.

c©2016 Aryan Mokhtari and Alejandro Ribeiro.

Mokhtari and Ribeiro

Analogous formulations are also of interest in decentralized control systems (Bullo et al. (2009); Cao
et al. (2013); Lopes and Sayed (2008)), wireless systems (Ribeiro (2010, 2012)), and sensor networks
(Schizas et al. (2008); Khan et al. (2010); Rabbat and Nowak (2004)). Our interest here is in solving
(1) with a method that has the following three properties

• Decentralized; nodes operate on their local functions and communicate with neighbors only.

• Stochastic; nodes determine a descent direction by evaluating only one out of the qn functions
fn,i at each iteration.

• Linear convergence rate; the expected distance to the optimum is scaled by a subunit factor
at each iteration.

Decentralized optimization is relatively mature and various methods are known with complemen-
tary advantages. These methods include decentralized gradient descent (DGD) (Nedić and Ozdaglar
(2009); Jakovetic et al. (2014); Yuan et al. (2013)), network Newton (Mokhtari et al. (2015a,b)),
decentralized dual averaging (Duchi et al. (2012); Tsianos et al. (2012b)), the exact first order al-
gorithm (EXTRA) (Shi et al. (2015)), as well as the alternating direction method of multipliers
(ADMM) (Boyd et al. (2011); Schizas et al. (2008); Shi et al. (2014); Iutzeler et al. (2013)) and
its linearized variants (Ling and Ribeiro (2014); Ling et al. (2015); Mokhtari et al. (2015c)). The
ADMM, its variants, and EXTRA converge linearly to the optimal argument but DGD, network
Newton, and decentralized dual averaging have sublinear convergence rates. Of particular impor-
tance to this paper, is the fact that DGD has (inexact) linear convergence to a neighborhood of the
optimal argument when it uses constant stepsizes. It can achieve exact convergence by using dimin-
ishing stepsizes, but the convergence rate degrades to sublinear. This lack of linear convergence is
solved by EXTRA through the use of iterations that rely on information of two consecutive steps
(Shi et al. (2015)).

All of the algorithms mentioned above require the computationally costly evaluation of the local
gradients ∇fn(x) = (1/qn)

∑qn
i=1∇fn,i(x). This cost can be avoided by stochastic decentralized

algorithms that reduce computational cost of iterations by substituting all local gradients with their
stochastic approximations. This reduces the computational cost per iteration but results in sublinear
convergence rates of order O(1/t) even if the corresponding deterministic algorithm exhibits linear
convergence. This is a drawback that also exists in centralized stochastic optimization where linear
convergence rates in expectation are established by decreasing the variance of the stochastic gradient
approximation (Roux et al. (2012); Schmidt et al. (2013); Shalev-Shwartz and Zhang (2013); Johnson
and Zhang (2013); Konečnỳ and Richtárik (2013); Defazio et al. (2014)). In this paper we build
on the ideas of the stochastic averaging gradient (SAG) algorithm (Schmidt et al. (2013)) and its
unbiased version SAGA (Defazio et al. (2014)). Both of these algorithms use the idea of stochastic
incremental averaging gradients. At each iteration only one of the stochastic gradients is updated
and the average of all of the most recent stochastic gradients is used for estimating the gradient.

The contribution of this paper is to develop the decentralized double stochastic averaging gradient
(DSA) method, a novel decentralized stochastic algorithm for solving (1). The method exploits a
new interpretation of EXTRA as a saddle point method and uses stochastic averaging gradients in
lieu of gradients. DSA is decentralized because it is implementable in a network setting where nodes
can communicate only with their neighbors. It is double because iterations utilize the information of
two consecutive iterates. It is stochastic because the gradient of only one randomly selected function
is evaluated at each iteration and it is an averaging method because it uses an average of stochastic
gradients to approximate the local gradients. DSA is proven to converge linearly to the optimal
argument x̃∗ in expectation when the local instantaneous functions fn,i are strongly convex, with
Lipschitz continuous gradients. This is in contrast to all other decentralized stochastic methods to
solve (1) that converge at sublinear rates.

We begin the paper with a discussion of DGD, EXTRA and stochastic averaging gradient. With
these definitions in place we define the DSA algorithm by replacing the gradients used in EXTRA

2

DSA: Decentralized Double Stochastic Averaging Gradient Algorithm

by stochastic averaging gradients (Section 2). We follow with a digression on the limit points of
DGD and EXTRA iterations to explain the reason why DGD does not achieve exact convergence
but EXTRA is expected to do so (Section 2.1). A reinterpretation of EXTRA as a saddle point
method that solves for the critical points of the augmented Lagrangian of a constrained optimization
problem equivalent to (1) is then introduced. It follows from this reinterpretation that DSA is a
stochastic saddle point method (Section 2.2). The fact that DSA is a stochastic saddle point method
is the critical enabler of the subsequent convergence analysis (Section 3). In particular, it is possible
to guarantee that strong convexity and gradient Lipschitz continuity of the local instantaneous
functions fn,i imply that a Lyapunov function associated with the sequence of iterates generated
by DSA converges linearly to its optimal value in expectation (Theorem 7). Linear convergence in
expectation of the local iterates to the optimal argument x̃∗ of (1) follows as a trivial consequence
(Corollary 8). We complement this result by showing convergence of all the local variables to the
optimal argument x̃∗ with probability 1 (Theorem 9).

The advantages of DSA relative to a group of stochastic and deterministic alternatives in solving
a logistic regression problem are then studied in numerical experiments (Section 4). These results
demonstrate that DSA is the only decentralized stochastic algorithm that reaches the optimal solu-
tion with a linear convergence rate. We further show that DSA outperforms deterministic algorithms
when the metric is the number of times that elements of the training set are evaluated. The behavior
of DSA for different network topologies is also evaluated. We close the paper with pertinent remarks
(Section 5).

Notation Lowercase boldface v denotes a vector and uppercase boldface A a matrix. For column
vectors x1, . . . ,xN we use the notation x = [x1; . . . ; xN] to represent the stack column vector x. We
use ‖v‖ to denote the Euclidean norm of vector v and ‖A‖ to denote the Euclidean norm of matrix A.

For a vector v and a positive definite matrix A, the A-weighted norm is defined as ‖v‖A :=
√

vTAv.
The null space of matrix A is denoted by null(A) and the span of a vector by span(x). The operator
Ex[·] stands for expectation over random variable x and E[·] for expectation with respect to the
distribution of a stochastic process.

2. Decentralized Double Stochastic Averaging Gradient

Consider a connected network that contains N nodes such that each node n can only communicate
with peers in its neighborhood Nn. Define xn ∈ Rp as a local copy of the variable x that is kept
at node n. In decentralized optimization, agents try to minimize their local functions fn(xn) while
ensuring that their local variables xn coincide with the variables xm of all neighbors m ∈ Nn – which,
given that the network is connected, ensures that the variables xn of all nodes are the same and
renders the problem equivalent to (1). DGD is a well known method for decentralized optimization
that relies on the introduction of nonnegative weights wij ≥ 0 that are not null if and only if m = n
or if m ∈ Nn. Letting t ∈ N be a discrete time index and α a given stepsize, DGD is defined by the
recursion

xt+1
n =

N∑
m=1

wnmxtm − α∇fn(xtn), n = 1, . . . , N. (2)

Since wnm = 0 when m 6= n and m /∈ Nn, it follows from (2) that node n updates xn by performing
an average over the variables xtm of its neighbors m ∈ Nn and its own xtn, followed by descent through
the negative local gradient −∇fn(xtn). If a constant stepsize is used, DGD iterates xtn approach
a neighborhood of the optimal argument x̃∗ of (1) but don’t converge exactly. To achieve exact
convergence diminishing stepsizes are used but the resulting convergence rate is sublinear (Nedić
and Ozdaglar (2009)).

EXTRA is a method that resolves either of these issues by mixing two consecutive DGD iterations
with different weight matrices and opposite signs. To be precise, introduce a second set of weights

3

Mokhtari and Ribeiro

∇fn,1(yt
n,1) ∇fn,2(yt

n,2) ∇fn,itn
(yt

n,itn
) ∇fn,qn (y

t
n,qn

)

∇fn,itn
(xt

n)

∇fn,1(y
t+1
n,1) ∇fn,2(y

t+1
n,2) ∇fn,itn

(yt+1
n,itn

) ∇fn,qn (y
t+1
n,qn)

Figure 1: Stochastic averaging gradient table at node n. At each iteration t a random local instanta-
neous gradient∇fn,itn(ytn,itn

) is updated by∇fn,itn(xtn). The rest of the local instantaneous

gradients remain unchanged, i.e., ∇fn,i(yt+1
n,i) = ∇fn,i(ytn,i) for i 6= itn. This list is used

to compute the stochastic averaging gradient in (7).

w̃nm with the same properties as the weights wnm and define EXTRA through the recursion

xt+1
n = xtn +

N∑
m=1

wnmxtm −
N∑
m=1

w̃nmxt−1m − α
[
∇fn(xtn)−∇fn(xt−1n)

]
, n = 1, . . . , N. (3)

Observe that (3) is well defined for t > 0. For t = 0 we utilize the regular DGD iteration in (2). In
the nomenclature of this paper we say that EXTRA performs a decentralized double gradient descent
step because it operates in a decentralized manner while utilizing a difference of two gradients as
descent direction. Minor modification as it is, the use of this gradient difference in lieu of simple
gradients, endows EXTRA with exact linear convergence to the optimal argument x̃∗ under mild
assumptions (Shi et al. (2015)).

If we recall the definitions of the local functions fn(xn) and the instantaneous local functions
fn,i(xn) available at node n, the implementation of EXTRA requires that each node n computes
the full gradient of its local objective function fn at xtn as

∇fn(xtn) =
1

qn

qn∑
i=1

∇fn,i(xtn). (4)

This is computationally expensive when the number of instantaneous functions qn is large. To resolve
this issue, local stochastic gradients can be substituted for the local objective functions gradients in
(3). These stochastic gradients approximate the gradient ∇fn(xn) of node n by randomly choosing
one of the instantaneous functions gradients ∇fn,i(xn). If we let itn ∈ {1, . . . qn} denote a function
index that we choose at time t at node n uniformly at random and independently of the history of
the process, then the stochastic gradient is defined as

ŝn(xtn) := ∇fn,itn(xtn). (5)

We can then write a stochastic version of EXTRA by replacing∇fn(xtn) by ŝn(xtn) and∇fn(xt−1n) by
ŝn(xt−1n). Such an algorithm would have a small computational cost per iteration. On the negative
side, it either has a linear convergence to a neighborhood of the optimal solution x∗ with constant
stepsize α, or it would converge sublinearly to the optimal argument when the stepisize diminishes
as time passes. Here however, we want to design an algorithm with low computational complexity
that converges linearly to the exact solution x∗.

To reduce this noise we propose the use of stochastic averaging gradients instead (Defazio et al.
(2014)). The idea is to maintain a list of gradients of all instantaneous functions in which one
randomly chosen element is replaced at each iteration and to use an average of the elements of this

4

DSA: Decentralized Double Stochastic Averaging Gradient Algorithm

list for gradient approximation; see Figure 1. Formally, define the variable yn,i ∈ Rp to represent
the iterate value the last time that the instantaneous gradient of function fn,i was evaluated. If
we let itn ∈ {1, . . . , qn} denote the function index chosen at time t at node n, as we did in (5), the
variables yn,i are updated recursively as

yt+1
n,i = xtn, if i = itn, yt+1

n,i = ytn,i, if i 6= itn. (6)

With these definitions in hand we can define the stochastic averaging gradient at node n as

ĝtn := ∇fn,itn(xtn)−∇fn,itn(ytn,itn) +
1

qn

qn∑
i=1

∇fn,i(ytn,i). (7)

Observe that to implement (7) the gradients ∇fn,i(ytn,i) are stored in the local gradient table shown
in Figure 1.

The DSA algorithm is a variation of EXTRA that substitutes the local gradients ∇fn(xtn) in (3)
for the local stochastic average gradients ĝtn in (7),

xt+1
n = xtn +

N∑
m=1

wnmxtm −
N∑
m=1

w̃nmxt−1m − α
[
ĝtn − ĝt−1n

]
. (8)

The DSA initial update is given by applying the same substitution for the update of DGD in (2) as

x1
n =

N∑
m=1

wnmx0
m − α ĝ0

n. (9)

DSA is summarized in Algorithm 1 for t ≥ 0. The DSA update in (8) is implemented in Step
9. This step requires access to the local iterates xtm of neighboring nodes m ∈ Nn which are
collected in Step 2. Furthermore, implementation of the DSA update also requires access to the
stochastic averaging gradients ĝt−1n and ĝtn. The latter is computed in Step 4 and the former is
computed and stored at the same step in the previous iteration. The computation of the stochastic
averaging gradients requires the selection of the index itn. This index is chosen uniformly at random
in Step 3. Determination of stochastic averaging gradients also necessitates access and maintenance
of the gradients table in Figure 1. The itn element of this table is updated in Step 5 by replacing
∇fn,itn(ytn,itn

) with ∇fn,itn(xtn), while the other vectors remain unchanged. To implement the first

DSA iteration at time t = 0 we have to perform the update in (9) instead of the update in (8) as
in Step 7. Further observe that the auxiliary variables y0

n,i are initialized to the initial iterate x0
n.

This implies that the initial values of the stored gradients are ∇fn,i(y0
n,i) = ∇fn,i(x0

n).

We point out that the weights wnm and w̃nm can’t be arbitrary. If we define weight matrices W
and W̃ with elements wnm and w̃nm, respectively, they have to satisfy conditions that we state as
an assumption for future reference.

Assumption 1 The weight matrices W and W̃ must satisfy the following properties

(a) Both are symmetric, W = WT and W̃ = W̃T .

(b) The null space of I−W̃ includes the span of 1, i.e., null(I−W̃) ⊇ span(1), the null space of
I−W is the span of 1, i.e., null(I−W) = span(1), and the null space of the difference W̃−W
is the span of 1, i.e., null(W̃ −W) = span(1).

(c) They satisfy the spectral ordering W � W̃ � (I + W)/2 and 0 ≺ W̃.

5

Mokhtari and Ribeiro

Algorithm 1 DSA algorithm at node n

Require: Vectors x0
n. Gradient table initialized with instantaneous gradients ∇fn,i(y

0
n,i) with y0

n,i = x0
n.

