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Abstract

Multi-task learning (MTL) aims to improve generalization performance by learning multi-
ple related tasks simultaneously. While sometimes the underlying task relationship struc-
ture is known, often the structure needs to be estimated from data at hand. In this paper,
we present a novel family of models for MTL, applicable to regression and classification
problems, capable of learning the structure of tasks relationship. In particular, we consider
a joint estimation problem of the tasks relationship structure and the individual task pa-
rameters, which is solved using alternating minimization. The task relationship revealed
by structure learning is founded on recent advances in Gaussian graphical models endowed
with sparse estimators of the precision (inverse covariance) matrix. An extension to include
flexible Gaussian copula models that relaxes the Gaussian marginal assumption is also pro-
posed. We illustrate the effectiveness of the proposed model on a variety of synthetic and
benchmark data sets for regression and classification. We also consider the problem of com-
bining Earth System Model (ESM) outputs for better projections of future climate, with
focus on projections of temperature by combining ESMs in South and North America, and
show that the proposed model outperforms several existing methods for the problem.

Keywords: multi-task learning, structure learning, Gaussian copula, probabilistic graph-
ical model, sparse modeling

1. Introduction

In multi-task learning (MTL) one can benefit from the knowledge of the underlying structure
relating the learning tasks while carrying them out simultaneously. In situations where
some tasks might be highly dependent on each other, the strategy of isolating each task
will not be helpful in exploiting the potential information one might acquire from other
related tasks. The last few years experienced an increase of activity in this area where
new methods and applications have been proposed. From the methods perspective, there
have been contributions devoted to novel formulations to describe task structure and to
incorporate them into the learning framework (Evgeniou and Pontil, [2004; Ji and Ye, [2009;
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Kim and Xing, 2010; Kumar and Daume 111, 2012} [Yang et al., 2013). Meanwhile MTL has
been applied to problems ranging from object detection in computer vision, going through
web image and video search (Wang et al., 2009)), and achieving multiple microarray data
set integration in computational biology (Widmer and Réatsch) 2012]).

Much of the existing work in MTL assumes the existence of a priori knowledge about the
task relationship structure (see Section . However, in many problems there is only a high
level understanding of those relationships, and hence the structure of the task relationship
needs to be estimated from the data. Recently, there have been attempts to explicitly
model the relationship and incorporate it into the learning process (Zhang and Yeung, |2010;
Zhang and Schneider, 2010; Yang et al 2013). In the majority of these methods, the tasks
dependencies are represented as unknown hyper-parameters in hierarchical Bayesian models
and are estimated from the data. As will be discussed in Section [2, many of these methods
are either computationally expensive or restrictive on dependence structure complexity.

In structure learning, we estimate the (conditional) dependence structures between ran-
dom variables in a high-dimensional distribution, and major advances have been achieved in
the past few years (Banerjee et al., [2008; Friedman et al., 2008} |Cai et al., [2011; Wang et al.|
2013)). In particular, assuming sparsity in the conditional dependence structure, i.e., each
variable is dependent only on a few others, there are estimators based on convex (sparse)
optimization which are guaranteed to recover the correct dependence structure with high
probability, even when the number of samples is small compared to the number of variables.

In this paper, we present a family of models for MTL, for regression and classification
problems, which are capable of learning the structure of task relationships and parameters
for individual tasks. The problem is posed as a joint estimation where parameters of the
tasks and relationship structure are learned using alternating minimization. This paper is
an extension of our early work (Gongalves et al.; 2014)), as it further includes improvements
on the task relationship modeling and can now handle a wider spectrum of problems.

The relationship structure is modeled by either imposing a prior over the features across
tasks (Section or assuming correlated residuals (Section [3.7). We can use of a vari-
ety of methods from the structure learning literature to estimate the relationships. The
formulation can be extended to Gaussian copula models (Liu et al., |2009; Xue and Zoul,
2012)), which are more flexible as it does not rely on strict Gaussian assumptions and has
shown to be more robust to outliers. The resulting estimation problems are solved using
suitable first order methods, including proximal updates (Beck and Teboulle, 2009) and
alternating direction method of multipliers (Boyd et al., [2011). Based on our modeling, we
show that MTL can benefit from advances in the structure learning area. Moreover, any
future development in the area can be readily used in the context of MTL.

The proposed Multi-task Sparse Structure Learning (MSSL) approach has important
practical implications: given a set of tasks, one can just feed the data from all the tasks
without any knowledge or guidance on task relationship, and MSSL will figure out which
tasks are related and will also estimate task specific parameters. Through experiments on
a wide variety of data sets for multi-task regression and classification, we illustrate that
MSSL is competitive with and usually outperforms several baselines from the existing MTL
literature. Furthermore, the task relationships learned by MSSL are found to be accurate
and consistent with domain knowledge on the problem.
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In addition to evaluation on synthetic and benchmark data sets, we consider the problem
of predicting air surface temperature in South and North America. The goal here is to
combine outputs from Earth System Models (ESMs) reported by various countries to the
Intergovernmental Panel on Climate Change (IPCC), where the regression problem at each
geographical location forms a task. The weight on each model at each location forms the
“gkill” of that model, and the hope is that outputs from skillful models in each region can be
more reliable for future projections of temperature. MSSL is able to identify geographically
nearby regions as related tasks, which is meaningful for temperature prediction, without any
previous knowledge of the spatial location of the tasks, and outperforms baseline approaches.

The remainder of the paper is structured as follows. Section [2] briefly discusses the
related work in multi-task learning. Section [3| presents an overview and gentle introduction
to the proposed multi-task sparse structure learning (MSSL) approach. Section discusses
a specific form of MSSL where the task structure dependence is learned based on the task
coefficients. The MSSL is extended to the Gaussian copula MSSL in Section[3.6] Section [3.7]
discusses another specific form of MSSL where the task structure dependence is learned
based on the task residuals. Section [4] presents experimental results on regression and
classification using synthetic, benchmark, and climate data sets. We conclude in Section

Notation. We denote by m the number of tasks, d the problem dimension, supposed to be
the same for all learning tasks, and ny the number of samples for the k-th task. X € R xd
and y, € R™*! are the input and output data for the k-th task. Let W € R**™ be the
parameter matrix, where columns are vector parameters w;, € R%, k = 1,...,m, for the
tasks. (z)4+ = max(0,z). Let S be the set of p x p positive semidefinite matrices. For any
matrix A, tr(A) is the trace operator, ||A|; and ||A| r are the ¢;-norm and Frobenius norm
of A, respectively. A o B denotes the Hadamard (element-wise) product of the matrices A
and B. I, is the p x p identity matrix and 0,y is a matrix full of zeros. For an m-variate
random variable V' = (V4, ..., V), we denote by Wiy, ;1 the set of marginals except i and j.

2. Related Work

MTL has attracted a great deal of attention in the past few years and consequently many
algorithms have been proposed (Evgeniou and Pontil, 2004; Argyriou et al., 2007; Xue et al.)
2007; |[Jacob et al.| [2008; |Obozinski et al., [2010; [Zhou et al., [2011b} [Zhang and Yeung, [2010;
Yang et al., 2013; Gongalves et al.l [2014). We will present a general view of the methods
and discuss in more details those that are more related to ours.

The majority of the proposed methods fall into the class of regularized multi-task learn-
ing, which has the form

H\l}\ifn Z (ZE (f(x.%cvwk)vyllc)> + R(W)a
k=1 \i=1

where £(-) is the loss function such as squared, logistic, and hinge loss; R(W) is a reg-
ularization function for W that can be designed to enforce some sharing of information
between tasks. In such a context, the goal of MTL is to estimate the tasks parameters
W = [wy, ..., Wp,], while taking into account the underlying relationship among tasks.

The existing methods basically differ in the way the regularization R(W) is designed,
including the structural constraints imposed to matrix W and the relationship among the
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tasks. Some methods assume a fixed structure a priori, while others try to estimate it from
the data. In the following we present a representative set of methods from these categories.

2.1 MTL with All Tasks Related

One class of MTL methods assumes that all tasks are related and the information about
tasks are selectively shared among all tasks, with the hypothesized structure of the param-
eter matrix W controlling how the information is shared.

