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Abstract

Symmetric positive semi-definite (SPSD) matrix approximation methods have been
extensively used to speed up large-scale eigenvalue computation and kernel learning
methods. The standard sketch based method, which we call the prototype model, produces
relatively accurate approximations, but is inefficient on large square matrices. The Nyström
method is highly efficient, but can only achieve low accuracy. In this paper we propose a
novel model that we call the fast SPSD matrix approximation model. The fast model is
nearly as efficient as the Nyström method and as accurate as the prototype model. We
show that the fast model can potentially solve eigenvalue problems and kernel learning
problems in linear time with respect to the matrix size n to achieve 1 + ε relative-error,
whereas both the prototype model and the Nyström method cost at least quadratic time
to attain comparable error bound. Empirical comparisons among the prototype model,
the Nyström method, and our fast model demonstrate the superiority of the fast model.
We also contribute new understandings of the Nyström method. The Nyström method is
a special instance of our fast model and is approximation to the prototype model. Our
technique can be straightforwardly applied to make the CUR matrix decomposition more
efficiently computed without much affecting the accuracy.

Keywords: Kernel approximation, matrix factorization, the Nyström method, CUR
matrix decomposition

1. Introduction

With limited computational and storage resource, machine-precision inversion and decom-
positions of large and dense matrix are prohibitive. In the past decade matrix approximation
techniques have been extensively studied by the theoretical computer science community
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(Woodruff, 2014), the machine learning community (Mahoney, 2011), and the numerical
linear algebra community (Halko et al., 2011).

In machine learning, many graph analysis techniques and kernel methods require
expensive matrix computations on symmetric matrices. The truncated eigenvalue decom-
position (that is to find a few eigenvectors corresponding to the greatest eigenvalues)
is widely used in graph analysis such as spectral clustering, link prediction in social
networks (Shin et al., 2012), graph matching (Patro and Kingsford, 2012), etc. Kernel
methods (Schölkopf and Smola, 2002) such as kernel PCA and manifold learning require the
truncated eigenvalue decomposition. Some other kernel methods such as Gaussian process
regression/classification require solving n × n matrix inversion, where n is the number of
training samples. The rank k (k � n) truncated eigenvalue decomposition (k-eigenvalue
decomposition for short) of an n× n matrix costs time Õ(n2k)1; the matrix inversion costs
time O(n3). Thus, the standard matrix computation approaches are infeasible when n is
large.

For kernel methods, we are typically given n data samples of dimension d, while the
n× n kernel matrix K is unknown beforehand and should be computed. This adds to the
additional O(n2d) time cost. When n and d are both large, computing the kernel matrix
is prohibitively expensive. Thus, a good kernel approximation method should avoid the
computation of the entire kernel matrix.

Typical SPSD matrix approximation methods speed up matrix computation by effi-
ciently forming a low-rank decomposition K ≈ CUCT where C ∈ Rn×c is a sketch of
K (e.g., randomly sampled c columns of K) and U ∈ Rc×c can be computed in different
ways. With such a low-rank approximation at hand, it takes only O(nc2) additional time to
approximately compute the rank k (k ≤ c) eigenvalue decomposition or the matrix inversion.
Therefore, if C and U are obtained in linear time (w.r.t. n) and c is independent of n, then
the aforementioned eigenvalue decomposition and matrix inversion can be approximately
solved in linear time.

The Nyström method is perhaps the most widely used kernel approximation method.
Let P be an n× c sketching matrix such as uniform sampling (Williams and Seeger, 2001;
Gittens, 2011), adaptive sampling (Kumar et al., 2012), leverage score sampling (Gittens
and Mahoney, 2016), etc. The Nyström method computes C by C = KP ∈ Rn×c and U
by U = (PTC)† ∈ Rc×c. This way of computing U is very efficient, but it incurs relatively
large approximation error even if C is a good sketch of K. As a result, the Nyström method
is reported to have low approximation accuracy in real-world applications (Dai et al., 2014;
Hsieh et al., 2014; Si et al., 2014b). In fact, the Nyström is impossible to attain 1 + ε
bound relative to ‖K −Kk‖2F unless c ≥ Ω

(√
nk/ε

)
(Wang and Zhang, 2013). Here Kk

denotes the best rank-k approximation of K. The requirement that c grows at least linearly
with

√
n is a very pessimistic result. It implies that in order to attain 1 + ε relative-error

bound, the time cost of the Nyström method is of order nc2 = Ω(n2k/ε) for solving the
k-eigenvalue decomposition or matrix inversion, which is quadratic in n. Therefore, under
the 1 + ε relative-error requirement, the Nyström method is not a linear time method.

The main reason for the low accuracy of the Nyström method is due to the way that the
U matrix is calculated. In fact, much higher accuracy can be obtained if U is calculated

1. The Õ notation hides the logarithm factors.
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by solving the minimization problem minU ‖K − CUCT ‖2F , which is a standard way to
approximate symmetric matrices (Halko et al., 2011; Gittens and Mahoney, 2016; Wang and
Zhang, 2013; Wang et al., 2016). This is the randomized SVD for symmetric matrices (Halko
et al., 2011). Wang et al. (2016) called this approach the prototype model and provided
an algorithm that samples c = O(k/ε) columns of K to form C such that minU ‖K −
CUCT ‖2F ≤ (1 + ε)‖K−Kk‖2F . Unlike the Nyström method, the prototype model does not
require c to grow with n. The downside of the prototype model is the high computational
cost. It requires the full observation of K and O(n2c) time to compute U. Therefore when
applied to kernel approximation, the time cost cannot be less than O(n2d+n2c). To reduce
the computational cost, this paper considers the problem of efficient calculation of U with
fixed C while achieving an accuracy comparable to the prototype model.

More specifically, the key question we try to answer in this paper can be described as
follows.

Question 1 For any fixed n × n symmetric matrix K, target rank k, and parameter γ,
assume that

A1 We are given a sketch matrix C ∈ Rn×c of K, which is obtained in time Time(C);

A2 The matrix C is a good sketch of K in that minU ‖K−CUCT ‖2F ≤ (1 + γ)‖K−Kk‖2F .

Then we would like to know whether for an arbitrary ε, it is possible to compute C and
Ũ such that the following two requirements are satisfied:

R1 The matrix Ũ has the following error bound:

‖K−CŨCT ‖2F ≤ (1 + ε)(1 + γ)‖K−Kk‖2F .

R2 The procedure of computing C and Ũ and approximately solving the aforementioned k-
eigenvalue decomposition or the matrix inversion run in time O

(
n · poly(k, γ−1, ε−1)

)
+

Time(C).

Unfortunately, the following theorem shows that neither the Nyström method nor the
prototype model enjoys such desirable properties. We prove the theorem in Appendix B.

Theorem 1 Neither the Nyström method nor the prototype model satisfies the two
requirements in Question 1. To make requirement R1 hold, both the Nyström method and
the prototype model cost time no less than O

(
n2 · poly(k, γ−1, ε−1)

)
+ Time(C) which is at

least quadratic in n.

In this paper we give an affirmative answer to the above question. In particular, it has
the following consequences. First, the overall approximation has high accuracy in the sense
that ‖K−CŨCT ‖2F is comparable to minU ‖K−CUCT ‖2F , and is thereby comparable to
the best rank k approximation. Second, with C at hand, the matrix Ũ is obtained efficiently
(linear in n). Third, with C and Ũ at hand, it takes extra time which is also linear in n
to compute the aforementioned eigenvalue decomposition or linear system. Therefore, with
a good C, we can use linear time to obtain desired U matrix such that the accuracy is
comparable to the best possible low-rank approximation.

The CUR matrix decomposition (Mahoney and Drineas, 2009) is closely related to the
prototype model and troubled by the same computational problem. The CUR matrix
decomposition is an extension of the prototype model from symmetric matrices to general

3



Wang, Zhang, and Zhang

matrices. Given any m×n fixed matrix A, the CUR matrix decomposition selects c columns
of A to form C ∈ Rm×c and r rows of A to form R ∈ Rr×n, and computes matrix U ∈ Rc×r
such that ‖A−CUR‖2F is small. Traditionally, it costs time

O(mn ·min{c, r})

to compute the optimal U? = C†AR† (Stewart, 1999; Wang and Zhang, 2013; Boutsidis and
Woodruff, 2014). How to efficiently compute a high-quality U matrix for CUR is unsolved.

1.1 Main Results

This work is motivated by an intrinsic connection between the Nyström method and the
prototype model. Based on a generalization of this observation, we propose the fast SPSD
matrix approximation model for approximating any symmetric matrix. We show that the
fast model satisfies the requirements in Question 1. Given n data points of dimension d,
the fast model computes C and Ufast and approximately solves the truncated eigenvalue
decomposition or matrix inversion in time

O
(
nc3/ε+ nc2d/ε

)
+ Time(C).

Here Time(C) is defined in Question 1.
The fast SPSD matrix approximation model achieves the desired properties in Question 1

by solving minU ‖K−CUCT ‖F approximately rather than exactly while ensuring

‖K−CUfastCT ‖2F ≤ (1 + ε) min
U
‖K−CUCT ‖2F .

