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Abstract

A major barrier towards scaling visual recognition systems is the difficulty of obtaining
labeled images for large numbers of categories. Recently, deep convolutional neural net-
works (CNNs) trained used 1.2M+ labeled images have emerged as clear winners on object
classification benchmarks. Unfortunately, only a small fraction of those labels are avail-
able with bounding box localization for training the detection task and even fewer pixel
level annotations are available for semantic segmentation. It is much cheaper and easier
to collect large quantities of image-level labels from search engines than it is to collect
scene-centric images with precisely localized labels. We develop methods for learning large
scale recognition models which exploit joint training over both weak (image-level) and
strong (bounding box) labels and which transfer learned perceptual representations from
strongly-labeled auxiliary tasks. We provide a novel formulation of a joint multiple instance
learning method that includes examples from object-centric data with image-level labels
when available, and also performs domain transfer learning to improve the underlying de-
tector representation. We then show how to use our large scale detectors to produce pixel
level annotations. Using our method, we produce a >7.6K category detector and release
code and models at lsda.berkeleyvision.org.

Keywords: Computer Vision, Deep Learning, Transfer Learning, Large Scale Learning

1. Introduction

It is well known that contemporary visual models thrive on large amounts of training data,
especially those that directly include labels for the desired tasks. Many real world set-
tings contain labels with varying specificity, e.g., “strong” bounding box detection labels,
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and “weak” labels indicating presence somewhere in the image. We tackle the problem of
joint detector and representation learning, and develop models which cooperatively exploit
heterogeneous sources of training data, where some classes have no “strong” annotations.
Our model optimizes a latent variable multiple instance learning model over image regions
while simultaneously transferring a shared representation from detection-domain models to
classification-domain models. The latter provides a key source of automatic and accurate
initialization for latent variable optimization, which has heretofore been unavailable in such
methods.

Both classification and detection are key visual recognition challenges, though his-
torically very different architectures have been deployed for each. Recently, the R-CNN
model (Girshick et al., 2014) showed how to adapt an ImageNet classifier into a detector,
but required bounding box data for all categories. We ask, is there something generic in the
transformation from classification to detection that can be learned on a subset of categories
and then transferred to other classifiers?

One of the fundamental challenges in training object detection systems is the need to
collect a large of amount of images with bounding box annotations. The introduction of
detection challenge datasets, such as PASCAL VOC (Everingham et al., 2010), has propelled
progress by providing the research community a dataset with enough fully annotated images
to train competitive models although only for 20 classes. Even though the more recent
ILSVRC13 detection dataset (Russakovsky et al., 2014) has extended the set of annotated
images, it only contains data for 200 categories. The larger ImageNet dataset contains some
localization information for around 3000 object categories, though these are not exhaustively
labeled. As we look forward towards the goal of scaling our systems to human-level category
detection, it becomes impractical to collect a large quantity of bounding box labels for tens
or hundreds of thousands of categories.

In contrast, image-level annotation is comparatively easy to acquire. The prevalence
of image tags allows search engines to quickly produce a set of images that have some
correspondence to any particular category. ImageNet (Berg et al., 2012), for example, has
made use of these search results in combination with manual outlier detection to produce
a large classification dataset comprised of over 20,000 categories. While this data can be
effectively used to train object classifier models, it lacks the supervised annotations needed
to train state-of-the-art detectors.

Previous methods employ varying combinations of weak and strong labels of the same
object category to learn a detector. Such methods seldom exploit available strong-labeled
data of different, auxiliary categories, despite the fact that such data is very often available
in many practical scenarios. Deselaers et al. (2012) uses auxiliary data to learn generic
objectness information just as an initial step, but doesn’t optimize jointly for weakly labeled
data.

We introduce a new model for large-scale learning of detectors that can jointly exploit
weak and strong labels, perform inference over latent regions in weakly labeled training
examples, and can transfer representations learned from related tasks (see Figure 1). In
practical settings, such as learning visual detector models for all available ImageNet cat-
egories, or for learning detector versions of other defined categories such as Sentibank’s
adjective-noun-phrase models (Borth et al., 2013), our model makes greater use of available
data and labels than previous approaches. Our method takes advantage of such data by
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Figure 1: We learn detectors (models which classify and localize) for categories with only
weak labels (bottom row). We use auxiliary categories with available paired strong and
weak annotations (top row) to learn to adapt a visual representation from whole image
classification to localized region detection. We then use the adapted representation to
transform the classifiers trained for the categories with only weak labels and jointly solve
an MIL problem to mine localized training data from the weakly labeled scene-centric
training data (green – bottom right).

using the auxiliary strong labels to improve the feature representation for detection tasks,
and uses the improved representation to learn a stronger detector from weak labels in a
deep architecture.

We cast the task as a domain adaptation problem, considering the data used to train
classifiers (images with category labels) as our source domain, and the data used to train
detectors (images with bounding boxes and category labels) as our target domain. We then
seek to find a general transformation from the source domain to the target domain, that
can be applied to any image classifier to adapt it into a object detector (see Figure 1).
R-CNN (Girshick et al., 2014) demonstrated that adaptation, in the form of fine-tuning, is
very important for transferring deep features from classification to detection and partially
inspired our approach. However, the R-CNN algorithm uses classification data only to pre-
train a deep network and then requires a large number of bounding boxes to train each
detection category.

To learn detectors, we exploit weakly labeled data for a concept, including both object-
centric images (e.g., from ImageNet classification training data), and weakly labeled scene-
centric imagery (e.g., from PASCAL or ImageNet detection training data with bounding
box metadata removed). We define a novel multiple instance learning (MIL) framework
that includes bags defined on both types of data, and also jointly optimizes an underlying
perceptual representation using strong detection labels from related categories. We demon-
strate that a good perceptual representation for detection tasks can be learned from a set
of paired weak and strong labeled examples and the resulting adaptation can be transferred
to new categories, even those for which no strong labels were available.
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We additionally show that our large-scale detection models can be directly converted
into models which produce pixel-level localization for each category. Following the recent
result of Long et al. (2015), we run our models fully-convolutionally and directly use the
learned detection weights to predict per-pixel labels.

We evaluate our detection model empirically on the largest set of available ground-truth
visual data labeled with bounding box annotations, the ILSVRC13 detection dataset. Our
method outperforms the previous best MIL-based approaches for weakly labeled detector
learning (Wang et al., 2014) on ILSVRC13 (Russakovsky et al., 2014) by 200%. Our model
is directly applicable to learning improved “detectors in the wild”, including categories in
ImageNet but not in the ILSVRC13 detection dataset, or categories defined ad-hoc for a
particular user or task with just a few training examples to fine-tune a new classification
model. Such models can be promoted to detectors with no (or few) labeled bounding boxes.

The article builds on two conference publications. The generic feature adaptation for
transforming a classifier into a detector was first presented in Hoffman et al. (2014). Hoffman
et al. (2015) presented a further category specific detector and representation refinement
with mined localization labels. In this work, we present and compare the two works and ad-
ditionally present a novel extension for further producing per-pixel predictions for adapting
to the semantic segmentation task.

2. Related Work

Since its inception, the multiple instance learning (MIL) problem (Dietterich et al., 1997), or
learning from a set of labels that specify at least one instance in a bag of instances, has been
attempted in several frameworks, including Noisy-OR and boosting (Ali and Saenko, 2014;
Zhang et al., 2005). However, most commonly, it has been framed as a max-margin classifi-
cation problem (Andrews et al., 2002), with latent parameters optimized using alternating
optimization (Felzenszwalb et al., 2010; Yu and Joachims, 2009).