1: for t = 0, 1, 2, . . . do
2: Exchange variable xt

n with neighboring nodes m ∈ Nn;
3: Choose itn uniformly at random from the set {1, . . . , qn};
4: Compute and store stochastic averaging gradient as per (7):

ĝt
n = ∇fn,itn

(xt
n)−∇fn,itn

(yt
n,itn

) +
1

qn

qn∑
i=1

∇fn,i(y
t
n,i);

5: Take yt+1
n,itn

= xt
n and store ∇fn,itn

(yt+1
n,itn

) = ∇fn,itn
(xt

n) in itn gradient table position. All other entries

in the table remain unchanged. The vector yt+1
n,itn

is not explicitly stored;

6: if t = 0 then

7: Update variable xt
n as per (9): xt+1

n =

N∑
m=1

wnmxt
n − αĝt

n;

8: else

9: Update variable xt
n as per (8): xt+1

n = xt
n +

N∑
m=1

wnmxt
n −

N∑
m=1

w̃nmxt−1
n − α

[
ĝt
n − ĝt−1

n

]
;

10: end if
11: end for

Requiring the matrix W to be symmetric and with specific null space properties is necessary to
let all agents converge to the same optimal variable. Analogous properties are necessary in DGD
and are not difficult to satisfy. The condition on spectral ordering is specific to EXTRA but is not
difficult to satisfy either. E.g., if we have a matrix W that satisfies all the conditions in Assumption
1, the weight matrix W̃ = (I + W)/2 makes Assumption 1 valid.

We also point that, as written in (7), computation of local stochastic averaging gradients ĝtn
is costly because it requires evaluation of the sum

∑qn
i=1∇fn,i(ytn,i) at each iteration. To be more

precise, if we implement the update in (7) naively, at each iteration we should compute the sum∑qn
i=1∇fn,i(ytn,i) which has a computational cost of the order O(qn). This cost can be avoided by

updating the sum at each iteration with the recursive formula

qn∑
i=1

∇fn,i(ytn,i) =

qn∑
i=1

∇fn,i(yt−1n,i) +∇fn,it−1
n

(xt−1n)−∇fn,it−1
n

(yt−1
n,it−1

n
). (10)

Using the update in (10), we can update the sum
∑qn
i=1∇fn,i(ytn,i) required for (7) in a computation-

ally efficient manner. Important properties and interpretations of EXTRA and DSA are presented
in the following sections after pertinent remarks.

Remark 1 The local stochastic averaging gradients in (7) are unbiased estimates of the local gra-
dients ∇fn(xtn). Indeed, if we let Ft measure the history of the system up until time t we have
that the sum in (7) is deterministic given this sigma-algebra. This observation implies that the con-
ditional expectation E

[
(1/qn)

∑qn
i=1∇fn,i(ytn,i) | F t

]
can be simplified as (1/qn)

∑qn
i=1∇fn,i(ytn,i).

Thus, the conditional expectation of the stochastic averaging gradient is,

E
[
ĝtn
∣∣F t] = E

[
∇fn,itn(xtn)

∣∣F t]− E
[
∇fn,itn(ytn,itn)

∣∣F t]+
1

qn

qn∑
i=1

∇fn,i(ytn,i). (11)

With the index itn chosen equiprobably from the set {1, . . . , qn}, the expectation of the second term
in (11) is the same as the sum in the last term – each of the indexes is chosen with probability

1/qn. In other words, we can write E
[
∇fn,itn(ytn,itn

)
∣∣F t] = (1/qn)

∑qn
i=1∇fn,i(ytn,i). Therefore,

6

DSA: Decentralized Double Stochastic Averaging Gradient Algorithm

these two terms cancel out each other and, since the expectation of the first term in (11) is simply
E
[
∇fn,itn(xtn)

∣∣F t] = (1/qn)
∑qn
i=1∇fn,i(xtn) = ∇fn(xtn), we can simplify (11) to

E
[
ĝtn
∣∣F t] = ∇fn(xtn). (12)

The expression in (12) means, by definition, that ĝtn is an unbiased estimate of ∇fn(xtn) when the
history F t is given.

Remark 2 The local stochastic averaging gradient ĝtn at node n contains three terms. The first two
terms ∇fn,itn(xtn) and ∇fn,itn(ytn,itn

) are the new and old gradients of the chosen objective function

fn,itn at node n, respectively. The last term (1/qn)
∑qn
i=1∇fn,i(ytn,i) is the average of the average of

all the instantaneous gradients available at node n. This update can be considered as a localized
version of the stochastic averaging gradient update in the SAGA algorithm (Defazio et al. (2014)).
Notice that instead of the difference ∇fn,itn(xtn) − ∇fn,itn(ytn,itn

) in (7) we could use the difference

(∇fn,itn(xtn) − ∇fn,itn(ytn,itn
))/qn which would lead to stochastic averaging gradient suggested in

the SAG algorithm (Schmidt et al. (2013)). As studied in (Defazio et al. (2014)), both of these
approximations lead to a variance reduction method. The one suggested by SAGA is an unbiased
estimator of the exact gradient (1/qn)

∑qn
i=1∇fn,i(xtn), while the one suggested by SAG is a biased

estimator of the gradient with smaller variance. Since the analysis of the estimator suggested by
SAGA is simpler, we use its idea to define the local stochastic averaging gradient ĝtn in (7).

2.1 Limit Points of DGD and EXTRA

The derivation of EXTRA hinges on the observation that the optimal argument of (1) is not a
fixed point of the DGD iteration in (2) but is a fixed point of the iteration in (3). To explain this
point define x := [x1; . . . ; xN] ∈ RNp as a vector that concatenates the local iterates xn and the

aggregate function f : RNp → R as the one that takes values f(x) = f(x1, . . . ,xN) :=
∑N
n=1 fn(xn).

Decentralized optimization entails the minimization of f(x) subject to the constraint that all local
variables are equal,

x∗ := argmin f (x) = f(x1, . . . ,xN) =

N∑
n=1

fn(xn),

s. t. xn = xm, for all n,m. (13)

The problems in (1) and (13) are equivalent in the sense that the vector x∗ ∈ RNp is a solution of
(13) if it satisfies x∗n = x̃∗ for all n, or, equivalently, if we can write x∗ = [x̃∗; . . . ; x̃∗]. Regardless
of interpretation, the Karush, Kuhn, Tucker (KKT) conditions of (13) dictate that that optimal
argument x∗ must sastisfy

x∗ ⊂ span(1N ⊗ Ip), (1N ⊗ Ip)
T∇f(x∗) = 0. (14)

The first condition in (14) requires that all the local variables x∗n be equal, while the second condition
requires the sum of local gradients to vanish at the optimal point. This latter condition is not the
same as ∇f(x) = 0. If we observe that the gradient ∇f(xt) of the aggregate function can be written
as ∇f(x) = [∇f1(x1); . . . ;∇fN (xN)] ∈ RNp, the condition ∇f(x) = 0 implies that all the local
gradients are null, i.e., that ∇fn(xn) = 0 for all n. This is stronger than having their sum being
null as required by (14).

Define now the extended weight matrices as the Kronecker products Z := W ⊗ I ∈ RNp×Np
and Z̃ := W̃ ⊗ I ∈ RNp×Np. Note that the required conditions for the weight matrices W and
W̃ in Assumption 1 enforce some conditions on the extended weight matrices Z and Z̃. Based on
Assumption 1(a), the matrices Z and Z̃ are also symmetric, i.e., Z = ZT and Z̃ = Z̃T . Conditions in

7

Mokhtari and Ribeiro

Assumption 1(b) imply that null{Z̃−Z} = span{1⊗I}, null{I−Z} = span{1⊗I}, and null{I−Z̃} ⊇
span{1 ⊗ I}. Lastly, the spectral properties of matrices W and W̃ in Assumption 1(c) yield that
matrix Z̃ is positive definite and the expression Z � Z̃ � (I + Z)/2 holds.

According to the definition of the extended weight matrix Z, the DGD iteration in (2) is equivalent
to

xt+1 = Zxt − α∇f(xt), (15)

where, according to (13), the gradient ∇f(xt) of the aggregate function can be written as ∇f(xt) =
[∇f1(xt1); . . . ;∇fN (xtN)] ∈ RNp. Likewise, the EXTRA iteration in (3) can be written as

xt+1 = (I + Z)xt − Z̃xt−1 − α
[
∇f(xt)−∇f(xt−1)

]
. (16)

The fundamental difference between DGD and EXTRA is that a fixed point of (15) does not nec-
essarily satisfy (14), whereas the fixed points of (16) are guaranteed to do so. Indeed, taking limits
in (15) we see that the fixed points x∞ of DGD must satisfy

(I− Z)x∞ + α∇f(x∞) = 0, (17)

which is incompatible with (14) except in peculiar circumstances – such as, e.g., when all local
functions have the same minimum. The limit points of EXTRA, however, satisfy the relationship

x∞ − x∞ = (Z− Z̃)x∞ − α[∇f(x∞)−∇f(x∞)]. (18)

Canceling out the variables on the left hand side and the gradients in the right hand side it follows
that (Z− Z̃)x∞ = 0. Since the null space of of Z− Z̃ is null(Z− Z̃) = 1N ⊗ Ip by assumption, we
must have x∞ ⊂ span(1N ⊗ Ip). This is the first condition in (14). For the second condition in (14)
sum the updates in (16) recursively and use the telescopic nature of the sum to write

xt+1 = Z̃xt − α∇f(xt)−
t∑

s=0

(Z̃− Z)xs. (19)

Substituting the limit point in (19) and reordering terms, we see that x∞ must satisfy

α∇f(x∞) = (I− Z̃)x∞ −
∞∑
s=0

(Z̃− Z)xs. (20)

In (20) we have that (I − Z̃)x∞ = 0 because the null space of (I − Z̃) is null(Z − Z̃) = 1N ⊗ Ip
by assumption and x∞ ⊂ span(1N ⊗ Ip) as already shown. Implementing this simplification and
considering the multiplication of the resulting equality by (1N ⊗ Ip)

T we obtain

(1N ⊗ Ip)
Tα∇f(x∞) = −

∞∑
s=0

(1N ⊗ Ip)
T (Z− Z̃)xs. (21)

In (21), the terms (1N ⊗Ip)
T (Z− Z̃) = 0 because the matrices Z and Z̃ are symmetric and (1N ⊗Ip)

is in the null space of the difference Z − Z̃. This implies that (1N ⊗ Ip)
Tα∇f(x∞) = 0, which is

the second condition in (14). Therefore, given the assumption that the sequence of EXTRA iterates
xt has a limit point x∞ it follows that this limit point satisfies both conditions in (14) and for this
reason exact convergence with constant stepsize is achievable for EXTRA.

2.2 Stochastic Saddle Point Method Interpretation of DSA

The convergence proofs of DSA build on a reinterpretation of EXTRA as a saddle point method.
To introduce this primal-dual interpretation consider the update in (19) and define the sequence of

8

DSA: Decentralized Double Stochastic Averaging Gradient Algorithm

vectors vt =
∑t
s=0(Z̃−Z)1/2xs. The vector vt represents the accumulation of variable dissimilarities

in different nodes over time. Considering this definition of vt we can rewrite (19) as

xt+1 = xt − α
[
∇f(xt) +

1

α
(I−Z̃)xt +

1

α
(Z̃−Z)1/2vt

]
. (22)

Furthermore, based on the definition of the sequence vt =
∑t
s=0(Z̃ − Z)1/2xs we can write the

recursive expression

vt+1 = vt + α

[
1

α
(Z̃− Z)1/2xt+1

]
. (23)

Consider x as a primal variable and v as a dual variable. Then, the updates in (22) and (23) are
equivalent to the updates of a saddle point method with stepsize α that solves for the critical points
of the augmented Lagrangian

L(x,v) = f(x) +
1

α
vT (Z̃− Z)1/2x +

1

2α
xT (I− Z̃)x. (24)

In the Lagrangian in (24) the factor (1/α)vT (Z̃ − Z)1/2x stems from the linear constraint (Z̃ −
Z)1/2x = 0 and the quadratic term (1/2α)xT (I−Z̃)x is the augmented term added to the Lagrangian.
Therefore, the optimization problem whose augmented Lagrangian is the one given in (24) is

x∗ = argmin
x

f(x) s.t.
1

α
(Z̃− Z)1/2x = 0. (25)

Observing that the null space of (Z̃ − Z)1/2 is null((Z̃ − Z)1/2) = null(Z̃− Z) = span{1N ⊗ Ip},
the constraint in (25) is equivalent to the consensus constraint xn = xm for all n,m that appears
in (13). This means that (25) is equivalent to (13), which, as already argued, is equivalent to the
original problem in (1). Hence, EXTRA is a saddle point method that solves (25) which, because
of their equivalence, is tantamount to solving (1). Considering that saddle point methods converge
linearly, it follows that the same is true of EXTRA.

That EXTRA is a saddle point method provides a simple explanation of its convergence prop-
erties. For the purposes of this paper, however, the important fact is that if EXTRA is a sad-
dle point method, DSA is a stochastic saddle point method. To write DSA in this form define
ĝt := [ĝt1; . . . ; ĝtN] ∈ RNp as the vector that concatenates all the local stochastic averaging gradients
at step t. Then, the DSA update in (8) can be written as

xt+1 = (I + Z)xt − Z̃xt−1 − α
[
ĝt − ĝt−1

]
. (26)

Comparing (16) and (26) we see that they differ in the latter using stochastic averaging gradients
ĝt in lieu of the full gradients ∇f(xt). Therefore, DSA is a stochastic saddle point method in which
the primal variables are updated as

xt+1 = xt − αĝt − (I− Z̃)xt − (Z̃− Z)1/2vt, (27)

and the dual variables vt are updated as

vt+1 = vt + (Z̃− Z)1/2xt+1. (28)

Notice that the initial primal variable x0 is an arbitrary vector in RNp, while according to the
definition vt =

∑t
s=0(Z̃−Z)1/2xs. We then need to set the initial multiplier to v0 = (Z̃−Z)1/2x0.

This is not a problem in practice because (27) and (28) are not used for implementation. In our
converge analysis we utilize the (equivalent) stochastic saddle point expressions for DSA shown
in (27) and (28). The expression in (8) is used for implementation because it avoids exchanging
dual variables – as well as the initialization problem. The convergence analysis is presented in the
following section.