The time complexity for computing Ufast is linear in n, which is far less than the time
complexity O(n2c) of the prototype model. Our method also avoids computing the entire

kernel matrix K; instead, it computes a block of K of size
√
nc
ε ×

√
nc
ε , which is substantially

smaller than n × n. The lower bound in Theorem 7 indicates that the
√
n factor here is

optimal, but the dependence on c and ε are suboptimal and can be potentially improved.
This paper provides a new perspective on the Nyström method. We show that, as well as

our fast model, the Nyström method is approximate solution to the problem minU ‖CUCT−
K‖2F . Unfortunately, the approximation is so rough that the quality of the Nyström method
is low.

Our method can also be applied to improve the CUR matrix decomposition of the general
matrices which are not necessarily square. Given any matrices A ∈ Rm×n, C ∈ Rm×c, and
R ∈ Rr×n, it costs time O(mn ·min{c, r}) to compute the matrix U = C†AR†. Applying
our technique, the time cost drops to only

O
(
crε−1 ·min{m,n} ·min{c, r}

)
,

while the approximation quality is nearly the same.

1.2 Paper Organization

The remainder of this paper is organized as follows. Section 2 defines the notation used
in this paper. Section 3 introduces the related work of matrix sketching and SPSD matrix
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Table 1: A summary of the notation.
Notation Description
n number of data points
d dimension of the data point
K n× n kernel matrix
P, S sketching matrices
C n× c sketch computed by C = KP
U? C†K(C†)T ∈ Rc×c—the U matrix of the prototype model
Unys (PTK)† ∈ Rc×c—the U matrix of the Nyström method
Ufast (STC)†(STKS)(CTS)† ∈ Rc×c—the U matrix of the fast model

approximation. Section 4 describes our fast model and analyze the time complexity and
error bound. Section 5 applies the technique of the fast model to compute the CUR matrix
decomposition more efficiently. Section 6 conducts empirical comparisons to show the effect
of the U matrix. The proofs of the theorems are in the appendix.

2. Notation

The notation used in this paper are defined as follows. Let [n] = {1, . . . , n}, In be the
n×n identity matrix, and 1n be the n × 1 vector of all ones. We let x ∈ y ± z denote
y − z ≤ x ≤ y + z. For an m×n matrix A = [Aij ], we let ai: be its i-th row, a:j be its
j-th column, nnz(A) be the number of nonzero entries of A, ‖A‖F = (

∑
i,j A

2
ij)

1/2 be its
Frobenius norm, and ‖A‖2 = maxx 6=0 ‖Ax‖2/‖x‖2 be its spectral norm.

Let ρ = rank(A). The condensed singular value decomposition (SVD) of A is defined
as

A = UΣVT =

ρ∑
i=1

σiuiv
T
i

where σ1, · · · , σr are the positive singular values in the descending order. We also use
σi(A) to denote the i-th largest singular value of A. Unless otherwise specified, in this
paper “SVD” means the condensed SVD. Let Ak =

∑k
i=1 σiuiv

T
i be the top k principal

components of A for any positive integer k less than ρ. In fact, Ak is the closest to A
among all the rank k matrices. Let A† = VΣ−1UT be the Moore-Penrose inverse of A.

Assume that ρ = rank(A) < n. The column leverage scores of A are li = ‖vi:‖22 for
i = 1 to n. Obviously, l1 + · · · + ln = ρ. The column coherence is defined by ν(A) =
n
ρ maxj∈[n] ‖vj:‖22. If ρ = rank(A) < m, the row leverage scores and coherence are similarly

defined. The row leverage scores are ‖u1:‖22, · · · , ‖um:‖22 and the row coherence is µ(A) =
m
ρ maxi∈[m] ‖ui:‖22.

We also list some frequently used notation in Table 1. Given the decomposition K̃ =
CUCT ≈ K which has rank at most c, it takes O(nc2) time to compute the eigenvalue
decomposition of K̃ and O(nc2) time to solve the linear system (K̃ + αIn)w = y to obtain
w (see Appendix A for more discussions). The truncated eigenvalue decomposition and
linear system are the bottleneck of many kernel methods, and thus an accurate and efficient
low-rank approximation can help to accelerate the computation of kernel learning.
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3. Related Work

In Section 3.1 we introduce matrix sketching. In Section 3.2 we describe two SPSD matrix
approximation methods.

3.1 Matrix Sketching

Popular matrix sketching methods include uniform sampling, leverage score sampling
(Drineas et al., 2006, 2008; Woodruff, 2014), Gaussian projection (Johnson and Linden-
strauss, 1984), subsampled randomized Hadamard transform (SRHT) (Drineas et al., 2011;
Lu et al., 2013; Tropp, 2011), count sketch (Charikar et al., 2004; Clarkson and Woodruff,
2013; Meng and Mahoney, 2013; Nelson and Nguyên, 2013; Pham and Pagh, 2013; Thorup
and Zhang, 2012; Weinberger et al., 2009), etc.

3.1.1 Column Sampling

Let p1, · · · , pn ∈ (0, 1) with
∑n

i=1 pi = 1 be the sampling probabilities. Let each integer
in [n] be independently sampled with probabilities sp1, · · · , spn, where s ∈ [n] is integer.
Assume that s̃ integers are sampled from [n]. Let i1, · · · , is̃ denote the selected integers,
and let E[s̃] = s. We scale each selected column by 1√

spi1
, · · · , 1√

spis̃
, respectively. Uniform

sampling means that the sampling probabilities are p1 = · · · = pn = 1
n . Leverage score

sampling means that the sampling probabilities are proportional to the leverage scores
l1, · · · , ln of a certain matrix.

We can equivalently characterize column selection by the matrix S ∈ Rn×s̃. Each column
of S has exactly one nonzero entry; let (ij , j) be the position of the nonzero entry in the
j-th column for j ∈ [s̃]. For j = 1 to s̃, we set

Sij ,j =
1
√
spij

. (1)

The expectation E[s̃] equals to s, and s̃ = Θ(s) with high probability. For the sake of
simplicity and clarity, in the rest of this paper we will not distinguish s̃ and s.

3.1.2 Random Projection

Let G ∈ Rn×s be a standard Gaussian matrix, namely each entry is sampled independently
from N (0, 1). The matrix S = 1√

s
G is a Gaussian projection matrix. Gaussian projection is

also well known as the Johnson-Lindenstrauss (JL) transform (Johnson and Lindenstrauss,
1984); its theoretical property is well established. It takes O(mns) time to apply S ∈ Rn×s
to any m× n dense matrix, which makes Gaussian projection inefficient.

The subsampled randomized Hadamard transform (SRHT) is usually a more efficient
alternative of Gaussian projection. Let Hn ∈ Rn×n be the Walsh-Hadamard matrix with
+1 and −1 entries, D ∈ Rn×n be a diagonal matrix with diagonal entries sampled uniformly
from {+1,−1}, and P ∈ Rn×s be the uniform sampling matrix defined above. The matrix
S = 1√

n
DHnP ∈ Rn×s is an SRHT matrix, and it can be applied to any m × n matrix in

O(mn log s) time.
Count sketch stems from the data stream literature (Charikar et al., 2004; Thorup and

Zhang, 2012) and has been applied to speedup matrix computation. The count sketch
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matrix S ∈ Rn×s can be applied to any matrix A in O(nnz(A)) time where nnz denotes
the number of non-zero entries. The readers can refer to (Woodruff, 2014) for detailed
descriptions of count sketch.

3.1.3 Theories

The following lemma shows important properties of the matrix sketching methods. In the
lemma, leverage score sampling means that the sampling probabilities are proportional to
the row leverage scores of the column orthogonal matrix U ∈ Rn×k. (Here U is different
from the notation elsewhere in the paper.) We prove the lemma in Appendix C.

Lemma 2 Let U ∈ Rn×k be any fixed matrix with orthonormal columns and B ∈ Rn×d be
any fixed matrix. Let S ∈ Rn×s be any sketching matrix considered in this section; the order
of s (with the O-notation omitted) is listed in Table 2. Then

P
{∥∥UTSSTU− Ik

∥∥
2
≥ η

}
≤ δ1 (Property 1),

P
{∥∥UTB−UTSSTB

∥∥2
F
≥ ε‖B‖2F

}
≤ δ2 (Property 2),

P
{∥∥UTB−UTSSTB

∥∥2
2
≥ ε′‖B‖22 +

ε′

k
‖B‖2F

}
≤ δ3 (Property 3).

Table 2: The leverage score sampling is w.r.t. the row leverage scores of U. For uniform
sampling, the notation µ(U) ∈ [1, n] is the row coherence of U.

Sketching Property 1 Property 2 Property 3

Leverage Sampling k
η2

log k
δ1

k
εδ2

—

Uniform Sampling µ(U)k
η2

log k
δ1

µ(U)k
εδ2

—

Gaussian Projection k+log(1/δ1)
η2

k
εδ2

1
ε′

(
k + log d

kδ3

)
SRHT k+logn

η2
log k

δ1
k+logn
εδ2

1
ε′

(
k + log nd

kδ1

)
log d

δ3

Count Sketch k2

δ1η2
k
εδ2

—

Property 1 is known as the subspace embedding property (Woodruff, 2014). It shows
that all the singular values of STU are close to one. Properties 2 and 3 show that sketching
preserves the multiplication of a row orthogonal matrix and an arbitrary matrix.