Recently, MIL has also been used in computer vision to train detectors using weak labels,
i.e. images with category labels but without bounding box labels. The MIL paradigm
estimates latent labels of examples in positive training bags, where each positive bag is
known to contain at least one positive example. For example, Galleguillos et al. (2008) and
Ali and Saenko (2014) construct positive bags from all object proposal regions in a weakly
labeled image that is known to contain the object and use a version of MIL to learn an
object detector. Overall, MIL is tackled in two stages: first, finding a good initialization, and
second, using good heuristics for optimization. A number of methods have been proposed
for initialization which include using a large image region excluding boundary (Pandey and
Lazebnik, 2011), using a candidate set which covers the training data space (Song et al.,
2014a,b), using unsupervised patch discovery (Siva et al., 2013; Singh et al., 2012), learning
generic objectness knowledge from auxiliary categories (Alexe et al., 2010; Deselaers et al.,
2012), learning latent categories from background to suppress it (Wang et al., 2014), or using
class-specific similarity (Siva et al., 2012). Approaches to better optimize the non-convex
problem involve using multi-fold learning as a measure of regularizing overfitting (Cinbis
et al., 2014), optimizing Latent SVM for the area under the ROC curve (AUC) (Bilen et al.,
2014), and training with easy examples initially to avoid bad local optima (Bengio et al.,
2009; Kumar et al., 2010; Guillaumin et al., 2014).
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While these approaches are promising, they often underperform on the full detection task
in more challenging settings such as the PASCAL VOC dataset (Everingham et al., 2010),
where objects only cover small portions of images, and many candidate bounding boxes
contain no objects whatseover. The major challenges faced by solutions to the MIL problem
are the limitations of fixed feature representations and poor initializations, particularly in
non-object centric images. Our algorithm provides solutions to both of these issues. We also
provide an evaluation on the large-scale ILSVRC13 detection dataset, which many previous
methods have not been evaluated on.

Deep convolutional neural networks (CNNs) have emerged as state of the art on popular
object classification benchmarks such as ILSVRC (Krizhevsky et al., 2012) and MNIST. In
fact, “deep features” extracted from CNNs trained on the object classification task are also
state of the art on other tasks such as subcategory classification, scene classification, domain
adaptation (Donahue et al., 2014), and even image matching (Fischer et al., 2014). Unlike
the previously dominant features (SIFT (Lowe, 2004), HOG (Dalal and Triggs, 2005)), deep
CNN features can be learned for each specific task, but only if sufficient labeled training
data is available. R-CNN (Girshick et al., 2014) showed that fine-tuning deep features,
pre-trained for classification, on a large amount of bounding box labeled data significantly
improves detection performance.

Domain adaptation methods aim to reduce dataset bias caused by a difference in the
statistical distributions between training and test domains. In this paper, we treat the
transformation of classifiers into detectors as a domain adaptation task. Many approaches
have been proposed for classifier adaptation, such as feature space transformations (Saenko
et al., 2010; Kulis et al., 2011; Gong et al., 2012; Fernando et al., 2013), model adaptation
approaches (Yang et al., 2007a; Aytar and Zisserman, 2011), and joint feature and model
adaptation (Hoffman et al., 2013a; Duan et al., 2012). However, even the joint learning
models are not able to modify the feature extraction process and so are limited to shallow
adaptation techniques. Additionally, these methods only adapt between visual domains,
keeping the task fixed, while we adapt both from a large visual domain to a smaller visual
domain and from a classification task to a detection task.

However, domain adaptation techniques have seen recent success through the merger
with deep CNNs. Hoffman et al. (2013b) showed that, when training data in the target
domain is severely limited or unavailable, domain adaptation techniques as applied to CNNs
can be more effective than the standard practice of fine-tuning. More recent works have
seen success in augmenting deep architectures with additional regularization layers that are
robust to the negative effects of domain shift (Ghifary et al., 2014; Tzeng et al., 2014; Long
and Wang, 2015; Ganin and Lempitsky, 2015). However, all of these methods focus on the
standard visual domain adaptation problem, where one adapts between two versions of the
same task with different statistics, and do not investigate the task adaptation setting.

Several supervised domain adaptation models have been proposed for object detection.
Given a detector trained on a source domain, they adjust its parameters on labeled target
domain data. These include variants for linear support vector machines (Yang et al., 2007b;
Aytar and Zisserman, 2011; Donahue et al., 2013), as well as adaptive latent SVMs (Xu
et al., 2014) and adaptive exemplar SVM (Aytar and Zisserman, 2012). A related re-
cent method (Goehring et al., 2014) proposes a fast adaptation technique based on Linear
Discriminant Analysis. These methods require strongly labeled data with bounding box an-
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notations for all object categories, both in the source and target domains, which is absent
in our scenario.

Other methods have been proposed that use the underlying semantic hierarchy of Im-
ageNet to transfer localization information to classes for strong labels are available (Guil-
laumin and Ferrari, 2012; Vezhnevets and Ferrari, 2014). However, this necessarily limits
their approaches to settings in which additional semantic information is available.

2.1 Background: MIL

We begin by briefly reviewing a standard solution to the multiple instance learning problem,
Multiple Instance SVMs (MI-SVMs) (Andrews et al., 2002) or Latent SVMs (Felzenszwalb
et al., 2010; Yu and Joachims, 2009). In this setting, each weakly labeled image is considered
a collection of bounding boxes which form a positive ‘bag’. For a binary classification
problem, the task is to maximize the bag margin which is defined by the instance with
highest confidence. For each weakly labeled image I ∈ W, we collect a set of bounding boxes
and define the index set of those boxes as RI . We next define a bag as BI = {xi|i ∈ RI},
with label YI , and let the ith instance in the bag be (xi, yi) ∈ Rp × {−1,+1}.

For an image with a negative image-level label, YI = −1, we label all bounding boxes
in the image as negative. For an image with a positive image-level label, YI = 1, we create
a constraint that at least one positive instance occurs in the image bag.

In a typical detection scenario, RI corresponds to the set of possible bounding boxes
inside the image, and maximizing over RI is equivalent to discovering the bounding box that
contains the positive object. We define a representation φ(xi) ∈ Rd for each instance, which
is the feature descriptor for the corresponding bounding box, and formulate the MI-SVM
objective as follows:

min
w∈Rd

1

2
‖w‖22 + α

∑
I

`
(
YI ,max

i∈RI

wTφ(xi)
)

(1)

where α is a hyper-parameter and `(y, ŷ) is the hinge loss. Interestingly, for negative bags
i.e. YI = −1, the knowledge that all instances are negative allows us to unfold the max
operation into a sum over each instance. Thus, Equation (1) reduces to a standard QP with
respect to w. For the case of positive bags, this formulation reduces to a standard SVM if
the maximum scoring instance is known.

Based on this idea, Equation (1) is optimized using a classic concave-convex proce-
dure (Yuille and Rangarajan, 2003), which decreases the objective value monotonically
with a guarantee to converge to a local minima or saddle point. Due to this reason, weakly
trained MIL detectors are sensitive to the feature representation and initial detector weights
(i.e. initialization in MIL) (Cinbis et al., 2014; Song et al., 2014a). With our algorithm we
mitigate these sensitivities by learning a representation that works well for detection and
by proposing an initialization technique for the weakly trained detectors which proves to
avoid many of the pitfalls of prior MIL techniques (see Fig 7).

3. Large Scale Detection through Adaptation

We propose a learning algorithm that uses a heterogeneous data source, containing only
weak labels for some tasks, to produce strong visual recognition models for all. Our approach
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is to cast the shift from tasks that require weak labels to tasks that require strong labels as
a domain adaptation problem. We then consider transforming the models for the weakly
labeled task into the models for the strongly labeled task. For concreteness, we will present
our algorithm applied to the specific task shift of classification to detection, called Large
Scale Detection through Adaptation (LSDA). In the following section, we will explain how
to shift to a different strongly labeled task of semantic segmentation.