9

Mokhtari and Ribeiro

3. Convergence Analysis

Our goal here is to show that as time progresses the sequence of iterates xt approaches the optimal
argument x∗. To do so, in addition to the conditions on the weight matrices W and W̃ in Assumption
1, we assume the instantaneous local functions fn,i have specific properties that we state next.

Assumption 2 The instantaneous local functions fn,i(xn) are differentiable and strongly convex
with parameter µ.

Assumption 3 The gradient of instantaneous local functions ∇fn,i are Lipschitz continuous with
parameter L, i.e., for all n ∈ {1, . . . , N} and i ∈ {1, . . . , qn} we can write

‖∇fn,i(a)−∇fn,i(b)‖ ≤ L ‖a− b‖ a,b ∈ Rp. (29)

The condition imposed by Assumption 2 implies that the local functions fn(xn) and the global

cost function f(x) =
∑N
n=1 fn(xn) are also strongly convex with parameter µ. Likewise, Lipschitz

continuity of the local instantaneous gradients considered in Assumption 3 enforces Lipschitz conti-
nuity of the local functions gradient ∇fn(xn) and the aggregate function gradient ∇f(x) – see, e.g.,
(Lemma 1 of Mokhtari et al. (2015a)).

3.1 Preliminaries

In this section we study some basic properties of the sequences of primal and dual variables generated
by the DSA algorithm. In the following lemma, we study the relation of the iterates xt and vt with
the optimal primal x∗ and dual v∗ arguments.

Lemma 3 Consider the DSA algorithm as defined in (6)-(9) and recall the updates of the primal xt

and dual vt variables in (27) and (28), respectively. Further, define the positive semidefinite matrix
U := (Z̃− Z)1/2. If Assumption 1 holds true, then the sequence of primal xt and dual vt variables
satisfy

α
[
ĝt −∇f(x∗)

]
= (I + Z− 2Z̃)(x∗ − xt+1) + Z̃(xt − xt+1)−U(vt+1 − v∗). (30)

Proof Considering the update rule for the dual variable in (28) and the definition U = (Z̃−Z)1/2,
we can substitute Uvt in (27) by Uvt+1−U2xt+1. Applying this substitution into the DSA primal
update in (27) yields

αĝt = −(I + Z− Z̃)xt+1 + Z̃xt −Uvt+1. (31)

By adding and subtracting Z̃xt+1 to the right hand side of (31) and considering the fact that
(I + Z− 2Z̃)x∗ = 0 we obtain

αĝt = (I + Z− 2Z̃)(x∗ − xt+1) + Z̃(xt − xt+1)−Uvt+1. (32)

One of the KKT conditions of problem (25) implies that the optimal variables x∗ and v∗ satisfy
α∇f(x∗) + Uv∗ = 0 or equivalently −α∇f(x∗) = Uv∗. Adding this equality to both sides of (32)
follows the claim in (30).

In the subsequent analyses of convergence of DSA, we need an upper bound for the expected
value of squared difference between the stochastic averaging gradient ĝt and the optimal argument

gradient ∇f(x∗) given the observations until step t, i.e. E
[
‖ĝt −∇f(x∗)‖2 | F t

]
. To establish this

upper bound first we define the sequence pt ∈ R as

pt :=

N∑
n=1

[
1

qn

qn∑
i=1

(
fn,i(y

t
n,i)− fn,i(x̃∗)−∇fn,i(x̃∗)T (ytn,i − x̃∗)

)]
. (33)

10

DSA: Decentralized Double Stochastic Averaging Gradient Algorithm

Notice that based on the strong convexity of the local instantaneous functions fn,i, each term
fn,i(y

t
n,i) − fn,i(x̃∗) − ∇fn,i(x̃∗)T (ytn,i − x̃∗) is positive and as a result the sequence pt defined in

(33) is always positive. In the following lemma, we use the result in Lemma 3 to guarantee an
upper bound for the expectation E

[
‖ĝt −∇f(x∗)‖2 | F t

]
in terms of pt and the optimality gap

f(xt)− f(x∗)−∇f(x∗)T (xt − x∗).

Lemma 4 Consider the DSA algorithm in (6)-(9) and the definition of the sequence pt in (33). If
Assumptions 1-3 hold true, then the squared norm of the difference between the stochastic averaging
gradient ĝt and the optimal gradient ∇f(x∗) in expectation is bounded above by

E
[∥∥ĝt −∇f(x∗)

∥∥2 |F t] ≤ 4Lpt + 2 (2L− µ)
(
f(xt)− f(x∗)−∇f(x∗)T (xt − x∗)

)
. (34)

Proof See Appendix A.

Observe that as the sequence of iterates xt approaches the optimal argument x∗, all the local
auxiliary variables ytn,i converge to x̃∗ which follows convergence of pt to null. This observation
in association with the result in (34) implies that the expected value of the difference between the
stochastic averaging gradient ĝt and the optimal gradient∇f(x∗) vanishes as the sequence of iterates
xt approaches the optimal argument x∗.

3.2 Convergence

In this section we establish linear convergence of the sequence of iterates xt generated by DSA to
the optimal argument x∗. To do so, define 0 < γ and Γ <∞ as the smallest and largest eigenvalues
of the positive definite matrix Z̃, respectively. Likewise, define γ′ as the smallest non-zero eigenvalue
of the matrix Z̃−Z and Γ′ as the largest eigenvalue of the matrix Z̃−Z. Further, define the vectors
ut,u∗ ∈ R2Np and matrix G ∈ R2Np×2Np as

u∗ :=

[
x∗

v∗

]
, ut :=

[
xt

vt

]
, G =

[
Z̃ 0
0 I

]
. (35)

Observe that the vector u∗ ∈ R2Np concatenates the optimal primal and dual variables and the
vector ut ∈ R2Np contains primal and dual iterates at step t. Further, G ∈ R2Np×2Np is a block
diagonal positive definite matrix that we introduce since instead of tracking the value of `2 norm
‖ut − u∗‖22 we study the convergence properties of G weighted norm ‖ut − u∗‖2G. Notice that the
weighted norm ‖ut − u∗‖2G is equivalent to (ut − u∗)TG(ut − u∗). Our goal is to show that the
sequence ‖ut−u∗‖2G converges linearly to null. To do this we show linear convergence of a Lyapunov
function of the sequence ‖ut − u∗‖2G. The Lyapunov function is defined as ‖ut − u∗‖2G + cpt where
c > 0 is a positive constant.

To prove linear convergence of the sequence ‖ut − u∗‖2G + cpt we first show an upper bound for
the expected error E

[
‖ut+1 − u∗‖2G | F t

]
in terms of ‖ut−u∗‖2G and some parameters that capture

optimality gap.

Lemma 5 Consider the DSA algorithm as defined in (6)-(9). Further recall the definitions of pt in
(33) and ut, u∗, and G in (35). If Assumptions 1-3 hold true, then for any positive constant η > 0
we can write

E
[
‖ut+1 − u∗‖2G | F t

]
≤ ‖ut − u∗‖2G − 2E

[
‖xt+1 − x∗‖2

I+Z−2Z̃ | F
t
]

+
α4L

η
pt

− E
[
‖xt+1 − xt‖2

Z̃−2αηI | F
t
]
− E

[
‖vt+1 − vt‖2 | F t

]
−
(

4αµ

L
− 2α(2L− µ)

η

)(
f(xt)− f(x∗)−∇f(x∗)T (xt − x∗)

)
. (36)

11

Mokhtari and Ribeiro

Proof See Appendix B.

Lemma 5 shows an upper bound for the squared norm ‖ut+1 − u∗‖2G which is the first part of
the Lyapunov function ‖ut−u∗‖2G + cpt at step t+ 1. Likewise, we provide an upper bound for the
second term of the Lyapunov function at time t+1 which is pt+1 in terms of pt and some parameters
that capture optimality gap. This bound is studied in the following lemma.

Lemma 6 Consider the DSA algorithm as defined in (6)-(9) and the definition of pt in (33). Fur-
ther, define qmin and qmax as the smallest and largest values for the number of instantaneous functions
at a node, respectively. If Assumptions 1-3 hold true, then for all t > 0 the sequence pt satisfies

E
[
pt+1 | F t

]
≤
[
1− 1

qmax

]
pt +

1

qmin

[
f(xt)− f(x∗)−∇f(x∗)T (xt − x∗)

]
. (37)

Proof See Appendix C.

Lemma 6 provides an upper bound for pt+1 in terms of its previous value pt and the optimality
error f(xt) − f(x∗) −∇f(x∗)T (xt − x∗). Combining the results in Lemmata 5 and 6 we can show
that in expectation the Lyapunov function ‖ut+1 − u∗‖2G + c pt+1 at step t + 1 is strictly smaller
than its previous value ‖ut − u∗‖2G + c pt at step t.

Theorem 7 Consider the DSA algorithm as defined in (6)-(9). Further recall the definition of the
sequence pt in (33). Define η as an arbitrary positive constant chosen from the interval

η ∈
(
L2qmax

µqmin
+
L2

µ
− L

2
, ∞

)
. (38)

If Assumptions 1-3 hold true and the stepsize α is chosen from the interval α ∈ (0, γ/2η), then for
arbitrary c chosen from the interval

c ∈
(

4αLqmax

η
,

4αµqmin

L
− 2αqmin(2L− µ)

η

)
, (39)

there exits a positive constant 0 < δ < 1 such that

E
[
‖ut+1 − u∗‖2G + c pt+1 | F t

]
≤ (1− δ)

(
‖ut − u∗‖2G + c pt

)
. (40)

Proof See Appendix D.

We point out that the linear convergence constant δ in (40) is explicitly available – see (100) in
Appendix D. It is a function of the strong convexity parameter µ, the Lipschitz continuity constant
L, lower and upper bounds on the eigenvalues of the matrices Z̃, Z̃−Z, and I+Z−2Z̃, the smallest
qmin and largest qmax values for the number of instantaneous functions available at a node, and the
stepsize α. Insight on the dependence of δ with problem parameters is offered in Section 3.3.

The inequality in (40) shows that the expected value of the sequence ‖ut − u∗‖2G + c pt at time
t + 1 given the observation until step t is strictly smaller than the previous iterate at step t. Note
that, it is not hard to verify that if the positive constant η is chosen from the interval in (38), the
interval in (39) is non-empty. Computing the expected value with respect to the initial sigma field
E
[
. | F0

]
= E [.] implies that in expectation the sequence ‖ut − u∗‖2G + c pt converges linearly to

null, i.e.,
E
[
‖ut − u∗‖2G + c pt

]
≤ (1− δ)t

(
‖u0 − u∗‖2G + c p0

)
. (41)

We use the result in (41) to establish linear convergence of the sequence of squared norm error
‖xt − x∗‖2 in expectation.

12

DSA: Decentralized Double Stochastic Averaging Gradient Algorithm

Corollary 8 Consider the DSA algorithm as defined in (6)-(9) and recall γ is the minimum eigen-
value of the positive definite matrix Z̃. Suppose the conditions of Theorem 7 hold, then there exits a
positive constant 0 < δ < 1 such that

E
[
‖xt − x∗‖2

]
≤ (1− δ)t

(
‖u0 − u∗‖2G + c p0

)
.

γ
(42)

Proof First note that according to the definitions of u and G in (35) and the definition of pt in
(33) , we can write ‖xt−x∗‖2

Z̃
≤ ‖ut−u∗‖2G +cpt. Further, note that the weighted norm ‖xt−x∗‖2

Z̃

is lower bounded by γ‖xt − x∗‖2, since γ is a lower bound for the eigenvalues of Z̃. Combine these
two observations to obtain γ‖xt − x∗‖2 ≤ ‖ut − u∗‖2G + c pt. This inequality in conjunction with
the expression in (41) follows the claim in (42).

Corollary 8 states that the sequence E
[
‖xt − x∗‖2

]
linearly converges to null. Note that the se-

quence E
[
‖xt − x∗‖2

]
is not necessarily monotonically decreasing as the sequence E

[
‖ut − u∗‖2G + c pt

]
is. The result in (42) shows linear convergence of the sequence of variables generated by DSA in
expectation. In the following Theorem we show that the local variables xtn generated by DSA almost
surely converge to the optimal argument of (1).

Theorem 9 Consider the DSA algorithm as defined in (6)-(9) and suppose the conditions of Theo-
rem 7 hold. Then, the sequences of the local variables xtn for all n = 1, . . . , N converge almost surely
to the optimal argument x̃∗, i.e.,

lim
t→∞

xtn = x̃∗ a.s. for all n = 1, . . . , N. (43)

Proof See Appendix E.

Theorem 9 provides almost sure convergence of xt to the optimal solution x∗ which is stronger
result than convergence in expectation as in Corollary 8.

3.3 Convergence Constant

The constant δ that controls the speed of convergence can be simplified by selecting specific values
for η, α, and c. This uncovers connections to the properties of the local objective functions and the
network topology. To make this clearer recall the definitions of γ and Γ as the smallest and largest
eigenvalues of the positive definite matrix Z̃, respectively, and γ′ and Γ′ as the smallest and largest
positive eigenvalues of the positive semi-definite matrix Z̃ − Z, respectively. Further, recall that
the local objective functions are strongly convex with constant µ and their gradients are Lipschitz
continuous with constant L. Then, define the condition numbers of the objective function and the
graph as

κf =
L

µ
, κg =

max{Γ,Γ′}
min{γ, γ′}

, (44)

respectively. The condition number of the function is a measure of how difficult it is to minimize the
local functions using gradient descent directions. The condition number of the graph is a measure
of how slow the graph is in propagating a diffusion process. Both are known to control the speed
of convergence of distributed optimization methods. The following corollary illustrates that these
condition numbers also determine the convergence speed of DSA.

Corollary 10 Consider the DSA algorithm as defined in (6)-(9) and suppose the conditions of
Theorem 7 hold. Choose the weight matrices W and W̃ as W̃ = (I+W)/2, assign the same number

13

Mokhtari and Ribeiro

of instantaneous local functions fn,i to each node, i.e., qmin = qmax = q, and set the constants η, α
and c as

η =
2L2

µ
, α =

γµ

8L2
, c =

qγµ2

4L3

(
1 +

µ

4L

)
. (45)

The linear convergence constant 0 < δ < 1 in (40) reduces to

δ = min

[
1

16κ2g
,

1

q[1 + 4κf (1 + γ/γ′)]
,

1

4(γ/γ′)κf + 32κgκ4f

]
. (46)

Proof The given values for η, α, and c satisfy the conditions in Theorem 7. Substitute then these
values into the expression for δ in (100). Simplify terms and utilize the condition number definitions
in (44). The second term in the minimization in (100) becomes redundant because it is dominated
by the first.

