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Abstract

In this paper we introduce, in the setting of machine learning, a generalization of wavelet

analysis which is a popular approach to low dimensional structured signal analysis. The

wavelet decomposition of a Random Forest provides a sparse approximation of any regres-

sion or classification high dimensional function at various levels of detail, with a concrete

ordering of the Random Forest nodes: from ‘significant’ elements to nodes capturing only

‘insignificant’ noise. Motivated by function space theory, we use the wavelet decomposi-

tion to compute numerically a ‘weak-type’ smoothness index that captures the complexity

of the underlying function. As we show through extensive experimentation, this sparse

representation facilitates a variety of applications such as improved regression for difficult

datasets, a novel approach to feature importance, resilience to noisy or irrelevant features,

compression of ensembles, etc.

Keywords: Random Forest, Wavelets, Besov spaces, adaptive approximation, feature

importance.

1. Introduction

Our work brings together Function Space theory, Harmonic Analysis and Machine Learn-

ing for the analysis of high dimensional big data. In the field of (low-dimensional) signal

processing, there is a complete theory that models structured datasets (e.g audio, images,

video) as functions in certain Besov spaces (DeVore 1998), (DeVore et. al. 1992). When

representing the signal using time-frequency localized dictionaries, this theory characterizes
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the performance of adaptive approximation and is used in a variety of applications, such as

denoising, compression, feature extraction, etc. using very simple algorithms.

The first contribution of this work is a construction of wavelet decomposition of Ran-

dom Forests (Breiman 2001), (Biau and Scornet 2016), (Denil et. al. 2014). Wavelets

(Daubechies 1992), (Mallat 2009) and geometric wavelets (Dekel and Leviatan 2005),

(Alani et. al 2007), (Dekel and Gershtansky 2012), are a powerful yet simple tool for con-

structing sparse representations of ‘complex’ functions. The Random Forest (RF) (Biau

and Scornet 2016), (Criminisi et. al. 2011), (Hastie et. al. 2009) introduced by Breiman

(Breiman 2001), (Breiman 1996), is a very effective machine learning method that can be

considered as a way to overcome the ‘greedy’ nature and high variance of a single decision

tree. When combined, the wavelet decomposition of the RF unravels the sparsity of the

underlying function and establishes an order of the RF nodes from ‘important’ components

to ‘negligible’ noise. Therefore, the method provides a better understanding of any con-

structed RF. This helps to avoid over-fitting in certain scenarios (e.g. small number of

trees), to remove noise or provide compression. Our approach could also be considered

as an alternative method for pruning of ensembles (Chen et. al. 2009), (Kulkarni and

Sinha 2012), (Yang et. al. 2012), (Joly et. al. 2012) where the most important decision

nodes of a huge and complex ensemble of models can be quickly and efficiently extracted.

Thus, instead of controlling complexity by restricting trees’ depth or node size, one controls

complexity through adaptive wavelet approximation.

Our second contribution is to generalize the function space characterization of adaptive

algorithms (DeVore 1998), (Devore and Lorentz 1993), to a typical machine learning setup.

Using the wavelet decomposition of a RF, we can actually numerically compute a ‘weak-type’

smoothness index of the underlying regression or classification function overcoming noise.

We prove the first part of the characterization and demonstrate, using several examples,

the correspondence between the smoothness of the underlying function and properties such

as compression.

Applying a ‘wavelet-type’ machinery for learning tasks, using ‘Treelets’, was introduced

by (Lee et. al. 2008). Treelets provide a decomposition of the domain into localized basis

functions that enable a sparse representation of smooth signals. This method performs

a bottom-up construction in the feature space, where at each step, a local PCA among

two correlated variables generates a new node in a tree. Our method is different, since for

supervised learning tasks, the response variable should be used during the construction of

the adaptive representation. Also, our work significantly improves upon the ‘wavelet-type’

construction of (Gavish et. al. 2010). First, since our wavelet decomposition is built on

the solid foundations of RFs, it leverages on the well-known fact that over-complete repre-

sentations/ensembles outperform the critical sampled representations/single decision trees
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in problems such as regression, estimation, etc. Secondly, from the theoretical perspective,

the Lipschitz space analysis of (Gavish et. al. 2010) is generalized by our Besov space

analysis, which is the right mathematical setup for adaptive approximation using wavelets.

The paper is organized as follows: In Section 2 we review Random Forests. In Section

3 we present our main wavelet construction and list some of its key properties. In section

4 we present some theoretical aspects of function space theory and its connection to spar-

sity. This characterization quantifies the sparsity of the data with respect to the response

variable. In Section 5 we review how a novel form of Variable Importance (VI) is computed

using our approach. Section 6 provides extensive experimental results that demonstrate the

applicative added value of our method in terms of regression, classification, compression

and variable importance quantification.

2. Overview of Random Forests

We begin with an overview of single trees. In statistics and machine learning (Breiman

et. al. 1984), (Alpaydin 2004), (Biau and Scornet 2016), (Denil et. al. 2014), (Hastie

et. al. 2009) the construction is called a Decision Tree or the Classification and Regression

Tree (CART) while in image processing and computer graphics (Radha et. al. 1996),

(Salembier and Garrido 2000) it is coined as the Binary Space Partition (BSP) tree. We are

given a real-valued function f ∈ L2 (Ω0) or a discrete dataset {xi ∈ Ω0, f (xi)}i∈I , in some

convex bounded domain Ω0 ⊂ Rn. The goal is to find an efficient representation of the

underlying function, overcoming the complexity, geometry and possibly non-smooth nature

of the function values. To this end, we subdivide the initial domain Ω0 into two subdomains,

e.g. by intersecting it with a hyper-plane. The subdivision is performed to minimize a given

cost function. This subdivision process then continues recursively on the subdomains until

some stopping criterion is met, which in turn, determines the leaves of the tree. We now

describe one instance of the cost function which is related to minimizing variance. At each

stage of the subdivision process, at a certain node of the tree, the algorithm finds, for the

convex domain Ω ⊂ Rn associated with the node:

(i) A partition by an hyper-plane into two convex subdomains Ω′,Ω′′ (see Figure 1),

(ii) Two multivariate polynomials QΩ′ , QΩ′′ ∈ Πr−1 (Rn), of fixed (typically low) total

degree r − 1.

The subdomains and the polynomials are chosen to minimize the following quantity

‖f −QΩ′‖pLp(Ω′) + ‖f −QΩ′′‖pLp(Ω′′) , Ω′ ∪ Ω′′ = Ω. (1)
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Here, for 1 ≤ p <∞, we used the definition

‖g‖Lp(Ω̃) :=

(∫
Ω̃
|g (x)|p dx

)1/p

,

If the dataset is discrete, consisting of feature vectors xi ∈ Rn, i ∈ I , with response values

f (xi), then a discrete functional is minimized∑
xi∈Ω′

|f (xi)−QΩ′(xi)|p +
∑
xi∈Ω′′

|f (xi)−QΩ′′(xi)|p, Ω′ ∪ Ω′′ = Ω. (2)

Figure 1: Illustration of a subdivision by an hyperplane of a parent domain Ω into two
children Ω′,Ω′′.

Observe that for any given subdividing hyperplane, the approximating polynomials in

(2) can be uniquely determined for p = 2 by least square minimization (see (Avery)) for a

survey of local polynomial regression). For the order r = 1, the approximating polynomials

are nothing but the mean of the function values over each of the subdomains

QΩ′ (x) = CΩ′ =
1

# {xi ∈ Ω′}
∑
xi∈Ω′

f (xi), QΩ′′ (x) = CΩ′′ =
1

# {xi ∈ Ω′′}
∑
xi∈Ω′′

f (xi).