Let the set of images with only weak labels be denoted as W and the set of images
with strong labels (bounding box annotations) from auxiliary tasks be denoted as S. We
assume that the set of object categories that appear in the weakly labeled set, CW , do not
overlap with the set of object categories that appear in the strongly labeled set, CS . For
each image in the weakly labeled set, I ∈ W, we have an image-level label per category,
k: Y k

I ∈ {1,−1}. For each image in the strongly labeled set, I ∈ S, we have a label per
category, k, per region in the image, i ∈ RI : yki ∈ {1,−1}. We seek to learn a representation,
φ(·) that can be used to train detectors for all object categories, C = {CW ∪ CS}. For a
category k ∈ C, we denote the category specific detection parameter as wk and compute
our final detection scores per region, x, as scorek(x) = wT

k φ(x).
We propose a joint optimization algorithm which learns a feature representation, φ(·),

and detection model parameters, wk, using the combination of strongly labeled scene-centric
data, S, with weakly labeled object and scene-centric data, W. For a fixed representation,
one can directly train detectors for all categories represented in the strongly labeled set,
k ∈ CS . Additionally, for the same fixed representation, we reviewed in the previous section
techniques to train detectors for the categories in the weakly labeled data set, k ∈ CW .
Our insight is that the knowledge from the strong label set can be used to help guide the
optimization for the weak labeled set, and we can explicitly adapt our representation for
the categories of interest and for the generic detection task.

Below, we state our overall objective:

min
wk,φ
k∈C

∑
k

Γ(wk) + α1

∑
I∈W

∑
p∈CW

F(Y p
I ,wp) + α2

∑
I∈S

∑
i∈RI

∑
q∈CS

`(yqi ,w
T
q φ(xi)) (2)

where `(.) is the cross-entropy loss function, F is the region-based loss function over weak
categories, α1, α2 are scalar hyper-parameters and Γ(.) is a regularization over the detector
weights. We use convolutional neural networks (CNNs) to define our representation φ and
thus the last layer weights serve as detection weights w. We adopt the CNN architecture of
Krizhevsky et al. (2012) (referred to as AlexNet).

This formulation is difficult to optimize directly, so we propose to solve this objective by
sequentially optimizing easier sub-problems which are less likely to diverge (see Figure 2).

Lets describe the sub-problems for our overall approach. We begin by initializing a
feature representation φ and the detection weights w using auxiliary weakly labeled data
(Figure 2: blue boxes). These weights can be used to compute scores per region proposal
to produce initial detection scores. We next use available strongly labeled data from aux-
iliary tasks to transfer category invariant information about the detection problem. We
accomplish this through further optimizing our feature representation and learning generic
background detection weights, w, φ, (Figure 2: red boxes). We then use the well tuned de-
tection feature space to perform MIL on our weakly labeled data to find positive instances
(Figure 2: yellow boxes). Finally, we use our discovered positive instances together with the
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Figure 2: Our method (LSDA) jointly optimizes a representation and category specific
detection parameters for categories with only weakly labeled data. We first learn a feature
representation conducive to adaptation by initializing all parameters with weakly labeled
data. We then collectively refine the feature space with strongly labeled data from auxiliary
tasks to adapt the category invariant representation from classification to detection (red
boxes). Finally, we perform category specific adaptation (green boxes) either without re-
training or by solving MIL in our detection feature space and using the discovered bounding
boxes to further refine the representation and detection weights.

strongly labeled data from auxiliary tasks to jointly optimize all parameters corresponding
to feature representation and detection weights. We now describe each of these steps in
detail in the follow subsections.

3.1 Initializing representation and detection parameters

As mentioned earlier, we use the AlexNet architecture to describe representation φ and
detection weights w. Since this network requires a large amount of data and time to
train its approximately 60 million parameters, we start by pre-training on the ILSVRC2012
classification dataset, which we refer to as auxiliary weakly labeled data. It contains 1.2
million weakly labeled images of 1000 categories. Pre-training on this dataset has been
shown to be a very effective technique (Donahue et al., 2014; Sermanet et al., 2013; Girshick
et al., 2014), both in terms of performance and in terms of limiting the amount of in-domain
labeled data needed to successfully tune the network. This data is usually object centric and
is therefore effective for training a network that is able to discriminate between different
categories. Next, we replace the last weight layer (1000 linear classifiers) with K = |C|
randomly initialized linear classifiers, one for each category in our task.

We next learn initial values for all of the detection parameters for our particular cat-
egories of interest, wk, ∀k ∈ C. We obtain such initialization by solving the simplified
learning problem of image-level classification. The image, I ∈ S, is labeled as positive for
a category k if any of the regions in the image are labeled as positive for k and is labeled
as negative otherwise, we denote the image level label as in the weakly labeled case: Y k

I .
Now, we can optimize over all images to refine the representation and learn category specific
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parameters that can be used per region proposal to produce detection scores:

min
wk,φ
k∈C

∑
k

Γ(wk) + α
∑

I∈{W∪S}

`(Y k
I ,w

T
k φ(I))

 (3)

We optimize Equation (3) through fine-tuning our CNN architecture with a new K-way last
fully connected layer, where K = |C|. This serves as our initialization for solving sequential
sub-problems to optimize overall objective (2). We find that even using the net trained on
weakly labeled data in this way produces a strong baseline. We will refer this baseline as
‘Classification Network ’ in the experiments; see Table 2.

3.2 Learning category specific representation and detection parameters

We next transform our classification network into a detection network and learn a represen-
tation which makes it possible to separate objects of interest from background and makes it
easy to distinguish different object categories. We proceed by modifying the representation
(layers 1-7), φ(·), through finetuning, using the available strongly labeled data for categories
in set CS . Following the Regions-based CNN (R-CNN) (Girshick et al., 2014) algorithm, we
collect positive bounding boxes for each category in set CS as well as a set of background
boxes using a region proposal algorithm, such as selective search (Uijlings et al., 2013). We
use each labeled region as a fine-tuning input to the CNN after padding and warping it
to the CNN’s input size. Note that the R-CNN fine-tuning algorithm requires bounding
box annotated data for all categories and so can not directly be applied to train all K
detectors. Fine-tuning transforms all network weights (except for the linear classifiers for
categories in CW) and produces a softmax detector for categories in set CS , which includes
a weight vector for the new background class. We find empirically that fine-tuning induces
a generic, category invariant transformation of the classification network into a detection
network. That is, even though fine-tuning sees no strongly labeled data for categories in set
CW , the network transforms in a way that automatically makes the original set CW image
classifiers much more effective at detection (see Figure 9). Fine-tuning for detection also
learns a background weight vector that encodes a generic “background” category, wb. This
background model is important for modeling the task shift from image classification, which
does not include background distractors, to detection, which is dominated by background
patches. This detector explicitly attempts to recognize all data labeled as negative in our
bags. Since we initialize this detector with the strongly labeled data, we know precisely
which regions correspond to background.

This can be summarized as the following intermediate sub-problem for objective (2):

min
wq ,φ

q∈{CS ,b}

∑
q

[
Γ(wq) + α

∑
I∈S

∑
i∈RI

`(yqi ,w
T
q φ(xi))

]
(4)

This is accomplished by fine-tuning our CNN architecture with the strongly labeled data,
while keeping the detection weights for the categories with only weakly labeled data fixed.
We will call this method as ‘LSDA rep only ’ in our experiments.
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3.3 Adapting category specific representation and detection parameters

Finally, we seek to adapt the category dependent representation and model parameters for
the categories in our weakly labeled set, CW . We will present two approaches to this problem
of learning detection weights for weak categories. Specifically, we aim to update the weakly
labeled category specific parameters. Section 3.3.1 presents a heuristic adaptation approach
that requires no further CNN training with gradient descent and updates only the weakly
labeled classification parameters. Section 3.3.2 describes a separate adaptation approach
that directly optimizes a subproblem of our overall objective (2). It uses multiple instance
learning to discover localized labeled regions in the weakly labeled training data and uses
the discovered labels to adapt both the representation and the classification parameters for
categories in the weakly labeled set.