Observe that while the choices of η, α, and c in (45) satisfy all the required conditions of Theorem
7, they are not necessarily optimal for maximizing the linear convergence constant δ. Nevertheless,
the expression in (46) shows that the convergence speed of DSA decreases with increases in the
graph condition number κg, the local functions condition number κf , and the number of functions
assigned to each node q. For a cleaner expression observe that both, γ and γ′ are the minimum
eigenvalues of the weight matrix W and the weight matrix difference W̃ −W. They can therefore
be chosen to be of similar order. For reference, say that we choose γ = γ′ so that the ratio γ/γ′ = 1.
In that case, the constant δ in (46) reduces to

δ = min

[
1

16κ2g
,

1

q(1 + 8κf)
,

1

4(κf + 8κ4fκg)

]
. (47)

The three terms in (47) establish separate regimes, problems where the graph condition number
is large, problems where the number of functions at each node is large, and problems where the
condition number of the local functions are large. In the first regime the first term in (47) dominates
and establishes a dependence in terms of the square of the graph’s condition number. In the second
regime the middle term dominates and results in an inverse dependence with the number of functions
available at each node. In the third regime, the third term dominates. The dependence in this case
is inversely proportional to κ4f .

4. Numerical Experiments

We numerically study the performance of DSA in solving a logistic regression problem. In this
problem we are given Q =

∑N
n=1 qn training samples that we distribute across N distinct nodes.

Denote qn as the number of samples that are assigned to node n. We assume that the samples are
distributed equally over the nodes, i.e., qn = qmax = qmin = q = Q/N for n = 1, . . . , N . The training
points at node n are denoted by sn,i ∈ Rp for i = 1, . . . , qn with associated labels ln,i ∈ {−1, 1}. The
goal is to predict the probability P (l = 1 | s) of having label l = 1 for sample point s. The logistic
regression model assumes that this probability can be computed as P (l = 1 | s) = 1/(1+exp(−sTx))
given a linear classifier x that is computed based on the training samples. It follows from this model
that the regularized maximum log likelihood estimate of the classifier x given the training samples
(sn,i, ln,i) for i = 1, . . . , qn and n = 1, . . . , N is the solution of the optimization problem

x̃∗ := argmin
x∈Rp

λ

2
‖x‖2 +

N∑
n=1

qn∑
i=1

log
(

1 + exp(−ln,isTn,ix)
)
, (48)

14

DSA: Decentralized Double Stochastic Averaging Gradient Algorithm

where the regularization term (λ/2)‖x‖2 is added to reduce overfitting to the training set. The
optimization problem in (48) can be written in the form of (1) by defining the local objective
functions fn as

fn(x) =
λ

2N
‖x‖2 +

qn∑
i=1

log
(

1 + exp(−ln,isTn,ix)
)
. (49)

Observe that the local functions fn in (49) can be written as the average of a set of instantaneous
functions fn,i defined as

fn,i(x) =
λ

2N
‖x‖2 + qn log

(
1 + exp

(
−ln,isTn,ix

))
, (50)

for all i = 1, . . . , qn. Considering the definitions of the instantaneous local functions fn,i in (50) and
the local functions fn in (49), problem (48) can be solved using the DSA algorithm.

In our experiments in Sections 4.1-4.4, we use a synthetic dataset where the components of
the feature vectors sn,i with label ln,i = 1 are generated from a normal distribution with mean µ
and standard deviation σ+, while sample points with label ln,i = −1 are generated from a normal
distribution with mean −µ and standard deviation σ−. In Section 4.5, we consider a large-scale real
dataset for training the classifier.

We consider a network of size N where the edges between nodes are generated randomly with
probability pc. The weight matrix W is generated using the Laplacian matrix L of network as

W = I− L/τ, (51)

where τ should satisfy τ > (1/2)λmax(L). In our experiments we set this parameter as τ =
(2/3)λmax(L). We capture the error of each algorithm by the sum of squared differences of the
local iterates xtn from the optimal solution x̃∗ as

et = ‖xt − x∗‖2 =

N∑
n=1

‖xtn − x̃∗‖2. (52)

We use a centralized algorithm for computing the optimal argument x̃∗ in all of our experiments.

4.1 Comparison with Decentralized Methods

We provide a comparison of DSA with respect to DGD, EXTRA, stochastic EXTRA, and decen-
tralized SAGA. The stochastic EXTRA (sto-EXTRA) is defined by using the stochastic gradient
in (5) instead of using full gradient as in EXTRA or stochastic averaging gradient as in DSA. The
decentralized SAGA (D-SAGA) is a stochastic version of the DGD algorithm that uses stochastic
averaging gradient instead of exact gradient which is the naive approach for developing a decen-
tralized version of the SAGA algorithm. In our experiments, the weight matrix W̃ in EXTRA,
stochastic EXTRA, and DSA is chosen as W̃ = (I + W)/2. We use the total number of sample
points Q = 500, feature vectors dimension p = 2, regularization parameter λ = 10−4, probability of
existence of an edge pc = 0.35 . To make the dataset not linearly separable we set the mean as µ = 2
and the standard deviations to σ+ = σ− = 2. Moreover, the maximum eigenvalue of the Laplacian
matrix is λmax(L) = 8.017 which implies that the choice of τ in (51) is τ = (2/3)λmax(L) = 5.345.
We set the total number of nodes N = 20 which implies that each node has access to q = Q/N = 25
samples.

Fig. 2 illustrates the convergence paths of DSA, EXTRA, DGD, Stochastic EXTRA, and Decen-
tralized SAGA with constant stepsizes for N = 20 nodes. For EXTRA and DSA different stepsizes
are chosen and the best performance for EXTRA and DSA are achieved by α = 5 × 10−2 and
α = 5× 10−3, respectively. It is worth mentioning that the choice of stepsize α for DSA in practice
is larger than the theoretical result in Theorem 6 and Corollary 9 which suggest stepsize of the

15

Mokhtari and Ribeiro

0 200 400 600 800 1000

Number of itrations t

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

E
r
r
o
r
‖x

t
−
x
∗
‖2

sto-EXTRA α = 10−3

sto-EXTRA α = 10−2

D-SAGA α = 10−2

DGD α = 10−2

D-SAGA α = 10−3

DGD α = 10−3

DSA α = 5× 10−3

EXTRA α = 5× 10−2

(a)

0 500 1000 1500 2000 2500 3000

Number of gradient evaluations

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

E
rr
o
r
‖x

t
−
x
∗
‖2

DGD α = 10−3

sto-EXTRA α = 10−2

DGD α = 10−2

D-SAGA α = 10−2

sto-EXTRA α = 10−3

D-SAGA α = 10−3

EXTRA α = 5× 10−2

DSA α = 5× 10−3

(b)

Figure 2: Convergence paths of DSA, EXTRA, DGD, Stochastic EXTRA, and Decentralized SAGA
for a logistic regression problem with Q = 500 samples and N = 20 nodes. Distance to
optimality et = ‖xt−x∗‖2 is shown with respect to number of iterations t and number of
gradient evaluations in Fig 2(a) and Fig. 2(b), respectively. DSA and EXTRA converge
linearly to the optimal argument x∗, while DGD, Stochastic EXTRA, and Decentralized
SAGA with constant step sizes converge to a neighborhood of the optimal solution. Smaller
choice of stepsize for DGD, Stochastic EXTRA, and Decentralized SAGA leads to a more
accurate convergence, while the speed of convergence becomes slower. DSA outperforms
EXTRA in terms of number of gradient evaluations to achieve a target accuracy.

order O(µ/L2). As shown in Fig. 2, DSA is the only stochastic algorithm that converges linearly.
Decentralized SAGA after a few iterations achieves the performance of DGD and they both cannot
converge to the optimal argument. By choosing a smaller stepsize as α = 10−3, they reach a more
accurate convergence relative to the case that the stepsize is α = 10−2; however, the speed of con-
vergence is slower for the smaller stepsize. Stochastic EXTRA also suffers from inexact convergence,
but for a different reason. DGD and decentralized SAGA have inexact convergence since they solve a
penalty version of the original problem, while stochastic EXTRA can not reach the optimal solution
since the noise of stochastic gradient is not vanishing. DSA resolves both issues by combining the
idea of stochastic averaging from SAGA to control the noise of stochastic gradient estimation and
the double descent idea of EXTRA to solve the correct optimization problem.

Fig. 2(a) illustrates convergence paths of the considered methods in terms of number of iterations
t. Notice that the number of iterations t indicates the number of local iterations processed at
each node. Convergence rate of EXTRA is faster than DSA in terms of number of iterations or
equivalently number of communications as shown in Fig. 2(a); however, the complexity of each
iteration for EXTRA is higher than DSA. Therefore, it is reasonable to compare the performances
of these algorithms in terms of number of processed feature vectors or equivalently number of gradient
evaluations. For instance, DSA requires t = 380 iterations or equivalently 380 gradient evaluations
to achieve the error et = 10−8, while to achieve the same accuracy EXTRA requires t = 69 iterations
which is equivalent to t× qn = 69× 25 = 1725 processed feature vectors or gradient evaluations.

To illustrate this difference better, we compare the convergence paths of DSA, EXTRA, DGD,
Stochastic EXTRA, and Decentralized SAGA in terms of number of gradient evaluations in Fig.
2(b). Note that the total number of gradient evaluations at each node for the stochastic methods
such as DSA, sto-EXTRA, and D-SAGA is equal to the the number of iterations t, while for EXTRA
and DGD – which are deterministic methods – the number of gradient evaluations is equal to the
product t × q. This is true since each node in the stochastic methods only evaluates 1 gradient

16

DSA: Decentralized Double Stochastic Averaging Gradient Algorithm

0 500 1000 1500 2000

Number of iterations t

10
-8

10
-6

10
-4

10
-2

10
0

10
2

E
rr
o
r
‖x

t
−
x
∗
‖2

Line

Cycle

Random graph pc = 0.25

Random graph pc = 0.35

Complete graph

Figure 3: Convergence of DSA for different network topologies when the total number of samples
is Q = 500 and the size of network is N = 50. Distance to optimality et = ‖xt − x∗‖2 is
shown with respect to number of iterations t. As the graph condition number κg becomes
larger the linear convergence of DSA becomes slower. The best performance belongs to
the complete graph which has the smallest condition number and the slowest convergence
path belongs to the line graph which has the largest graph condition number.

per iteration, while in the deterministic methods each node requires q gradient evaluations per
iteration. The convergence paths in Fig. 2(b) showcase the advantage of DSA relative to EXTRA in
requiring less processed feature vectors (or equivalently gradient evaluations) for achieving a specific
accuracy. It is important to mention that the initial gradient evaluations for the DSA method is not
considered in Fig. 2(b) since the initial decision variable is x0 = 0 in all experiments and evaluation
of the initial gradients ∇fn,i(x0) = −(1/2)qln,isn,i is not computationally expensive relative to the
general gradient computation which is given by∇fn,i(x) = (λx/N)−(qln,isn,i)/(1 + exp(ln,ix

T sn,i)).
However, if we consider this initial processing the plot for DSA in Fig. 2(b) will be shifted by q = 25
gradient evaluations which doesn’t change the conclusion that DSA outperforms EXTRA in terms
of gradient evaluations

4.2 Effect of Graph Condition Number κg

In this section we study the effect of the graph condition number κg as defined in (44) on the
performance of DSA. We keep the parameters in Fig. 2 except for the network size N which we
set as N = 50. Thus, each node has access to q = 500/50 = 10 sample points. The convergence
paths of the DSA algorithm for random networks with pc = 0.25 and pc = 0.35, complete graph,
cycle, and line are shown in Fig. 3. Notice that the graph condition number of the line graph,
cycle graph, random graph with pc = 0.25, random graph with pc = 0.35, and complete graph are
κg = 1.01× 103, κg = 2.53× 102, κg = 17.05, κg = 4.87, and κg = 4, respectively. For each network
topology, we have hand-optimized the stepsize α and the best choice of stepsize for the complete
graph, random graph with pc = 0.35, random graph with pc = 0.25, cycle, and line are α = 2×10−2,
α = 1.5× 10−2, α = 10−2, α = 5× 10−3, and α = 3× 10−3, respectively.

As we expect for the topologies that the graph has more edges and the graph condition number
κg is smaller we observe a faster linear convergence for DSA. The best performance belongs to the

17

Mokhtari and Ribeiro

0 200 400 600 800 1000

Number of gradient evaluations

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

E
rr
o
r
‖x

t
−
x
∗
‖2

EXTRA for complete graph

DSA for complete graph

(a) complete graph

0 200 400 600 800 1000 1200

Number of gradient evaluations

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

E
rr
o
r
‖x

t
−
x
∗
‖2

EXTRA for random graph with pc = 0.35

DSA for random graph with pc = 0.35

(b) random graph pc = 0.35

0 500 1000 1500 2000

Number of gradient evaluations

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

E
rr
o
r
‖x

t
−
x
∗
‖
2

EXTRA for random graph with pc = 0.25

DSA for random graph with pc = 0.25

(c) random graph pc = 0.25

0 2000 4000 6000 8000 10000 12000 14000 16000

Number of gradient evaluations

10
-8

10
-6

10
-4

10
-2

10
0

10
2

E
rr
o
r
‖x

t
−
x
∗
‖2

EXTRA for line

DSA for line

(d) line

Figure 4: Convergence paths of DSA and EXTRA for different network topologies when the total
number of samples is Q = 500 and the size of network is N = 50. Distance to optimality
et = ‖xt − x∗‖2 is shown with respect to number of gradient evaluations. DSA converges
faster relative to EXTRA in all of the considered networks. The difference between the
convergence paths of DSA and EXTRA is more substantial when the graph has a large
condition number κg. The stepsize α for DSA and EXTRA in all the considered cases is
hand-optimized and the results for the best choice of α are reported.

complete graph which requires t = 247 iterations to achieve the relative error et = 10−8. In the
random graphs with connectivity probabilities pc = 0.35 and pc = 0.25, DSA achieves the relative
error et = 10−8 after t = 310 and t = 504 iterations, respectively. For the cycle and line graphs the
numbers of required iterations for reaching the relative error et = 10−8 are t = 1133 and t = 1819,
respectively. These observations match the theoretical result in (47) that DSA converges faster when
the graph condition number κg is smaller.