For the SPSD/CUR matrix approximation problems, the three properties are all we need
to capture the randomness in the sketching methods. Leverage score sampling, uniform
sampling, and count sketch do not enjoy Property 3, but it is fine— Frobenius norm
(Property 2) will be used as a loose upper bound on the spectral norm (Property 3).
Gaussian projection and SRHT satisfy all the three properties; when applied to the
SPSD/CUR problems, their error bounds are stronger than the leverage score sampling,
uniform sampling, and count sketch.
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3.2 SPSD Matrix Approximation Models

We first describe the prototype model and the Nyström method, which are most relevant
to this work. We then introduce several other SPSD matrix approximation methods.

3.2.1 Most Relevant Work

Given an n × n matrix K and an n × c sketching matrix P, we let C = KP and W =
PTC = PTKP. The prototype model (Wang and Zhang, 2013) is defined by

K̃proto
c , CU?CT = CC†K(C†)TCT , (2)

and the Nyström method is defined by

K̃nys
c , CUnysCT = CW†CT

= C
(
PTC

)†(
PTKP

)(
CTP

)†
CT . (3)

The only difference between the two models is their U matrices, and the difference leads to
big difference in their approximation accuracies. Wang and Zhang (2013) provided a lower
error bound of the Nyström method, which shows that no algorithm can select less than
Ω(
√
nk/ε) columns of K to form C such that

‖K−CUnysCT ‖2F ≤ (1 + ε)‖K−Kk‖2F .

In contrast, the prototype model can attain the 1 + ε relative-error bound with c = O(k/ε)
(Wang et al., 2016), which is optimal up to a constant factor.

While we have mainly discussed the time complexity of kernel approximation in the
previous sections, the memory cost is often a more important issue in large scale problems
due to the limitation of computer memory. The Nyström method and the prototype
model require O(nc) memory to hold C and U to approximately solve the aforementioned
eigenvalue decomposition or the linear system.2 Therefore, we hope to make c as small as
possible while achieving a low approximation error. There are two elements: (1) a good
sketch C = KP, and (2) a high-quality U matrix. We focus on the latter in this paper.

3.2.2 Less Relevant Work

We note that there are many other kernel approximation approaches in the literature.
However, these approaches do not directly address the issue we consider here, so they are
complementary to our work. These studies are either less effective or inherently rely on the
Nyström method.

The Nyström-like models such as MEKA (Si et al., 2014a) and the ensemble Nyström
method (Kumar et al., 2012) are reported to significantly outperform the Nyström method
in terms of approximation accuracy, but their key components are still the Nyström method
and the component can be replaced by any other methods such as the method studied in
this work. The spectral shifting Nyström method (Wang et al., 2014) also outperforms the

2. The memory costs of the prototype model is O(nc+nd) rather than O(n2). This is because we can hold
the n× d data matrix and the c× n matrix C† in memory, compute a small block of K each time, and
then compute C†K block by block.
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Nyström method in certain situations, but the spectral shifting strategy can be used for
any other kernel approximation models beyond the prototype model. We do not compare
with these methods in this paper because MEKA, the ensemble Nyström method, and the
spectral shifting Nyström method can all be improved if we replace the underlying Nyström
method or the prototype model by the new method developed here.

The column-based low-rank approximation model (Kumar et al., 2009) is another SPSD
matrix approximation approach different from the Nyström-like methods. Let P ∈ Rn×c
be any sketching matrix and C = KP. The column-based model approximates K by
C(CTC)−1/2CT = (CCT )1/2. Equivalently, it approximates K2 by

KTK ≈ CCT = KTPPTK.

From Lemma 2 we can see that it is a typical sketch based approximation to the matrix
multiplication. Unfortunately, the approximate matrix multiplication is effective only when
K has much more rows than columns, which is not true for the kernel matrix. The column-
based model does not have good error bound and is not empirically as good as the Nyström
method (Kumar et al., 2009).

The random feature mapping (Rahimi and Recht, 2007) is a family of kernel approxima-
tion methods. Each random feature mapping method is applicable to certain kernel rather
than arbitrary SPSD matrix. Furthermore, they are known to be noticeably less effective
than the Nyström method (Yang et al., 2012).

4. The Fast SPSD Matrix Approximation Model

In Section 4.1 we present the motivation behind the fast model. In Section 4.2 we provide
an alternative perspective on our fast model and the Nyström method by formulating them
as approximate solutions to an optimization problem. In Section 4.3 we analyze the error
bound of the fast model. Theorem 3 is the main theorem, which shows that in terms
of the Frobenius norm approximation, the fast model is almost as good as the prototype
model. In Section 4.4 we describe the implementation of the fast model and analyze the
time complexity. In Section 4.5 we give some implementation details that help to improve
the approximation quality. In Section 4.6 we show that our fast model exactly recovers K
under certain conditions, and we provide a lower error bound of the fast model.

4.1 Motivation

Let P ∈ Rn×c be sketching matrix and C = KP ∈ Rn×c. The fast SPSD matrix
approximation model is defined by

K̃fast
c,s , C

(
STC

)†(
STKS

)(
CTS

)†
CT ,

where S is n× s sketching matrix.
From (2) and (3) we can see that the Nyström method is a special case of the fast model

where S is defined as P and that the prototype model is a special case where S is defined
as In.

The fast model allows us to trade off the accuracy and the computational cost—larger
s leads to higher accuracy and higher time cost, and vice versa. Setting s as small as c

9
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Table 3: Summary of the time cost of the models for computing the U matrices and the
number of entries of K required to be observed in order to compute the U matrices.
As for the fast model, assume that S is column selection matrix. The notation is
defined previously in Table 1.

Time #Entries

Nyström O(c3) nc
Prototype O

(
nnz(K)c+ nc2

)
n2

Fast O(nc2 + s2c) nc+ (s− c)2

Nyström Prototype Fast

sn

cc

s

n

Figure 1: The yellow blocks denote the submatrices of K that must be seen by the kernel
approximation models. The Nyström method computes an n × c block of K,
provided that P is column selection matrix; the prototype model computes the
entire n×n matrix K; the fast model computes an n×c block and an (s−c)×(s−c)
block of K (due to the symmetry of K), provided that P and S are column
selection matrices.

sacrifices too much accuracy, whereas setting s as large as n is unnecessarily expensive.
Later on, we will show that s = O(c

√
n/ε) � n is a good choice. The setting s � n

makes the fast model much cheaper to compute than the prototype model. When applied
to kernel methods, the fast model avoids computing the entire kernel matrix. We summarize
the time complexities of the three matrix approximation methods in Table 3; the middle
column lists the time cost for computing the U matrices given C and K; the right column
lists the number of entry of K which much be observed. We show a very intuitive comparison
in Figure 1.

4.2 Optimization Perspective

With the sketch C = KP ∈ Rn×c at hand, we want to find the U matrix such that
CUCT ≈ K. It is very intuitive to solve the following problem to make the approximation

10
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tight:

U? = argmin
U

∥∥CUCT −K
∥∥2
F

= C†K(C†)T . (4)

This is the prototype model. Since solving this system is time expensive, we propose to
draw a sketching matrix S ∈ Rn×s and solve the following problem instead:

Ufast = argmin
U

∥∥ST (CUCT −K)S
∥∥2
F

= argmin
U

∥∥(STC)U(STC)T − STKS
∥∥2
F

= (STC)†(STKS)(CTS)†, (5)

which results in the fast model. Similar ideas have been exploited to efficiently solve the
least squares regression problem (Drineas et al., 2006, 2011; Clarkson and Woodruff, 2013),
but their analysis can not be directly applied to the more complicated system (5).

This approximate linear system interpretation offers a new perspective on the Nyström
method. The U matrix of the Nyström method is in fact an approximate solution to the
problem minU ‖CUCT −K‖2F . The Nyström method uses S = P as the sketching matrix,
which leads to the solution

Unys = argmin
U

∥∥PT (CUCT −K)P
∥∥2
F

= (PTKP)† = W†.

4.3 Error Analysis

Let Ufast correspond to the fast model (5). Any of the five sketching methods in Lemma 2
can be used to compute Ufast, although column selection is more useful than random
projection in this application. In the following we show that Ufast is nearly as good as
U? in terms of the objective function value. The proof is in Appendix D.

Theorem 3 (Main Result) Let K be any n× n fixed symmetric matrix, C be any n× c
fixed matrix, kc = rank(C), and Ufast be the c×c matrix defined in (5). Let S ∈ Rn×s be any
of the five sketching matrices defined in Table 4. Assume that ε−1 = o(n) or ε−1 = o(n/c).
The inequality ∥∥K−CUfastCT

∥∥2

F
≤ (1 + ε) min

U

∥∥K−CUCT
∥∥2

F
(6)

holds with probability at least 0.8.

In the theorem, Gaussian projection and SRHT require smaller sketch size than the other
three methods. It is because Gaussian projection and SRHT enjoys all of Properties 1, 2,
3 in Lemma 2, whereas leverage score sampling, uniform sampling, and count sketch does
not enjoy Property 3.

Remark 4 Wang et al. (2016) showed that there exists an algorithm (though not linear-
time algorithm) attaining the error bound∥∥K−CC†K(C†)TCT

∥∥2
F
≤ (1 + ε)

∥∥K−Kk

∥∥2
F

11
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Table 4: Leverage score sampling means sampling according to the row leverage scores of
C. For uniform sampling, the parameter µ(C) ∈ [1, n] is the row coherence of C.