3.3.1 K-nearest neighbors based adaptation

In this section, we describe a technique for adapting the category specific parameters of
the classifier model into the detector model parameters that are better suited for use with
the detection feature representation based on a k-NN heuristic. We will determine a simi-
larity metric between each category in the weakly labeled set, CW , to the strongly labeled
categories, CS .

For simplicity, we separate the category specific output layer (8th layer of the network -
fc8) of the classification model into two components fcS and fcW , corresponding to model
parameters for the categories in the strongly labeled set CS and the weakly labeled set
CW , respectively. During our generic category adaptation of Section 3.1, we trained a new
background prediction layer, fcb.

For categories in set CS , adaptation to detectors can be learned directly through fine-
tuning the category specific model parameters fcS . This is equivalent to fixing fcS and
learning a new layer, zero initialized, δS, with equivalent loss to fcS , and adding together
the outputs of δS and fcS .

Let us define the weights of the output layer of the original classification network as W c,
and the weights of the output layer of the adapted detection network as W d. We know that
for a category i ∈ CS , the final detection weights should be computed as W d

i = W c
i + δSi.

However, since there is no strongly labeled data for categories in CW , we cannot directly
learn a corresponding δW layer during fine-tuning. Instead, we can approximate the fine-
tuning that would have occurred to fcW had strongly labeled data been available. We do
this by finding the nearest neighbors categories in set CS for each category in set CW and
applying the average change. We assume that there are categories in set CS that are similar
to those in set CW and therefore have similar weights and similar gradient descent updates.

Here we define nearest neighbors as those categories with the nearest (minimal Euclidean
distance) `2-normalized fc8 parameters in the classification network. This corresponds to
the classification model being most similar and hence, we assume, the detection model
should be most similar. We denote the kth nearest neighbor in set CS of category j ∈ CW
as NS(j, k), then we compute the final output detection weights for categories in set CW as:

∀j ∈ CW : W d
j = W c

j +
1

k

k∑
i=1

δSNS(j,i) (5)
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Thus, we adapt the category specific parameters even without bounding boxes for categories
in set CW . In section 5 we experiment with various values of k, including taking the full
average: k = |CS |. We will now refer to this method as ‘LSDA rep+kNN ’ in our experiments.

3.3.2 MIL training based adaptation

The previous section provides a technique for adapting the category specific model param-
eters for the weakly labeled categories without any further CNN training. However, we
may want to modify our representation and model parameters by explicitly retraining with
the weakly labeled data. To do this, we need to discover localization information from
the image-level labels. Therefore, we will begin by solving a multiple instance learning
(MIL) problem to discover the portion of each image most likely corresponding to the weak
image-level label.

With the representation, φ, that has now been directly tuned for detection, we fix the
parameter weights, φ(·) and solve for the regions of interest in each weak labeled image.
This corresponds to solving the following objective:

min
wp

p∈{CW ,b}

∑
p

[
Γ(wp) + α

∑
I∈W
F(Y p

I ,wp)

]
(6)

F = max
i∈RI

wT
p φ(xi) (7)

Note, we can decouple this optimization problem and independently solve for each category
in our weakly labeled data set, p ∈ CW . Let’s consider a single category p. Our goal is to
minimize the loss for category p over images I ∈ W. We will do this by considering two
cases. First, if p is not in the weak label set of an image (Y p

I = −1), then all regions in that
image should be considered negative for category p. Second, if Y p

I = 1, then we positively
label a region xi if it has the highest confidence of containing object and negatively label
all other regions. We perform the discovery of this top region in two steps. At first, we
narrow down the set of candidate bounding boxes using the score, wT

p φ(xi), from our fixed
representation and detectors from the previous optimization step. This set is then refined to
estimate the most likely region to contain a positive instance in a Latent SVM formulation.
The implementation details are discussed section 5.4.

Our final optimization step is to use the discovered bounding boxes from our weak
dataset to refine our detectors and feature representation from the previous optimization
step. This amounts to the subsequent step for minimization of the joint objective described
in Equation (2). We collectively utilize the strong labels of images in S and estimated
bounding boxes for the weakly labeled set, W, to optimize for detector weights and feature
representation, as follows:

min
wk,φ
k∈{C,b}

∑
k

[
Γ(wk) + α

∑
I∈{W∪S}

∑
i∈RI

`(yki ,w
T
k φ(xi))

]
(8)

This is achieved by re-finetuning the CNN architecture. This final method is referred to as
‘LSDA rep+joint ft ’ in our experiments.
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Thus, the overall non-convex objective (2) is first approximated through initialization
in (3). This initialization is then used to solve the sequential optimization problems defined
in (4) and (6). Further, we present two ways to solve (6): k-NN based heuristic approach
in (5) and MIL-based re-training approach in (7).

The sub-problem defined in (4) decreases the loss for strongly labeled categories and
(8) decreases the loss for both weak-strong categories. Thus, this ensures that the overall
objective (2) decreases. The refined detector weights and representation can be used to
discover the bounding box annotations for weakly labeled data again, and this process
can be iterated over (see Figure 2). We discuss re-training strategies and evaluate the
contribution of this final optimization step in Section 5.5.

3.4 Detection with LSDA models

We now describe how our adapted network is used for detection at test time (depicted in
Figure 3). For each test image we extract region proposals and generate K + 1 scores per
region (similar to the R-CNN (Girshick et al., 2014) pipeline), one score for each category
and an additional score for the background category. The score is generated by passing the
properly warped image patch through our adapted representation layers and then through
one of our proposed category specific adapted layers (described in the previous sections).
Finally, for a given region, the score for category i is computed by linearly combining the
per category score with the background score: scorei − scorebg.

input image region 
proposals

warped 
region

LSDA rep 
(Section 3.1)

fcb

fcW

knn 
adapt

fcS

�S

cat: 0.90

dog: 0.45

+

bg: 0.25

fcb

fcW

fcS

bg: 0.16

cat: 0.93

dog: 0.32

Network 1 
LSDA kNN  

(Section 3.2.1)

Network 2 
LSDA joint ft  
(Section 3.2.2)

…
…

…
…

produce  
predictions

cat

produce  
predictions

cat

Figure 3: Detection with the LSDA network (test time). Given an image, extract region
proposals, reshape the regions to fit into the network size and pass through our adapted
network. Use the adapted representation and the category specific adaptation either through
the no retraining nearest neighbor method or by retraining with our MIL based method.
Finally produce detection scores per category for the region by considering background and
category scores.

In contrast to the R-CNN (Girshick et al., 2014) model which trains SVMs on the
extracted features from layer 7 and bounding box regression on the extracted features from
layer 5, we directly use the final score vector to produce the prediction scores without
either of the retraining steps. This choice results in a small performance loss, but offers the
flexibility of being able to directly combine the classification portion of the network that
has no detection labeled data, and reduces the training time from 3 days to roughly 5.5
hours.
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4. Recognition Beyond Detection

In the previous section we outline an algorithm for producing weakly supervised detection
models which label and coarsely localize objects in scene-centric images. While a bounding
box around an object offers significantly more information than an image-level label, it is not
sufficiently localized for tasks such as robotic manipulation and full scene parsing. Instead,
we would like to produce semantic segmentation models which are capable of labeling each
pixel in an image with the object category or background label.