Evgeniou and Pontil (2004) considered the scenario that all tasks are related in a way
that the model parameters are close to some mean model. Motivated by the sparsity
inducing property of the ¢;-norm (Tibshirani, [1996), the idea of structured sparsity has
been widely explored in MTL algorithms. |Argyriou et al.| (2007) assumed that there exists
a subset of features that is shared for all the tasks and imposed an /5 1 —norm penalization
on the matrix W to select such set of features. In the dirty-model proposed in |Jalali
et al.|(2010) the matrix W is modeled as the sum of a group sparse and an element-wise
sparse matrix. The sparsity pattern is imposed by ¢, and ¢1-norm regularizations. Similar
decomposition was assumed in |Chen et al. (2010), but there W is a sum of an element-wise
sparse (¢1) and a low-rank (nuclear norm) matrix. The assumption that a low-dimensional
subspace is shared by all tasks is explored in |Ando et al.| (2005), Chen et al.| (2009), and
Obozinski et al.| (2010). For example, in Obozinski et al.| (2010)) a trace norm regularization
on W was used to select the common low-dimensional subspace.

2.2 MTL with Cluster Assumption

Another class of MTL methods assumes that not all tasks are related, but instead the
relatedness is in a group (cluster) structure, that is, mutually related tasks are in the same
cluster, while unrelated tasks belong to different clusters. Information is shared only by
those tasks belonging to the same cluster. The problem then involves estimating the number
of clusters and the matrix encoding the assignment cluster information.

In Bakker and Heskes (2003) task clustering was enforced by considering a mixture of
Gaussians as a prior over task parameters. Evgeniou et al.|(2005) proposed a task clustering
regularization to encode cluster information in the MTL formulation. Xue et al. (2007)
employed a Dirichlet process prior over the task coefficients to encourage task clustering
and the number of clusters was someway automatically determined by the prior.

2.3 MTL with Dependence Structure Learning

Recently, there have been some proposals to estimate and incorporate the dependence
among the tasks into the learning process. These methods are the most related to ours.

A matrix-variate normal distribution was used as a prior for W matrix in [Zhang and
Yeung (2010). The hyper-parameter for such a prior distribution captures the covariance
matrix (%) among all task coefficients. The resulting non-convex maximum a posteriori
problem is relaxed by restricting the model complexity. It has a positive side of making
the whole problem convex, but has the downside of significantly restricting the flexibility
of the task relatedness structure. Also, in|Zhang and Yeung (2010)), the task relationship is
modeled by the covariance among tasks, but uses the inverse (precision matrix, >l = Q)
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in the task parameter learning step, therefore, the inverse of the covariance matrix needed
to be computed at every iteration. We, on the other hand, do not constrain the complexity
of our model and also learn the inverse of the covariance matrix directly, which tends to be
more stable than computing covariance and then inverting it.

Zhang and Schneider| (2010) also used a matrix-variate normal prior over W. The two
matrix hyper-parameters explicitly represent the covariance among the features (assuming
the same feature relationships in all tasks) and covariance among the tasks, respectively.
Sparse inducing penalization on the inverse covariance €2 of both is added into the for-
mulation. Unlike Zhang and Yeung (2010), both matrices are learned in an alternating
minimization algorithm and can be computationally prohibitive in high dimensional prob-
lems due to the cost of modeling and estimating the feature covariance.

Yang et al.| (2013) also assumed a matrix normal prior for W. However, the row and
column covariance hyperparameters have a Matrix Generalized Inverse Gaussian (MGIG)
prior distribution. The mean of matrix W is factorized as the product of two matrices that
also has matrix-variate normal distribution as a prior. The model inference is done via a
variational Expectation Maximization (EM) algorithm. Due to the lack of a closed form
expression to compute statistics of the MGIG distribution, the method resort to the use of
sampling techniques, which can be slow for high-dimensional problems.

Rothman et al. (2010)) also enforced sparsity on both W and €. Similar to our residual-
based MSSL formulation, it differs in two aspects: (i) our formulation allows a richer class of
conditional distribution p(y|x), namely distributions in the exponential family, rather than
simply Gaussian; and (i) we employ a semiparametric Gaussian copula model to capture
task relationship, which does not rely of Gaussian assumption on the marginals and have
shown to be more robust to outliers (Liu et al., 2012), then traditional Gaussian model used
in[Rothman et al.[(2010). As will be seen in the experiments, the MSSL method with copula
models produced more accurate predictions. Rai et al. (2012) extended the formulation in
Rothman et al.| (2010) to model feature dependence, additionally to the task dependence
modeling. However, it is computationally prohibitive for high-dimensional problems, due
to the cost of estimating another precision matrix for feature dependence.

Zhou and Tao| (2014]) used copula as a richer class of conditional marginal distributions
p(yr|x). As copula models express the joint distribution p(y|x) from the set of marginal
distributions, this formulation allows marginals to have arbitrary continuous distributions.
Output correlation is exploited via the sparse inverse covariance in the copula function,
which is estimated by a procedure based on proximal algorithms. Our method also covers
a rich class of conditional distributions, the exponential family that includes Gaussian,
Bernoulli, Multinomial, Poisson, and Dirichlet, among others. We use Gaussian copula
models to capture tasks dependence, instead of explicitly modeling marginal distributions.

3. Multi-task Sparse Structure Learning

In this section we describe our multi-task Sparse Structure Learning (MSSL) method. As
our modeling is founded on structure estimation in Gaussian graphical models, we first
introduce the associated problem before presenting the proposed method.
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3.1 Structure Estimation in Gaussian Graphical Models

Here we describe the undirected graphical model used to capture the underlying linear
dependence structure of our multi-task learning framework.

Let V.= (Vi,...,Vi,) be an m-variate random vector with joint distribution p(V'). Such
distribution can be characterized by an undirected graph G = (V, ), where the vertex set
V represents the m covariates of V' and edge set £ represents the conditional dependence
relations between the covariates of V. If V; is conditionally independent of V; given the
other variables, then the edge (i,7) is not in £. Assuming V ~ AN(0, X), the missing edges
correspond to zeros in the inverse covariance matrix or precision matrix given by 37! = €,
ie., (271, = 0V(i,5) ¢ E (Lauritzen, [1996)).

Classical estimation approaches (Dempster, 1972) work well when m is small. Given,
that we have n i.i.d. samples vy,...,v, from the distribution, the empirical covariance
matrix is 3 = LS (v; —0)"(v; — ¥), where v = 23"  v;. However, when m > n,
3 is rank-deficient and its inverse cannot be used to estimate the precision matrix 2.
Nonetheless, for a sparse graph, i.e. most of the entries in the precision matrix are zero,
several methods exist to estimate € (Friedman et al., |2008; |Boyd et al., [2011)).

3.2 MSSL Formulation

For ease of exposition, let us consider a simple linear model for each task: y, = Xgwy + &,
where wy, is the parameter vector for task k and &, denotes the residual error. The pro-
posed MSSL method estimates both the task parameters wy, for all tasks and the structure
dependence, based on some information from each task. Further, the dependence structure
is used as inductive bias in the w;, learning process, aiming at improving the generalization
capability of the tasks.

We investigate and formalize two ways of learning the relationship structure (a graph
indicating the relationship among the tasks), represented by €: (a) modeling € from the
task specific parameters wy,Vk = 1,...,m and (b) modeling € from the residual errors
&, Vk =1,...,m. Based on how we model Q, we propose p-MSSL (from tasks parameters)
and r-MSSL (from residual error). Both models are discussed in the following sections.

At a high level, the estimation problem in such MSSL approaches takes the form:

min  L((Y,X), W) +B(W,Q) +R1(W) + R2(€), (1)

W,2-0
where L£(-) denotes suitable task specific loss function, B(-) is the inductive bias term, and
Ri(-) and Ra(-) are suitable sparsity inducing regularization terms. The interaction between
parameters wy and the relationship matrix € is captured by the B(-) term. Notably, when
Q. 1» = 0, the parameters w; and wys have no influence on each other. Sections to

delineate the modeling details behind MSSL algorithms and how it leads to the solution of
the optimization problem in .

3.3 Parameter Precision Structure

If the tasks are unrelated, one can learn the columns of the coefficient matrix W indepen-
dently for each of the m tasks. However, when there exist relationships among the m tasks,
learning the columns of W independently fails to capture these dependencies. In such a
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scenario, we propose to use the precision matrix € € R™*™ in order to capture pairwise
partial correlations between tasks.

In the parameter precision structure based MSSL (p-MSSL) model we assume that
features across tasks (rows w; of the matrix W) follows a multivariate Gaussian distribution
with zero mean and covariance matrix 3 , i.e., W; ~ N (0, %) Vj = 1,...,d, where £~ '=Q.
The problem of interest is to estimate both the parameters wi,...,w,, and the precision
matrix €2. By imposing such a prior over the rows of W, we are capable of explicitly
estimating the dependency structure among the tasks via the precision matrix €2.