We also compare the performances of DSA and EXTRA over different topologies to verify the
claim that DSA is more efficient than EXTRA in terms of number of gradient evaluations over
different network topologies. The parameters are as in Fig. 3 and the stepsize α for EXTRA in
different topologies are optimized separately. In particular, the best stepsize for the complete graph,
random graph with pc = 0.35, random graph with pc = 0.25, and line are α = 6×10−2, α = 5×10−2,
α = 3 × 10−2, and α = 5 × 10−2, respectively. Fig. 4 shows the convergence paths of DSA and
EXTRA versus number of gradient evaluations for four different network topologies. We observe

18

DSA: Decentralized Double Stochastic Averaging Gradient Algorithm

0 1000 2000 3000 4000 5000

Number of iterations t

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

er
ro
r
‖x

t
−
x
∗
‖2

Q = 100, q = 5

Q = 500, q = 25

Q = 1000, q = 50

Q = 5000, q = 250

Figure 5: Comparison of convergence paths of DSA for different number of samples Q when the
network size is N = 20 and the graph is randomly generated with the connectivity ratio
pc = 0.35. Convergence time for DSA increases by increasing the total number of sample
points Q which is equivalent to increasing the number of samples at each node q = Q/N .

that in the considered graphs, DSA achieves a target accuracy ‖xt − x∗‖2 faster than EXTRA. In
other words, to achieve a specific accuracy ‖xt − x∗‖2 DSA requires less number of local gradient
evaluations relative to EXTRA. In addition, the gap between the performance of DSA and EXTRA
is more substantial when the graph condition number κg is larger. In particular, in the case that
we have a complete graph, which has a small graph condition number, the difference between the
convergence paths of DSA and EXTRA is less significant comparing to the line graph which has a
large graph condition number.

4.3 Effect of Number of Functions (Samples) at Each Node q

To evaluate performance for different number of functions (sample points) available at each node
which is indicated by q, we use the same setting as in Fig. 2; however, we consider scenarios with
different number of samples Q which leads to different number of samples at each node q. To be more
precise, we fix the total number of nodes in the network as N = 20 and we consider the cases that the
total number of samples are Q = 100, Q = 500, Q = 1000, and Q = 5000 where the corresponding
number of samples at each node are q = 5, q = 25, q = 50, and q = 250, respectively. Similar to the
experiment in Fig. 2, the graph is generated randomly with connectivity ratio pc = 0.35.

For each of these scenarios the DSA stepsize α is hand-optimized and the best choice is used
for comparison with others. The results are reported for α = 10−4, α = 10−3, α = 5 × 10−3,
and α = 10−1 when the total number of samples are Q = 5000, Q = 1000, Q = 500, Q = 100,
respectively. The resulting convergence paths are shown in Fig. 5.

The convergence paths in Fig. 5 show that as we increase the total number of samples Q and
consequently the number of assigned samples to each node q, we observe that DSA converges slower
to the optimal argument. This conclusion is expected from the theoretical result in (47) which shows
that the linear convergence rate of DSA becomes slower by increasing q. In particular, to achieve
the target accuracy of ‖xt − x∗‖2 = 10−8 DSA requires t = 260, t = 380, t = 1960, and t = 4218

19

Mokhtari and Ribeiro

0 100 200 300 400 500 600 700 800 900

Number of gradient evaluations

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

er
ro
r
‖x

t
−
x
∗
‖2

DSA

EXTRA

(a) Q = 100, q = 5

0 500 1000 1500 2000 2500

Number of gradient evaluations

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

er
ro
r
‖x

t
−
x
∗
‖2

DSA

EXTRA

(b) Q = 500, q = 25

0 1000 2000 3000 4000 5000

Number of gradient evaluations

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

er
ro
r
‖
x
t
−
x
∗
‖2

DSA

EXTRA

(c) Q = 1000, q = 50

0 1 2 3 4 5 6

Number of gradient evaluations ×10
4

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

er
ro
r
‖
x
t
−
x
∗
‖2

DSA

EXTRA

(d) Q = 5000, q = 250

Figure 6: Convergence paths of DSA and EXTRA for the cases that (Q = 100, q = 5), (Q = 500, q =
25), (Q = 1000, q = 50), and (Q = 5000, q = 250) are presented. Distance to optimality
et = ‖xt−x∗‖2 is shown with respect to number of gradient evaluations. The total number
of nodes in the network is fixed and equal to N = 20 and the graph is randomly generated
with the connectivity ratio pc = 0.35. DSA converges faster relative to EXTRA and they
both converge slower when the total number of samples Q increases.

iterations (or equivalently gradient evaluations) for the cases that q = 5, q = 25, q = 50, q = 250,
respectively.

To have a more comprehensive comparison of DSA and EXTRA, we also compare their per-
formances under the four different settings considered in Fig. 5. The convergence paths of these
methods in terms of number of gradient evaluations for (Q = 100, q = 5), (Q = 500, q = 25),
(Q = 1000, q = 50), and (Q = 5000, q = 250) are presented in Fig 6. The optimal stepsizes for
EXTRA in the considered settings are α = 4× 10−1, α = 5× 10−2, α = 3× 10−2, and α = ×10−2,
respectively. An interesting observation is the effect of q on the convergence rate of EXTRA. We
observe that EXTRA converges slower as the number of samples at each node q increases which
is identical to the observation for DSA in Fig. 5. Moreover, for all of the settings considered in
Fig. 6, DSA outperforms EXTRA in terms of number of required gradient evaluations until con-
vergence. Moreover, by increasing the total number of samples Q and subsequently the number of
assigned samples to each node q the advantage of DSA with respect to EXTRA in terms of computa-
tional complexity becomes more significant. This observation justifies the use of DSA for large-scale
optimization problems as we consider in Section 4.5.

20

DSA: Decentralized Double Stochastic Averaging Gradient Algorithm

0 500 1000 1500

Number of iterations t

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

N
o
r
m
a
li
z
e
d
e
r
r
o
r

‖
x
t
−
x
∗
‖
2

‖
x
0
−
x
∗
‖
2

DSA for N = 250

DSA for N = 125

DSA for N = 100

DSA for N = 50

DSA for N = 10

Figure 7: Normalized error ‖xt−x∗‖2/‖x0−x∗‖2 of DSA versus number of iterations t for networks
with different number of nodes N when the total number of samples is fixed Q = 500.
The graphs are randomly generated with the connectivity ratio pc = 0.35. Picking a very
small or large value for N which leads to a very large or small value for q, respectively, is
not preferable. The best performance belongs to the case that N = 125 and q = 4.

4.4 Effect of Number of Nodes N

In some settings, we can choose the number of nodes (processors) N for training the dataset. In this
section, we study the effect of network size N on the convergence path of DSA when a fixed number
of samples Q is given to train the classifier x. Notice that when Q is fixed, by changing the number
of nodes N , the number of assigned samples to each node q = Q/N changes proportionally. Then,
we may want to pick the number of nodes N or equivalently the number of assigned samples to each
node q which leads to the best performance of DSA for training Q samples. Hence, we fix the total
number of sample points as Q = 500 and assign the same amount of sample points q to each node.
We consider 5 different settings with N = 10, N = 50, N = 100, N = 125, and N = 250 which their
corresponding number of assigned samples to each node are q = 50, q = 10, q = 5, q = 4, and q = 2,
respectively. The DSA stepsize for each of the considered settings is hand-optimized. The stepsizes
α = 5× 10−3, α = 2× 10−2, α = 6× 10−2, and α = 8× 10−2 are considered for the cases that the
number of assigned samples to each node are q = 50, q = 10, q = 5, q = 4, and q = 2, respectively.

Fig. 7 shows the convergence paths of DSA for networks with different number of nodes. Notice
that the normalized error ẽt = ‖xt−x∗‖2/‖x0−x∗‖2 is reported, since the dimension of the vector x
is different for different choices of N . Comparison of the convergence paths in Fig. 7 shows that the
best performance belongs to the case that N = 125 and each node has access to q = 4 sample points.
The performance of DSA becomes worse for the case that there are N = 5 nodes in the network
and each node has q = 100 sample points. This observation implies that the DSA algorithm is also
preferable to SAGA which corresponds to the case that N = 1. Moreover, we observe that when
the number of nodes is large as N = 250 and each node has access to q = 2 samples, DSA doesn’t
perform well. Thus, increasing the size of network N doesn’t always lead to a better performance
for DSA. The best performance is observed when a moderate subset of the samples is assigned to
each node.

21

Mokhtari and Ribeiro

0 500 1000 1500 2000 2500 3000 3500 4000

Number of gradient evaluations

10
-15

10
-10

10
-5

10
0

N
o
rm

a
li
ze
d
er
ro
r

‖
x
t
−
x
∗
‖
2

‖
x
0
−
x
∗
‖
2

EXTRA for N = 10

DSA for N = 10

(a) N = 10 and q = 50

0 100 200 300 400 500 600 700 800

Number of gradient evaluations

10
-15

10
-10

10
-5

10
0

N
o
rm

a
li
ze
d
er
ro
r

‖
x
t
−
x
∗
‖
2

‖
x
0
−
x
∗
‖
2

EXTRA for N = 50

DSA for N = 50

(b) N = 50 and q = 10

0 200 400 600 800 1000 1200

Number of gradient evaluations

10
-15

10
-10

10
-5

10
0

N
o
rm

a
li
ze
d
er
ro
r

‖
x
t
−
x
∗
‖
2

‖
x
0
−
x
∗
‖
2

EXTRA for N = 125

DSA for N = 125

(c) N = 125 and q = 4

0 100 200 300 400 500 600 700 800 900

Number of gradient evaluations

10
-15

10
-10

10
-5

10
0

N
o
rm

a
li
ze
d
er
ro
r

‖
x
t
−
x
∗
‖
2

‖
x
0
−
x
∗
‖
2

EXTRA for N = 250

DSA for N = 250

(d) N = 250 and q = 2

Figure 8: Convergence paths of DSA and EXTRA for different different number of nodes N when the
total number of sample points is fixed as Q = 500. The graphs are randomly generated
with the connectivity ratio pc = 0.35. Normalized distance to optimality ẽt = ‖xt −
x∗‖2/‖x0−x∗‖2 is shown with respect to number of gradient evaluations. DSA converges
faster relative to EXTRA in all of the considered settings.

We also study the convergence rates of DSA and EXTRA in terms of number of gradient evalu-
ations for networks with different number of nodes N . Fig. 8 demonstrates the convergence paths
of DSA and EXTRA for the cases that N = 10, N = 50, N = 125, and N = 250. Similar to
DSA, we report the best performance of EXTRA for each setting which is achieved by the stepsizes
α = 5 × 10−2, α = 8 × 10−2, α = 8 × 10−2, and α = 10−1 for N = 10, N = 50, N = 125, and
N = 250, respectively. Observe that in all settings DSA is more efficient relative to EXTRA and it
requires less number of gradient evaluations for convergence.

4.5 Large-scale Classification Application

In this section we solve the logistic regression problem in (48) for the protein homology dataset
provided in KDD Cup 2004. The dataset contains Q = 1.45 × 105 sample points and each sample
point has p = 74 features. We consider the case that the sample points are distributed over N = 200
nodes which implies that each node has access to q = 725 samples. We set the connectivity ratio
pc = 0.35 and hand optimize the stepsize α for DSA and EXTRA separately. The best performance
of DSA is observed for α = 2 × 10−7 and the best choice of stepize for EXTRA is α = 6 × 10−7.
We capture the error in terms of the average objective function error etavg of the network which is

22

DSA: Decentralized Double Stochastic Averaging Gradient Algorithm

0 2000 4000 6000 8000 10000 12000

Number of iterations t

10
0

10
1

10
2

10
3

A
v
er
a
g
e
o
b
je
ct
iv
e
fu
n
ct
io
n
er
ro
r

DSA

EXTRA

(a)

0 2 4 6 8 10

Number of gradient evaluations ×10
4

10
0

10
1

10
2

10
3

A
v
er
a
g
e
o
b
je
ct
iv
e
fu
n
ct
io
n
er
ro
r

DSA

EXTRA

(b)

Figure 9: Convergence paths of DSA and EXTRA for the protein homology classification problem
with Q = 1.45×105 samples. The graph has N = 200 nodes and it is randomly generated
with the connectivity ratio pc = 0.35. The average objective function error is shown with
respect to number of iterations t and number of gradient evaluations, respectively.

defined as

etavg :=
1

N

N∑
m=1

[
N∑
n=1

fn(xtm)−
N∑
n=1

fn(x∗)

]
. (53)

Note that the difference
∑N
n=1 fn(xtm)−

∑N
n=1 fn(x∗) shows the objective function error associated

with the decision variable of node m at time t. Thus, the expression in (53) indicates the average
objective function error of the network at step t.

The average objective function error for DSA and EXTRA in terms of number of iterations t and
number of gradient evaluations are presented in Fig. 9(a) and Fig. 9(b), respectively. As we observe,
the results in Fig. 9 for the large-scale classification problem match the observations in Fig. 2 for
the classification problem with a synthetic dataset. In particular, both algorithms converge linearly,
while EXTRA converges faster than DSA in terms of number of iterations or equivalently in terms
of communication cost. On the other hand, DSA outperforms EXTRA in terms of computational
complexity or number of required gradients to reach a target accuracy. Moreover, notice that the
difference between the performances of DSA and EXTRA in terms of number of gradient evaluations
is more significant in Fig. 9(b) relative to the one in Fig. 2(b). Thus, by increasing the problem
dimension we obtain more computational complexity benefit by using DSA instead of EXTRA.