Sketching Order of s Assumption Tsketch #Entries

Leverage Score Sampling c
√
n/ε ε = o(n) O(nc2 + s2) nc+ (s− c)2

Uniform Sampling µ(C)c
√
n/ε ε = o(n) O(s2) nc+ (s− c)2

Gaussian Projection
√

n
cε

(
c+ log n

c

)
ε = o(n/c) O

(
nnz(K)s

)
n2

SRHT
√

n
cε
(c+ logn) log(n) ε = o(n/c) O(n2 log s) n2

Count Sketch c
√
n/ε ε = o(n) O

(
nnz(K)

)
n2

Algorithm 1 The Fast SPSD Matrix Approximation Model.
1: Input: an n× n symmetric matrix K and the number of selected columns or target dimension

of projection c (< n).
2: Sketching: C = KP using an arbitrary n× c sketching matrix P (not studied in this work);
3: Optional: replace C by any orthonormal bases of the columns of C;
4: Compute another n× s sketching matrix S, e.g. the leverage score sampling in Algorithm 2;
5: Compute the sketches STC ∈ Rs×c and STKS ∈ Rs×s;
6: Compute Ufast = (STC)†(STKS)(CTS)† ∈ Rc×c;
7: Output: C and Ufast such that K ≈ CUfastCT .

with high probability by sampling c = O(k/ε) columns of K to form C. Let C ∈ Rn×c
be formed by this algorithm and S ∈ Rn×s be the leverage score sampling matrix. With
c = O(k/ε) and s = Õ(n1/2kε−3/2), the fast model satisfies∥∥K−CUfastCT

∥∥2
F
≤ (1 + ε)

∥∥K−Kk

∥∥2
F

with high probability.

4.4 Algorithm and Time Complexity

We describe the whole procedure of the fast model in Algorithm 1, where S ∈ Rn×s can be
one of the five sketching matrices described in Table 4. Given C and (the whole or a part
of) K, it takes time

O
(
s2c
)

+ Tsketch

to compute Ufast, where Tsketch is the time cost of forming the sketches STC and STKS
and is described in Table 4. In Table 4 we also show the number of entries of K that must
be observed. From Table 4 we can see that column selection is much more efficient than
random projection, and column selection does not require the full observation of K.

We are particularly interested in the column selection matrix S corresponding to the row
leverage scores of C. The leverage score sampling described in Algorithm 2 can be efficiently
performed. Using the leverage score sampling, it takes time O(nc3/ε) (excluding the time
of computing C = KP) to compute Ufast. For the kernel approximation problem, suppose
that we are given n data points of dimension d and that the kernel matrix K is unknown
beforehand. Then it takes O(nc2d/ε) additional time to evaluate the kernel function values.

12
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Algorithm 2 The Leverage Score Sampling Algorithm.
1: Input: an n× c matrix C, an integer s.
2: Compute the condensed SVD of C (by discarding the zero singular values) to obtain the

orthonormal bases UC ∈ Rn×ρ, where ρ = rank(C) ≤ c;
3: Compute the sampling probabilities pi = s`i/ρ, where `i = ‖eTi UC‖22 is the i-th leverage score;
4: Initialize S to be an matrices of size n× 0;
5: for i = 1 to n do
6: With probability pi, add

√
c
s`i

ei to be a new column of S, where ei is the i-th standard basis;

7: end for
8: Output: S, whose expected number of columns is s.

4.5 Implementation Details

In practice, the approximation accuracy and numerical stability can be significantly
improved by the following techniques and tricks.

If P and S are both random sampling matrices, then empirically speaking, enforcing
P ⊂ S significantly improves the approximation accuracy. Here P and S are the subsets
of [n] selected by P and S, respectively. Instead of directly sampling s indices from [n] by
Algorithm 2, it is better to sample s indices from [n] \ P to form S ′ and let S = S ′ ∪ P.
In this way, s + c columns are sampled. Whether the requirement P ⊂ S improves the
accuracy is unknown to us.

Corollary 5 Theorem 3 still holds when we restrict P ⊂ S.

Proof Let p1, · · · , pn be the original sampling probabilities without the restriction P ⊂ S.
We define the modified sampling probabilities by

p̃i =

{
1 if i ∈ P;
pi otherwise .

The column sampling with restriction P ⊂ S amounts to sampling columns according to
p̃1, · · · , p̃n. Since p̃i ≥ pi for all i ∈ [n], it follows from Remark 14 that the error bound will
not get worse if pi is replaced by p̃i.

If S is the leverage score sampling matrix, we find it better not to scale the entries of
S, although the scaling is necessary for theoretical analysis. According to our observation,
the scaling sometimes makes the approximation numerically unstable.

4.6 Additional Properties

When K is a low-rank matrix, the Nyström method and the prototype model are guaranteed
to exactly recover K (Kumar et al., 2009; Talwalkar and Rostamizadeh, 2010; Wang et al.,
2016). We show in the following theorem that the fast model has the same property. We
prove the theorem in Appendix E.

Theorem 6 (Exact Recovery) Let K be any n × n symmetric matrix, P ∈ Rn×c and
S ∈ Rn×s be any sketching matrices, C = KP, and W = PTC. Assume that rank(STC) ≥
rank(W). Then K = C(STC)†(STKS)(CTS)†CT if and only if rank(K) = rank(C).

13
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In the following we establish a lower error bound of the fast model, which implies that
to attain the 1 + ε Frobenius norm bound relative to the best rank k approximation, the
fast model must satisfy

c ≥ Ω
(
k/ε
)

and s ≥ Ω
(√

nk/ε
)
.

Notice that the theorem only holds for column selection matrices P and S. We prove the
theorem in Appendix F.

Theorem 7 (Lower Bound) Let P ∈ Rn×c and S ∈ Rn×s be any two column selection
matrices such that P ⊂ S ⊂ [n], where P and S are the index sets formed by P and S,
respectively. There exists an n× n symmetric matrix K such that

‖K− K̃fast
c,s ‖2F

‖K−Kk‖2F
≥ n− c

n− k

(
1 +

2k

c

)
+
n− s
n− k

k(n− s)
s2

, (7)

where k is arbitrary positive integer smaller than n, C = KP ∈ Rn×c, and

K̃fast
c,s = C(STC)†(STKS)(CTS)†CT

is the fast model.

Interestingly, Theorem 7 matches the lower bounds of the Nyström method and the
prototype model. When s = c, the right-hand side of (7) becomes Ω(1 + kn/c2), which is
the lower error bound of the Nyström method given by Wang and Zhang (2013). When
s = n, the right-hand side of (7) becomes Ω(1 + k/c), which is the lower error bound of the
prototype model given by Wang et al. (2016).

5. Extension to CUR Matrix Decomposition

In Section 5.1 we describe the CUR matrix decomposition and establish an improved error
bound of CUR in Theorem 8. In Section 5.2 we use sketching to more efficiently compute
the U matrix of CUR. Theorem 8 and Theorem 9 together show that our fast CUR method
satisfies 1 + ε error bound relative to the best rank k approximation. In Section 5.3 we
provide empirical results to intuitively illustrate the effectiveness of our fast CUR. In
Section 5.4 we discuss the application of our results beyond the CUR decomposition.

5.1 The CUR Matrix Decomposition

Given any m × n matrix A, the CUR matrix decomposition is computed by selecting c
columns of A to form C ∈ Rm×c and r rows of A to form R ∈ Rr×n and computing the U
matrix such that ‖A − CUR‖2F is small. CUR preserves the sparsity and non-negativity
properties of A; it is thus more attractive than SVD in certain applications (Mahoney and
Drineas, 2009). In addition, with the CUR of A at hand, the truncated SVD of A can be
very efficiently computed.

A standard way to finding the U matrix is by minimizing ‖A−CUR‖2F to obtain the
optimal U matrix

U? = argmin
U

‖A−CUR‖2F = C†AR†, (8)
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which has been used by Stewart (1999); Wang and Zhang (2013); Boutsidis and Woodruff
(2014). This approach costs time O(mc2 +nr2) to compute the Moore-Penrose inverse and
O(mn·min{c, r}) to compute the matrix product. Therefore, even if C and R are uniformly
sampled from A, the time cost of CUR is O(mn ·min{c, r}).

At present the strongest theoretical guarantee is by Boutsidis and Woodruff (2014).
They use the adaptive sampling algorithm to select c = O(k/ε) column and r = O(k/ε)
rows to form C and R, respectively, and form U? = C†AR†. The approximation error is
bounded by

‖A−CU?R‖2F ≤ (1 + ε)‖A−Ak‖2F .
This result matches the theoretical lower bound up to a constant factor. Therefore this
CUR algorithm is near optimal. We establish in Theorem 8 an improved error bound of
the adaptive sampling based CUR algorithm, and the constants in the theorem are better
than the those in (Boutsidis and Woodruff, 2014). Theorem 8 is obtained by following the
idea of Boutsidis and Woodruff (2014) and slightly changing the proof of Wang and Zhang
(2013). The proof is in Appendix G.

Theorem 8 Let A be any given m × n matrix, k be any positive integer less than m and
n, and ε ∈ (0, 1) be an arbitrary error parameter. Let C ∈ Rm×c and R ∈ Rr×n be columns
and rows of A selected by the near-optimal column selection algorithm of Boutsidis et al.
(2014). When c and r are both greater than 4kε−1

(
1 + o(1)

)
, the following inequality holds:

E
∥∥A−CC†AR†R‖2F ≤ (1 + ε)‖A−Ak‖2F ,

where the expectation is taken w.r.t. the random column and row selection.