With a multivariate Gaussian prior over the rows of W, its posterior can be written as

m ng d
p(W[(X,Y), ) HHP yk|xkvwk H (W;[€2), (2)
k=1i=1 j=1

where the first term in the right hand side denotes the conditional distribution of the
response given the input and parameters, and the second term denotes the prior over rows
of W. In this paper, we consider the penalized maximization of , assuming that the
parameter matrix W and the precision matrix € are sparse, i.e., contain few non-zero
elements. In the following, we provide two specific instantiations of this model. First,
we consider a Gaussian conditional distribution, wherein we obtain the well known least
squares regression problem (Section . Second, for discrete labeled data, choosing a
Bernoulli conditional distribution leads to a logistic regression problem (Section .

3.3.1 LEAST SQUARES REGRESSION

Assume that
p (yi| %k wi) =M (yi‘W;IX?C,U;z) ,

where it is considered for ease of exposition that the variance of the residuals a,% =1,Vk =
1,...,m, though it can be incorporated in the model and learned from the data. We can
write this optimization problem as minimization of the negative logarithm of , which
corresponds to a regularized linear regression problem

m ngk
. d 1 T
. E > ; 1 wj X} — yk —5 log || + gtr(WQW ).

Further, assuming that €2 and W are sparse, we add f;-norm regularizers over both
parameters. In the case one task has a much larger number of samples compared to the
others, it may dominate the empirical loss term. To avoid such bias we modify the cost
function and compute the weighted average of the empirical losses of the form

m nk
. 1 T i i)2 T
- w] xi — — dlog || + Aotr(WQW ) + A1 [|[W]|1 + Xo|©2 3
min glnk El( KXk~ Yk og |€2] + Aotr( )+ MW+ A21€2][1, (3)

where Mg, A1, and A9 > 0 are penalty parameters. The sparsity assumption on W is mo-
tivated by the fact that maybe some features are not relevant for discriminative purposes
and can then be dropped out from the model. Precision matrix € plays an important
role in Gaussian graphical models because its zero entries precisely capture the conditional
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independence, that is, ;; = 0 if and only if w; L Wj|W\{7;7j}. Then, enforcing sparsity on
Q will highlight the conditional independence among tasks parameters.

In this formulation, the term involving the trace of the outer product tr(WQW ) affects
the rows of W, such that if €2;; # 0, then w; and w; are constrained to be similar.

Although the problem is not jointly convex on W and €2, it is in fact biconvex, that is,
fixing €2 the problem is convex on W, and vice-versa. So, the associated biconvex function
in problem is split into two convex functions exhibited in and . Then, one can
use an alternating optimization procedure that updates W and €2 by fixing one of them
and solving the corresponding convex optimization problem (Gorski et al., 2007), given by

m 1 Nk ' '
FaWiX Y, 20, M) = ) — > (Wi xj, — yi)? + Aotr(WQW ') + Ay W]y, (4a)
=1 ko1
fw (X, Y, Ao, o) = Aotr(WQW ) — dlog || + Xo|92 1. (4b)

The alternating minimization algorithm proceeds as described in Algorithm The
procedure is guaranteed to converge to a partial optimum Gorski et al. (2007)), since the
original problem is biconvex and convex in each argument 2 and W.

Algorithm 1: Multitask Sparse Structure Learning (MSSL) algorithm

Data: {Xj,yi}it,- // training data for all tasks
Input: X\g, A1, Ao > 0. // penalty parameters chosen by cross-validation
Result: W, Q. // estimated parameters
begin
/* QU is initialized with identity matrix and */
/* WY with random numbers in [-0.5,0.5]. */
Initialize Q° and WY
t=1
repeat
Wi+l — argrr‘lgfnfﬂ(t) (W) // optimize W with Q fixed
QU+ — argménfw(tﬂ)(ﬂ) // optimize Q with W fixed
t=t+1
until stopping condition met

end

Update for W: The update step involving is an #1—regularized quadratic problem.
Thus the problem is an ¢1-penalized quadratic optimization program, which we solve using
established proximal gradient descent methods such as FISTA (Beck and Teboulle, [2009).
The W-step can be seen as a general case of the formulation in Subbian and Banerjee| (2013])
in the context of climate model combination, where in our proposal €2 is any positive definite
precision matrix, rather than a fixed Laplacian matrix as in Subbian and Banerjee (2013)).

In the class of proximal gradient methods the cost function hA(z) is decomposed as
h(z) = f(z) + g(z), where f(z) is a convex and smooth function and g(z) is convex and
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typically non-smooth. The accelerated proximal gradient iterates as follows

2= wi + W (W), —wi )
Wz—'rl = proxptg (Zt+1 _ ptvf (zt+l)) ,

()

where w! € [0, 1) is an extrapolation parameter and p’ is the step size. The w! parameter is
chosen as w! = (n; — 1) /m41, with nip1 = (1 + /1 +4n?)/2 as done in Beck and Teboulle
(2009) and p' can be computed by a line search. The proximal operator associated with
the ¢1-norm is the soft-thresholding operator

prox,: (x); = (|zi| — p')1sign(;) (6)

The convergence rate of the algorithm is O(1/¢?) (Beck and Teboulle, [2009). Considering
the squared loss, the gradient for the weights of the k-th task is computed as

1
Vi (wy) = n—k<X,kaWk — X yk) + oty (7)

where 1)}, is the k-th column of matrix ¥ = 2WQ = aiwtr(WQWT). Note that the first
two terms of the gradient, which come from the loss function, are independent for each task

and then can be computed in parallel.

Update for €Q: The update step for €2 involving is known as the sparse inverse
covariance selection problem and efficient methods have been proposed recently (Banerjee
et al., 2008} Friedman et all [2008; Boyd et al., [2011; |Cai et al.; 2011; Wang et al., [2013).
Re-writing in terms of the sample covariance matrix S, the minimization problem is

) A
wmin Aotr(SQ) —log || + %HQHM (8)

=0

where S = éWTW. This formulation will be useful to connect to the Gaussian copula
extension in the next section. As Ao is a user defined parameter, the factor é can be
incorporated into Ao.

To solve the minimization problem we use an efficient Alternating Direction Method
of Multiplies (ADMM) algorithm (Boyd et al., [2011). ADMM is a strategy that is intended
to blend the benefits of dual decomposition and augmented Lagrangian methods for con-
strained optimization. It takes the form of a decomposition-coordination procedure, in which
the solutions to small local problems are coordinated to find a solution to a large global
problem. We refer interested readers to |Boyd et al|(2011) in its Section 6.5 for details on
the derivation of the updates.

In ADMM, we start by forming the augmented Lagrangian function of the problem
L,(©,2,1) = tx(S©) ~ log|©] + M|zl + 2@ ~ 2+ U} - 2JUJ3, ()

where U is the scaled dual variable. Note that the non-smooth convex function is split
in two functions by adding an auxiliary variable Z, besides a linear constraint ® — Z = 0.
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Given the matrix S+ = é(W(tH))TW(tH) and setting ®° = Q® Z° = 0,,,,,, and
U° = 0,,,m, the ADMM for the problem consists of the iterations:

et = argmin Aotr(SH1O) — log O] + gne -zl + U3 (10a)
—

Z' = argmin Ao Z 1 + guelﬂ —Z+UY% (10D)

Ut = Ul et -z (10c)

The output of the ADMM is Q! = @F, where L is the number of steps for convergence.
Each ADMM step can be solved efficiently. For the ®-update, we can observe, from
the first order optimality condition of and the implicit constraint & > 0, that the
solution consists basically of a singular value decomposion.
The Z-update can be computed in closed form, as follows

Z = 8y, (0 1), (11)

where S),/,(-) is an element-wise soft-thresholding operator (Boyd et al., 2011). Finally,
the updates for U in (10c|) are already in closed form.
3.3.2 LoG LINEAR MODELS

As described previously, our model can also be applied to classification. Let us assume that

(o).

where h(-) is the sigmoid function, and Be(p) is a Bernoulli distribution. Therefore, following
the same construction as in Section [3.3.1] parameters W and €2 can be obtained by solving
the following minimization problem:

p (v Ik w) = Be (s

m Nk .
w@&o; nik ; (y;;w,;rx}; ~log(1 + ewlx%)) F Aot (WOQWT) — dlog |Q] + M [W]1 + Xo||Q1.  (12)
The loss function is the logistic loss, where we have considered a 2-class classification set-
ting. In general, we can consider any generalized linear model (GLM) (Nelder and Baker)
1972)), with different link functions h(-), and therefore different probability densities, such
as Poisson, Multinomial, and Gamma, for the conditional distribution. For any such model,
our framework requires the optimization of an objective function of the form

' X Aott(WOQW ) — dlog |2] + M\ |W o2 1
Wl ;ﬁ(yk, kW) + Aotr( ) og |2 + M [[Wl1 + Aaf|€2[]1, (13)

where £(+) is a convex loss function obtained from a GLM.