(3)

In many applications of decision trees, the high-dimensionality of the data does not allow to

search through all possible subdivisions. As in our experimental results, one may restrict the

subdivisions to the class of hyperplanes aligned with the main axes. In contrast, there are

cases where one would like to consider more advanced form of subdivisions, where they take

certain hyper-surface form, such as conic-sections. Our paradigm of wavelet decompositions

can support in principle all of these forms.

Random Forest (RF) is a popular machine learning tool that collects decision trees into

an ensemble model (Breiman 2001), (Bernard et. al 2012), (Biau 2012), (Biau and Scornet

2016). The trees are constructed independently in a diverse fashion and prediction is done

by a voting mechanism among all trees. A key element (Breiman 2001), is that large

diversity between the trees reduces the ensemble’s variance. There are many RFs variations
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that differ in the way randomness is injected into the model, e.g bagging, random feature

subset selection and the partition criterion (Boulesteix et. al. 2012), (Criminisi et. al.

2011), (Hastie et. al. 2009). Our wavelet decomposition paradigm is applicable to most of

the RF versions known from the literature.

Bagging (Breiman 1996) is a method that produces partial replicates of the training data

for each tree. A typical approach is to randomly select for each tree a certain percentage of

the training set (e.g. 80%) or to randomly select samples with repetitions (Hastie et. al.

2009). From an approximation theoretical perspective, this form of RF allows to create an

over-complete representation (Christensen 2002) of the underlying function that overcomes

the ‘greedy’ nature of a single tree .

Additional methods to inject randomness can be achieved at the node partitioning level.

For each node, we may restrict the partition criteria to a small random subset of the

parameter values (hyper-parameter). A typical selection is to search for a partition from a

random subset of
√
n features (Breiman 2001). This technique is also useful for reducing the

amount of computations when searching the appropriate partition for each node. Bagging

and random feature selections are not mutually exclusive and could be used together.

For j = 1, ..., J , one creates a decision tree Tj , based on a subset of the data, Xj . One

then provides a weight (score) wj to the tree Tj , based on the estimated performance of

the tree. In the supervised learning, one typically uses the remaining data points xi /∈ Xj

to evaluate the performance of Tj . We note that for any point x ∈ Ω0, the approximation

associated with the jth tree, denoted by f̃j (x), is computed by finding the leaf Ω ∈ Tj in

which x is contained and then evaluating f̃j (xi) := QΩ (x), where QΩ is the corresponding

polynomial associated with the decision node Ω. One then assigns a weight wj > 0 to each

tree Tj , such that
∑J

j=1wj = 1. For simplicity, we will mostly consider in this paper the

choice of uniform weights wj = 1/J . One then assigns a value to any point x ∈ Ω0 by

f̃ (x) =

J∑
j=1

wj f̃j (x).

Typically, in classification problems, the response variables does not have a numeric

value, but rather are labeled by one of L classes. In this scenario, each input training point

xi ∈ Rn is assigned with a class Cl (xi). To convert the problem to the ‘functional’ setting

described above one assigns to each class Cl the value of a node on the regular simplex

consisting of L vertices in RL−1 (all with equal pairwise distances). Thus, we may assume

that the input data is in the form

{xi, Cl (xi)}i∈I ∈
(
Rn,RL−1

)
.
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In this case, if we choose approximation using constants (r = 1), then the calculated mean

over any subdomain Ω is in fact a point ~EΩ ∈ RL−1, inside the simplex. Obviously, any

value inside the multidimensional simplex, can be mapped back to a class, along with an

estimated certainty level, by calculating the closest vertex of the simplex to it. As will

become obvious, these mappings can be applied to any wavelet approximation of functions

receiving multidimensional values in the simplex.

3. Wavelet decomposition of a random forest

In some applications, there is a need to understand which nodes of a forest encapsulate more

information than the others. Furthermore, in the presence of noise, one popular approach

is to limit the levels of the tree, so as not to over-fit and contaminate the decisions by noise.

Following the classic paradigm of nonlinear approximation using wavelets (Daubechies

1992), (DeVore 1998), (Mallat 2009) and the geometric function space theory presented in

(Dekel and Leviatan 2005), (Karaivanov and Petrushev 2003), we present a construction

of a wavelet decomposition of a forest. Some aspects of the theoretical justification for the

construction are covered in the next section. Let Ω′ be a child of Ω in a tree T , i.e. Ω′ ⊂ Ω

and Ω′ was created by a partition of Ω as in Figure 1. Denote by 1Ω′ , the indicator function

over the child domain Ω′, i.e. 1Ω′ (x) = 1, if x ∈ Ω′ and 1Ω′ (x) = 0, if x /∈ Ω′. We use the

polynomial approximations QΩ′ , QΩ ∈ Πr−1 (Rn), computed by the local minimization (1)

and define

ψΩ′ := ψΩ′ (f) := 1Ω′ (QΩ′ −QΩ) , (4)

as the geometric wavelet associated with the subdomain Ω′ and the function f , or the

given discrete dataset {xi, f (xi)}i∈I . Each wavelet ψΩ′ , is a ‘local difference’ component

that belongs to the detail space between two levels in the tree, a ‘low resolution’ level

associated with Ω and a ‘high resolution’ level associated with Ω′. Also, the wavelets (4)

have the ‘zero moments’ property, i.e., if the response variable is sampled from a polynomial

of degree r−1 over Ω, then our local scheme will compute QΩ′ (x) = QΩ (x) = f (x), ∀x ∈ Ω,

and therefore ψΩ′ = 0.

Under certain mild conditions on the tree T and the function f , we have by the nature

of the wavelets, the ‘telescopic’ sum of differences

f =
∑
Ω∈T

ψΩ, ψΩ0 := QΩ0 . (5)

For example, (5) holds in Lp-sense, 1 ≤ p <∞, if f ∈ Lp (Ω0) and for any x ∈ Ω0 and series

of domains Ωl ∈ T , each on a level l with x ∈ Ωl , we have that lim
l→∞

diam (Ωl) = 0.

6



Wavelet decompositions of Random Forests

In the setting of a real-valued function, the norm of a wavelet is computed by

‖ψΩ′‖22 =

∫
Ω′

(QΩ′ (x)−QΩ (x))2 dx,

and in the discrete case by,

‖ψΩ′‖22 =
∑
xi∈Ω′

|QΩ′ (xi)−QΩ (xi)|2, (6)

where Ω′ is a child of Ω.

Observe that for r = 1, the subdivision process for partitioning a node by minimizing

(1) is equivalent to maximizing the sum of squared norms of the wavelets that are formed

in that partition

Lemma 1 For any partition Ω = Ω′ ∪ Ω′′ denote

VΩ :=
∑
xi∈Ω′

|f (xi)− CΩ′ |2 +
∑
xi∈Ω′′

|f (xi)− CΩ′′ |2,

where CΩ′ , CΩ′′ are defined in (3) and

WΩ := ‖ψΩ′‖22 + ‖ψΩ′′‖22 .

Then, the minimization (2) of VΩ is equivalent to maximization of WΩ over all choices of

subdomains Ω′,Ω′′, Ω = Ω′ ∪ Ω′′ and constants CΩ′ , CΩ′′.

Proof See Appendix.