Prior work has shown that convolutional networks can also be applied to arbitrary-sized
inputs to allow for per-pixel spatial output. For example, Matan et al. (1992) augmented
the LeNet digit classification model (LeCun et al., 1989), enabling recognition of strings of
digits, and Wolf and Platt (1994) use networks to output 2-dimensional maps in order to
identify the locations of postal address blocks. This technique has been used to produce
semantic segmentation outputs of C. elegans (Ning et al., 2005) and more recently for
generic object categories (Long et al., 2015). These “fully convolutional” networks can
also be finetuned end-to-end on segmentation ground truth to produce fully supervised
segmentation models (Long et al., 2015).

As we would like to produce pixel level labels from our LSDA model, we will build off
of our recent work for object category semantic segmentation (Long et al., 2015). However,
Long et al. (2015) requires full semantic segmentation (pixel-level) annotations to train the
corresponding fully connected network. This form of supervision is particularly expensive
to collect and in general very few data sources exist with these annotations.

Instead, we argue that much of the knowledge gained through training with pixel-level
annotations can be transferred from the much weaker bounding box annotations. There-
fore, we demonstrate that a reasonable semantic segmentation is possible by directly using
detection parameters in a fully convolutional framework. Further, we show that even our
weakly supervised detection models presented in the previous section are able to localize
objects more precisely than a bounding box, despite never receiving pixel-level annotations
and for many categories never even receiving bounding box annotations.

To produce such a network we take our final adapted LSDA model, which for the purpose
of our experiments was trained using an AlexNet basic architecture (Krizhevsky et al., 2012),
and we convert the model into the corresponding fully convolutional 32 stride network (FCN-
32s) presented by Long et al. (2015). This amounts to relatively few changes to the network
architecture. First, each input image is paded with 100 pixels before features are extracted.
Next each of the three fully connected layers are converted into convolutional layers, where
layer 6 has 4096 convolutions with 6×6 sized kernels, layer 7 has 4096 convolutions with 1×1
sized kernels, and the final score layer has K+1 convolutions with 1×1 sized kernels (where
K is the number of categories, plus one for background). Finally, additional deconvolution
and crop layers are added which upsample the score map produced by the 8th layer (bilinear
interpolation) and crops the pixel level score map to be the size of the input image. This
means the final output of the network is a score per category per pixel, which allows us to
perform semantic segmentation.
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5. Experiments

To demonstrate the effectiveness of our approach we present quantitative results on the
ILSVRC2013 detection dataset. The dataset offers images exhaustively labeled with bound-
ing box annotations for 200 relevant object categories. The training set has ∼400K labeled
images and on average 1.534 object classes per image. The validation set has 20K labeled
images with ∼50K labeled objects. We simulate having access to weak labels for all 200
categories and having strong labels for only the first 100 categories (alphabetically sorted).

5.1 Experiment Setup & Implementation Details

We start by separating our data into classification and detection sets for training and a
validation set for testing. Since the ILSVRC2013 training set has on average fewer objects
per image than the validation set, we use this data as our classification data. To balance the
categories we use ≈1000 images per class (200,000 total images). Note: for classification
data we only have access to a single image-level annotation that gives a category label. In
effect, since the training set may contain multiple objects, this single full-image label is
a weak label, even compared to other classification training data sets. Next, we split the
ILSVRC2013 validation set in half as (Girshick et al., 2014) did, producing two sets: val1
and val2. To construct our detection training set, we take the images with bounding box
labels from val1 for only the first 100 categories (≈ 5000 images). Since the validation set
is relatively small, we augment our detection set with 1000 bounding box labeled images
per category from the ILSVRC2013 training set (following the protocol of (Girshick et al.,
2014)). Finally we use the second half of the ILSVRC2013 validation set (val2) for our
evaluation.

We implemented our CNN architectures and execute all fine-tuning using the open
source software package Caffe (Jia et al., 2014) and have made our model definitions weights
publicly available.

Train
Num images 395905
Num objects 345854

Val
Num images 20121
Num objects 55502

Table 1: Statistics of the ILSVRC13 detection dataset. Training set has fewer objects per
image than validation set.

We use the ILSVRC13 detection dataset (Russakovsky et al., 2014) for our experiments.
This dataset provides bounding box annotations for 200 categories. The dataset is separated
into three pieces: train, val, test (see Table 1). The training images have fewer objects
per image on an average than validation set images, so they constitute classification style
data (Hoffman et al., 2014). Following prior work (Girshick et al., 2014), we use the further
separation of the validation set into val1 and val2. Overall, we use the train and val1 set
for our training data source and evaluate our performance of the data in val2.
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Layers Adapted using Strongly mAP (%) mAP (%)
Labeled Data Weak Categories All Categories

No Adapt (Classification Network) 10.31 11.90
fcbgrnd 12.22 13.60
fcbgrnd, fc6 13.72 19.20
fcbgrnd, fc7 14.57 19.00
fcbgrnd, fcS 11.74 14.90
fcbgrnd, fc6, fc7 14.20 20.00
fcbgrnd, fc6, fc7, fcS 14.42 20.40
fcbgrnd, layers 1-7, fcS 15.85 21.83

Table 2: Ablation study for different techniques for category independent adaptation of our
model (LSDA rep only). We consider training with the first 100 (alphabetically) categories
of the ILSVRC2013 detection validation set (on val1) and report mean average precision
(mAP) over the 100 weakly labeled categories (on val2). We find the best improvement is
from fine-tuning all layers.

5.2 Quantitative Analysis of Adapted Representation

We evaluate the importance of each component of our algorithm through an ablation study.
As a baseline, we consider training the network with only the weakly labeled data (no
adaptation) and applying the network to the region proposals.

In Table 2, we present a detailed analysis of the different category independent adap-
tation techniques we could use to train the network. We call this method LSDA rep only.
We find that the best category invariant adaptation approach is to learn the background
category layer and adapt all convolutional and fully connected layers, bringing mAP on the
weakly labeled categories from 10.31% up to 15.85% i.e. this achieves a 54% relative mAP
boost over the classification only network. We later observe that the most important step of
our algorithm proved to be adapting the feature representation, while the least important
was adapting the category specific parameter. This fits with our intuition that the main
benefit of our approach is to transfer category invariant information from categories with
known bounding box annotation to those without the bounding box annotations.

We find that one of the biggest reasons our algorithm improves is from reducing local-
ization error. For example, in Figure 4, we show that while the classification only trained
net tends to focus on the most discriminative part of an object (ex: face of an animal) after
our adaptation, we learn to localize the whole object (ex: entire body of the animal).

5.3 Error Analysis on Weakly Labeled Categories

We next present an analysis of the types of errors that our system (LSDA) makes on the
weakly labeled object categories. First, in Figure 5, we consider three types of false positive
errors: Loc (localization errors), BG (confusion with background), and Oth (other error
types, which is essentially correctly localizing an object, but misclassifying it). After sepa-
rating all false positives into one of these three error types we visually show the percentage
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Figure 4: We show example detections on weakly labeled categories, for which we have
no detection training data, where LSDA (shown with green box) correctly localizes
and labels the object of interest, while the classification network baseline (shown in red)
incorrectly localizes the object. This demonstrates that our algorithm learns to adapt the
classifier into a detector which is sensitive to localization and background rejection.

of errors found in each type as you look at the top scoring 25-3200 false positives.1 We con-
sider the baseline of starting with the classification only network and show the false positive
breakdown in Figure 5a. Note that the majority of false positive errors are confusion with
background and localization errors. In contrast, after adapting the network using LSDA
we find that the errors found in the top false positives are far less due to localization and
background confusion (see Figure 5b). Arguably one of the biggest differences between clas-
sification and detection is the ability to accurately localize objects and reject background.
Therefore, we show that our method successfully adapts the classification parameters to be
more suitable for detection.
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(b) LSDA rep+knn

Figure 5: Comparison of error type breakdown on the categories which have no training
bounding boxes available (weakly labeled data). After adapting all the layers in the network
(LSDA), the percentage of false positive errors due to localization and background confusion
is reduced (b) as compared to directly using the classification network for detection (a).