5. Conclusions

Decentralized double stochastic averaging gradient (DSA) is proposed as an algorithm for solving
decentralized optimization problems where the local functions can be written as an average of a set
of local instantaneous functions. DSA exploits stochastic averaging gradients in lieu of gradients
and mixes information of two consecutive iterates to determine the descent direction. By assuming
strongly convex local instantaneous functions with Lipschitz continuous gradients, the DSA algo-
rithm converges linearly to the optimal arguments in expectation. In addition, the sequence of
local iterates xtn for each node in the network almost surely converges to the optimal argument
x̃∗. A comparison between the DSA algorithm and a group of stochastic and deterministic alterna-
tives are provided for solving a logistic regression problem. The numerical results show DSA is the
only stochastic decentralized algorithm to reach linear convergence. DSA outperforms decentralized
stochastic alternatives in terms of number of required iteration for convergence, and exhibits faster

23

Mokhtari and Ribeiro

convergence relative to deterministic alternatives in terms of number feature vectors processed until
convergence.

DSA utilizes the idea of stochastic averaging gradient suggested in SAGA to reduce the com-
putational cost of EXTRA. Although, this modification is successful in reducing the computational
complexity of EXTRA and remaining the convergence rate linear, it requires stronger assumptions to
prove the linear convergence. In DSA, the local instantaneous functions are required to be strongly
convex which is a stricter assumption relative to the required condition for EXTRA that the global
objective function should be strongly convex. This assumption for the linear convergence of DSA
is inherited from the SAGA algorithm and it can be relaxed by using SVRG (Johnson and Zhang
(2013)) instead of SAGA for estimating the gradients of the local functions. This modification in
the update of DSA is an obvious extension of the current work and can be considered as a future
research direction.

Acknowledgments

We acknowledge the support of the National Science Foundation (NSF CAREER CCF-0952867)
and the Office of Naval Research (ONR N00014-12-1-0997).

Appendix A. Proof of Lemma 4

According to the definition of ĝt which is the concatenation of the local stochastic averaging gradients
ĝtn and the fact that the expected value of sum is equal to the sum of expected values, we can write

the expected value E
[
‖ĝt −∇f(x∗)‖2 | F t

]
as

E
[∥∥ĝt −∇f(x∗)

∥∥2 | F t] =

N∑
n=1

E
[∥∥ĝtn −∇fn(x̃∗)

∥∥2 | F t] . (54)

We proceed by finding upper bounds for the summands of (54). Observe that using the stan-
dard variance decomposition for any random variable vector a we can write E

[
‖a‖2

]
= ‖E [a] ‖2 +

E
[
‖a− E [a] ‖2

]
. Notice that the same relation holds true when the expectations are computed

with respect to a specific field F . By setting a = ĝtn − ∇fn(x̃∗) and considering that E [a | F t] =
∇fn(xtn)−∇fn(x̃∗), the variance decomposition implies

E
[∥∥ĝtn −∇fn(x̃∗)

∥∥2 | F t] =
∥∥∇fn(xtn)−∇fn(x̃∗)

∥∥2
+ E

[∥∥ĝtn −∇fn(x̃∗)−∇fn(xtn) +∇fn(x̃∗)
∥∥2 | F t] . (55)

The next step is to find an upper bound for the last term in (55). Adding and subtracting ∇fn,itn(x̃∗)
and using the inequality ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2 for a = ∇fn,itn(xtn) −∇fn,itn(x̃∗) −∇fn(xtn) +
∇fn(x̃∗) and b = −(∇fn,itn(ytn,itn

)−∇fn,itn(x̃∗)− (1/qn)
∑qn
i=1∇fn,i(ytn,i) +∇fn(x̃∗)) lead to

E
[∥∥ĝtn −∇fn(x̃∗)−∇fn(xtn) +∇fn(x̃∗)

∥∥2 | F t] (56)

≤ 2E
[∥∥∇fn,itn(xtn)−∇fn,itn(x̃∗)−∇fn(xtn)+∇fn(x̃∗)

∥∥2 |F t]
+2E

[∥∥∥∇fn,itn(ytn,itn)−∇fn,itn(x̃∗)− 1

qn

qn∑
i=1

∇fn,i(ytn,i)+∇fn(x̃∗)
∥∥∥2 |F t].

In this step we use the standard variance decomposition twice to simplify the two expectations
in the right hand side of (56). Based on the standard variance decomposition E

[
‖a− E [a] ‖2

]
=

24

DSA: Decentralized Double Stochastic Averaging Gradient Algorithm

E
[
‖a‖2

]
−‖E [a] ‖2 we obtain E

[
‖a− E [a] ‖2

]
≤ E

[
‖a‖2

]
. Therefore, by setting y = ∇fn,itn(ytn,itn

)−

∇fn,itn(x̃∗) and observing that the expected value E
[
∇fn,itn(ytn,itn

)−∇fn,itn(x̃∗) | F t
]

is equal to

(1/qn)
∑qn
i=1∇fn,i(ytn,i)−∇fn(x̃∗) we obtain that

E
[∥∥∥∇fn,itn(ytn,itn)−∇fn,itn(x̃∗)− 1

qn

qn∑
i=1

∇fn,i(ytn,i)+∇fn(x̃∗)
∥∥∥2 | F t]

≤ E
[∥∥∥∇fn,itn(ytn,itn)−∇fn,itn(x̃∗)

∥∥∥2 | F t] . (57)

Moreover, by choosing a = ∇fn,itn(xtn)−∇fn,itn(x̃∗) and noticing the relation for the expected value

which is E
[
∇fn,itn(xtn)−∇fn,itn(x̃∗) | F t

]
= ∇fn(xtn) − ∇fn(x̃∗), the equality E

[
‖a− E [a] ‖2

]
=

E
[
‖a‖2

]
− ‖E [a] ‖2 yields

E
[∥∥∇fn,itn(xtn)−∇fn,itn(x̃∗)−∇fn(xtn) +∇fn(x̃∗)

∥∥2 | F t]
= E

[∥∥∇fn,itn(xtn)−∇fn,itn(x̃∗)
∥∥2 | F t]− ∥∥∇fn(xtn)−∇fn(x̃∗)

∥∥2 . (58)

By substituting the upper bound in (57) and the simplification in (58) into (56), and considering
the expression in (55) we obtain that

E
[∥∥ĝt −∇f(x∗)

∥∥2 |F t] ≤ 2

N∑
n=1

E
[∥∥∥∇fn,itn(ytn,itn)−∇fn,itn(x̃∗)

∥∥∥2 |F t]− N∑
n=1

∥∥∇fn(xtn)−∇fn(x̃∗)
∥∥2

+ 2

N∑
n=1

E
[∥∥∇fn,itn(xtn)−∇fn,itn(x̃∗)

∥∥2 | F t] . (59)

We proceed by finding an upper bound for the first sum in the right hand side of (59). Notice that if
the gradients of the function g are Lipschitz continuous with parameter L, then for any two vectors
a1 and a2 we can write g(a1) ≥ g(a2) +∇g(a2)T (a1 − a2) + (1/2L)‖∇g(a1)−∇g(a2)‖2. According
to the Lipschitz continuity of the instantaneous local functions gradient ∇fn,i(xn), we can write the
inequality for g = fn,i, a1 = ytn,i and a2 = x̃∗ which is equivalent to

1

2L

∥∥∇fn,i(ytn,i)−∇fn,i(x̃∗)∥∥2 ≤ fn,i(ytn,i)− fn,i(x̃∗)−∇fn,i(x̃∗)T (ytn,i − x̃∗). (60)

Summing up both sides of (60) for all i = 1, . . . , qn and dividing both sides of the implied inequality
by qn yield

1

qn

qn∑
i=1

∥∥∇fn,i(ytn,i)−∇fn,i(x̃∗)∥∥2 ≤ 2L

[
1

qn

qn∑
i=1

fn,i(y
t
n,i)− fn,i(x̃∗)−∇fn,i(x̃∗)T (ytn,i−x̃∗)

]
.

(61)

Since the random functions fn,itn has a uniform distribution over the set {fn,1, . . . , fn,qn}, we can

substitute the left hand side of (61) by E
[∥∥∥∇fn,itn(ytn,itn

)−∇fn,itn(x̃∗)
∥∥∥2 | F t]. Apply this substi-

tution and sum up both sides of (61) for n = 1, . . . , N . According to the definition of sequence pt

in (33), if we sum up the right hand side of (61) over n it can be simplified as 2Lpt. Applying these
simplifications we obtain

N∑
n=1

E
[∥∥∇fn,θtn(ytn)−∇fn,θtn(x̃∗)

∥∥2 | F t] ≤ 2Lpt. (62)

25

Mokhtari and Ribeiro

Substituting the upper bound in (62) into (59) and simplifying the sum
∑N
n=1 ‖∇fn(xtn)−∇fn(x̃∗)‖2

as ‖∇f(xt)−∇f(x∗)‖2 yield

E
[∥∥ĝt −∇f(x∗)

∥∥2 | F t] ≤ 2

N∑
n=1

E
[∥∥∇fn,itn(xtn)−∇fn,itn(x̃∗)

∥∥2 | F t]− ∥∥∇f(xt)−∇f(x∗)
∥∥2

+ 4Lpt. (63)

To show that the sum in the right hand side of (63) is bounded above we use the Lipschitz continuity
of the instantaneous functions gradients ∇fn,i. Using the same argument from (60) to (62) we can
write

N∑
n=1

E
[∥∥∇fn,itn(xtn)−∇fn,itn(x̃∗)

∥∥2 | F t] (64)

≤ 2L

N∑
n=1

1

qn

[qn∑
i=1

fn,i(x
t
n)− fn,i(x̃∗)−∇fn,i(x̃∗)T (xtn − x̃∗)

]
.

Considering the definition of the local objective functions fn(xn) = (1/qn)
∑qn
i=1 fn,i(xn) and the

aggregate function f(x) :=
∑N
n=1 fn(xn), the right hand side of (64) can be simplified as

N∑
n=1

E
[∥∥∇fn,itn(xtn)−∇fn,itn(x̃∗)

∥∥2 | F t] ≤ 2L
(
f(xt)− f(x∗)−∇f(x∗)T (xt − x∗)

)
. (65)

Replacing the sum in (63) by the upper bound in (65) implies

E
[∥∥ĝt −∇f(x∗)

∥∥2 | F t] ≤ 4Lpt −
∥∥∇f(xt)−∇f(x∗)

∥∥2 + 4L
(
f(xt)− f(x∗)−∇f(x∗)T (xt − x∗)

)
.

(66)

Considering the strong convexity of the global objective function f with constant µ we can write∥∥∇f(xt)−∇f(x∗)
∥∥2 ≥ 2µ

(
f(xt)− f(x∗)−∇f(x∗)T (xt − x∗)

)
. (67)

Therefore, we can substitute ‖∇f(xt)−∇f(x∗)‖2 in (65) by the lower bound in (67) and the claim
in (34) follows.

Appendix B. Proof of Lemma 5

According to the Lipschitz continuity of the aggregate function gradients ∇f(x), we can write
(1/L)‖∇f(xt)−∇f(x∗)‖2 ≤ (xt− x∗)T (∇f(xt)−∇f(x∗)). By adding and subtracting xt+1 to the
term xt − x∗ and multiplying both sides of the inequality by 2α we obtain

2α

L

∥∥∇f(xt)−∇f(x∗)
∥∥2 ≤ 2α(xt+1 − x∗)T (∇f(xt)−∇f(x∗)) + 2α(xt − xt+1)T (∇f(xt)−∇f(x∗)).

(68)

Expanding the difference ∇f(xt)−∇f(x∗) as ĝt−∇f(x∗) +∇f(xt)− ĝt for the first inner product
in the right hand side of (68) implies

2α

L

∥∥∇f(xt)−∇f(x∗)
∥∥2 ≤ 2α(xt − xt+1)T (∇f(xt)−∇f(x∗)) + 2α(xt+1 − x∗)T (ĝt −∇f(x∗))

+ 2α(xt+1 − x∗)T (∇f(xt)− ĝt). (69)

26

DSA: Decentralized Double Stochastic Averaging Gradient Algorithm

We proceed to simplify the inner product 2α(xt+1 − x∗)T (ĝt − ∇f(x∗)) in the right hand side of
(69) by substituting α(ĝt − ∇f(x∗)) with its equivalent as introduced in (30). By applying this
substitution the inner product 2α(xt+1 − x∗)T (ĝt −∇f(x∗)) can be simplified as

2α(xt+1 − x∗)T (ĝt −∇f(x∗)) = −2‖xt+1 − x∗‖2
I+Z−2Z̃ + 2(xt+1 − x∗)T Z̃(xt − xt+1)

− 2(xt+1 − x∗)TU(vt+1 − v∗). (70)

Based on the KKT condition of problem (25), the optimal primal variable satisfies (Z̃−Z)1/2x∗ = 0
which by considering the definition of the matrix U = (Z̃ − Z)1/2 we obtain that Ux∗ = 0. This
observation in conjunction with the update rule of the dual variable vt in (28) implies that we can
substitute U(xt+1 − x∗) by vt+1 − vt. Making this substitution into the last summand of the right
hand side of (70) and considering the symmetry of the matrix U yield

2α(xt+1 − x∗)T (ĝt −∇f(x∗)) = −2‖xt+1 − x∗‖2
I+Z−2Z̃ + 2(xt+1 − x∗)T Z̃(xt − xt+1)

− 2(vt+1 − vt)T (vt+1 − v∗). (71)

According to the definition of the vector u and matrix G in (35), the last two summands of (71)
can be simplified as 2(ut+1−ut)TG(u∗−ut+1). Moreover, observe that the inner product 2(ut+1−
ut)TG(u∗ − ut+1) can be simplified as ‖ut − u∗‖2G − ‖ut+1 − u∗‖2G − ‖ut+1 − ut‖2G. Applying this
simplification into (71) implies

2α(xt+1 − x∗)T (ĝt −∇f(x∗)) = −2‖xt+1 − x∗‖2
I+Z−2Z̃ + ‖ut − u∗‖2G − ‖ut+1 − u∗‖2G

− ‖ut+1 − ut‖2G. (72)

The next step is to find an upper bound for the inner product 2α(xt−xt+1)T (∇f(xt)−∇f(x∗)). Note
that for any two vectors a and b, and any positive scalar η the inequality 2aTb ≤ η‖a‖2 + η−1‖b‖2
holds. Thus, by setting a = xt − xt+1 and b = ∇f(xt)−∇f(x∗) we obtain that

2α(xt − xt+1)T (∇f(xt)−∇f(x∗)) ≤ α

η
‖∇f(xt)−∇f(x∗)‖2 + αη‖xt − xt+1‖2. (73)