Recall that our approach is to convert classification problems into a ‘functional’ setting

by assigning the L class labels to vertices of a simplex in RL−1. In such cases of multi-valued

functions, choosing r = 1, the wavelet ψΩ′ : Rn → RL−1 is

ψΩ′ = 1Ω′

(
~EΩ′ − ~EΩ

)
,

and its norm is given by

‖ψΩ′‖22 =
∑
xi∈Ω′

∥∥∥ ~EΩ′ − ~EΩ

∥∥∥2

l2
=
∥∥∥ ~EΩ′ − ~EΩ

∥∥∥2

l2
#
{
xi ∈ Ω′

}
., (7)

where for ~v ∈ RL−1,‖~v‖l2 :=
√∑L−1

i=1 v
2
i .
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Using any given weights assigned to the trees, we obtain a wavelet representation of the

entire RF

f̃ (x) =

J∑
j=1

∑
Ω∈Tj

wjψΩ (x). (8)

The theory (see Theorem 4 below) tells us that sparse approximation is achieved by ordering

the wavelet components based on their norm

wj(Ωk1)

∥∥∥ψΩk1

∥∥∥
2
≥ wj(Ωk2)

∥∥∥ψΩk2

∥∥∥
2
≥ wj(Ωk3)

∥∥∥ψΩk3

∥∥∥
2
· · · (9)

with the notation Ω ∈ Tj ⇒ j (Ω) = j. Thus, the adaptive M-term approximation of a RF

is

fM (x) :=

M∑
m=1

wj(Ωkm )ψΩkm
(x). (10)

Observe that, contrary to existing tree pruning techniques, where each tree is pruned sep-

arately, the above approximation process applies a ‘global’ pruning strategy where the sig-

nificant components can come from any node of any of the trees at any level. For simplicity,

one could choose wj = 1/J , and obtain

fM (x) =
1

J

M∑
m=1

ψΩkm
(x). (11)

Figure 2 below depicts an M-term (11) selected from an RF ensemble. The red colored

nodes illustrate the selection of the M wavelets with the highest norm values from the entire

forest. Observe that they can be selected from any tree at any level, with no connectivity

restrictions.

Figure 2: Selection of an M-term approximation from the entire forest.

Figure 3 depicts how the parameterM is selected for the challenging “Red Wine Quality”

dataset from the UCI repository (UCI repository). The generation of 10 decision trees on

the training set creates approximately 3500 wavelets. The parameter M is then selected by

minimization of the approximation error on a validation set. In contrast with other pruning
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methods (Loh 2011), using (9), the wavelet approximation method may select significant

components from any tree and any level in the forest. By this method, one does not need to

predetermine the maximal depth of the trees and over-fitting is controlled by the selection

of significant wavelet components.

Figure 3: : “Red Wine Quality” dataset - Numeric computation of M for optimal regression.

In a similar manner to certain successful applications in signal processing (e.g. coefficient

quantization in the image compression standard JPEG), one may replace the selection of

the parameter M in (11), with a threshold parameter ε > 0, chosen suitably for the problem

(see for example Section 6.2). One then creates a wavelet approximation using all wavelet

terms with norm (6) greater than ε.

In some cases, as presented in (Strobl et. al. 2006) explanatory attributes may be non-

descriptive and even noisy, leading to the creation of problematic nodes in the decision trees.

Nevertheless, in these cases, the corresponding wavelet norms are controlled and these nodes

can be pruned out of the sparse representation (11). The following example demonstrates

exactly this, that with high probability, the wavelets associated with the correct variables

have relatively higher norms than wavelets associated with non-descriptive variables. Hence

the wavelet based criterion will choose, with high probability the correct variable.

Example 1 Let {yi}mi=1, where yi ∼ Ber(1/2) i.i.d. and {xi}mi=1 ⊂ [0, 1]n , xi = (xi1, . . . , xik, . . . , xin) ∈
Rn with xik = yi and xij, j 6= k, uniformly distributed in [0, 1]. Then, for a subdivision

along the jth axis, [0, 1]n = Ω′ ∪ Ω′′, and given δ ∈ (0, 1), w.p. ≥ 1− δ,
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1. If j 6= k, then ‖ψΩ′‖22 , ‖ψΩ′′‖22 ≤ 2 log(2/δ),

2. If j = k and the subdivision minimizes (1), then

‖ψΩ′‖22 , ‖ψΩ′′‖22 ≥

(
m

2
−
√

log(2/δ)

2m

)3/
m2.

Proof See Appendix.

4. ‘Weak-Type’ Smoothness and Sparse Representations of the response

variable

In this section, we generalize to unstructured and possibly high dimensional datasets, a

theoretical framework that has been applied in the context of signal processing, where the

data is well structured and of low dimension (DeVore 1998), (DeVore et. al. 1992).

The ‘sparsity’ of a function in some representation is an important property that provides

a robust computational framework (Elad 2010(@). Approximation Theory relates the

sparsity of a function to its Besov smoothness index and supports cases where the function

is not even continuous. Our motivation is to provide additional tools that can be used in the

context of machine learning to associate a Besov-index, which is roughly a ‘complexity’ score,

to the underlying function of a dataset. As the theory below and the experimental results

show, this index correlates well with the performance of RFs and wavelet decompositions

of RFs.

For a function f ∈ Lτ (Ω), 0 < τ ≤ ∞, h ∈ Rn and r ∈ N, we recall the r-th order

difference operator

∆r
h (f, x) := ∆r

h (f,Ω, x) :=


r∑

k=0

(−1)r+k
(
r

k

)
f (x+ kh) [x, x+ rh] ⊂ Ω,

0 otherwise,

where [x, y] denotes the line segment connecting any two points x, y ∈ Rn. The modulus

of smoothness of order r over Ω is defined by

ωr (f, t)τ := sup|h|≤t ‖∆r
h (f,Ω, ·)‖Lτ (Ω) , t > 0,

where for h ∈ Rn, |h| denotes the norm of h. We also denote

ωr (f,Ω)τ := ωr

(
f,
diam (Ω)

r

)
τ

.
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Definition 2 For 0 < p < ∞ and α > 0, we set τ = τ (α, p), to be 1/τ := α + 1/p.

For a given function f ∈ Lp (Ω0), Ω0 ⊂ Rn, and tree T , we define the associated B-space

smoothness in Bα,rτ (T ), r ∈ N, by

|f |Bα,rτ (T ) :=

(∑
Ω∈T

(
|Ω|−α ωr (f,Ω)τ

)τ)1/τ

, (12)

where, |Ω| denotes the volume of Ω.

We now show that a ‘well clustered’ function is in fact infinitely smooth in the right

adaptively chosen Besov space.

Lemma 3 Let f (x) =
K∑
k=

Pk (x) 1Bk (x), where each Bk ⊂ Ω0 is a box with sides parallel

to the main axes and Pk ∈ Πr−1. We further assume that Bk ∩ Bj = ∅, whenever j 6= k.

Then, there exists an adaptive tree partition T , such that f ∈ Bα,r
α (T ), for any α > 0.

Proof See Appendix.

For a given forest F = {Tj}Jj=1 and weights wj = 1/J , the α Besov semi-norm associated

with the forest is

|f |Bα,rτ (F) :=
1

J

 J∑
j=1

|f |τBα,rτ (Tj)

1/τ

. (13)

The Besov index of f is determined by the maximal index α for which (13) is finite. The

above definition generalizes the classical function space theory of Besov spaces, where the

tree partitions are non-adaptive. That is, classical Besov spaces may be defined by the

special case of partitioning into dyadic cubes, each time using n levels of the tree.