1. We modified the analysis software made available by Hoeim et al. (2012) to work on ILSVRC-2013
detection
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In Figure 6, we show examples of the top scoring Oth error types for LSDA on the weakly
labeled data. This means the detector localizes an incorrect object type. For example, the
motorcycle detector localized and mislabeled bicycle and the lemon detector localized and
mislabeled an orange. In general, we noticed that many of the top false positives from the
Oth error type were confusion with very similar categories. This is discussed in detail in
next subsection.

microphone (sim): ov=0.00  1−r=−3.00

microphone

miniskirt (sim): ov=0.00  1−r=−1.00
miniskirt

motorcycle (sim): ov=0.00  1−r=−6.00

motorcycle

mushroom (sim): ov=0.00  1−r=−8.00

mushroom

nail (sim): ov=0.00  1−r=−4.00
nail

laptop (sim): ov=0.00  1−r=−3.00
laptop

lemon (sim): ov=0.00  1−r=−5.00

lemon

Figure 6: Examples of the top scoring false positives from our LSDA rep+knn network.
Many of our top scoring false positives come from confusion with other categories.

5.4 Analysis of Discovered Boxes

We now analyze the quality of boxes discovered using adaptation of all layers including
the background class. One of the key components of our system is using strong labels
from auxiliary tasks to learn a representation where it’s possible to discover bounding
boxes that correspond to the objects of interest in our weakly labeled data source. We
begin our analysis by studying the bounding box discovery that our feature space enables,
using selective search (Uijlings et al., 2013) to produce candidate regions. We optimize
the bounding box discovery (Equations (6),(7)) using a one vs all Latent SVM formulation
and optimize the formulation for AUC criterion (Bilen et al., 2014). This ensures that
the top candidate regions chosen for joint fine-tuning have high precision. The feature
descriptor used is the output of the fully connected layer, fc7, of the CNN which is produced
after fine-tuning the feature representation with strongly labeled data from auxiliary tasks.
Following our alternating minimization approach, these discovered top boxes are then used
to re-estimate the weights and feature representations of our CNN architecture.

CorLoc over full dataset Localization mAP (%)
ov=0.3 ov=0.5 ov=0.7 ov=0.9 ov=0.5

Classification Network 29.63 26.10 24.28 23.43 13.13
LSDA rep only 32.69 28.81 26.27 24.78 22.81

Table 3: CorLoc over dataset and localization mAP (i.e. given the labels) performance of
discovered bounding boxes in our weakly labeled training set (val1) of ILSVRC13 detection
dataset. Comparison with varying amount of overlap with ground truth box. About 25%
of our discovered boxes have an overlap of at least 0.9. Our method is able to significantly
improve the quality of discovered boxes after incorporating strong labels from auxiliary
tasks.

To evaluate the quality of discovered boxes, we do ablation study analyzing their overlap
with ground truth which is measured using the standard intersection over union (IOU)
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metric. Table 3 reports the CorLoc for varying overlapping thresholds. CorLoc across full
dataset is defined as the accuracy of discovered boxes i.e. the accuracy that the box is
correctly localized per image at different thresholds. Our optimization approach produces
one positive bounding box per image with a weak label, and a discovered box is considered
a true positive if it overlaps sufficiently with the ground truth box that corresponds to
that label. Since each bounding box, once discovered, is considered an equivalent positive
(regardless of score) for the purpose of retraining the ‘LSDA rep only ’ model, this simple
CorLoc metric is a good indication of the usefulness of our discovered bounding boxes. We
note here that after re-training with our mined boxes the CorLoc will further improved,
as indicated in the detection mAP reported in the next section. It is interesting that a
significant fraction of discovered boxes have high overlap with the ground truth regions. For
reference, we also computed the standard mean average precision over the discovered boxes
for localization task i.e. when label is known. It is important to note that the improvement
in localization mAP is much more significant than the CorLoc. This is because mAP is
obtained by averaging over recall values, and the ‘LSDA rep only ’ model achieves better
overall recall than the ‘Classification Network ’ model.

It is important to understand not only that our new feature space improves the quality
of the resulting bounding boxes, but also what type of errors our method reduces. In
Figure 7, we show the top 5 scoring discovered bounding boxes before and after modifying
the feature space with strong labels from auxiliary tasks. We find that in many cases
the improvement comes from better localization. For example without auxiliary strong
labels we mostly discover the face of a lion rather than the body that we discover after our
algorithm. Interestingly, there is also an issue with co-occurring classes. We are better able
to localize “lion” body rather than the face. Most amazing results are for the “ping-pong”
and “rugby” (second and third row) category where we are actually able to mine boxes for
the racket and ball, while the classification net could only get the person boxes which is
incorrect. Once we incorporate strong labels from auxiliary tasks we begin to be able to
distinguish the person playing from the racket/ball itself. In the bottom row of Figure 7, we
show the top 5 discovered bounding boxes for “tennis racket” where we are partially able
to correct the images. Finally, there are some example discovered bounding boxes where
we reduce quality after incorporating the strong labels from auxiliary tasks. For example,
one of our strongly labeled categories is “computer keyboard”. Due to the strong training
with keyboard images, some of our discovered boxes for “laptop” start to have higher scores
on the keyboard rather than the whole laptop (see Figure 8). Also for the “water-craft”
category, our adapted network ignores the mast but better localizes the boat itself. which
slightly decreases the IOU of obtained box.

5.5 Detection Performance on ILSVRC13

Now that we have analyzed the intermediate result of our algorithm, we next study the full
performance of our system. Figure 9 shows the mean average precision (mAP) percentage
computed over the categories in val2 of ILSVRC13 for which we only have weakly labeled
training data (categories 101-200). Previous method, LCL (Wang et al., 2014), detects in
the standard weakly supervised setting – having no bounding box annotations for any of the
200 categories. This method also only reports results across all 200 categories on the full
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Figure 7: Example discovered bounding boxes learned using our method. Left side shows
the discovered boxes after fine-tuning with images in classification settings only, and right
side shows the discovered boxes after fine-tuning with auxiliary strongly labeled dataset.
We show top 5 discovered boxes across the dataset for corresponding category. Examples
with a green outline are categories for which our algorithm was able to correctly discover
bounding boxes of the object, while the feature space with only weak label training was
not able to produce correct boxes. After incorporating the strong labels from auxiliary
tasks, our method starts discovering “ping-pong” racket/ball and “rugby” ball, though still
has some confusion with the person playing tennis. None of the discovered boxes from the
original feature space correctly located racket/ball and instead included the person as well.
In yellow we highlight the specific example of “tennis racket”, where some of the boxes get
corrected not all top boxes.
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(a) Non-adapted representation (b) Adapted representation (LSDA rep only)

Figure 8: Example discovered boxes of the category “laptop” where using auxiliary strongly
labeled data causes bounding box discovery to diverge. Left : The discovered boxes obtained
after fine-tuning with images in classification settings only. Right : The discovered boxes
obtained after fine-tuning with the auxiliary strongly labeled dataset that contains the
category “computer keyboard”. These boxes were low scoring examples, but we show them
here to demonstrate a potential failure case – specifically, when one of the strongly labeled
classes is a part of one of the weakly labeled classes. In the second example, adapted network
better localizes the “water-craft” but misses the mast which decreases the IOU slightly.
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Figure 9: Comparison of mAP (%) for categories without any bounding box annotations
(101-200 of val2) of ILSVRC13. The Joint representation and category-specific learning
using MIL outperforms all other approaches. *As a reference we report the performance of
LCL (Wang et al., 2014) which was computed across all 200 categories of the full validation
set (val1+val2).

validation set. Our experiments indicate that the first 100 categories are easier on average
then the second 100 categories, therefore the 6.0% mAP may actually be an upper bound
of the performance of this approach. We also compare our algorithm against the scenario
when the class-specific layer is adapted using nearest neighbors across all categories (LSDA
rep+knn). The joint representation and multiple instance learning approach achieves the
highest results (LSDA rep+joint ft).