Note that the objective function in is similar to the one obtained for multi-task
learning with linear regression in ((3)) in Section Therefore, we use the same alternating
minimization algorithm described in Section to solve the problem in .

10
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3.4 p-MSSL Interpretation as Using a Product of Distributions as Prior

From a probabilistic perspective, sparsity can be enforced using the so-called sparsity pro-
moting priors, such as the Laplacian-like (double exponential) prior (Park and Casellal,
2008]). Accordingly, instead of exclusively assuming a multivariate Gaussian distribution as
a prior for the rows of tasks parameter matrix W, we can consider an improper prior which
consists of the product of multivariate Gaussian and Laplacian distributions, of the form

. Ao, . Aty
pe (W3l 200, 0 ) o 19212 exp {2 5y = )2y = ) oo { = . 1)

where we introduced the \g parameter to control the strength of the Gaussian prior. By
changing A9 and A1, we alter the relative effect of the two component priors in the product.
Setting Ay to one and A\; to zero, we return to the exclusive Gaussian prior as in .
Hence, p-MSSL formulation in can be seen exactly (assuming sparse precision matrix in
Gaussian prior) as a MAP inference of the conditional posterior distribution (with g = 0)

p(WIX, ), Q) x H HN(yk\wk X}, %) ﬁpGL(wjyn,Ao,Al). (15)
j=1

k=11i=1

Equivalently, the p-MSSL with GLM formulation as in can be obtained by replacing
the conditional Gaussian in by another distribution in the exponential family.

3.5 Adding New Tasks

Suppose now that, after estimating all the tasks parameters and the precision matrix, a
new task arrives and needs to be trained. This is known as the asymmetric MTL problem
(Xue et al.l 2007). Clearly, it will be computationally prohibitive in real applications to
re-run the MSSL every time a new task arrives. Fortunately, MSSL can easily incorporate
the new learning task into the framework using the information from the previous trained
tasks.

After the arrival of the new task m, where m = m + 1, the extended sample covari-
ance matrix S computed from the parameter matrix W, and the precision matrix Q are
partitioned in the following form

= (1 wi2 & (S si2
Q= ("L §= ("L
Wig W22 S12 522

where S11 and €217 are the sample covariance and precision matrix, respectively, correspond-
ing to the previous tasks, which have already been trained and will be kept fixed during the
estimation of the parameters associated with the new task.

Let w;; be the set of parameters associated with the new task m and W = (W, Wi ] dscris
where W, is the matrix with the task parameters of all previous m tasks. For the learning
of wy,, we modify problem to include only those terms on which wy, depends

N

1 ) . -~
— > (WX = Y)* + dotr(WOWT) + A[wiah, (16)

=1

Jfa(Wins X, Y, Ao, A1) =
and the same optimization methods for can be applied.
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Recall that the task dependence learning problem is equivalent to solving a graphical
Lasso problem. Based on |Banerjee et al.| (2008), Friedman et al.| (2008) proposed a block
coordinate descent method which updates one column (and the corresponding row) of the
matrix O per iteration. They show that if Q is initialized with a positive semidefinite matrix,
then the final (estimated) € matrix will be positive semidefinite, even if d > m. Setting
initial values of wiy as zero and wag as one (the new task is supposed to be conditionally
independent on all other previous tasks), the extended precision matrix Q is assured to be
positive semidefinite. From [Friedman et al.| (2008), w12 and way are obtained as:

Wi = —B@gg (17&)
waz = 1/(622 — 61,8), (17b)
where ,3 is computed from
> . 1, =1/2 ~—1/2
Bi=argmin {519, a ~ &, sl + ol |, (18)
a 2

where n > 0 and § > 0 are sparsity regularization parameters; and 01TQ = fll_ll,@l and
O29 = s92 + 6. See Friedman et al. (2008) for further details. The problem is a simple
Lasso formulation for which efficient algorithms have been proposed (Beck and Teboulle,
2009; Boyd et al., 2011)). Then to learn the coefficients for the new task m and its relationship
with the previous tasks, we iterate over solving and until convergence.

3.6 MSSL with Gaussian Copula Models

In the Gaussian graphical model associated with the problem the rows of the weight
matrix W are assumed to be normally distributed. As such assumption may not hold in
some cases, we need a more flexible model. A promising candidate is the copula model.

Copulas are class of flexible multivariate distributions that are expressed by its univari-
ate marginals and a copula function that describes the dependence structure between the
variables. Consequently, copulas decompose a multivariate distribution into its marginal
distributions and the copula function connecting them. Copulas are founded on [Sklar
(1959) theorem which states that: any m-variate distribution f(V1,..., V) with continuous
marginal functions fi,..., fm can be expressed as its copula function C(-) evaluated at its
marginals, that is, f(V1,...,Vn) = C(f1i(V1), ..., fm(Vin)) and, conversely, any copula func-
tion C(-) with marginal distributions fi, ..., fm defines a multivariate distribution. Several
copulas have been described, which typically exhibit different dependence properties. Here,
we focus on the Gaussian copula that adopts a balanced combination of flexibility and
interpretability that has attracted a lot of attention (Xue and Zou, |2012).

3.6.1 GAUSSIAN COPULA DISTRIBUTIONS

The Gaussian copula Cso is the copula of an m-variate Gaussian distribution N, (0, 20)
with m x m positive definite correlation matrix X°

C(VA, o, Vi 20) = B0 (<I>_1(V1), ...,q>—1(vm)), (19)

12
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where @1 is the inverse of a standard normal distribution function and ®sy is the joint
distribution function of a multivariate normal distribution with mean vector zero and co-
variance matrix equal to the correlation matrix X°. Note that without loss of generality,
the covariance matrix 3° can be viewed as a correlation matrix, as observations can be re-
placed by their normal-scores. Therefore, Sklar’s theorem allows to construct a multivariate
distribution with non-Normal marginal distributions and the Gaussian copula.

A more general formulation of the Gaussian copula is the semiparametric Gaussian
copulas (Liu et all 2009; Xue and Zou, 2012)), which allows the marginals to follow any
non-parametric distribution.

Definition 1 (Semiparametric Gaussian copula models) Let f = {fi,..., fm} be a set of
continuous monotone and differentiable univariate functions. An m-dimensional random
variable V.= (V1,..., Vi) has a semiparametric Gaussian Copula distribution if the joint
distribution of the transformed variable f(V') follows a multivariate Gaussian distribution

with correlation matriz X°, that is, f(V) = (f1(V1), e, fin (Vi) T ~ N (0, 20).

From the definition we notice that the copula does not have requirements on the marginal
distributions as long the monotone continuous functions fi, ..., fi, exist.

The semiparametric Gaussian copula model is completely characterized by two unknown
parameters: the correlation matrix X° (or its inverse, the precision matrix Q° = (3°%)~1)
and the marginal transformation functions fi, ..., fp,. The unknown marginal distributions
can be estimated by existing nonparametric methods. However, as will be seen next, when
estimating the dependence parameter is the ultimate aim, one can directly estimate Q°
without explicitly computing the functions.

Let Z = (Z1, ..., Zm) = (f(V1), ..., f(Vin)) be a set of latent variables. By the assumption
of joint normality of Z, we know that Q% =0 < Z; I Zj|Z\y j,- Interestingly, Liu
et al| (2009) showed that Z; 1L Z;|Z\(; ;3 <= Vi 1L Vj|Vi( 53, that is, variables V' and
Z share exactly the same conditional dependence graph. As we focus on sparse precision
matrix, to estimate the parameter 92° we can resort to the ¢;-penalized maximum likelihood
method, the graphical Lasso problem .

Let 714, ...,7n; be the rank of the samples from variable V; and the sample mean 7; =
%Z;;l Tij = ”T'H We start by reviewing the Spearman’s p and Kendal’s 7 statistics:

Yoy (e — 7)) (rej — 75)

Vi — ) L (g — 1)
2_1) Z Sign((?}ti - ’Ut/i)(vtj — Ut’j)) . (20D)

n(n
1<t<t'<n

(Spearman’s p) pi; = (20a)

(Kendall’s 7) 73 =

We observe that Spearman’s rho is computed from the ranks of the samples and Kendall’s
correlation is based on the concept of concordance of pairs, which in turn is also computed
from the ranks r;. Therefore, both measures are invariant to monotone transformation of
the original samples and rank-based correlations such as Spearman’s p and Kendal’s 7 of
the observed variables V' and the latent variables Z are identical. In other words, if we are
only interested in estimating the precision matrix Q°, we can treat the observed variable V'
as the unknown variable Z, thus avoiding estimating the transformation functions fi, ..., fin.