5.2 Fast CUR Decomposition

Analogous to the fast SPSD matrix approximation model, the CUR decomposition can
be sped up while preserving its accuracy. Let SC ∈ Rm×sc and SR ∈ Rn×sr be any
sketching matrices satisfying the approximate matrix multiplication properties. We propose
to compute U more efficiently by

Ũ = argmin
U

‖STCASR − (STCC)U(RSR)‖2F

= (STCC)†︸ ︷︷ ︸
c×sc

(STCASR)︸ ︷︷ ︸
sc×sr

(RSR)†︸ ︷︷ ︸
sr×r

, (9)

which costs time
O(srr

2 + scc
2 + scsr ·min{c, r}) + Tsketch,

where Tsketch denotes the time for forming the sketches STCASR, STCC, and RSR. As for
Gaussian projection, SRHT, and count sketch, Tsketch are respectivelyO

(
nnz(A) min{sc, sr}

)
,

O
(
mn log(min{sc, sr})

)
, and O

(
nnz(A)

)
. As for leverage score sampling and uniform

sampling, Tsketch are respectively O(mc2 + nr2 + scsr) and O(scsr). Forming the sketches
by column selection is more efficient than by random projection.

The following theorem shows that when sc and sr are sufficiently large, Ũ is nearly as
good as the best possible U matrix. In the theorem, leverage score sampling means that
SC and SR sample columns according to the row leverage scores of C and RT , respectively.
The proof is in Appendix H.
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Theorem 9 Let A ∈ Rm×n, C ∈ Rm×c, R ∈ Rr×n be any fixed matrices with c � n and
r � m. Let q = min{m,n} and q̃ = min{m/c, n/r}. The sketching matrices SC ∈ Rm×sc
and SR ∈ Rn×sr are described in Table 5. Assume that ε−1 = o(q) or ε−1 = o(q̃), as shown
in the table. The matrix Ũ is defined in (9). Then the inequality

‖A−CŨR‖2F ≤ (1 + ε) min
U
‖A−CUR‖2F

holds with probability at least 0.7.

Table 5: Leverage score sampling means sampling according to the row leverage scores of
C and the column leverage scores of R, respectively. For uniform sampling, the
parameter µ(C) is the row coherence of C and ν(R) is the column coherence of
R.

Sketching Order of sc Order of sr Assumption

Leverage Score Sampling c
√
q/ε r

√
q/ε ε−1 = o(q)

Uniform Sampling µ(C)c
√
q/ε ν(R)r

√
q/ε ε−1 = o(q)

Gaussian Projection
√

m
cε

(
c+ log n

c

) √
n
rε

(
r + log m

r

)
ε−1 = o(q̃)

SRHT
√

m
cε

(
c+ log mn

c

)
log(m)

√
n
rε

(
r + log mn

r

)
log(n) ε−1 = o(q̃)

Count Sketch c
√
q/ε r

√
q/ε ε−1 = o(q)

As for leverage score sampling, uniform sampling, and count sketch, the sketch sizes
sc = O(c

√
q/ε) and sr = O(r

√
q/ε) suffice, where q = min{m,n}. As for Gaussian

projection and SRHT, much smaller sketch sizes are required: sc = Õ(
√
mc/ε) and

sr = Õ(
√
nr/ε) suffice. However, these random projection methods are inefficient choices

in this application and only have theoretical interest. Only column sampling methods have
linear time complexities. If SC and SR are leverage score sampling matrices (according to
the row leverage scores of C and RT , respectively), it follows from Theorem 9 that Ũ with
1 + ε bound can be computed in time

O
(
srr

2 + scc
2 + scsr ·min{c, r}

)
+ Tsketch = O

(
crε−1 ·min{m,n} ·min{c, r}

)
,

which is linear in O(min{m,n}).

5.3 Empirical Comparisons

To intuitively demonstrate the effectiveness of our method, we conduct a simple experiment
on a 1920 × 1168 natural image obtained from the internet. We first uniformly sample
c = 100 columns to form C and r = 100 rows to form R, and then compute the U matrix
by varying sc and sr. We show the image Ã = CUR in Figure 2.

Figure 2(b) is obtained by computing the U matrix according to (8), which is the best
possible result when C and R are fixed. The U matrix of Figure 2(c) is computed according
to Drineas et al. (2008):

U = (PT
RAPC)†,
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where PC and PR are column selection matrices such that C = APC and R = PT
RA. This

is equivalently to (9) by setting SC = PR and SR = PC . Obviously, this setting leads to
very poor quality. In Figures 2(c) and (d) the sketching matrices SC and SR are uniform
sampling matrices. The figures show that when sc and sr are moderately greater than r
and c, respectively, the approximation quality is significantly improved. Especially, when
sc = 4r and sr = 4c, the approximation quality is nearly as good as using the optimal U
matrix defined in (8).

(a) Original. (b) sc = m, sr = n.

(c) sc = r, sr = c. (d) sc = 2r, sr = 2c. (e) sc = 4r, sr = 4c.

Figure 2: (a): the original 1920×1168 image. (b) to (e): CUR decomposition with c = r =
100 and different settings of sc and sr.

5.4 Discussions

We note that we are not the first to use row and column sampling to solve the CUR problem
more efficiently, though we are the first to provide rigorous error analysis. Previous work
has exploited similar ideas as heuristics to speed up computation and to avoid visiting every
entry of A. For example, the MEKA method (Si et al., 2014a) partitions the kernel matrix
K into b2 blocks K(i,j) (i = 1, · · · , b and j = 1, · · · , b), and requires solving

L(i,j) = argmin
L

∥∥W(i)LW(j)T −K(i,j)
∥∥2
F

for all i ∈ [b], j ∈ [b], and i 6= j. Since W(i) and W(j) have much more rows than columns,
Si et al. (2014a) proposed to approximately solve the linear system by uniformly sampling
rows from W(i) and K(i,j) and columns from (W(j))T and K(i,j), and they noted that this
heuristic works pretty well. The basic ideas of our fast CUR and their MEKA are the
same; their experiments demonstrate the effectiveness and efficiency of this approach, and
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Table 6: A summary of the datasets for kernel approximation.
Dataset Letters PenDigit Cpusmall Mushrooms WineQuality
#Instance 15, 000 10,992 8, 192 8, 124 4, 898
#Attribute 16 16 12 112 12
σ (when η = 0.90) 0.400 0.101 0.075 1.141 0.314
σ (when η = 0.99) 0.590 0.178 0.180 1.960 0.486

our analysis answers why this approach is correct. This also implies that our algorithms
and analysis may have broad applications and impacts beyond the CUR decomposition and
SPSD matrix approximation.
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Figure 3: The plot of s
n against the approximation error ‖K −CUCT ‖2F /‖K‖2F , where C

contains c = dn/100e column of K ∈ Rn×n selected by uniform sampling.
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Figure 4: The plot of s
n against the approximation error ‖K −CUCT ‖2F /‖K‖2F , where C

contains c = dn/100e column of K ∈ Rn×n selected by the uniform+adaptive2

sampling algorithm (Wang et al., 2016).

6. Experiments

In this section we conduct several sets of illustrative experiments to show the effect of the
U matrix. We compare the three methods with different settings of c and s. We do not
compare with other kernel approximation methods for the reasons stated in Section 3.2.2.

6.1 Setup

Let X = [x1, . . . ,xn] be the d× n data matrix, and K be the RBF kernel matrix with each

entry computed by Kij = exp
(
− ‖xi−xj‖

2
2

2σ2

)
where σ is the scaling parameter.

When comparing the kernel approximation error ‖K − CUCT ‖2F , we set the scaling
parameter σ in the following way. We let k = dn/100e and define

η =
‖Kk‖2F
‖K‖2F

=

∑k
i=1 σ

2
i (K)∑n

i=1 σ
2
i (K)

,
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which indicate the importance of the top one percent singular values of K. In general η
grows with σ. We set σ such that η = 0.9 or 0.99.

All the methods are implemented in MATLAB and run on a laptop with Intel i5 2.5GHz
CUP and 8GB RAM. To compare the running time, we set MATLAB in the single thread
mode.

6.2 Kernel Approximation Accuracy

We conduct experiments on several datasets available at the LIBSVM site. The datasets are
summarized in Table 6. In this set of experiments, we study the effect of the U matrices.
We use two methods to form C ∈ Rn×c: uniform sampling and the uniform+adaptive2

sampling (Wang et al., 2016); we fix c = dn/100e. For our fast model, we use two kinds of
sketching matrices S ∈ Rn×s: uniform sampling and leverage score sampling; we vary s from
2c to 40c. We plot s

n against the approximation error ‖K −CUCT ‖2F /‖K‖2F in Figures 3
and 4. The Nyström method and the prototype model are included for comparison.

Figures 3 and 4 show that the fast SPSD matrix approximation model is significantly
better than the Nyström method when s is slightly larger than c, e.g., s = 2c. Recall that
the prototype model is a special case of the fast model where s = n. We can see that the
fast model is nearly as accurate as the prototype model when s is far smaller than n, e.g.,
s = 0.2n.

The results also show that using uniform sampling and leverage score sampling to
generate S does not make much difference. Thus, in practice, one can simply compute
S by uniform sampling.