Remark An active research area of approximation theory is the characterization of more

geometrically adaptive approximation algorithms by generalizations of the classic ‘isotropic’

Besov space to more ‘geometric’ Besov-type spaces (Dahmen et. al. 2001), (Dekel and

Leviatan 2005), (Karaivanov and Petrushev 2003). It is known that different geometric

approximation schemes are characterized by different flavors of Besov-type smoothness. In

this work, for example, we assume all trees are created using partitions along the main n

axes. This restriction may lead in general to potentially lower Besov smoothness of the

underlying function and the sparsity of the wavelet representation. Yet, the theoretical

definitions and results of this paper can also apply to more generalized schemes where for

example the tree partitions are by arbitrary hyper-planes. In such a case, the smoothness

index of a given function may increase.
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Next, for a given tree T and parameter 0 < τ < p we denote the τ -strength of the tree

by

Nτ (f, T ) =

(∑
Ω∈T
‖ψΩ‖τp

)1/τ

. (14)

Observe that

lim
τ→0

Nτ (f, T )τ = {#Ω ∈ T :ψΩ 6= 0} .

Let us further denote the τ -strength of a forest F , by

Nτ (f,F) :=
1

J

 J∑
j=1

∑
Ω∈Tj

‖ψΩ‖τp

1/τ

=
1

J

 J∑
j=1

Nτ (f, Tj)τ
1/τ

.

In the setting of a single tree constructed to represent a real-valued function, under mild

conditions on the partitions (see remark after (5) and condition (17)) , the theory of (Dekel

and Leviatan 2005) proves the equivalence

|f |Bα,rτ (T ) ∼ Nτ (f, T ) . (15)

This implies that there are constants 0 < C1 < C2 < ∞, that depend on parameters such

as α, p, n, r and ρ in condition (17) below, such that

C1 |f |Bα,rτ (T ) ≤ Nτ (f, T ) ≤ C2 |f |Bα,rτ (T ) .

Therefore, we also have for the forest model

|f |Bα,rτ (F) ∼ Nτ (f,F) . (16)

We now present a “Jackson-type estimate” for the degree of the adaptive wavelet forest

approximation. Its proof is in the Appendix.

Theorem 4 Let F = {Tj}Jj=1 be a forest. Assume there exists a constant 0 < ρ < 1, such

that for any domain Ω ∈ F on a level l and any domain Ω′ ∈ F , on the level l + 1, with

Ω ∩ Ω′ 6= ∅, we have ∣∣Ω′∣∣ ≤ ρ |Ω| , (17)
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where |E| denotes the volume of E ⊂ Rn. Denote formally f =
∑

Ω∈F
wj(Ω)ψΩ, and assume

that |f |Bα,rτ (F) <∞, where
1

τ
= α+

1

p
.

Then, for the M -term approximation (10) we have

σM (f) := ‖f − fM‖p ≤ C (p, α, ρ) JM−α |f |Bα,rτ (F) . (18)

One important contribution of this work is the attempt to generalize to the setting of

machine learning, the function space theoretical perspective. There are several candidate

numeric methods to estimate the critical ‘weak-type’ Besov smoothness index α from the

given data. That is, the maximal α for which the Besov norm is finite. Our goal is to

estimate the true smoothness of the underlying function, removing influences of noise and

outliers if exist within the given dataset. One potential method is to use the equivalence (16)

and then search for a transient value of τ for which Nτ (f,F) becomes ‘infinite’. However,

we choose to generalize the numeric algorithm of (DeVore et. al. 1992) and estimate the

critical index α using a numeric exponential fit of the error σM in (18). We found that it is

somewhat more robust to fit each decision tree in the forest with an estimated smoothness

index αj and then average to obtain the estimated forest smoothness α. Thus, based on

(18), we model the error function by σj,m ∼ cjm
−αj for unknown cj , αj , where σj,m is the

approximation error when using the m most significant wavelets of the jth tree. First,

notice that we can estimate cj ∼ σj,1. Then, using
∫M

1 m−udm =
(
M1−u − 1

)/
(1− u), we

estimate αj by

minαj

∣∣∣∣∣M1−αj − 1

1− αj
σj,1 −

M−1∑
m=1

σj,m

∣∣∣∣∣ . (19)

Similarly to (DeVore et. al. 1992), we select only M significant terms, to avoid fitting the

tail of the exponential expression. This is done by discarding wavelets that are overfitting

the error on the Out Of Bag (OOB) samples (see Figure 3). Let us see some examples of

how this works in practice. As can be seen in Figure 4, the estimate of the Besov index of

two target functions using (19) stabilizes after a relatively small number of trees are added.

Next, we show that when an underlying function is not ‘well clustered’ and has a sharp

transition of values across the boundary of two domains, then the Besov index is limited in

the general case and suffers from the curse of dimensionality. Again, it should make sense

to the practitioners, that such a function can be learnt but with more effort, e.g. trees with

higher depth.

Lemma 5 Let f (x) = 1Ω̃ (x), where Ω̃ ⊂ [0, 1]n is a compact domain with a smooth bound-

ary. Then, f ∈ Bα,r
τ (TI), for α < 1/p (n− 1), τ−1 = α + 1/p, and any r ≥ 1, where TI
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(a) “Red Wine” (b) “Airfoil”

Figure 4: Estimation of the Besov critical smoothness index

is the tree with isotropic dyadic partitions, creating dyadic cubes of side lengths 2−k on the

level nk.

Proof See Appendix.

We note that in the general case, when subdivisions along main axes are used, the non-

adaptive tree of the above lemma is almost best possible. That is, one cannot hope for

significantly higher smoothness index using an adaptive tree with subdivisions along main

axes. In Figure 5(a) we see 5000 random points and in (b) 250 random points, sampled

from a uniform distribution taking a response value of f (x) = 1Ω̃ (x), where Ω̃ ⊂ R2, is the

unit sphere.

(a) 5,000 sampled points (b) 250 sampled points

Figure 5: Dataset created by random sampling points of the indicator function of a unit
sphere
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By Lemma 4.3, the lower bound for the critical Besov exponent of f is α = 0.5, for p = 2.

This should correlate with the intuition of machine learning practitioners: the dataset does

have two well defined clusters, but the boundary between the clusters (boundary of the

sphere) is a non-trivial curve and any classification algorithm will need to learn the geometry

of the curve.

In Figure 6 we see a plot of the numeric calculation of the α Besov index for given number

of sampling points of f . We see relatively fast convergence to α = 0.51. As discussed, our

method attempts to capture the geometric properties of the ‘true’ underlying function that

is potentially buried in the noisy input data. To show this, we constructed from a dataset

of 10k samples of f , a ten dimensional dataset, by adding additional eight noisy features,

with uniform distribution in [0,1] and no bearing on the response variable. The numeric

computation in this example was again,α = 0.51, which demonstrates that the method is

stable under this noisy embedding in Rn as well.

Figure 6: Numeric calculation of the α Besov index for given number of sampling points of
the indicator function of a unit sphere.

5. Wavelet-based variable importance

In many cases, there is a need to understand in greater detail in what way the different

variables influence the response variable (Guyon and Elisseff 2003). Which of the possibly

hundreds of parameters is more critical? What are the interactions between the significant

variables? Also, the property of obtaining fewer features that provide equivalent prediction

could be used for feature engineering and for ‘feature budget algorithms’ such as in (Feng

et. al. 2015), (Vens and Costa 2011). As described in (Genuer et. al. 2010), the use of

RF for variable importance detection has several advantages.
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There are several existing Variable Importance (VI) quantification methods that use

RF. A popular approach for measuring the importance of a variable is summing the total

decrease in node impurities when splitting on the variable, averaged over all trees (RF in R),

(Hastie et. al. 2009). As suggested in the RF package documentation of the R language (RF

in R): “For classification, the node impurity is measured by the Gini Index. For regression;

it is measured by the residual sum of squares”. Although not stated specifically in (RF in

R), it is common practice to multiply the information gain of each node by its size (Raileanu

and Stoffel 2004), (Du and Zhan 2002), (Rokach and Maimon 2005). Additional methods

for variable importance measure are the ‘Permutation Importance’ measure (Genuer et.

al. 2010), or similarly ‘OOB randomization’ (Hastie et. al. 2009). With these latter

two methods, sequential predictions of RF are done, when each time one feature is being

permuted as the rest of the features remain. Then, the measure for variable importance is

the difference in prediction accuracy before and after a feature is permuted in MSE terms.