13
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To connect Spearman’s p and Kendal’s 7 rank-based correlation to the underlying Pear-
son correlation in the graphical Lasso formulation of the inverse covariance selection
problem, for Gaussian random variables a result due to Kendall (1948)) is used:

Sp _ {QSiH (%/A)”) s 1 75_] g,{_. _ {Sin (%722]) s 1 75 j
“ 1 Li=j ’ K 1 L i=].
We then replace S in by S? or 8™ and the same ADMM proposed in Section is
applied. The MSSL algorithms with Gaussian copula models are called p-MSSLco, and
r-MSSLecop, for the parameter and residual-based versions, respectively.

Liu et al. (2012)) suggested that the SGC models can be used as a safe replacement of
the popular Gaussian graphical models, even when the data are truly Gaussian. Compared
with the Gaussian graphical model , the only additional cost of the SGC model is the
computation of the m(m — 1)/2 pairs of Spearman’s p or Kendal’s 7 statistics, for which
efficient algorithms have complexity O(mlogm).

Other copula distributions also exist, such as the Archimedean class of copulas (McNeil
and Neslehovéd) [2009), which are useful to model tail dependence. Nevertheless, Gaussian
copula is a compelling distribution for expressing the intricate dependency graph structure.

3.7 Residual Precision Structure

In the residual structure based MSSL, called ~MSSL, the relationship among tasks will

be modeled in terms of partial correlations among the errors & = (&1,...,&,)", instead
of considering explicit dependencies between the coefficients wr, ..., w,, for the different
tasks. To illustrate this idea, let us consider the regression scenario where Y = (y1,...,¥m)
is a vector of desired outputs for each task, and X = (Xq,..., Xm)—r are the covariates for
the m tasks. The assumed linear model can be denoted by

Y = XW + ¢, (21)

where £ = Y — XW ~ N(0,X°). In this model, the errors are not assumed to be ii.d.,
but vary jointly over the tasks following a Gaussian distribution with precision matrix
Q = (%) ~!. Finding the dependence structure among the tasks now amounts to estimating
the precision matrix €. Such models are commonly used in spatial statistics (Mardia and
Marshall, [1984) in order to capture spatial autocorrelation between geographical locations.
We adopt the framework in order to capture “loose coupling” between the tasks by means of
a dependence in the error distribution. For example, in domains such as climate or remote
sensing, there often exist noise autocorrelations over the spatial domain under consideration.
Incorporating this dependence by means of the residual precision matrix is therefore more
interpretable than the explicit dependence among the coefficients in W.

Following the above definition, the multi-task learning framework can be modified to
incorporate the relationship between the errors £&. We assume that the coefficient matrix W
is fixed, but unknown. Since £ follows a Gaussian distribution, maximizing the likelihood of
the data, penalized with a sparse regularizer over €2, reduces to the optimization problem

, 1
win (Z v = kak||§> — d1og |92 + Mot (Y = XW)R(Y = XW)T) + At [Wl1 + /|20l (22)

We use the alternating minimization scheme illustrated in previous sections to solve the
problem in . Since the cost function is biconvex and convex in each of its arguments W
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and €, thus a partial optimum will be found (Gorski et al., [2007)). Fixing W, the problem
of estimating €2 is exactly the same as , but with the interpretation of capturing the
conditional dependence among the residuals instead of the coefficients. The problem of
estimating the tasks coefficients W will be slightly modified due to the change in the trace
term, but the algorithms presented in Section [3.3.1] can still be used. Further, the model
can be extended to losses other than the squared loss, used here due to the fact that &
follows a Gaussian distribution.

Two instances of MSSL have been provided, p-MSSL and r-MSSL, along with their
Gaussian copula versions, p-MSSLc, and 7-MSSLcp. In summary, p-MSSL and p-MSSLcop
can be applied to both regression and classification problems. On the other hand, r-MSSL
and 7-MSSL¢op, can only be applied to regression problems, as the residual error of a
classification problem is clearly non-Gaussian.

3.8 Complexity Analysis

The complexity of an iteration of the MSSL algorithms can be measured in terms of the
complexity of its W-step and Q-step. Each iteration of the FISTA algorithm in the W-
step involves the element-wise operations, for both the z-update and the proximal operator,
which takes O(md) operations each. Gradient computation of the squared loss with trace
penalization involves matrices multiplication which costs O(max(mn?d,dm?)) operations
for dense matrix W and €2, but can be reduced as both matrices are sparse. We are
assuming that all tasks have the same number of samples n.

In an ADMM iteration, the dominating operation is clearly the SVD decomposition
when solving the subproblem . It costs O(m?) operations. The other two steps
amount to element-wise operations which costs O(m?) operations. As mentioned previously,
the copula-based MSSL algorithms have the additional cost of O(mlog(m)) for computing
Kendal’s 7 or Spearman’s p statistics.

The memory requirements include O(md) for the z and previous weight matrix w1
in the W-step and O(m?) for the dual variable U and the auxiliary matrix Z in the ADMM
for the Q-step. We should mention that the complexity is evidently associated with the
optimization algorithms used for solving problems [da] and [4b]

4. Experimental Results

In this section we provide experimental results to show the effectiveness of the proposed
framework for both regression and classification problems.

4.1 Regression

We start with experiments on synthetic data and then move to the problem of predicting
land air temperature in South and North America by the use of multi-model ensemble.

To select the penalty parameters A\; and Ay we use a stability selection procedure de-
scribed in Meinshausen and Biithlmann! (2010). It is a sub-sampling approach that provides
a way to find stable structures and hence a principle to choose a proper amount of regular-
ization for structure estimation. The parameter A\g was set to one in all experiments.
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Figure 1: RMSE per task comparison between Figure 2: Average RMSE error on the test
p-MSSL and Ordinary Least Square over 30 set of synthetic data for all tasks varying pa-
independent runs. p-MSSL gives better per- rameters Ao (controls sparsity on €2) and A\;
formance on related tasks (1-4 and 5-10). (controls sparsity on W).

4.1.1 SYNTHETIC DATA SET

We created a synthetic data set with 10 linear regression tasks of dimension D = D, + D,,,
where D, and D, are the number of relevant and non-relevant (unnecessary) variables,
respectively. This is to evaluate the ability of the algorithm to discard non-relevant features.
We used D, = 30 and D,, = 5. For each task, the relevant input variables X, are generated
i.i.d. from a multivariate normal distribution, X} ~ N(0,Ip,). The corresponding output
variable is generated as yr = X wy + & where & ~ N(0,1),¥i = 1,...,n;. Unnecessary
variables are generated as X} ~ N(0,Ip,). Hence, the total synthetic input data of the
k-th task is formed as the concatenation of both set of variables, X; = [X} X}]. Note
that only the relevant variables are used to produce the output variable y;. The parameter
vectors for all tasks are chosen so that tasks 1 to 4 and 5 to 10 form two groups. Parameters
for tasks 1-4 were generated as: wi = w, © by + &€, where © is the element-wise Hadamard
product; and for tasks 5-10: wj = wp ©@ by + &, where € = N (0,0.2Ip, ). Vectors w, and wy,
are generated from N (0,1Ip, ), while by ~ ¢/(0,1) are uniformly distributed D,-dimensional
random vectors. In summary, we have two clusters of mutually related tasks. We train the
p-MSSL model with 50 data instances and test it on 100 data instances.

Figure [1] shows the RMSE error for p-MSSL and for the case where Ordinary Least
Squares (OLS) was applied individually for each task. As expected, sharing information
among related tasks improves prediction accuracy. p-MSSL does well on related tasks 1 to
4 and 5 to 10. Figures|3al and [3b|depict the sparsity pattern of the task parameters W and
the precision matrix € estimated by the p-MSSL algorithm. As can be seen, our model is
able to recover the true dependence structure among tasks. The two clusters of tasks were
clearly revealed, indicated by the filled squares, meaning non-zero entries in the precision
matrix, and then, relationship among tasks. Additionally, p-MSSL was able to discard most
of the irrelevant features (last five) intentionally added into the synthetic data set.