We next consider different re-training strategies for learning new features and detection
weights after discovering the bounding boxes in the weakly labeled data. Table 4 reports the
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Category Specific mAP (%) mAP (%)
Adaptation Strategy Weak Categories All Categories

LSDA rep only 15.85 21.83
LSDA rep+kNN (k=5) 15.97 22.05
LSDA rep+kNN (k=10) 16.15 22.05
LSDA rep+kNN (k=100=|fcS |) 15.96 21.94
LSDA rep+joint ft (fcW) 17.01 22.43
LSDA rep+joint ft (all layers) 18.08 22.74

Baseline: Classification Network 10.31 11.90
Oracle: RCNN Full Detection Network 26.25 28.00

Table 4: Comparison of different ways to re-train after discovery of bounding boxes. We
show mAP on val2 set from ILSVRC13. We find that the most effective way to re-train
with discovered boxes is to modify the detectors and the feature representation.

mean average precision (mAP) percentage for no re-training (directly using the feature space
learned after incorporating the strong labels), LSDA rep only, no retraining but last layer
weights of weak categories adapted using nearest neighbors, LSDA rep+knn, re-training only
the category-specific detection parameters, LSDA rep+joint ft (fcW), and retraining feature
representations jointly with category-specific weights, LSDA rep+joint ft (all layers). In our
experiments the improved performance is due to the first iteration of the overall algorithm.
We find that the best approach is to jointly learn to refine the feature representation and the
category-specific detection weights. More specifically, we learn a new feature representation
by fine-tuning all fully connected layers in the CNN architecture. The last row shows the
performance achievable by our detection network if it had access to bounding box annotated
data for all 200 categories, and serves as a performance upper bound.2 Our method achieves
18.08% mAP on weakly labeled categories as compared to 10.31% of baseline, but it is
still significantly lower than fully-supervised oracle which gives 26.25%.

We finally analyze examples where our full algorithm which jointly learns representa-
tion and class-specific layer using MIL (LSDA rep+joint ft) outperforms the previous ap-
proach where only representation is adapted without joint learning over weak labels (LSDA
rep+knn). Figure 10 shows a sample of the types of errors our algorithm improves on.
These include localization errors, confusion with other categories, and interestingly, confu-
sion with co-occurring categories. In particular, our algorithm provides improvement when
searching for a small object (ball or helmet) in a sports scene. Training only with weak
labels causes the previous state-of-the-art to confuse the player and the object, resulting in
a detection that includes both. Our algorithm is able to localize only the small object and
recognize that the player is a separate object of interest.

2. To achieve R-CNN performance requires additionally learning SVMs on the activations of layer 7 and
bounding box regression on the activations of layer 5. Each of these steps adds between 1-2mAP at high
computation cost and using the SVMs removes the adaptation capacity of the system.
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Figure 10: Examples where our algorithm after joint MIL adaptation (LSDA rep+joint ft)
outperforms the representation only adaptation (LSDA rep only). We show the top scoring
detection from LSDA rep only with a Red box and label, and the top scoring detection from
LSDA rep+joint ft, as a Green box and label. Our algorithm improves localization (ex:
rabbit, lion etc), confusion with other categories (ex: miniskirt vs maillot), and confusion
with co-occurring classes (ex: volleyball vs volleyball player)

5.6 Large Scale Detection

To showcase the capabilities of our technique we produced a 7604 category detector. The
first categories correspond to the 200 categories from the ILSVRC2013 challenge dataset
which have bounding box labeled data available. The other 7404 categories correspond to
leaf nodes in the ImageNet database and are trained using the available full image weakly
labeled classification data. We trained a full detection network using the 200 strongly
labeled categories and trained the other 7404 last layer nodes using only the weak labels.
Note, the ImageNet dataset does contain other non-exhausitvely labeled images for around
3000 object categories, 1825 of which overlap with the 7404 leaf node categories in our
model. We do not use these labels during training of our large scale model. Quantitative
evaluation for these categories is difficult to compute since they are not exhaustively labeled,
however a followup work by Mrowca et al. (2015) evaluated F1 score of our model for the few
object instances labeled per image to be 9.59%. Also note that while we have no bounding
box annotations for the 7404 fine-grained categories, some may be related to the 200 basic
level categories for which we use bounding box data to train – for example a particular
breed of dog from 7404 weakly labeled data while ‘dog’ appears in the 200 strongly labeled
categories.

We show qualitative results of our large scale detector by displaying the top detections
per image in Figure 11. The results are filtered using non-max suppression across categories
to only show the highest scoring categories.

The main contribution of our algorithm is the joint representation and multiple instance
learning approach for modifying a convolutional neural network for detection. However, the
choice of network and how the net is used at test time both effect the detection time
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American bison: 7.0
taillight: 0.9

wheel and axle: 1.0car: 6.0

whippet: 2.0
dog: 4.1

sofa: 8.0

Figure 11: Example top detections from our 7604 category detector. Detections from the
200 categories that have bounding box training data available are shown in blue. Detections
from the remaining 7404 categories for which only weakly labeled data is available are shown
in red.

computation. We have therefore also implemented and released a version of our algorithm
running with fast region proposals (Krähenbühl and Koltun, 2014) on a spatial pyramid
pooling network (He et al., 2014), reducing our detection time down to half a second per
image (from 4s per image) with nearly the same performance. We hope that this will allow
the use of our 7.6K model on large data sources such as videos. We have released the
7.6K model and code to run detection (both the way presented in this paper and our faster
version) at lsda.berkeleyvision.org.

5.7 Fully Convolutional LSDA for Semantic Segmentation

Bounding boxes localize objects to an inherently limited degree. While the system presented
so far produces remarkably accurate bounding boxes from weak training labels, it does not
address the ultimate goal of knowing exactly which pixels correspond to which objects.

Segmentation ground truth is unavailable for all but a few of the 7604 categories in our
large scale detector, and segmentations are even more costly to annotate than bounding
boxes. Nevertheless, as described in Section 5.7, we can convert our detection-adapted
network into a fully-convolutional model following Long et al. (2015) and produce dense
outputs for each of the 7604 categories plus 1 for background. We call this model LSDA7k
FCN-32s since we use the 32 stride version of the fully convolutional networks proposed in
Long et al. (2015). We next evaluate our semantic segmentation model using the PASCAL
dataset Everingham et al. (2010) and the following metrics.

Metrics We compute both the commonly used mean intersection over union (mean IU)
metric for semantic segmentation as well as three other metrics used by Long et al. (2015).
The metrics are defined below, where nij denotes the number of pixels from class i predicted
to belong to class j so that the number of pixels belonging to class i are mi =

∑
j nij , and

K denotes the number of classes.