Now we substitute the terms in the right hand side of (69) by their simplifications or upper bounds.
Replacing the inner product 2α(xt+1−x∗)T (ĝt−∇f(x∗)) by the simplification in (72), substituting
expression 2α(xt − xt+1)T (∇f(xt) − ∇f(x∗)) by the upper bound in (73), and substituting inner
product 2α(xt+1−x∗)T (∇f(xt)−ĝt) by the sum 2α(xt−x∗)T (∇f(xt)−ĝt)+2α(xt+1−xt)T (∇f(xt)−
ĝt) imply

2α

L

∥∥∇f(xt)−∇f(x∗)
∥∥2 ≤ −2‖xt+1 − x∗‖2

I+Z−2Z̃ + ‖ut − u∗‖2G − ‖ut+1 − u∗‖2G

− ‖ut+1 − ut‖2G + αη‖xt − xt+1‖2 +
α

η
‖∇f(xt)−∇f(x∗)‖2

+ 2α(xt − x∗)T (∇f(xt)− ĝt) + 2α(xt+1 − xt)T (∇f(xt)− ĝt). (74)

Considering that xt − x∗ is deterministic given observations until step t and observing the relation
E [ĝt | F t] = ∇f(xt), we obtain that E

[
(xt − x∗)T (∇f(xt)− ĝt) | F t

]
= 0. Therefore, by computing

the expected value of both sides of (74) given the observations until step t and regrouping the terms
we obtain

‖ut − u∗‖2G − E
[
‖ut+1 − u∗‖2G | F t

]
≥ α

(
2

L
− 1

η

)∥∥∇f(xt)−∇f(x∗)
∥∥2+E

[
‖ut+1 − ut‖2G | F t

]
+ 2E

[
‖xt+1 − x∗‖2

I+Z−2Z̃ | F
t
]
− αηE

[
‖xt − xt+1‖2 | F t

]
− E

[
2α(xt+1 − xt)T (∇f(xt)− ĝt) | F t

]
. (75)

27

Mokhtari and Ribeiro

By applying inequality 2aTb ≤ η‖a‖2 +η−1‖b‖2 for the vectors a = xt+1−xt and b = ∇f(xt)− ĝt,
we obtain that the inner product 2(xt+1 − xt)T (∇f(xt)− ĝt) is bounded above by η‖xt+1 − xt‖2 +
(1/η)‖∇f(xt) − ĝt‖2. Replacing 2(xt+1 − xt)T (∇f(xt) − ĝt) in (75) by its upper bound η‖xt+1 −
xt‖2 + (1/η)‖∇f(xt)− ĝt‖2 yields

‖ut − u∗‖2G − E
[
‖ut+1 − u∗‖2G | F t

]
≥ α

(
2

L
− 1

η

)∥∥∇f(xt)−∇f(x∗)
∥∥2+E

[
‖ut+1 − ut‖2G | F t

]
+ 2E

[
‖xt+1 − x∗‖2

I+Z−2Z̃ | F
t
]
−2αηE

[
‖xt − xt+1‖2 | F t

]
− α

η
E
[
‖∇f(xt)− ĝt‖2 | F t

]
. (76)

Observe that the squared norm ‖ut+1 − ut‖2G can be expanded as ‖xt+1 − xt‖2
Z̃

+ ‖vt+1 − vt‖2.

Using this simplification for ‖ut+1 − ut‖2G and regrouping the terms in (76) lead to

‖ut − u∗‖2G − E
[
‖ut+1 − u∗‖2G | F t

]
≥ α

(
2

L
− 1

η

)∥∥∇f(xt)−∇f(x∗)
∥∥2 (77)

+ E
[
‖xt+1 − xt‖2

Z̃−2αηI | F
t
]

+ E
[
‖vt+1 − vt‖2 | F t

]
+ 2E

[
‖xt+1−x∗‖2

I+Z−2Z̃ |F
t
]
−α
η
E
[
‖∇f(xt)− ĝt‖2 |F t

]
.

We proceed by simplifying the expectation E
[
‖∇f(xt)− ĝt‖2 |F t

]
in (77). Note that by adding and

subtracting ∇f(x∗), the expectation can be written as E
[
‖∇f(xt)−∇f(x∗) +∇f(x∗)− ĝt‖2 | F t

]
and by expanding the squared norm and simplifying the terms we obtain

E
[∥∥∇f(xt)− ĝt

∥∥2 | F t] = E
[∥∥ĝt −∇f(x∗)

∥∥2 | F t]− E
[∥∥∇f(xt)−∇f(x∗)

∥∥2 | F t] . (78)

Substituting the simplification in (78) into (77) yields

‖ut − u∗‖2G − E
[
‖ut+1 − u∗‖2G | F t

]
≥ 2α

L

∥∥∇f(xt)−∇f(x∗)
∥∥2 (79)

+ E
[
‖xt+1 − xt‖2

Z̃−2αηI | F
t
]

+ E
[
‖vt+1 − vt‖2 | F t

]
+ 2E

[
‖xt+1−x∗‖2

I+Z−2Z̃ |F
t
]
−α
η
E
[
‖ĝt −∇f(x∗)‖2 | F t

]
.

Considering the strong convexity of the global objective function f with constant µ we can write
‖∇f(xt)−∇f(x∗)‖2 ≥ 2µ

(
f(xt)− f(x∗)−∇f(x∗)T (xt − x∗)

)
. Substituting the squared norm

‖∇f(xt)−∇f(x∗)‖2 by this lower bound in (79) follows

‖ut − u∗‖2G − E
[
‖ut+1 − u∗‖2G | F t

]
≥ 4αµ

L

(
f(xt)− f(x∗)−∇f(x∗)T (xt − x∗)

)
(80)

+ E
[
‖xt+1 − xt‖2

Z̃−2αηI | F
t
]

+ E
[
‖vt+1 − vt‖2 | F t

]
+ 2E

[
‖xt+1−x∗‖2

I+Z−2Z̃ |F
t
]
−α
η
E
[
‖ĝt −∇f(x∗)‖2 | F t

]
.

Substituting the upper bound for the expectation E
[
‖ĝt −∇f(x∗)‖2 | F t

]
in (34) into (80) and

regrouping the terms show the validity of the claim in (36).

Appendix C. Proof of Lemma 6

Given the information until time t, each auxiliary vector yt+1
n,i is a random variable that takes values

ytn,i and xtn with associated probabilities 1 − 1/qn and 1/qn, respectively. This observation holds

28

DSA: Decentralized Double Stochastic Averaging Gradient Algorithm

since with probability 1/qn node n may choose index i to update at time t+ 1 and with probability
1− (1/qn) choose other indices. Therefore, we can write

E

[
1

qn

qn∑
i=1

(
∇fn,i(x̃∗)T (yt+1

n,i − x̃∗)
)
| F t

]
=

[
1− 1

qn

]
1

qn

qn∑
i=1

∇fn,i(x̃∗)T(ytn,i−x̃∗)

+
1

qn
∇fn(x̃∗)T (xtn − x̃∗). (81)

Likewise, the distribution of random function fn,i(y
t+1
n,i) given observation until time t has two

possibilities fn,i(y
t
n,i) and fn,i(x

t
n) with associated probabilities 1 − 1/qn and 1/qn, respectively.

Hence, we can write E
[
fn,i(y

t+1
n,i) | F t

]
= (1 − 1/qn)fn,i(y

t
n,i) + (1/qn)fn,i(x

t
n). By summing this

relation for all i ∈ 1, . . . , qn and divining both sides of the resulted expression by qn we obtain

E

[
1

qn

qn∑
i=1

fn,i(y
t+1
n,i) | F t

]
=

[
1− 1

qn

]
1

qn

qn∑
i=1

fn,i(y
t
n,i) +

1

qn
fn(xtn). (82)

To simplicity equations let us define the sequence ptn as

ptn :=
1

qn

qn∑
i=1

fn,i(y
t
n,i)− fn(x̃∗)− 1

qn

qn∑
i=1

∇fn,i(x̃∗)T (ytn,i − x̃∗). (83)

Subtracting (81) from (82) and adding −fn(x̃∗) to the both sides of equality in association with the
definition of the sequence ptn in (83) yield

E
[
pt+1
n | F t

]
=

[
1− 1

qn

]
ptn +

1

qn

[
fn(xtn)− fn(x̃∗)−∇fn(x̃∗)T (xtn − x̃∗)

]
. (84)

We proceed to find and upper bound for the terms in the right hand side of (84). First note that
according to the strong convexity of the local instantaneous functions fn,i and local functions fn both
terms in the right hand side of (84) are non-negative. Observing that the number of instantaneous
functions at each node qn satisfies the condition qmin ≤ qn ≤ qmax, we obtain

1− 1

qn
≤ 1− 1

qmax
,

1

qn
≤ 1

qmin
. (85)

Substituting the upper bounds in (85) into (84), summing both sides of the implied inequality over
n ∈ {1, . . . , N}, and considering the definitions of the optimal argument x∗ = [x̃∗; . . . ; x̃∗] and the

aggregate function f(x) =
∑N
n=1 fn(xn) lead to

N∑
n=1

E
[
pt+1
n | F t

]
≤
[
1− 1

qmax

] N∑
n=1

ptn +
1

qmin

[
f(xt)− f(x∗)−∇f(x∗)T (xt − x∗)

]
. (86)

Now observe that according to the definitions of the sequences pt and ptn in (33) and (83), respectively,

pt is the sum of ptn for all n, i.e. pt =
∑N
n=1 p

t
n. Hence, we can rewrite (86) as

E
[
pt+1 | F t

]
≤
[
1− 1

qmax

]
pt +

1

qmin

[
f(xt)− f(x∗)−∇f(x∗)T (xt−x∗)

]
. (87)

Therefore, the claim in (37) is valid.

29

Mokhtari and Ribeiro

Appendix D. Proof of Theorem 7

To prove the result in Theorem 7 first we prove the following Lemma to establish an upper bound
for the squared error norm ‖vt − v∗‖2.

Lemma 11 Consider the DSA algorithm as defined in (6)-(9). Further, recall γ′ as the smallest
non-zero eigenvalue and Γ′ as the largest eigenvalue of the matrix Z̃− Z. If Assumptions 1-3 hold,
then the squared norm of the difference ‖vt − v∗‖2 is bounded above as

‖vt − v∗‖2 ≤ 8

γ′
E
[∥∥xt+1−x∗

∥∥2
(I+Z−2Z̃)2

|F t
]
+

8

γ′
E
[∥∥xt−xt+1

∥∥2
Z̃2 |F t

]
+

16α2L

γ′
pt

+
2Γ′

γ′
E
[
‖vt − vt+1‖2 | F t

]
+

8α2 (2L− µ)

γ′
[
f(xt)−f(x∗)−∇f(x∗)T(xt−x∗)

]
. (88)

Proof Consider the inequality ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2 for the case that a = U(vt+1 − v∗),
b = U(vt − vt+1) which can be written as

‖U(vt − v∗)‖2 ≤ 2‖U(vt+1 − v∗)‖2 + 2‖U(vt − vt+1)‖2. (89)

We proceed by finding an upper bound for 2‖U(vt+1 − v∗)‖2. Based on the result of Lemma 3 in
(30), the term U(vt+1−v∗) is equal to the sum of vectors a+b where a = (I+Z−2Z̃)(xt+1−x∗)−
Z̃(xt − xt+1) and b = −αĝt −∇f(x∗). Therefore, using the inequality ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2
we can write∥∥U(vt+1 − v∗)

∥∥2 ≤ 2
∥∥∥(I + Z− 2Z̃)(xt+1 − x∗)− Z̃(xt−xt+1)

∥∥∥2 + 2α2
∥∥ĝt −∇f(x∗)

∥∥2 . (90)

By using the inequality ‖a+b‖2 ≤ 2‖a‖2+2‖b‖2 one more time for vectors a = (I+Z−2Z̃)(xt+1−x∗)
and b = −Z̃(xt − xt+1), we obtain an upper bound for the term ‖(I + Z− 2Z̃)(xt+1 − x∗)− Z̃(xt −
xt+1)‖2. Substituting this upper bound into (90) yields∥∥U(vt+1 − v∗)

∥∥2 ≤ 4
∥∥xt+1 − x∗

∥∥2
(I+Z−2Z̃)2

+ 4
∥∥xt − xt+1

∥∥2
Z̃2 + 2α2

∥∥ĝt −∇f(x∗)
∥∥2 . (91)

Inequality (91) shows an upper bound for 2‖U(vt+1 − v∗)‖2 in (89). Moreover, we know that
the second term ‖U(vt − vt+1)‖2 is also bounded above by Γ′‖vt − vt+1‖2 where Γ′ is the largest
eigenvalue of matrix Z̃ − Z = U2. Substituting these upper bounds into (89) and computing the
expected value of both sides given the information until step t yield

‖U(vt − v∗)‖2 ≤ 8E
[∥∥xt+1 − x∗

∥∥2
(I+Z−2Z̃)2

| F t
]

+ 8E
[∥∥xt − xt+1

∥∥2
Z̃2 | F t

]
+ 4α2E

[∥∥ĝt −∇f(x∗)
∥∥2 | F t]+ 2Γ′E

[
‖vt − vt+1‖2 | F t

]
. (92)

Note the vectors vt and v∗ lie in the column space of the matrix U. Thus, we obtain that ‖U(vt −
v∗)‖2 ≥ γ′‖vt − v∗‖2. Substituting this lower bound for ‖U(vt − v∗)‖2 in (92) and deviding both
sides of the imposed inequality by γ′ yield

‖vt − v∗‖2 ≤ 8

γ′
E
[∥∥xt+1 − x∗

∥∥2
(I+Z−2Z̃)2

| F t
]

+
8

γ′
E
[∥∥xt − xt+1

∥∥2
Z̃2 | F t

]
+

4α2

γ′
E
[∥∥ĝt −∇f(x∗)

∥∥2 | F t]+
2Γ′

γ′
E
[
‖vt − vt+1‖2 | F t

]
. (93)

By substituting the expectation E
[
‖ĝt −∇f(x∗)‖2 | F t

]
in the right hand side of (93) with its upper

bound in (34), the claim in (88) follows.

30

DSA: Decentralized Double Stochastic Averaging Gradient Algorithm

Using the result in Lemma 11 we show that the sequence ‖ut − u∗‖2G + c pt converges linearly
to zero.