Sensitivity analysis of p-MSSL sparsity parameters A; (controls sparsity on W) and Ao
(controls sparsity on ) on the synthetic data is presented in Figure We observe that
the smallest RMSE was found with a value of Ay > 0, which implies that a reduced set of
variables is more representative than the full set, as it is indeed the case for the synthetic
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Figure 3: Sparsity pattern of the p-MSSL estimated parameters on the synthetic data
set: (a) precision matrix €; (b) weight matrix W. The algorithm identified the true task
relationship in (a) and removed most of the non-relevant features (last five columns) in (b).

data set. The best solution is with a sparse precision matrix, as we can see in Figure [2]
(smallest RMSE with A2 > 0). We should mention that as we increase A\; we encourage
sparsity on W and, as a consequence, it becomes harder for p-MSSL to capture the true
relationship among the column vectors (tasks parameters), since it learns € from W. This
drawback is overcome in the r-MSSL algorithm, in which the precision matrix is estimated
from the residuals instead of being estimated from the task parameters directly.

4.1.2 COMBINING EARTH SYSTEM MODELS

An Earth System Model (ESM) is a complex mathematical representation of the major
climate system components (atmosphere, land surface, ocean, and sea ice), and their in-
teractions. They are run as computer simulations, to predict climate variables such as
temperature, pressure, and precipitation over multiple centuries. Several ESMs have been
proposed by climate science institutes from different countries around the world.

The forecasts of future climate variables as predicted by these models have high vari-
ability, which in turn introduces uncertainty in analysis based on these predictions. One
of the reasons for such uncertainty in the response of the ESMs comes from the model
variability due to the fact that ESMs implements certain climatic process in different ways.
Then, suitably combining outputs from multiple ESMs can greatly reduce the variability.
Another equally important source of uncertainty is due to initial conditions. As ESMs are
non-linear dynamic systems, changes in initial conditions can lead to different realizations
of climate. In this work we focus only on the model variability. Modeling uncertainty from
initial conditions is an ongoing work.

We consider the problem of combining ESM outputs for land surface temperature pre-
diction in both South and North America, which are the world’s fourth and third-largest
continents, respectively, and jointly cover approximately one third of the Earth’s land area.
The climate is very diversified in those areas. In South America, the Amazon River basin in
the north has the typical hot wet climate suitable for the growth of rain forests. The Andes
Mountains, on the other hand, remain cold throughout the year. The desert regions of Chile
are the driest part of South America. As for North America, the subartic climate in North

17



GONCGALVES, VON ZUBEN AND BANERJEE

ESM Origin Refs.
BCC_CSM1.1 Beijing Climate Center, China Zhang et al. 7(2012',)7
CCSM4 National Center for Atmospheric Research, USA Washington et al.|(2008)
CESM1 National Science Foundation, NCAR, USA Subin et al.|(2012)
CSIRO Commonwealth Scient. and Ind. Res. Org., Australia Gordon et al.|(2002)
HadGEM2 Met Office Hadley Centre, UK Collins et al.|(2011)
IPSL Institut Pierre-Simon Laplace, France Dufresne et al.|(2012)
MIROC5 Atmosphere and Ocean Research Institute, Japan Watanabe et al.|(2010)
MPI-ESM Max Planck Inst. for Meteorology, Germany Brovkin et al.|(2013)
MRI-CGCM3 Meteorological Research Institute, Japan Yukimoto et al.|(2012)
NorESM Norwegian Climate Centre, Norway Bentsen et al.|(2012)

Table 1: Description of the Earth System Models used in the experiments.

Canada contrasts with the semi-arid climate in western United States and Mexico’s central
area. The Rocky Mountains have a large impact in land’s climate, and temperature signifi-
cantly varies due to topographic effects (elevation and slope) (Kinel et al., [2002)). Southeast
of the United States is characterized by its subtropical humid climate with relatively high
temperatures and an evenly distributed precipitation throughout the year.

For the experiments we use 10 ESMs from the CMIP5 data set (Taylor et al., 2012)). De-
tails about the ESMs data sets are listed in Table[I} The global observation data for surface
temperature is obtained from the Climate Research Unit (CRU) at the University of East
Anglia. Both, ESM outputs and observed data are the raw temperatures (not anomalies)
measured in degree Celsius. We align the data from the ESMs and CRU observations to
have the same spatial and temporal resolution, using publicly available climate data opera-
tors (CDO). For all the experiments, we used a 2.5° x 2.5° grid over latitudes and longitudes
in South and North America, and monthly mean temperature data for 100 years, 1901-2000,
with records starting from January 16, 1901. In other words, we have two data sets: (1)
South America with 250 spatial locations; and (2) North America with 490 spatial locations
over land. Data sets and code are available at: bitbucket.org/andreric/mssl-code. For
the MTL framework, each geographical location represents a task (regression problem).

From an MTL perspective, the two data sets have different levels of difficulty. North
America data set has almost twice the number of tasks as compared to South America, so
that we discuss the performance of MSSL in problems with high number of tasks. It brings
new challenges to MTL methods. On the other hand, South America has a more diverse cli-
mate, which makes task dependence structure more complex. Preliminary results on South
America were published in|Gongalves et al.| (2015) employing a high-level description format.

Baselines and Evaluation: We consider the following eight baselines for comparison and
evaluation of MSSL performance for the ESM combination problem. The first two baselines
(MMA and Best-ESM) are commonly used in climate sciences due to their stability and
simple interpretation. We will refer to these baselines and MSSL as the “models” in the
sequel and the constituent ESMs as “submodels”. Four well known MTL methods were
also added in the comparison. The eight baselines are:

1. Multi-model Average (MMA): is the current technique used by Intergovernmental
Panel on Climate Change (IPCC). It gives equal weight to all ESMs at every location.
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2. Best-ESM: uses the predicted outputs of the best ESM in the training phase (lowest
RMSE). This baseline is not a combination of submodels, but a single ESM instead.

3. Ordinary Least Squares (OLS): performs an ordinary least squares regression for
each geographic location, independently of the others.

4. Spatial Smoothing Multi Model Regression (S?MZ?R): proposed by Subbian
and Banerjee (2013)) to deal with ESM outputs combination, can be seen as a special
case of MSSL with the pre-defined dependence matrix €2 equal to the Laplacian matrix.

5. MTL-FEAT (Argyriou et al. 2007)): all the tasks are assumed to be related and
share a low-dimensional feature subspace. The following two methods, 6 and 7, can
be seen as relaxations of this assumption. We used the code provided in MALSAR
package (Zhou et al., 2011a).

6. Group-MTL (Kang et al., 2011): groups of related tasks are assumed and tasks be-
longing to the same group share a common feature representation. The code was taken
from the author’s homepage: http://www-scf.usc.edu/~zkang/GoupMTLCode.zip.

7. GO-MTL (Kumar and Daume 111, 2012): founded on a relaxation of the group idea
in Kang et al. (2011) by allowing subspaces shared by each group to overlap between
them. We obtained the code directly from the authors.

8. MTRL (Zhang and Yeung, [2010): the covariance matrix among tasks coefficients is
captured by imposing a matrix-variate normal prior over the coefficient matrix W.
The non-convex MAP problem is relaxed and an alternating minimization procedure
is proposed to solve the convex problem. The code was taken from author’s homepage:
http://www.comp.hkbu.edu.hk/~yuzhang/codes/MTRL. zipl

Methodology

We assume here that sub-models skills are stationary, that is, the coefficient associated
with each sub-model does not change over time. To have an overall measure of the capa-
bility of the method, we considered scenarios with different amount of data available for
training. For each scenario, the same number of training data (columns of Table [2)) are used
for all tasks, and the remaining data is used for test. Starting from one year of temperature
measures (12 samples), we increase till ten years of data for training. The remained data
was used as test set. For each scenario 30 independent runs are performed. Therefore, the
results are reported as the average and standard deviation of RMSE for all scenarios.