However, both ‘Impurity gain’ and ‘Permutation’ have some pitfalls that should be

considered, when used for variable importance. As shown by (Strobl et. al. 2006), the

‘Impurity gain’ tends to be in favor of variables with more varying values. As shown in

(Strobl et. al. 2008), ‘Permutation’ tends to overestimate the variable importance of highly

correlated variables.

The wavelet-based VI is derived by imposing a restriction on the adaptive re-ordering

of the wavelet components (11), such that they must appear in ‘feature related blocks’. To

make this precise, let {x ∈ Rn, f (x)} be a dataset and let f̃ represent the RF decomposition,

as in (8). We evaluate the importance of the i-th feature by

Sτi :=
1

J

J∑
j=1

∑
Ω∈Tj∩Vi

‖ψΩ‖τ2 , i = 1, . . . , n, (20)

where, τ > 0 and Vi is the set of child domains formed by partitioning their parent domain

along the ith variable. This allows us to score the variables, using the ordering Sτi1 ≥
Sτi2 ≥ · · · . Recall that our wavelet-based approach transforms classification problems into

the functional setting (see section 2) by mapping each label lk to a vertex ~lk ∈ RL−1 of a

regular simplex. Therefore, in classification problems, the wavelet norms in (20) are given

by (7) which implies that we provide a unified approach to VI.

It is crucial to observe that from an approximation theoretical perspective, the more

suitable choice in (20) is τ = 1, since with this choice, the ordering is related to ordering
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the variables by the approximation error of their corresponding wavelet subset

min1≤i≤n

∥∥∥∥∥∥f̃ − 1

J

J∑
j=1

∑
Ω∈Tj∩Vi

ψΩ

∥∥∥∥∥∥
2

= min1≤i≤n

∥∥∥∥∥∥ 1

J

∑
k 6=i

J∑
j=1

∑
Ω∈Tj∩Vk

ψΩ

∥∥∥∥∥∥
2

≤ min1≤i≤n
1

J

∑
k 6=i

J∑
j=1

∑
Ω∈Tj∩Vk

‖ψΩ‖2

= min1≤i≤n
∑
k 6=i

S1
k

=
∑

1≤k≤n
S1
k −max1≤i≤nS

1
i .

What is interesting is that, in regression problems, when using piecewise constant approxi-

mation in (1),(4), the VI score (20) with τ = 2, is in fact exactly as in (Louppe et. al. 2013)

when variance is used as the impurity measure. To see this, for any dataset {x ∈ Rn, f (x)}
and domain Ω̃ of an RF, denote briefly

KΩ̃ := #
{
xi ∈ Ω̃

}
, Var

(
Ω̃
)

=
1

#
{
xi ∈ Ω̃

} ∑
xi∈Ω̃

(
f (xi)− CΩ̃

)2
.

For any domain Ω of a RF, with children Ω′,Ω′′, the variance impurity measure is

∆ (Ω) :=Var (Ω)− KΩ′

KΩ
Var

(
Ω′
)
− KΩ′′

KΩ
Var

(
Ω′′
)
.

The importance of the variable i (up to normalization by the size of the dataset) is defined

in (Louppe et. al. 2013) by

1

J

J∑
j=1

∑
children of Ω in Tj∩Vi

KΩ∆ (Ω). (21)

Theorem 6 The variable importance methods of (20) and (21) are identical for τ = 2.

Proof For any domain Ω and its two children Ω′,Ω′′,

KΩ∆ (Ω) = KΩ

(
Var (Ω)− KΩ′

KΩ
Var

(
Ω′
)
− KΩ′′

KΩ
Var

(
Ω′′
))

=
∑
xi∈Ω

(f (xi)− CΩ)2 −
∑
xi∈Ω′

(f (xi)− CΩ′)2 −
∑
xi∈Ω′′

(f (xi)− CΩ′′)2

= ‖ψΩ′‖22 + ‖ψΩ′′‖22 .
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Therefore,

1

J

J∑
j=1

∑
children of Ω in Tj∩Vi

KΩ∆ (Ω) = S2
i .

♦

Further to the choice of τ = 1 over τ = 2 in (20), the novelty of the wavelet-based VI

approach is targeted at difficult noisy datasets. In these cases, one should compute VI at

various degrees of approximation, using only subsets of ‘significant’ nodes, by thresholding

out wavelet components with norm below some ε > 0

S1
i (ε) :=

J∑
j=1

∑
Ω∈Tj∩Vi, ‖ψΩ‖≥ε

‖ψΩ‖2. (22)

As pointed out, a popular RF approach for identifying important variables is summing the

total decrease in node impurities when splitting on the variable, averaged over all trees

(RF in R), (Hastie et. al. 2009). However, this method may not be reliable in situations

where potential predictor variables vary in their scale of measurement or their number of

categories (Strobl et. al. 2006). This restriction is very limiting in practice, as in many

cases binary variables such as ‘Gender’ are very descriptive where less descriptive variables

(or noise) may vary with many values.

To demonstrate this problem, we follow the experiment suggested in (Strobl et. al.

2006). We set a number of samples to m = 120, where each sample has two explanatory in-

dependent variables: x1 ∼ N(0, 1) and x2 ∼ Ber(0.5). A correlation between y = f(x1, x2)

and x2 is established by:

y ∼

{
Ber(0.7), x2 = 0,

Ber(0.3), x2 = 1.

}
(23)

In accordance with the point made in (Strobl et. al. 2006), when applying the VI of (RF

in R), (Hastie et. al. 2009) we observe that the important variable is the ‘noisy’ uncorre-

lated feature x1. As shown in Example 1, while we may obtain many false partitions along

the noise, with high probability their wavelet norm is controlled, and relatively small. In

Figure 7 we see a histogram of the wavelet norms (taken from one of the RF trees) for the

example (23). We see that the wavelet norms of the important variable x2 are larger, but

that there exists a long tail of wavelet norms relating to x1. Therefore, applying the thresh-

olding strategy (22) as part of the feature importance estimation could be advantageous in

such a case.

We now address the choice of ε in (22). So as to remove the noisy wavelet components

from the VI scoring process, we choose the threshold as norm of the M -th wavelet, where
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Figure 7: wavelets norms taken from one of the RF trees constructed for the example (23)

M is the selected using the M -term wavelet that minimizes the approximation error on the

validation set {xi, f(xi)}i=1,..k by

ε = ‖ψM‖2 , s.t minM


k∑
i=1

(
f(xi)−

1

J

M∑
m=1

ψΩkm
(xi)

)2
 . (24)

The calculation of ε for the “Pima diabetes” dataset using a validation set is depicted in

Figure 8. In Section 6.2 we demonstrate the advantage of the wavelet-based thresholding

technique in VI on several datasets.