By comparing the results in Figures 3 and 4, we can see that computing C by
uniform+adaptive2 sampling is substantially better than uniform sampling. However,
adaptive sampling requires the full observation of K; thus with uniform+adaptive2

sampling, our fast model does not have much advantage over the prototype model in terms
of time efficiency. Our main focus of this work is the U matrix, so in the rest of the
experiments we simply use uniform sampling to compute C.

6.3 Approximate Kernel Principal Component Analysis

We apply the three methods to approximately compute kernel principal component analysis
(KPCA), and contrast with the exact solution. The experiment setting follows Zhang and
Kwok (2010). We fix k and vary c. For our fast model, we set s = 2c, 4c, or 8c. Since
computing S by uniform sampling or leverage score sampling yields the same empirical
performance, we use only uniform sampling. Let CUCT be the low-rank approximation
formed by the three methods. Let ṼΛ̃ṼT be the k-eigenvalue decomposition of CUCT .

6.3.1 Quality of the Approximate Eigenvectors

Let UK,k ∈ Rn×k contain the top k eigenvectors of K. In the first set of experiments, we
measure the distance between UK,k and the approximate eigenvectors Ṽ by

Misalignment =
1

k

∥∥UK,k − ṼṼTUK,k

∥∥2
F

(∈ [0, 1]). (10)

Small misalignment indicates high approximation quality. We fix k = 3.
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Figure 5: The plot of (log-scale) elapsed time against the (log-scale) misalignment defined
in (10).

We conduct experiments on the datasets summarized in Table 6. We record the elapsed
time of the entire procedure—computing (part of) the kernel matrix, computing C and
U by the kernel approximation methods, computing the k-eigenvalue decomposition of
CUCT . We plot the elapsed time against the misalignment defined in Figure 5. Results
on the Letters dataset are not reported because the exact k-eigenvalue decomposition on
MATLAB ran out of memory, making it impossible to calculate the misalignment.

At the end of Section 3.2.1 we have mentioned the importance of memory cost of
the kernel approximation methods and that all three compared methods cost O(nc + nd)
memory. Since n and d are fixed, we plot c against the misalignment in Figure 6 to show
the memory efficiency.

The results show that using the same amount of time or memory, the misalignment
incurred by the Nyström method is usually tens of times higher than our fast model. The

21



Wang, Zhang, and Zhang

30 60 90 120 150

10
−1

10
0

M
is

al
ig

nm
en

t

c

(a) PenDigit, η = 0.9.

30 60 90 120 150
10

−3

10
−2

10
−1

10
0

M
is

al
ig

nm
en

t

c

(b) PenDigit, η = 0.99.

30 60 90 120 150
10

−2

10
−1

10
0

M
is

al
ig

nm
en

t

c

(c) Cpusmall, η = 0.9.

30 60 90 120 150
10

−4

10
−3

10
−2

10
−1

10
0

M
is

al
ig

nm
en

t

c

(d) Cpusmall, η = 0.99.

40 60 80 100 120 140
10

−2

10
−1

10
0

M
is

al
ig

nm
en

t

c

(e) Mushrooms, η = 0.9.

40 60 80 100 120 140
10

−4

10
−3

10
−2

10
−1

M
is

al
ig

nm
en

t

c

(f) Mushrooms, η = 0.99.

40 60 80 100 120 140
10

−2

10
−1

10
0

M
is

al
ig

nm
en

t

c

(g) Wine, η = 0.9.

30 60 90 120 150
10

−4

10
−3

10
−2

10
−1

10
0

M
is

al
ig

nm
en

t

c

(h) Wine, η = 0.99.

Nystrom

Prototype

Fast (s=2c)

Fast (s=4c)

Fast (s=8c)

(i) Legend.

Figure 6: The plot of c against the (log-scale) misalignment defined in (10).

Table 7: A summary of the datasets for clustering and classification.
Dataset MNIST Pendigit USPS Mushrooms Gisette DNA

#Instance 60, 000 10, 992 9, 298 8, 124 7, 000 2, 000
#Attribute 780 16 256 112 5, 000 180
#Class 10 10 10 2 2 3
Scaling Parameter σ 10 0.7 15 3 50 4

experiment also shows that with fixed c, the fast model is nearly as accuracy as the prototype
model when s = 8c� n.

6.3.2 Quality of the Generalization

In the second set of experiments, we test the generalization performance of the kernel
approximation methods on classification tasks. The classification datasets are described in
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Figure 7: The plot of c against the classification error. Here k = 3.
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Figure 8: The plot of elapsed time against the classification error. Here k = 3.

Table 7. For each dataset, we randomly sample n1 = 50%n data points for training and the
rest 50%n for test. In this set of experiments, we set k = 3 and k = 10.

We let K ∈ Rn1×n1 be the RBF kernel matrix of the training data and k(x) ∈ Rn1

be defined by [k(x)]i = exp
(
− ‖x−xi‖

2
2

2σ2

)
, where xi is the i-th training data point. In the

training step, we approximately compute the top k eigenvalues and eigenvectors, and denote
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Figure 9: The plot of c against the classification error. Here k = 10.
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Figure 10: The plot of elapsed time against the classification error. Here k = 10.

Λ̃ ∈ Rk×k and Ṽ ∈ Rn1×k. The feature vector (extracted by KPCA) of the i-th training

data point is the i-th column of Λ̃
0.5

ṼT . In the test step, the feature vector of test data

x is Λ̃
−0.5

ṼTk(x). Then we put the training labels and training and test features into the
MATLAB K-nearest-neighbor classifier knnclassify to classify the test data. We fix the
number of nearest neighbors to be 10. The scaling parameters of each dataset are listed in
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Table 7. Since the kernel approximation methods are randomized, we repeat the training
and test procedure 20 times and record the average elapsed time and average classification
error.

We plot c against the classification error in Figures 7 and 9, and plot the elapsed time
(excluding the time cost of KNN) against the classification error in Figures 8 and 10. Using
the same amount of memory, the fast model is significantly better than the Nyström method,
especially when c is small. Using the same amount of time, the fast model outperforms the
Nyström method by one to two percent of classification error in many cases, and it is at
least as good as the Nyström method in the rest cases. This set of experiments also indicate
that the fast model with s = 4c or 8c has the best empirical performance.
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Figure 11: The plot of c against NMI.

6.4 Approximate Spectral Clustering

Following the work of Fowlkes et al. (2004), we evaluate the performance of the kernel
approximation methods on the spectral clustering task. We conduct experiments on the
datasets summarized in Table 7.

We describe the approximate spectral clustering in the following. The target is to
cluster n data points into k classes. We use the RBF kernel matrix K as the weigh matrix
and let CUCT ≈ K be the low-rank approximation. The degree matrix D = diag(d)
is a diagonal matrix with d = CUCT1n, and the normalized graph Laplacian is L =
In −D−1/2(CUCT )D−1/2. The bottom k eigenvectors of L are the top k eigenvectors of

(D−1/2C)︸ ︷︷ ︸
n×c

U︸︷︷︸
c×c

(D−1/2C)T︸ ︷︷ ︸
c×n

,

which can be efficiently computed according to Appendix A. We denote the top k
eigenvectors by Ṽ ∈ Rn×k. We normalize the rows of Ṽ and take the normalized rows
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Figure 12: The plot of elapsed time against NMI.

of Ṽ as the input of the k-means clustering. Since the matrix approximation methods are
randomized, we repeat this procedure 20 times and record the average elapsed time and the
average normalized mutual information (NMI)3 of clustering.

We plot c against NMI in Figure 11 and the elapsed time (excluding the time cost
of k-means) against NMI in Figure 12. Figure 11 shows that using the same amount of
memory, the performance of the fast model is better than the Nyström method. Using
the same amount of time, the fast model and the Nyström method have almost the same
performance, and they are both better than the prototype model.

7. Concluding Remarks

In this paper we have studied the fast SPSD matrix approximation model for approximating
large-scale SPSD matrix. We have shown that our fast model potentially costs time linear
in n, while it is nearly as accurate as the best possible approximation. The fast model is
theoretically better than the Nyström method and the prototype model because the latter
two methods cost time quadratic in n to attain the same theoretical guarantee. Experiments
show that our fast model is nearly as accurate as the prototype model and nearly as efficient
as the Nyström method.

The technique of the fast model can be straightforwardly applied to speed up the CUR
matrix decomposition, and theoretical analysis shows that the accuracy is almost unaffected.
In this way, for any m × n large-scale matrix, the time cost of computing the U matrix
drops from O(mn) to O(min{m,n}).

3. NMI is a standard metric of clustering. NMI is between 0 and 1. Big NMI indicates good clustering
performance.
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Appendix A. Approximately Solving the Eigenvalue Decomposition and
Matrix Inversion

In this section we show how to use the SPSD matrix approximation methods to speed up
eigenvalue decomposition and linear system. The two lemmas are well known results. We
show them here for the sake of self-containing.

Lemma 10 (Approximate Eigenvalue Decomposition) Given C ∈ Rn×c and U ∈
Rc×c. Then the eigenvalue decomposition of K̃ = CUCT can be computed in time O(nc2).