Results

Table [2| report the average and standard deviation RMSE for all locations in South and
North America. In South America, except for the smallest training sample (12 months)
the average model (MMA) has the highest RMSE for all training sample size. Best-ESM
presented a better temperature future projection compared to MMA. Generally speaking,
the MTL methods performed significantly better than non-MTL ones, particularly when a
small number of samples are available for training. As the spatial smoothness assumption
is true for temperature, S?M?R obtained results comparable with those yielded by MTL
methods. However, this assumption does not hold for other climate variables, such as

19


http://www-scf.usc.edu/~zkang/GoupMTLCode.zip
http://www.comp.hkbu.edu.hk/~yuzhang/codes/MTRL.zip

GONCGALVES, VON ZUBEN AND BANERJEE

Laplacian matrix Learned Precision matrix Laplacian matrix Learned Precision matrix
South America South America North America North America
0 0 — 0 0
A 7': t ; LT 5 9 50 N
50 \\\\ 50 100 \ 100 \\‘
150 150 N N\
@ 100 \\\\ E) 100 f @ 200 \ ¥ @ 200 -\t\ \tk‘
] \ ] @ 250 \\ . @ 250 N N,
= 150 — 150 = 300 N = 300 ' ":'\ \\;\
\ 350 ~ 350 o
200 \\ 200 400 BANS 400 TN vy
\\ 450 SN 450 'y
250 250 L - SRR _
0 50 100 150 200 250 0 50 100 150 200 250 0 100 200 300 400 0 100 200 300 400
Tasks Tasks Tasks Tasks

Figure 4: Laplacian matrix (on grid graph) assumed by S?MZ2R and the precision matrix
learned by r-MSSL¢o, on both South and North America. r-MSSL¢o, can capture spatial
relations beyond immediate neighbors. While South America is densely connected in the
Amazon forest area (corresponding to top left corner) along with many spurious connections,
North America is more spatially smooth.

precipitation and S?M?R may not succeed in those problems. On the other hand, MTL
methods are general enough and in principle can be used for any climate variable. In
the realm of MTL methods, all the four MSSL instantiations outperform the four other
MTL contenders. It is worth observing that the two MSSL methods based on Gaussian
Copula models provided smaller RMSE than the two with Gaussian models, particularly
for problems with small training sample size. As Gaussian Copula models are more flexible,
it is able to capture a wider range of task dependences than ordinary Gaussian models.

Similar behavior is observed in North America data set, except for the fact that MMA
does much better than Best-ESM for all training sample settings. Again, all the four MSSL
instantiations provided better future temperature projection. We also note that the residual-
based structure dependence modeling with Gaussian Copula, r-MSSLc.p, produced slightly
better results than the other three MSSL instantiations. As will be left clear in Figures [4]
and [0} residual-based MSSL coherently captures related geographical locations, indicating
that it can be used as an alternative to parameter-based task dependence modeling.

Figure {4| shows the precision matrix estimated by the r-MSSL¢,, algorithm and the
Laplacian matrix assumed by S?M?R in both South and North America. Blue dots means
negative entries in the matrix, while red, positive. Interpreting the entries of the matrix
in terms of partial correlation, €2;; < 0 means positive partial correlation between w; and
w;, while £2;; > 0 means negative partial correlation. Not only is the precision matrix
for r-MSSLcop able to capture the relationship among a geographical locations’ immediate
neighbors (as in a grid graph) but it also recovers relationships between locations that are not
immediate neighbors. The plots also provide an information of the range of neighborhood
influence, which can be useful in spatial statistics analysis.

The RMSE per geographical location for r-MSSL¢o, and three common approaches
used in climate sciences, MMA, Best-ESM, and OLS, are shown in Figures[f] As previously
mentioned, South and North America have a diverse climate and not all of the ESMs
are designed to take into account and capture this scenario. Hence, averaging the model
outputs, as done by MMA, reduces prediction accuracy. On the other hand r-MSSLcgp
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Algorithms Months
12 24 36 48 60 72 84 96 108 120
South America
Best.ESM 161 156 154 153 153 153 152 152 152 152
(0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)
MMA 168 168 168 168 168 1685 168 168 168 168
(0.00)  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)  (0.00)
OLS 353 116 103 007 094 002 091 090 089 088
(0.45)  (0.04) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)
R 106 008 004 092 001 000 089 085 088 058
(0.03) (0.03) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)
GroupMTL, 09 L0l 006 0935 002 091 000 08 080 058
(0.04) (0.04) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)
COMTL T1T 008 004 092 002 001 090 000 089 089
(0.04) (0.03) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)  (0.00)
105 099 004 092 00l 090 089 085 088 058
MTL-FEAT  04)  (0.04) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)  (0.00)
NTRL 10T 007 005 095 004 004 094 004 094 093
(0.04) (0.03) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
IS T02 004 000% 0.80% 085 085 0.87F 0.87F 0.87F 0.86%
P (0.03) (0.03) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)
MISSL 0.08% 003* 0.90F 080 0.88% 0.88% 0.87% 0.87% 0.87% 087
P ©p (0.03) (0.03) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)
NISSL 102 004F 001F 0.89% 080 083% 0.87F 0.87% 0.87% 0.86*
(0.03) (0.03) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)
T MSSL 100 0.93F 0.90F 0.80% 0.88% 083% 0.87F 0.87% 0.87% 087
©p  (0.03) (0.03) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)
North America
Best.ESM 385 375 370  3.68  3.64 364 361  3.60 360 3.8
(0.07)  (0.05) (0.04) (0.04) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02)
A 201 204 204 204 204 204 294 204 204 204
(0.00)  (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
OLS 1006 337 296 279 260 264 250 256 254 253
(1.16)  (0.09) (0.07) (0.05) (0.03) (0.04) (0.02) (0.02) (0.02) (0.03)
AR 314 279 270 264 250 256 254 252 251 250
(0.17)  (0.05)  (0.05) (0.03) (0.03) (0.03) (0.02) (0.02) (0.02)  (0.02)
GrowpaTL 253 200 264 260 257 251 252 251 250 250
(0.13)  (0.04) (0.04) (0.03) (0.02) (0.03) (0.02) (0.01) (0.02)  (0.02)
COMTL 302 273 263 258 253 251 249 249 243 248
(0.15)  (0.05) (0.05) (0.04) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02)
276 2.62 250 257 253 252 250 249 249  2.48
MTL-FEAT (g 19)  (0.04) (0.04) (0.03) (0.02) (0.02) (0.02) (0.01) (0.01) (0.02)
Ay~ 203 283 278 281 275 247 245 2406 205 2.7
(0.17)  (0.10)  (0.09) (0.09) (0.04) (0.05) (0.04) (0.04) (0.05)  (0.04)
SSL 2.71%  258% 253 253 249 250% 249 249 248 249
P (0.11) (0.05) (0.04) (0.04) (0.02) (0.02) (0.02) (0.01) (0.02) (0.01)
MISSL 2.71%  2.57F 2.52F 052  0.40% 249  248%  248% 247 248
P ©p (0.11) (0.05) (0.04) (0.04) (0.02) (0.02) (0.02) (0.01) (0.02) (0.01)
MSSL 371F  258%  253%  253¢ 240 249 249 248 248 249
(0.11)  (0.05) (0.04) (0.04) (0.02) (0.02) (0.02) (0.01) (0.02) (0.01)
JMSSL., 270 257F 253F 253% 248 249% 248° 248° 247" 248

—

0.11) (0.05) (0.04) (0.04) (0.02) (0.02) (0.02) (0.01) (0.02) (0.01)

Table 2: Mean and standard deviation over 30 independent runs for several amounts of
monthly data used for training. The symbol ”*” indicates statistically significant (¢-test, P
< 0.05) improvement when compared to the best contender. MSSL with Gaussian copula
provides better prediction accuracy.
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MMA: Best ESM: MMA: Best ESM:
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Figure 5: [Best viewed in color] RMSE per location for m-MSSLeop, and three common meth-
ods in climate sciences, computed using 60 monthly temperature measures for training. It
shows that r-MSSLc,p, substantially reduces RMSE, particularly in Northern South America
and Northwestern North America.

performs better because it learns a more appropriate weight combination on the model
outputs and incorporates spatial smoothing by learning the task relationship.

Figure@presents the dependence structure estimated by r-MSSL¢,, for South and North
America data sets. Blue connections indicate dependent regions.

We immediately observe that locations in the northwest part of South America are
densely connected. This area has a typical tropical climate and comprises the Amazon
rainforest which is known for having hot and humid climate throughout the year with low
temperature variation (Ramos|, 2014). The cold climates which occur in the southernmost
parts of Argentina and Chile are clearly highlighted. Such areas have low temperatures
throughout the year, but there are large daily variations (Ramos, 2014). An important
observation can be made about South America west cost, ranging from central Chile to
Venezuela passing through Peru which has one of the driest deserts in the world. These
areas are located to the left side of Andes Mountains and are known for arid climate. The
average model is not performing well on this region compared to 7-MSSL¢.,. We can see
the long lines connecting these coastal regions, which probably explains the improvement
in terms of RMSE reduction achieved by r-MSSLco,. The algorithm uses information from
related locations to enhance its performance on these areas.