Proof of Theorem 7: Proving the linear convergence claim in (40) is equivalent to showing
that

δ‖ut − u∗‖2G + δc pt ≤ ‖ut − u∗‖2G − E
[
‖ut+1 − u∗‖2G | F t

]
+ c (pt − E

[
pt+1 | F t

]
). (94)

Substituting the terms E
[
‖ut+1 − u∗‖2G | F t

]
and E

[
pt+1 | F t

]
by their upper bounds as introduced

in Lemma 5 and Lemma 6, respectively, yields a sufficient condition for the claim in (94) as

δ‖ut − u∗‖2G + δc pt ≤ E
[
‖xt+1 − xt‖2

Z̃−2αηI | F
t
]

+ E
[
‖vt+1 − vt‖2 | F t

]
+ 2E

[
‖xt+1 − x∗‖2

I+Z−2Z̃ | F
t
]

+

(
c

qmax
− 4αL

η

)
pt

+

[
4αµ

L
− 2α(2L− µ)

η
− c

qmin

] [
f(xt)− f(x∗)−∇f(x∗)T (xt − x∗)

]
. (95)

We emphasize that if the inequality in (95) holds, then the inequalities in (94) and (40) are valid.
Note that the weighted norm ‖ut−u∗‖2G in the left hand side of (95) can be simplified as ‖xt−x∗‖2

Z̃
+

‖vt − v∗‖2. Considering the definition of Γ as the maximum eigenvalue of the matrix Z̃, we can
conclude that ‖xt−x∗‖2

Z̃
is bounded above by Γ‖xt−x∗‖2. Considering this relation and observing

the upper bound for ‖vt − v∗‖2 in (88), we obtain that ‖ut − u∗‖2G = ‖xt − x∗‖2
Z̃

+ ‖vt − v∗‖2 is
bounded above by

‖ut − u∗‖2G ≤ 8

γ′
E
[∥∥xt+1 − x∗

∥∥2
(I+Z−2Z̃)2

| F t
]

+
8

γ′
E
[∥∥xt−xt+1

∥∥2
Z̃2 |F t

]
+

16α2L

γ′
pt

+
2Γ′

γ′
E
[
‖vt − vt+1‖2 | F t

]
+ Γ‖xt − x∗‖2

+
8α2 (2L− µ)

γ′
[
f(xt)− f(x∗)−∇f(x∗)T (xt − x∗)

]
. (96)

Further, the strong convexity of the global objective function f implies that the squared norm
‖xt− x∗‖2 is upper bound by (2/µ)(f(xt)− f(x∗)−∇f(x∗)T (xt− x∗)). Replacing the the squared
norm ‖xt − x∗‖2 in (96) by its upper bound leads to

‖ut − u∗‖2G ≤
8

γ′
E
[∥∥xt+1 − x∗

∥∥2
(I+Z−2Z̃)2

| F t
]

+
8

γ′
E
[∥∥xt − xt+1

∥∥2
Z̃2 | F t

]
+

16α2L

γ′
pt

+
2Γ′

γ′
E
[
‖vt − vt+1‖2 | F t

]
+

(
8α2 (2L− µ)

γ′
+

2Γ

µ

)[
f(xt)− f(x∗)−∇f(x∗)T (xt − x∗)

]
. (97)

Replacing ‖ut − u∗‖2G in (95) by the upper bound in (97) and regrouping the terms lead to

0 ≤ E
[
‖xt+1 − xt‖2

Z̃−α(η+η)I− 8δ
γ′ Z̃

2 | F t
]

+ E
[
‖xt+1 − x∗‖2

(I+Z−2Z̃)
1
2

[
2I− 8δ

γ′ (I+Z−2Z̃)
]
(I+Z−2Z̃)

1
2
|F t
]

+ E
[
‖vt+1−vt‖2

(1−2δΓ′
γ′)I
|F t
]

+

[
c

qmax
− 4αL

η
−δc− 16δα2L

γ′

]
pt

+

[
4αµ

L
− 2α(2L− µ)

η
− c

qmin
− 8δα2 (2L− µ)

γ′
− 2δΓ

µ

]
(f(xt)−f(x∗)−∇f(x∗)T(xt−x∗)).

(98)

31

Mokhtari and Ribeiro

Notice that if the inequality in (98) holds true, then the relation in (95) is valid and as we mentioned
before the claim in (94) holds. To verify the sum in the right hand side of (98) is always positive and
the inequality is valid, we enforce each summands in the right hand side of (98) to be non-negative.
Therefore, the following conditions should be satisfied

γ − α(η + η)− 8δ

γ′
Γ2 ≥ 0, 2− 8δ

γ′
λmax(I + Z− 2Z̃) ≥ 0, 1− 2δΓ′

γ′
≥ 0,

c

qmax
− 4αL

η
− δc− 16δα2L

γ′
≥ 0,

4αµ

L
− 2α(2L− µ)

η
− c

qmin
− 8δα2 (2L− µ)

γ′
− 2δΓ

µ
≥ 0. (99)

Recall that γ is the smallest eigenvalue of the positive definite matrix Z. All the inequalities in (99)
are satisfied, if δ is chosen as

δ = min

{
(γ − 2αη)γ′

8Γ2
,

γ′

4λmax(I + Z− 2Z̃)
,
γ′

2Γ′
,
γ′(cη − 4αLqmax)

ηqmax(cγ′ + 16α2L)
,

[
4αµ

L
− 2α(2L− µ)

η
− c

qmin

] [
8α2 (2L− µ)

γ′
+

2Γ

µ

]−1}
. (100)

where η, c and α are selected from the intervals

η ∈
(
L2qmax

µqmin
+
L2

µ
− L

2
, ∞

)
, α ∈

(
0 ,

γ

2η

)
, c ∈

(
4αLqmax

η
,

4αµqmin

L
− 2αqmin(2L− µ)

η

)
.

(101)

Notice that considering the conditions for the variables η, α and c in (101), the constant δ in (100)
is strictly positive δ > 0. Moreover, according to the definition in (100) the constant δ is smaller
than γ′/2Γ′ which leads to the conclusion that δ ≤ 1/2 < 1. Therefore, we obtain that 0 < δ < 1
and the claim in (40) is valid.

Appendix E. Proof of Theorem 9

The proof uses the relationship in the statement (40) of Theorem 7 to build a supermartingale
sequence. To do this define the stochastic processes ζt and βt as

ζt := ‖ut − u∗‖2G + c pt, βt := δ
(
‖ut − u∗‖2G + c pt

)
. (102)

The stochastic processes ζt and βt are alway non-negative. Let now Ft be a sigma-algebra measuring
ζt, βt, and ut. Considering the definitions of ζt and βt and the relation in (40) we can write

E
[
ζt+1 | F t

]
≤ ζt − βt. (103)

Since the sequences αt and βt are nonnegative it follows from (103) that they satisfy the conditions of
the supermartingale convergence theorem – see e.g. theorem E7.4 Solo and Kong (1995) . Therefore,
we obtain that: (i) The sequence ζt converges almost surely. (ii) The sum

∑∞
t=0 β

t < ∞ is almost
surely finite. The definition of βt in (102) implies that

∞∑
t=0

δ
(
‖ut − u∗‖2G + c pt

)
<∞, a.s. (104)

Since ‖xt−x∗‖2
Z̃
≤ ‖ut−u∗‖2G + cpt and the eigenvalues of Z̃ are lower bounded by γ we can write

γ‖xt − x∗‖2 ≤ ‖ut − u∗‖2G + c pt. This inequality in association with the fact that the sum in (104)
is finite leads to

∞∑
t=0

δ γ ‖xt − x∗‖2 <∞, a.s. (105)

32

DSA: Decentralized Double Stochastic Averaging Gradient Algorithm

Observing the fact that δ and γ are positive constants, we can conclude from (105) that the sequence
‖xt − x∗‖2 is almost surely summable and it converges with probability 1 to 0.

References

Ron Bekkerman, Mikhail Bilenko, and John Langford. Scaling up machine learning: Parallel and
distributed approaches. Cambridge University Press, 2011.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers. Foundations and
Trends R© in Machine Learning, 3(1):1–122, 2011.

Francesco Bullo, Jorge Cortés, and Sonia Martinez. Distributed control of robotic networks: a
mathematical approach to motion coordination algorithms. Princeton University Press, 2009.

Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen. An overview of recent progress in the
study of distributed multi-agent coordination. Industrial Informatics, IEEE Transactions on, 9
(1):427–438, 2013.

Volkan Cevher, Steffen Becker, and Martin Schmidt. Convex optimization for big data: Scalable,
randomized, and parallel algorithms for big data analytics. Signal Processing Magazine, IEEE,
31(5):32–43, 2014.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. In Advances in Neural Information
Processing Systems, pages 1646–1654, 2014.

John C Duchi, Alekh Agarwal, and Martin J Wainwright. Dual averaging for distributed optimiza-
tion: convergence analysis and network scaling. Automatic control, IEEE Transactions on, 57(3):
592–606, 2012.

Franck Iutzeler, Pascal Bianchi, Philippe Ciblat, and Walid Hachem. Explicit convergence rate of a
distributed alternating direction method of multipliers. arXiv preprint arXiv:1312.1085, 2013.

Dusan Jakovetic, Joao Xavier, and Jose MF Moura. Fast distributed gradient methods. Automatic
Control, IEEE Transactions on, 59(5):1131–1146, 2014.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems, pages 315–323, 2013.

Usman A Khan, Soummya Kar, and JoséM F Moura. Diland: An algorithm for distributed sensor
localization with noisy distance measurements. Signal Processing, IEEE Transactions on, 58(3):
1940–1947, 2010.

Jakub Konečnỳ and Peter Richtárik. Semi-stochastic gradient descent methods. arXiv preprint
arXiv:1312.1666, 2013.

Qing Ling and Alejandro Ribeiro. Decentralized linearized alternating direction method of multipli-
ers. In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference
on, pages 5447–5451. IEEE, 2014.

Qing Ling, Wei Shi, Gang Wu, and Alejandro Ribeiro. Dlm: Decentralized linearized alternating
direction method of multipliers. Signal Processing, IEEE Transactions on, 63(15):4051–4064,
2015.

33

Mokhtari and Ribeiro

Cassio G Lopes and Ali H Sayed. Diffusion least-mean squares over adaptive networks: Formulation
and performance analysis. Signal Processing, IEEE Transactions on, 56(7):3122–3136, 2008.

Aryan Mokhtari, Qing Ling, and Alejandro Ribeiro. Network newton-part i: Algorithm and conver-
gence. arXiv preprint arXiv:1504.06017, 2015a.

Aryan Mokhtari, Qing Ling, and Alejandro Ribeiro. Network newton-part ii: Convergence rate and
implementation. arXiv preprint arXiv:1504.06020, 2015b.

Aryan Mokhtari, Wei Shi, Qing Ling, and Alejandro Ribeiro. Decentralized quadratically approx-
imated alternating direction method of multipliers. In Proc. IEEE Global Conf. on Signal and
Inform. Process., 2015c.

Angelia Nedić and Asuman Ozdaglar. Distributed subgradient methods for multi-agent optimization.
Automatic Control, IEEE Transactions on, 54(1):48–61, 2009.

Michael Rabbat and Robert Nowak. Distributed optimization in sensor networks. In Proceedings
of the 3rd international symposium on Information processing in sensor networks, pages 20–27.
ACM, 2004.

Alejandro Ribeiro. Ergodic stochastic optimization algorithms for wireless communication and net-
working. Signal Processing, IEEE Transactions on, 58(12):6369–6386, 2010.

Alejandro Ribeiro. Optimal resource allocation in wireless communication and networking.
EURASIP Journal on Wireless Communications and Networking, 2012(1):1–19, 2012.

Nicolas L Roux, Mark Schmidt, and Francis R Bach. A stochastic gradient method with an expo-
nential convergence rate for finite training sets. In Advances in Neural Information Processing
Systems, pages 2663–2671, 2012.

Ioannis D Schizas, Alejandro Ribeiro, and Georgios B Giannakis. Consensus in ad hoc wsns with
noisy links–part i: Distributed estimation of deterministic signals. Signal Processing, IEEE Trans-
actions on, 56(1):350–364, 2008.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. arXiv preprint arXiv:1309.2388, 2013.

Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized
loss. The Journal of Machine Learning Research, 14(1):567–599, 2013.

Wei Shi, Qing Ling, Kun Yuan, Gang Wu, and Wotao Yin. On the linear convergence of the admm in
decentralized consensus optimization. Signal Processing, IEEE Transactions on, 62(7):1750–1761,
2014.

Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. Extra: An exact first-order algorithm for decentral-
ized consensus optimization. SIAM Journal on Optimization, 25(2):944–966, 2015.

Victor Solo and Xuan Kong. Adaptive Signal Processing Algorithms: Stability and Performance.
NJ: Prentice-Hall, Englewood Cliffs, 1995.

Konstantinos Tsianos, Sean Lawlor, Michael G Rabbat, et al. Consensus-based distributed opti-
mization: Practical issues and applications in large-scale machine learning. In Communication,
Control, and Computing (Allerton), 2012 50th Annual Allerton Conference on, pages 1543–1550.
IEEE, 2012a.

34

DSA: Decentralized Double Stochastic Averaging Gradient Algorithm

Konstantinos I. Tsianos, Sean Lawlor, and Michael G Rabbat. Push-sum distributed dual averaging
for convex optimization. In Decision and Control (CDC), 2012 IEEE 51st Annual Conference on,
pages 5453–5458. IEEE, 2012b.

Kun Yuan, Qing Ling, and Wotao Yin. On the convergence of decentralized gradient descent. arXiv
preprint arXiv:1310.7063, 2013.

35

	Introduction
	Decentralized Double Stochastic Averaging Gradient
	Limit Points of DGD and EXTRA
	Stochastic Saddle Point Method Interpretation of DSA

	Convergence Analysis
	Preliminaries
	Convergence
	Convergence Constant

	Numerical Experiments
	Comparison with Decentralized Methods
	Effect of Graph Condition Number g
	Effect of Number of Functions (Samples) at Each Node q
	Effect of Number of Nodes N
	Large-scale Classification Application

	Conclusions
	Proof of Lemma ??
	Proof of Lemma ??
	Proof of Lemma ??
	Proof of Theorem ??
	Proof of Theorem ??