Proof It cost O(nc2) time to compute the SVD

C = UC︸︷︷︸
n×c

ΣC︸︷︷︸
c×c

VT
C︸︷︷︸

c×c

and O(c3) time to compute Z = (ΣCVT
C)U(ΣCVT

C)T ∈ Rc×c. It costs O(c3) time to
compute the eigenvalue decomposition Z = VZΛZVT

Z. Combining the results above, we
obtain

CUCT = (UCΣCVT
C)U(UCΣCVT

C)T

= UCZUT
C = (UCVZ)ΛZ(UCVZ)T .

It then cost time O(nc2) to compute the matrix product UCVZ. Since (UCVZ) has
orthonormal columns and ΛZ is diagonal matrix, the eigenvalue decomposition of CUCT

is solved. The total time cost is O(nc2) +O(c3) = O(nc2).

Lemma 11 (Approximately Solving Matrix Inversion) Given C ∈ Rn×c, SPDS
matrix U ∈ Rc×c, vector y ∈ Rn, and arbitrary positive real number α. Then it costs
time O(nc2) to solve the n× n linear system (CUCT + αIn)w = y to obtain w ∈ Rn.

In addition, if the SVD of C is given, then it takes only O(c3 + nc) time to solve the
linear system.

Proof Since the matrix (CUCT + αIn) is nonsingular when α > 0 and U is SPSD, the
solution is w? = (CUCT + αIn)−1y. Instead of directly computing the matrix inversion,
we can expand the matrix inversion by the Sherman-Morrison-Woodbury matrix identity
and obtain

(CUCT + αIn)−1 = α−1In − α−1C(αU−1 + CTC)−1CT .
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Thus the solution to the linear system is

w? = α−1y − α−1 C︸︷︷︸
n×c

(αU−1 + CTC)−1︸ ︷︷ ︸
c×c

CT︸︷︷︸
c×n

y.

Suppose we are given only C and U. The matrix multiplication CTC costs time O(nc2),
the matrix inversions cost time O(c3), and multiplying matrix with vector costs time O(nc).
Thus the total time cost is O(nc2) +O(c3) +O(nc) = O(nc2).

Suppose we are given U and the SVD C = UCΣCVT
C. The matrix product

CTC = VCΣCUT
CUCΣCVC = VCΣ2

CVC

can be computed in time O(c3). Thus the total time cost is merely O(c3 + nc).

Appendix B. Proof of Theorem 1

The prototype model trivially satisfies requirement R1 with ε = 0. However, it violates
requirement R2 because computing the U matrix by solving minU ‖K − CUCT ‖2F costs
time O(n2c).

For the Nyström method, we provide such an adversarial case that assumptions A1 and
A2 can both be satisfied and that requirements R1 and R2 cannot hold simultaneously. The
adversarial case is the block diagonal matrix

K = diag(B, · · · ,B︸ ︷︷ ︸
k blocks

),

where

B = (1− a)Ip + a1p1
T
p , a < 1, and p =

n

k
,

and let a → 1. Wang et al. (2016) showed that sampling c = 3kγ−1
(
1 + o(1)

)
columns

of K to form C makes assumptions A1 and A2 in Question 1 be satisfied. This indicates
that C is a good sketch of K. The problem is caused by the way the Unys matrix is
computed. Wang and Zhang (2013, Theorem 12) showed that to make requirement R1 in
Question 1 satisfied, c must be greater than Ω(

√
nk/(ε+ γ)). Thus it takes time O(nc2) =

Ω(n2k/(ε+ γ)) to compute the rank-k eigenvalue decomposition of CUnysCT or the linear
system (CUnysCT + αIn)w = y. Thus, requirement R2 is violated.

Appendix C. Proof of Lemma 2

Lemma 2 is a simplified version of Lemma 12. We prove Lemma 12 in the subsequent
subsections. In the lemma, leverage score sampling means that the sampling probabilities
are proportional to the row leverage scores of U ∈ Rn×k. For uniform sampling, µ(U) is
the row coherence of U.
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Lemma 12 Let U ∈ Rn×k be any fixed matrix with orthonormal columns and B ∈ Rn×d
be any fixed matrix. Let S ∈ Rn×s be any sketching matrix described in Table 8. Then

P
{∥∥UTSSTU− Ik

∥∥
2
≥ η

}
≤ δ1 (Property 1),

P
{∥∥UTB−UTSSTB

∥∥2
F
≥ ε‖B‖2F

}
≤ δ2 (Property 2),

P
{∥∥UTB−UTSSTB

∥∥2
2
≥ ε′‖B‖22 +

ε′

k
‖B‖2F

}
≤ δ3 (Property 3).

Table 8: The sketch size s for satisfying the three properties. For SRHT, we define λ =(
1 +

√
8k−1 log(100n)

)2
and λ′ =

(
1 +

√
4k−1 log nd

kδ1

)2
.

Sketching Property 1 Property 2 Property 3

Leverage Sampling k 6+2η
3η2 log k

δ1
k
εδ2

—

Uniform Sampling µ(U)k 6+2η
3η2 log k

δ1

µ(U)k
εδ2

—

SRHT λk 6+2η
3η2 log k

δ1−0.01
λk

ε(δ2−0.01) λ′k 24+4
√

2ε′

3ε′ log 2d
δ3−0.01

Gaussian Projection
9
(√

k+
√

2 log(2/δ1)
)2

η2
18k
εδ2

36k
ε′

(
1 +

√
k−1 log 2d

kδ3

)2

Count Sketch k2+k
δ1η2

2k
εδ2

—

C.1 Column Selection

In this subsection we prove Property 1 and Property 2 of leverage score sampling and
uniform sampling. We cite the following lemma from (Wang et al., 2016); the lemma was
firstly proved by the work Drineas et al. (2008); Gittens (2011); Woodruff (2014).

Lemma 13 Let U ∈ Rn×k be any fixed matrix with orthonormal columns. The column se-
lection matrix S ∈ Rn×s samples s columns according to arbitrary probabilities p1, p2, · · · , pn.
Assume α ≥ k and

max
i∈[n]

‖ui:‖22
pi

≤ α.

If s ≥ α6+2η
3η2

log(k/δ1), it holds that

P
{∥∥Ik −UTSSTU

∥∥
2
≥ η

}
≤ δ1.

If s ≥ α
εδ2

, it holds that

P
{∥∥UB−UTSSTB

∥∥2
F
≥ ε‖B‖2F

}
≤ δ2.

Leverage score sampling satisfies maxi∈[n]
‖ui:‖22
pi

≤ k. Uniform sampling satisfies

maxi∈[n]
‖ui:‖22
pi
≤ µ(U)k, where µ(U) is the row coherence of U. Then Property 1 and

Property 2 of the two column sampling methods follow from Lemma 13.
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Remark 14 Let p1, · · · , pn be the sampling probabilities corresponding to the leverage score
sampling or uniform sampling, and let p̃i ∈ [pi, 1] for all i ∈ [n] be arbitrary. For all i ∈ [n],
if the i-th column is sampled with probability sp̃i and scaled by 1√

sp̃i
if it gets sampled, then

Lemma 2 still holds. This can be easily seen from the proof of the above lemma (in (Wang
et al., 2016)). Intuitively, it indicates that if we increase the sampling probabilities, the
resulting error bound will not get worse.

C.2 Count Sketch

Count sketch stems from the data stream literature (Charikar et al., 2004; Thorup and
Zhang, 2012). Theoretical guarantees were first shown by Weinberger et al. (2009); Pham
and Pagh (2013); Clarkson and Woodruff (2013). Meng and Mahoney (2013); Nelson and
Nguyên (2013) strengthened and simplified the proofs. Because the proof is involved, we
will not show the proof here. The readers can refer to (Meng and Mahoney, 2013; Nelson
and Nguyên, 2013; Woodruff, 2014) for the proof.

C.3 Property 1 and Property 2 of SRHT

The properties of SRHT were established in the previous work (Drineas et al., 2011; Lu et al.,
2013; Tropp, 2011). Following (Tropp, 2011), we show a simple proof of the properties of
SRHT. Our analysis is based on the following two key observations.

• The scaled Walsh-Hadamard matrix 1√
n
Hn and the diagonal matrix D are both

orthogonal, so 1√
n
DHn is also orthogonal. If U has orthonormal columns, the matrix

1√
n

(DHn)TU has orthonormal columns.

• For any fixed matrix U ∈ Rn×k (k � n) with orthonormal columns, the matrix
1√
n

(DHn)TU ∈ Rn×k has low row coherence with high probability. Tropp (2011)

showed that the row coherence of 1√
n

(DHn)TU satisfies

µ ,
n

k
max
i∈[n]

∥∥∥( 1√
n

(DHn)TU
)
i:

∥∥∥2
2
≤
(

1 +

√
8 log(n/δ)

k

)2

with probability at least 1− δ. In other words, the randomized Hadamard transform
flats out the leverage scores. Consequently uniform sampling can be safely applied to
form a sketch.

In the following, we use the properties of uniform sampling and the bound on the
coherence µ to analyze SRHT. Let V , 1√

n
(DHn)TU ∈ Rn×k, B̄ , 1√

n
(DHn)TB ∈ Rn×d,

and µ be the row coherence of V. It holds that

VTV = UTU = Ik, VTPPTV = UTSSTU,

VT B̄ = UTB, VTPPT B̄ = UTSSTB, ‖B̄‖F = ‖B‖F ,

P
{
µ >

(
1 +

√
8k−1 log(100n)

)2} ≤ 0.01.
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Therefore it suffices to prove that

P
{∥∥Ik −VTPPTV

∥∥
2
≥ η

}
≤ δ1 − 0.01,

P
{∥∥VB̄−VTPPT B̄

∥∥2
F
≥ ε‖B̄‖2F

}
≤ δ2 − 0.01.