• pixel accuracy:
∑

i nii/
∑

imi

• mean accuracy: 1/K
∑

i nii/ti

• mean IU: 1/K
∑

i nii/(mi +
∑

j nji − nii)
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• frequency weighted IU: (
∑

lml)
−1
∑

iminii/(mi +
∑

j nji − nii)

We would like to understand how well our model can localize weakly trained objects so for
each of the PASCAL 20 object categories we manually find the set of fine-grained categories
from the 7404 weakly labeled leaf nodes in ImageNet that correspond to that category. Since
layer 8 of our LSDA7k FCN-32s network produces 7605 outputs per region of the image, we
insert an additional mapping layer which for each category c is the maximum score across all
weakly labeled categories which correspond to that PASCAL category. Next, this reduced
score map where each image region now has 21 scores is run through the deconvolution layer
to produce the corresponding PASCAL per pixel scores. Finally, for each pixel we choose a
label based on which of the categories or background has the highest pixel score.

We report results on both the PASCAL 2011 and 2012 validation sets. Note, our method
was not trained on any PASCAL images and in general was trained for classification of 7404
fine-grained categories and then adapted using our algorithm for detection. Additionally,
our model is trained using the AlexNet architecture while most state-of-the-art semantic
segmentation models are trained using the larger VGG network (Simonyan and Zisserman,
2014).

For the PASCAL 2011 validation set, shown in Table 5, we first compare against the
classification model trained for the 7404 category full image labels. We run this model
fully convolutionally using the FCN-32s approach (AlexNet) and report the segmentation
performance in the first row as Classification 7K FCN-32s (AlexNet). This method gives
a baseline for our LSDA approach which uses this model as the initialization prior to our
adaptation approach. Next, we compare against the reported performance of the weakly
trained models of Pathak et al. (2014) and for reference, the fully supervised AlexNet and
VGG FCN-32s presented by Long et al. (2015). We report all four metrics for our work
and report all available metrics for competing works. We see that our weakly trained model
outperforms the baseline classification model run fully convolutionally and almost reaches
the performance of the MIL-FCN method which uses the higher capacity VGG model and
trains specifically for the segmentation task.

The per-category results of our method on the PASCAL 2012 validation set as compared
to two state-of-the-art weakly trained semantic segmentation models is shown in Table 6.
Not surprisingly, our LSDA7k FCN-32s underperforms these methods. No doubt adding
the multiple instance loss of Pathak et al. (2014) or the object constraints of Pathak et al.
(2015), while training directly on the PASCAL dataset would further improve our method.
The purpose of these experiments is to give the reader an accurate picture of how well
our large scale model performs at pixel level annotation without any tuning to the new
situation.

We next show qualitative segmentation segmentation results across the fine-grained
7404 categories of our LSDA7k FCN-32s network in Figure 123 and compare against the
baseline Classification 7K FCN-32s network. We find that often the segmentation masks
from our LSDA network are more precise (see “American egret” example) and the top
scoring predicted class is often more accurately labeled. For example, the bottom image is
labeled as “air conditioner” by the classification network and correctly as “venetian blind”
by our network. These category models were trained without ever seeing any associated

3. The full network without the mapping layer to pascal 20 categories.
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Scottish deerhound Scotch terrier

American egret American egret

iron horse steam locomotive

catboat lugger

Great Dane levee

air conditioner Venetian blind

Figure 12: We show here qualitative semantic segmenation results comparing our LSDA7k
FCN-32s network with the baseline Classification 7k FCN-32s network. Each row shows
(from left to right) a test image, predicted heatmap of top scoring class from the classification
network, rough segmentation from the classification network, predicted heatmap of the top
scoring class from our LSDA network, and the corresponding rough segmentation from
the LSDA network. Each segment mask is obtained using a single fixed threshold across
all classes (e5/6) and for both methods. These examples are selected to illustrate segment
quality when the predicted label is reasonable. Although segment quality is far from perfect,
it is impressive given that only full-image ground truth labels were available for these
categories.
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Method pixel acc mean acc mean IU f.w. IU

Classification 7k FCN-32s (AlexNet) 13.3 43.2 11.6 6.7

MIL-FCN (VGG) (Pathak et al., 2014) - - 25.0 -

LSDA7k FCN-32s (AlexNet) 70.6 35.5 21.3 59.2

FCN-32s (supervised AlexNet)(Long et al., 2015) 85.8 61.7 48.0 76.5

FCN-32s (supervised VGG)(Long et al., 2015) 89.1 73.3 59.4 81.4

Table 5: Semantic Segmentation Results for PASCAL 2011 validation set.
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EM Adapt (VGG) (Papandreou et al., 2015) 65.0 27.9 17.0 26.5 21.2 29.2 48.0 44.8 43.8 15.0 33.8 25.0 39.9 34.0 41.3 31.8 22.9 35.2 23.2 39.3 30.4 33.1

CCNN (VGG) (Pathak et al., 2015) 65.9 23.8 17.6 22.8 19.4 36.2 47.3 46.9 47.0 16.3 36.1 22.2 43.2 33.7 44.9 39.8 29.9 33.4 22.2 38.8 36.3 34.5

LSDA7k FCN-32s (AlexNet) 74.6 17.1 16.1 9.6 7.7 18.5 10.4 27.3 20.8 7.3 9.9 5.5 19.0 12.7 8.5 19.3 14.8 15.2 12.7 20.5 15.2 17.3

Table 6: Semantic Segmentation Results (mean IU%) for PASCAL 2012 validation set.

pixel-level annotations and only potentially see bounding box annotations for related classes
(ex: a “dog” bounding box may be used in training but not a “dalmation”). We expect
that further adaptation with a multiple instance loss or given a small amount of pixel-
level semantic segmentation training data would further refine our models producing tigher
object localization.

6. Conclusion

We have presented an algorithm that is capable of transforming a classifier into a detector.
Our multi-stage algorithm uses corresponding weakly labeled (image-level annotated) and
strongly labeled (bounding box annotated) data to learn the change from a classification
CNN network to a detection CNN network, and applies that difference to future classi-
fiers for which there is no available strongly labeled data. We then further demonstrate
that our adapted detection models can be run fully convolutionally to produce a semantic
segmentation model.

Our method jointly trains a feature representation and detectors for categories with only
weakly labeled data. We use the insight that strongly labeled data from auxiliary tasks can
be used to train a feature representation that is conducive to discovering bounding boxes
in weakly labeled data. We demonstrate using a standard detection dataset (ILSVRC13
detection) that our method of incorporating the strongly labeled data from auxiliary tasks
is very effective at improving the quality of the discovered bounding boxes. We then use
all strong labels along with our discovered bounding boxes to further refine our feature
representation and produce our final detectors. We show that our full detection algorithm
significantly outperforms both the previous state-of-the-art methods which uses only weakly
labeled data, as well as the algorithm which uses strongly labeled data from auxiliary tasks,
but does not incorporate any MIL for the weak tasks.

We show quantitatively that without seeing any bounding box annotated data, we can
increase performance of a classification network by 50% relative improvement using our
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adaptation algorithm. Given the significant improvement on the weakly labeled categories,
our algorithm enables detection of tens of thousands of categories. We produce a 7.6K
category detector and have released both code and models at lsda.berkeleyvision.org.

Our approach significantly reduces the overhead of producing a high quality detector.
We hope that in doing so we will be able to minimize the gap between having strong large-
scale classifiers and strong large-scale detectors. Further we show that large-scale detectors
can be used to produce large-scale semantic segmenters. We present semantic segmentation
performance for the large scale model on PASCAL VOC with a manual mapping from the
7404 weakly labeled object categories to the 20 categories in the PASCAL dataset. For
future work we would like to experiment with incorporating some pixel-level annotations
for a few object categories. Our intuition is that by doing so we will be able to further
improve our large-scale models with minimal extra supervision.
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