In the structure learned for North America, a densely connected area is also observed
in the northeast part of North America, particularly the regions of Nunavut and North
Quebec, which are characterized by their polar climate, with extremely severe winters and
cold summers. Long connections between Alaska and regions from Northwestern Canada,
which share similar climate patterns, can also be seen. Again, the r-MSSLc,, algorithm
had no access to the latitude and longitude of the locations during the training phase. 7-
MSSLcop also identified related regions, in terms of model skills, in the Gulf of Mexico. We
hypothesize that no more connections were seen due to the high variability in air and sea
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South America North America

Figure 6: Relationships between geographical locations estimated by the r-MSSLc,, al-
gorithm using 120 months of data for training. The blue lines indicate that connected
locations are conditionally dependent on each other. As expected, temperature is very spa-
tially smooth, as we can see by the high neighborhood connectivity, although some long
range connections are also observed.

surface temperature in these area (Twilley, |2001)), that in turn has a strong impact on Gulf
of Mexico costal regions.

4.1.3 MSSL SENSITIVITY TO INITIAL VALUES OF W

As discussed earlier, the MSSL algorithms may be susceptible to the choice of initial values
of the parameters 2 and W, as the optimization function is not jointly convex on €2
and W. In this section we analyze the impact of different parameter initializations on the
RMSE and the number of non-zero entries in the estimated 2 and W parameters.

Table |3 shows the mean and standard deviation over 10 independent runs with random
initialization of W in the interval [-0.5,0.5] for the South America data set. For the
matrix we started with an identity matrix, as it is reasonable to assume tasks independence
beforehand. The results showed that the solutions are not sensitive to initial values of
W. The largest variation was found in the number of non-zero entries in the {2 matrix for
North America data set. However, it corresponds to 0.07% of the average number of non-
zero entries and was not enough to significantly alter the RMSE of the solutions. Figure
[7 shows the convergence of p-MSSL for several random initializations of W. We note that
in all runs the cost function decreases smoothly and similarly to each other, showing the
stability of the method.
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Svnt South North -
yne. America America €l
RMSE 1.14 (2¢-6) 0.86 (0)  2.46 (1.6e-4)
#nz W 345 (0) 2341 (0.32) 4758 (2.87) ¢

#nzQ  55(0) 4954 (0.63) 73520 (504.4)

4000

Iterations
Table 3: p-MSSL sensitivity to initial values of W in Figure 7: Convergence behavior of p-
terms of RMSE, mean and standard deviation, and num- MSSL for distinct initializations of the
ber of non-zero entries in W and 2. weight matrix W.

4.2 Classification

We test the performance of the p-MSSL on five data sets (six problems) described below.
Recall that ~MSSL can not be applied for classification problems, once it relies on a Gaus-
sian assumption of the residuals. This is currently the subject of an ongoing work. All data
sets were standardized, then all features have zero mean and standard deviation one.

e Landmine Detection: Data from 19 landmine fields were collected, which have dis-
tinct characteristics. Each object in a given data set is represented by a 9-dimensional
feature vector and the corresponding binary label (1 for landmine and 0 for clutter)
(Xue et al., 2007). The feature vectors are extracted from radar images, concatenating
four moment-based features, three correlation-based features, one energy ratio feature
and one spatial variance feature. The goal is to classify between mine or clutter.

e Spam Detection: E-mail spam data set from ECML 2006 discovery challenge. It
consists of two problems: Problem A with e-mails from 3 different users (2500 e-mails
per user); and Problem B with e-mails from 15 distinct users (400 e-mails per user).
We performed feature selection to get the 500 most informative variables using the
Laplacian score feature selection algorithm (He et al., 2006). The goal is to classify
between spam vs. ham. For both problems, we create different tasks for different users.
This data set can be found at http://www.ecmlpkdd2006.org/challenge.htmll

e MNIST data set consists of 28 x 28-size images of hand-written digits from 0 through
9. We transform this multiclass classification problem by applying the all-versus-all
decomposition, leading to 45 binary classification problems (tasks). When a new test
sample arrives, a voting scheme is performed among the classifiers. The number of
samples for each classification problem is about 15000. This data set can be found at
http://yann.lecun.com/exdb/mnist/.

e Letter: The handwritten letter data set consists of eight tasks, with each one being
a binary classification of two letters: a/g, a/o, c/e, f/t, g/y, h/n, m/n and i/j. The
input for each data point consists of 128 features representing the pixel values of the
handwritten letter. The number of data points for each task varies from 3057 to 7931.
This data set can be found at http://ai.stanford.edu/~btaskar/ocr/.
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e Yale-faces: The face recognition data set contains 165 grayscale images with dimen-

sion 32x32 pixels of 15 individuals. Similar to MNIST, the problem is also trans-
formed by all-versus-all decomposition, totalling 105 binary classification problems
(tasks). For each task only 22 samples are available. This data set can be found at
http://vision.ucsd.edu/content/yale-face-database.

Baseline algorithms: Four baseline algorithms were considered in the experiments and
the regularization parameters for all algorithms were selected using cross-validation from
the set {0.01, 0.1, 1, 10, 100}. The algorithms are:

1.

2.

Logistic Regression (LR): learns separate logistic regression models for each task.

MTL-FEAT (Argyriou et al., 2007): employs an ¢ j-norm regularization term to
capture the task relationship from multiple related tasks constraining all models to
share a common set of features.

. CMTL (Zhou et al.| |2011b)): incorporates a regularization term to induce clustering

between tasks and then share information only to tasks belonging to the same cluster.

. Low rank MTL (Abernethy et al., [2006)): assumes that related tasks share a low

dimensional subspace and applies a trace regularization norm to capture that relation.

Results: Table 4] shows the results of each algorithm for all data sets. It was obtained over
10 independent runs using a holdout cross-validation (2/3 for training and 1/3 for test).
The performance of each run is measured by the average of the performance of all tasks.

Algorithms Landmine Spam Spam MNIST  Letter Yale
3-users  15-users faces
LR 6.01 6.62 1646  9.80 556  26.04
037)  (0.99) (0.67)  (0.19)  (0.19)  (1.26)
5.08 3.03 8.01 506 822 9043
CMTL (0.32)  (0.45)  (0.75)  (0.14)  (0.25)  (0.78)
6.16 333 7.03 561 1166 7.5
MTL-FEAT (g31)  (043)  (0.67)  (0.08) (0.29)  (1.60)
— 575 3.65 5.10 527 500 7.9
(028)  (0.32)  (0.54)  (0.09) (0.21) (L.72)
SSL 5.68 TO0F 655 196 534 0.8
P (0.37) (0.27)  (0.68)  (0.08)  (0.19)  (0.91)
* * * *
> MSSLo, 5.68  L1.77 532  1.05% 5.29¢ 5.28

(0.35)  (0.29) (0.45) (0.08) (0.19) (0.45)

Table 4: Average classification error rates and standard deviation over 10 independent runs
for all methods and data sets considered. Bold values indicate the best value and the

symbol

“*” means significant statistical improvement of the MSSL algorithm in relation to

the contenders determined by t-test with P < 0.05.

For all data sets p-MSSLcop presented statistically significant better results than the
contenders for the most of the data sets. The three MTL methods presume the structure
of the matrix W, which may not be a proper choice for some problems. Such disagreement
in the structure of the problem might explains the poor results in some data sets.
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Focusing the analysis on p-MSSL and the copula version, p-MSSLc.p,, their results are
relatively similar for most of the data set, except for Yale-faces, where the difference is
quite large. The two algorithms differ only in the way the inverse covariance matrix €2 is
computed. One hyphotesis for p-MSSL¢,, superiority on Yale-faces data set is that it may
have captured hidden important dependencies among tasks, as the Copula Gaussian model
can capture a wider class of dependencies than traditional Gaussian graphical models.

For the Yale-faces data set, which contains the smallest number of data available for
training, all the MTL algorithms obtained considerable improvement compared to the tra-
ditional single task learning approach (LR), corroborating with the assertion that MTL
approaches are particularly suitable for problems with few data samples.

5. Conclusion

We proposed a framework for multi-task structure learning. Our framework simultaneously
learns the tasks and their relationship, with the task dependences defined as edges in an
undirected graphical model. The formulation allows the direct extension of the graphical
model to the recently developed semiparametric Gaussian copula models. As such model
does not rely on the Gaussian assumption of task parameters, it gives more flexibility to
capture hidden task conditional independence, thus helping to improve prediction accuracy.
The problem formulation leads to a bi-convex optimization problem which can be efficiently
solved using alternating minimization. We show that the proposed framework is general
enough to be specialized to Gaussian models and generalized linear models. Extensive
experiments on benchmark and climate data sets for regression tasks and real-world data
sets for classification tasks illustrate that structure learning not only improves multi-task
prediction performance, but also captures relevant qualitative behaviors among tasks.
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