6. Applications and Experimental Results

For our experimental results, we implemented C# code that supports RF construction,

Besov index analysis, wavelet decompositions of RF and applications such as wavelet-based

VI, etc. (source code is available, see link in (Wavelet RF code)). The algorithms are

executed on the Amazon Web Services cloud, using up to 120 CPUs. Most datasets are

taken from the UCI repository (UCI repository), which allows us to compare our results

to previous work.
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Figure 8: “Pima diabetes” - Choice of ε in (22) using the validation set

6.1 Ensemble Compression

In applications, constructed predictive models, such as RF, need to be stored, transmitted

and applied to new data. In such cases the size of the model becomes a consideration,

especially when using many trees to predict large amounts of incoming new data over

distributed architectures. Furthermore, as presented in (Geurts and Gilles 2011), the

number of total nodes of the RF and the average tree depth impact the memory requirements

and evaluation performance of the ensemble.

In order to demonstrate the correlation between the Besov index of the underlying

function and the ‘complexity’ of these datasets we need to compare on the same scale

different datasets of different sizes and dimensions. Therefore, we replaced the commonly

used metrics in machine learning such as MSE (Mean Square Error) by the normalized

PSNR (Peak Signal To Noise Ratio) metric which is commonly used in the context of signal

processing. For a given dataset {xi, f (xi)} and an approximation {xi, fA (xi)} PSNR is

defined by

PSNR:=10 · log10

maxi,j

{
|f (xi)− f (xj)|2

}
1

#{xi}
∑

i (f (xi)− fA (xi))
2 .

Observe that higher PSNR implies smaller error. In Figure 9 we observe the rate-distortion

performance measured on validation points in a fivefold cross validation of M−term wavelet

approximation and standard RF, as trees are added. It can be seen that for functions that

are smoother in ‘weak-type’ sense (e.g. higher α), wavelet approximation outperforms the

standard RF. Table 1 below shows an extensive list of more datasets.
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(a) “Record linkage” dataset, α = 0.99 (b) “CT Slice” dataset, α = 0.51

(c) “Parkinson” dataset , α = 0.11 (d) “Red Wine quality” dataset , α = 0.07

Figure 9: PSNR of four UCI data sets.
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We now compare wavelet-based compression with existing RF pruning strategies. As

stated by (Kulkarni and Sinha 2012), most of the current efforts in pruning RF are based on

‘Over-produce-and-Choose’ strategy, where the forest is grown to a fixed number of trees,

and then only a subset of these trees are chosen by a ‘leave one out strategy’ as in (Martinez-

Muoz et. al. 2009), (Yang et. al. 2012). For each dataset we first computed a point at

which the graph of wavelet approximation error begins to ‘flatten out’ on the validation

set. We then used this target error pre-saturation point for both wavelet shrinkage and

the pruning methods that aim for a minimal number of nodes to achieve it on a validation

set of fivefold cross validation. To this end, we have generated RF with 100 decision trees

with 80% bagging and
√
n hyper-parameter. The two pruning strategies are based on a

‘leave one out’ strategy as presented in (Yang et. al. 2012). In this approach trees are

recursively omitted according to their correspondence with the rest of the ensemble (based

on the correspondence of the margins in classification and MSE in regression). We have

collected the results of the experiment described above applied to 12 UCI datasets in Table

1. The datasets for classification are marked (C) and regression (R). One may observe from

Table 1 that the wavelet-based method performs better than conventional pruning. Also,

as expected, there is significant correlation between the performance of compression and

the function smoothness. That is, the compression is more effective for smoother functions.

Note that when computing an M -term wavelet approximation, some components may be

unconnected as depicted in Figure 2. Obviously, any compression of the wavelet approxima-

tion would need to encode the nodal data associated with these unconnected components.

Therefore, we enforce connectivity on any wavelet approximation we compute, by adding

all wavelet components along the tree paths leading to the selected significant wavelet com-

ponents. Thus, the wavelet compression appearing in Table 1 is in the form of a collection

of J connected subtrees.

6.2 Variable Importance

We first demonstrate how the wavelet-based method (20) with τ = 1, succeeds in identifying

the features with the highest impact on the prediction. In Figure 10 (a), we show an

histogram of VI scores for the “Red Wine” dataset using the wavelet-based approach (20).

As can be seen, the top three features in the histogram are ‘Alcohol’, ‘Volatile acidity’ and

‘Sulphates’. We then constructed RFs for all the possible triple combinations of features

of the UCI repository ‘Wine Quality’ dataset (165 simulations) using 100 trees and 80%

bagging. In Figure 10(b), we can see the MSE of each of these RFs. One can verify that

the triple ‘Alcohol’, ‘Volatile acidity’ and ‘Sulphates’ (index 81) has the smallest error, as

identified by our wavelet-based method.
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Table 1: Compression - number of nodes required to reach the error pre-saturation point

Dataset error Pruning
Min-D
(Yang et.
al. 2012)

Pruning
Mean-D
(Yang et. al.
2012)

Wavelet subtrees α

#trees #nodes #trees #nodes #trees #nodes

Record linkage
(C)

2% 1 123 1 123 1 6 0.99

CT Slice (R) 2.9 MSE 2 77042 2 76396 2 5141 0.51

Titanic (C) 17% 3 711 10 2248 1 34 0.42

Balanced scale
(C)

22% 1 185 1 185 1 55 0.34

Concrete (R) 15 MSE 19 2297 8 966 3 64 0.32

Magic Gamma
(C)

13% 9 26793 5 14961 3 1657 0.25

Airfoil (R) 3.2 MSE 5 4533 3 7487 3 1929 0.23

California
Housing (R)

0.5 MSE 4 65436 9 149863 4 7292 0.2

EEG (C) 8% 7 17845 11 28355 6 12808 0.15

Parkinson (R) 3.2 MSE 18 103822 19 110187 12 20947 0.11

Wine quality
(R)

0.4 MSE 14 39350 13 36439 12 29089 0.07

Year Prediction
(R)

88 MSE 21 10657799 24 12201588 19 9300284 0.02
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(a) Wavelet-based feature importance histogram

(b) Error of RFs constructed over all possible 3 feature subsets

Figure 10: Wavelet-based variable importance of the UCI Red wine data set
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Next, we show that the wavelet-based VI approach, in particular, the noise-removal

variant using (22) with ε > 0, can provide a better estimation of VI than the existing

methods in R (RF in R). Note that we apply the wavelet-based VI method in classification

problems as well, competing with, for example, the standard Gini-based algorithm of R.

To this end we employ a test methodology used in (Feng et. al. 2015). Using each VI

method we first calculate a corresponding VI score of the features. Each method uses an

RF with 100 trees and 80% bagging. However, the wavelet-based method was computed

using our implementation, based on (22) while the Permutation and Information Gain based

methods were applied using R. After each method ‘decides’ on the order of the features by

importance, we iterate by adding features one-by-one, where at the k-th iteration, only the

selected first k features are used for prediction. Here also, we used wavelet-based choice of

k most important features to construct a wavelet-based best prediction, while for the other

methods, we used their choice of k most important features as the input for an R based RF.

The results of fivefold cross validation are presented in Figure 11. For example, in Figure

11(a), we see that on the “Parkinson” dataset, the wavelet-based method reaches better

prediction using the first three features it selected. This is due to fact that the wavelet-based

method selected different features (‘Age’, ‘Time’ and ‘Gender’) than the other methods.

6.3 Classification and regression tasks

In this Section we focus on difficult datasets, such as small sets or with high bias, bad

features, mis-labeling and outliers (see for example “Pima Diabetes” dataset with only 768

samples with 8 attributes in Figure 11(c)) and show that in such cases the wavelet-based

approach provides smaller predictive errors.

We begin with a demonstration of a case of ‘false labeling’ using the R machine learning

benchmark “Spirals” (Spiral dataset). From the given dataset we create a dataset with mis-

labeling by randomly replacing 20% of the values of the response variable. The original and

noisy datasets are rendered in Figure 12. We then compare the predictive performance of

the standard RF and the M -term wavelet approximation (11), where optimal M values are

computed automatically as depicted in Figure 3. We also compare the M-term performance

to a minimal node size restriction as in (Biau and Scornet 2016), setting this value to 5,

as in (Denil et. al. 2014). We perform RF construction with 1000 trees and 5 fold cross

validation.

When the training dataset contains ‘false labeling’, the correspondence with the testing

set is reduced. Trying to restrict the tree depth, can potentially miss the geometry of the

underlying function, while too many levels can lead to overfitting. As seen in Table 2, the

wavelet approach selects the right significant components from any tree and any level and

thus outperforms the standard RF method. Observe that the added value of the wavelet
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(a) “Parkinson” dataset, ε = 1.74.

(b) “Magic gamma” dataset, ε = 0.57.

(c) “Pima Diabetes” dataset,ε = 0.93.

Figure 11: Comparisons of performance of standard VI methods used in R, with the wavelet-
based method (22)
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(a) Original set (b) Set with amplified mis-labeling

Figure 12: ‘Spirals’ dataset (Spiral dataset)

approach is more significant in the second case with more ‘false labeling’ in the training set.

Table 2: ‘Spirals’ dataset - Classification results.
Wavelet error RF error Pruned RF error

Original spiral set 12.2± 0.9% 14.4± 1.1% 15.9± 0.8%

Set with amplified
mis-labeling

13.9± 1.2% 17.8± 1.3% 22.7± 1.6%

Next, we compare the performance of wavelet-based regression with state-of-the-art

method on a challenging problem. The authors of (Denil et. al. 2014) provide comparative

results of different pruning strategies for the difficult “Wine Quality” dataset. Learning this

dataset is challenging since the data is very biased and depends on the personal taste of the

wine experts. In Table 3 below, we collect the results of (Biau 2012), (Biau et. al. 2008),

(Breiman 2001) and (Denil et. al. 2014) (as listed in (Denil et. al. 2014)). The RFs are

all constructed of 1000 trees and fivefold cross validation is applied. We follow the notation

presented in (Denil et. al. 2014) and use the abbreviation that was provided for each

method variation (‘+’,’F’,’S’,’NB’, ‘T’). In our RF implementation, we used bootstrapping

with 80% and randomized
√
n features at each node. M was selected automatically using 10

percent of the training set.

Another form of a challenging dataset is when some of the features are extremely noisy

or uncorrelated with the response variable. As shown in (Strobl et. al. 2006) (see the

discussion in Section 5), in such cases, RF partitions sometimes are influenced by these

variables and the constructed ensemble is of lower quality. To explore the impact of our

approach on such datasets, we used the “Poker Hand” dataset from the UCI repository

(UCI repository) in two modes: with and without a very non-descriptive feature “instance
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Table 3: Performance comparison on the “Wine Quality”
Algorithm MSE

Biau08 0.53

Biau12 0.59

Biau12+T 0.57

Biau12+S 0.57

Denil 0.48

Denil+F 0.48

Denil+S 0.41

Breiman 0.4

Breiman+NB 0.39

Wavelets 0.36

id”. As can be seen from Figure 13, the wavelet method significantly outperforms the

standard RF regression, especially in the second scenario with the ‘bad’ feature included.

(a) ‘Bad’ feature excluded (b) ‘Bad’ feature included

Figure 13: The impact of a bad feature on the regression of the “Poker Hand” dataset
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Denoting briefly for any domain Ω̃, KΩ̃ := #
{
xi ∈ Ω̃

}
we have

∑
xi∈Ω

(f (xi)− CΩ)2 − VΩ =
∑
xi∈Ω

(f (xi)− CΩ)2 −
∑
xi∈Ω′

(f (xi)− CΩ′)2 −
∑
xi∈Ω′′

(f (xi)− CΩ′′)2

=
∑
xi∈Ω′

[
(f (xi)− CΩ)2 − (f (xi)− CΩ′)2

]
+

∑
xi∈Ω′′

[
(f (xi)− CΩ)2 − (f (xi)− CΩ′′)2

]
= 2 (CΩ′ − CΩ)

∑
xi∈Ω′

f (xi) +KΩ′
(
C2

Ω − C2
Ω′
)

+ 2 (CΩ′′ − CΩ)
∑
xi∈Ω′′

f (xi) +KΩ′′
(
C2

Ω − C2
Ω′′
)

= 2 (CΩ′ − CΩ)KΩ′CΩ′ +KΩ′
(
C2

Ω − C2
Ω′
)

+ 2 (CΩ′′ − CΩ)KΩ′′CΩ′′ +KΩ′′
(
C2

Ω − C2
Ω′′
)

= KΩ′ (CΩ′ − CΩ)2 +KΩ′′ (CΩ′′ − CΩ)2

= ‖ψΩ′‖22 + ‖ψΩ′′‖22 = WΩ.

Now, since
∑
xi∈Ω

(f (xi)− CΩ)2 is independent of the selection of the partition of Ω and since

WΩ is always positive, the search for minimizing VΩ is equivalent to maximizing WΩ.

♦

Proof of Example 1

1. For any attribute j 6= k we denote m1 := # {xi ∈ Ω′} and m2 := m −m1. Hence, for

any δ ∈ (0, 1), applying the Hoeffding bound gives w.p. ≥ 1− δ

∣∣∣∣CΩ′ − 1

2

∣∣∣∣ ≤
√

log(2/δ)

2m1
,

∣∣∣∣CΩ′′ − 1

2

∣∣∣∣ ≤
√

log(2/δ)

2m2
. (25)

Note, that we can write CΩ = m1
m CΩ′ + m2

m CΩ′′ . Thus, using (25) we get w.p. ≥ 1− δ

(CΩ − CΩ′)2 =
m2

2

m2
(CΩ′′ − CΩ′)2

≤ m2
2

m2

(
1

m1
+

1

m2

)
log (2/δ) .
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Therefore, w.p. ≥ 1− δ,

‖ψΩ′‖22 = m1 (CΩ − CΩ′)2

≤ m1m
2
2

m2

(
1

m1
+

1

m2

)
log (2/δ)

=

(
m2

2

m2
+
m1m2

m2

)
log (2/δ)

≤ 2 log (2/δ) .

2. Observe that for the case j = k, a subdivision that minimizes (1) is xk = 1/2. Denote

m1 = # {xi ∈ Ω : yi = 1}. Applying the Hoeffding bound with δ ∈ (0, 1) yields w.p.

≥ 1− δ ∣∣∣m1 −
m

2

∣∣∣ ≤√ log(2/δ)

2m
.

If Ω′ is the subset of [0, 1]n where xk > 1/2, then CΩ′ = 1 and ‖ψΩ′‖22 = m1

(
1− m1

m

)2
.

Plugging into the bound above we conclude that w.p. ≥ 1− δ,

‖ψΩ′‖22 ≥

(
m

2
−
√

log(2/δ)

2m

)1−
m
2 +

√
log(2/δ)

2m

m

2

=

(
m

2
−
√

log(2/δ)

2m

)3/
m2.

♦

Proof of Theorem 4 We prove the case 1 < p < ∞ (the case 0 < p ≤ 1 is easier). We

need to show two essential properties. First, for any Ω′ ∈ F and any x ∈ Ω′, denoting

Λ := {Ω ∈ F : x ∈ Ω, |Ω| ≥ |Ω′|}, we have

∑
Ω∈Λ

(
|Ω′|
|Ω|

)1/p

≤ C (ρ, p) J. (26)

Indeed, using (17), recursively for all domains on lower levels intersecting with Ω′ we have

∑
Ω∈Λ

(
|Ω′|
|Ω|

)1/p

≤
∞∑
k=0

Jρk/p

≤ J

1− ρ1/p
.
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Secondly, we need the property that

‖ψΩ‖∞ ≤ c |Ω|
−1/p ‖ψΩ‖p , ∀Ω ∈ F . (27)

It is easy to see property (27) for the case r = 1, where ψΩ = 1ΩCΩ, but it is also known for

the general case of r ≥ 1 and convex domains (see e.g (Dekel and Leviatan 2005)). This

allows us to prove the following Lemma

Lemma 7 For 1 < p <∞, let F (x) =
I∑
i=1

wj(Ωi)ψΩi (x), Ωi ∈ F , where
∥∥wj(Ωi)ψΩi

∥∥
p
≤ L.

Then

‖F‖p ≤ cJLI
1/p. (28)

Proof Applying property (27) gives

‖F‖p ≤

∥∥∥∥∥
I∑
i=1

∥∥wj(Ωi)ψΩi

∥∥
∞ 1Ωi (·)

∥∥∥∥∥
p

≤ L

∥∥∥∥∥
I∑
i=1

|Ωi|−1/p 1Ωi (·)

∥∥∥∥∥
p

.

We define

Γ (x) :=

{
min1≤i≤I {|Ωi| :x ∈ Ωi} , x ∈

⋃I
i=1 Ωi,

0, else.

Then, (26) yields
I∑
i=1

|Ωi|−1/p 1Ωi (x) ≤ cJΓ (x)−1/p , ∀x ∈ Ω0.

Thus,

‖F‖p ≤ cL
∥∥∥Γ (·)−1/p

∥∥∥
p

= cJL

(∫
⋃

Ωi

Γ (x)−1 dx

)1/p

≤ cJL

(
I∑
i=1

|Ωi|−1
∫

Ωi

dx

)1/p

= cJLI1/p.

♦
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We now proceed with the proof of the Theorem. Observe that we may use (16), that is,

|f |Bα,rτ (F) ∼ Nτ (f,F). For ν = 1, 2, · · · , denote

Ξν :=
{

Ω ∈ F : 2−νNτ (f,F) ≤ wj(Ω) ‖ψΩ‖p < 2−ν+1Nτ (f,F)
}
.

Recall that for any non-negative discrete sequence β = {βk}∞k=1, the weak-lτ norm ‖β‖wlτ ,

is defined as the infimum (if exists) over all A > 0, for which

# {βk :βk > ε} ετ ≤ Aτ , ∀ε > 0.

Since ‖β‖wlτ ≤ ‖β‖lτ , this implies that

#Ξm ≤
∑
ν≤m

#Ξν = #
⋃
ν≤m

Ξν ≤ 2mτ .

Let Fν (x) :=
∑

Ω∈Ξν

wj(Ω)ψΩ (x). For the special case M :=
∑
ν≤m

#Ξν , we have by (28)

‖f − fM‖p ≤

∥∥∥∥∥
∞∑

ν=m+1

Fν

∥∥∥∥∥
p

≤
∞∑

ν=m+1

‖Fν‖p

≤ cJ
∞∑

ν=m+1

2−νNτ (f,F) (#Ξν)1/p

≤ cJNτ (f,F)

∞∑
ν=m+1

2−ν(1−τ/p)

≤ cJNτ (f,F)M−(1/τ−1/p) = cJNτ (f,F)M−α.

Extending this result for any M ≥ 1 is standard (using a larger leading constant). This

completes the proof.

♦

Proof of Lemma 3 Since there are a finite number of boxes, there exists a, possibly

unbalanced, binary tree that after at most K2n partitions, has also the boxes {Bk} as

nodes of the tree. Since the modulus of smoothness of order r of polynomials of degree r−1

is zero (DeVore 1998), (Devore and Lorentz 1993), for any of these box nodes we have

that

ωr (f,Bk)τ = ωr (Pk, Bk)τ = 0.

36



Wavelet decompositions of Random Forests

Similarly, for any descendant node Ω′ ⊂ Bk, for some 1 ≤ k ≤ K,

ωr
(
f,Ω′

)
τ

= ωr
(
Pk,Ω

′)
τ

= 0.

For any node Ω such that Ω ∩Bk = ∅, 1 ≤ k ≤ K, we have

ωr (f,Ω)τ = ωr (0,Ω)τ = 0.

We may then conclude that ωr (f,Ω)τ 6= 0, for only a finite low-level subset Λ of the tree

nodes, each strictly containing at least one Bk. Therefore, for any α > 0,

|f |Bα,rτ
=

(∑
Ω∈T

(
|Ω|−α ωr (f,Ω)

)τ)1/τ

=

(∑
Ω∈Λ

(
|Ω|−α ωr (f,Ω)τ

)τ)1/τ

≤ 2r ‖f‖τ
(

min
k
|Bk|

)−α
(K2n)1/τ ,

where we have used the inequality

ωr (f,Ω)τ ≤ 2r ‖f‖Lτ (Ω) ≤ 2r ‖f‖Lτ (Ω0) .

♦

Proof of Lemma 5 As stated, the tree TI with isotropic dyadic partitions, creates dyadic

cubes of side lengths 2−k at the level nk. Let us denote by D := {Dk}∞k=0, the collection of

dyadic cubes of [0, 1]n, where Dk is the collection of cubes with side lengths 2−k. Observe

that any domain Ω′ ∈ TI , at a level nk < l < n (k + 1), is contained in some dyadic cube

Ω ∈ T ∩ Dk at the level nk. Also, from the properties of the modulus of smoothness,

Ω′ ⊂ Ω⇒ ωr (f,Ω′)τ ≤ ωr (f,Ω)τ . Combining these two observations gives

∣∣Ω′∣∣−α ωr (f,Ω′)τ ≤ 2nα |Ω|−α ωr (f,Ω)τ .

Next, observe that for any Ω ∈ Dk

ωr (f,Ω)τ

{
= 0, Ω ∩ ∂Ω̃ = ∅,

≤ 2−kn/τ , Ω ∩ ∂Ω̃ 6= ∅,
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where ∂Ω̃ is the boundary of Ω̃. Therefore,

|f |Bα,rτ (T ) ≤ c (n, α, τ)

(∑
Ω∈D

(
|Ω|−α ωr (f,Ω)τ

)τ)1/τ

≤ c (n, α, τ, r)

( ∞∑
k=0

2kn(ατ−1)#
{

Ω ∈ Dk : Ω ∩ ∂Ω̃ 6= ∅
})1/τ

.

Thus, it remains to estimate the maximal number of dyadic cubes of side length 2−k that

can intersect a smooth boundary of a domain Ω̃ ⊂ [0, 1]n. For sufficiently large k, only

one connected component of the boundary ∂Ω̃ intersects a dyadic cube Ω ∈ Dk, in similar

manner to an hyperplane of dimension n− 1 with surface area ≤ c2−k(n−1). Therefore, for

sufficiently large k

#
{

Ω ∈ Dk : Ω ∩ ∂Ω̃ 6= ∅
}
≤ c2k(n−1).

This gives

|f |Bα,rτ (T ) ≤ c
(
n, α, τ, r, ∂Ω̃

)( ∞∑
k=0

2kn(ατ−1)2k(n−1)

)1/τ

.

Therefore, if τ−1 = α+ 1/p, then

α <
1

p (n− 1)
⇒ |f |Bα,1τ (T )

<∞.

♦
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