The above inequalities follows from the two properties of uniform sampling.

C.4 Property 1 and Property 2 of Gaussian Projection

The two properties of Gaussian projection can be found in (Woodruff, 2014). In the following
we prove Property 1 in a much simpler way than (Woodruff, 2014).

The concentration of the singular values of standard Gaussian matrix is very well known.
Let G be an n × s (n > s) standard Gaussian matrix. For any fixed matrix U ∈ Rn×k
with orthonormal columns, the matrix N = GTU ∈ Rs×k is also standard Gaussian matrix.
Vershynin (2010) showed that for every t ≥ 0, the following holds with probability at least
1− 2e−t

2/2: √
s−
√
k − t ≤ σk(N) ≤ σ1(N) ≤

√
s+
√
k + t.

Therefore, for any η ∈ (0, 1), if s = 9η−2
(√
k +

√
2 log(2/δ1)

)2
, then

σi(U
TSSTU) = σ2i (S

TU) ∈ 1± η for all i ∈ [n]

hold simultaneously with probability at least 1− δ1. Hence

P
{∥∥Ik −UTSSTU

∥∥
2
≥ η

}
≤ δ1.

This concludes Property 1 of Gaussian projection.

C.5 Property 3 of SRHT and Gaussian Projection

The following lemma is the main result of (Cohen et al., 2015). If a sketching method
satisfies Property 1 for arbitrary column orthogonal matrix U, then it satisfies Property 3
due to the following lemma. Notice that the lemma does not apply to the leverage score
and uniform sampling because they depends on the leverage scores or matrix coherence
of specific column orthogonal matrix U. The lemma is inappropriate for count sketch
because Property 1 of count sketch holds with constant probability rather than arbitrary
high probability.

Lemma 15 Let A ∈ Rn×k and B ∈ Rn×d be any fixed matrices and r be any fixed integer.
Let k̃ ≥ k and d̃ ≥ d be the least integer divisible by r. Let S ∈ Rn×s be a certain data-
independent sketching matrix satisfying

P
{∥∥UTSSTU− I

∥∥2
2
≥ η

}
≤ r2δ3

k̃d̃

for any fixed matrix U ∈ Rn×2r with orthonormal columns. Then∥∥ATSSTB−ATB
∥∥2
2
≤ η

(
‖A‖22 +

‖A‖2F − ‖A‖22
r

)(
‖B‖22 +

‖B‖2F − ‖B‖22
r

)
holds with probability at least 1− δ3.
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SRHT and Gaussian projection enjoys Property 1 with high probability for arbitrary
column orthogonal matrix U. Thus Property 3 can be immediately obtained by applying
the above lemma with the setting r = k.

Appendix D. Proof of Theorem 3

Let K ∈ Rn×n be any fixed SPSD matrix, C ∈ Rn×c be any fixed matrix, S ∈ Rn×s be a
sketching matrix, and

U? = argmin
U

∥∥K−CUCT
∥∥2
F

= C†K(CT )†,

Ũ = argmin
U

∥∥ST (K−CUCT )S
∥∥2
F

= (STC)†(STKS)(CTS)†.

Lemma 16 is a direct consequence of Lemma 24.

Lemma 16 Let K ∈ Rn×n be any fixed SPSD matrix, C ∈ Rn×c be any fixed matrix, and
C = UCΣCVT

C be the SVD. Assume that STUC has full column rank. Let U? and Ũ be
defined in the above. Then the following inequality holds:

‖K−CŨCT ‖2F ≤ ‖A−CU?CT ‖2F +
(

2f
√
h+ f2

√
g2gF

)2
,

where α ∈ [0, 1] is arbitrary and

f = σ−1min(UT
CSSTUC), h =

∥∥UT
CSST (K−UCUT

CK)
∥∥2
F
,

g2 =
∥∥UT

CSST (In −UCUT
C)Kα

∥∥2
2
, gF =

∥∥UT
CSST (In −UCUT

C)K1−α∥∥2
F
.

The following lemma shows that X̃ is nearly as good as X? in terms of objective function
value if S satisfies Assumption 1.

Assumption 1 Let B be any fixed matrix. Let C ∈ Rm×c and C = UCΣCVT
C be the SVD.

Assume that the sketching matrix S ∈ Rm×s satisfies

P
{∥∥UCSSTUC − I

∥∥
2
≥ 1

10

}
≤ δ1

P
{∥∥UT

CSSTB−UT
CB
∥∥2
F
≥ ε‖B‖2F

}
≤ δ2

for any δ1, δ2 ∈ (0, 1/3).

Lemma 17 Let K ∈ Rn×n be any fixed SPSD matrix, C ∈ Rn×c be any fixed matrix,
and C = UCΣCVT

C be the SVD. Let U? and Ũ be defined in the above, respectively. Let
S ∈ Rn×s be certain sketching matrix satisfying Assumption 1. Assume that ε−1 = o(n).
Then ∥∥K−CŨCT

∥∥2
F
−
∥∥A−CU?CT

∥∥2
F

≤
(20
√
ε

9

∥∥A−CU?CT
∥∥
F

+
100ε

81

∥∥(In −UCUT
C)K

∥∥
∗

)2
≤ 4ε2n

∥∥A−CU?CT
∥∥2
F
.

holds with probability at least 1− δ1 − 2δ2.
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Proof Let f , h, g2, gF , α be defined in Lemma 16 and fix α = 1/2. Under Assumption 1
it holds simultaneously with probability at least 1− δ1 − 2δ2 that

f ≤ 10

9
, h ≤ ε

∥∥(In −UCUT
C)K

∥∥2
F
, g2 ≤ gF ≤ ε

∥∥(In −UCUT
C)K1/2

∥∥2
F
.

It follows that

g2 ≤ gF ≤ ε · tr
(

(In −UCUT
C)K1/2K1/2(In −UCUT

C)
)

≤ ε · tr
(

(In −UCUT
C)K(In −UCUT

C)
)

= ε
∥∥(In −UCUT

C)K(In −UCUT
C)
∥∥
∗

≤ ε
∥∥(In −UCUT

C)K
∥∥
∗.

It follows from Lemma 16 and the assumption ε−1 = o(n) that∥∥K−CŨCT
∥∥2
F
−
∥∥A−CU?CT

∥∥2
F

≤
(20
√
ε

9

∥∥A−CU?CT
∥∥
F

+
102ε

92
∥∥(In −UCUT

C)K
∥∥
∗

)2
≤
(20
√
ε

9

∥∥A−CU?CT
∥∥
F

+
102ε
√
n

92
∥∥(In −UCUT

C)K
∥∥
F

)2
=

104ε2n

94
(
1 + o(1)

)∥∥A−CU?CT
∥∥2
F
,

by which the lemma follows.

Under both Assumption 1 and Assumption 2, the error bound can be further improved.
We show the improved bound in Lemma 18.

Assumption 2 Let B be any fixed matrix. Let C ∈ Rm×c, kc = rank(C), and C =
UCΣCVT

C be the SVD. Assume that the sketching matrix S ∈ Rm×s satisfies

P
{∥∥UT

CSSTB−UT
CB
∥∥2
2
≥ ε‖B‖22 +

ε

kc
‖B‖2F

}
≤ δ3

for any δ3 ∈ (0, 1/3).

Lemma 18 Let K ∈ Rn×n be any fixed SPSD matrix, C ∈ Rn×c be any fixed matrix,
kc = rank(C), and C = UCΣCVT

C be the SVD. Let U? and Ũ be defined in the beginning
of this section. Let S ∈ Rn×s be certain sketching matrix satisfying both Assumption 1 and
Assumption 2. Assume that ε = o(n/kc). Then∥∥K−CŨCT

∥∥2
F
≤
∥∥A−CU?CT

∥∥2
F

+ 4ε2n/kc
∥∥A−CU?CT

∥∥2
F

holds with probability at least 1− δ1 − δ2 − δ3.
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Proof Let f , h, g2, gF , α be defined in Lemma 16 and fix α = 0. Under Assumption 1 it
holds simultaneously with probability at least 1− δ1 − δ2 that

f ≤ 10

9
, h = gF ≤ ε

∥∥(In −UCUT
C)K

∥∥2
F
.

Under Assumption 2, it holds with probability at least 1− δ3 that

g2 =
∥∥UT

CSST (In −UCUT
C) + UT

C(Im −UCUT
C)︸ ︷︷ ︸

=0

∥∥2
2

≤ ε
∥∥In −UCUT

C

∥∥2
2

+
ε

kc

∥∥In −UCUT
C

∥∥2
F
≤ ε+

ε

kc
(n− kc) =

εn

kc
.

It follows from Lemma 16 and the assumption ε−1 = o(n/kc) that∥∥K−CŨCT
∥∥2
F
−
∥∥A−CU?CT

∥∥2
F

≤
(20
√
ε

9

∥∥A−CU?CT
∥∥
F

+
102ε

92

√
n/kc

∥∥A−CU?CT
∥∥
F

)2
≤ 4ε2n/kc

∥∥A−CU?CT
∥∥2
F
,

by which the lemma follows.

Finally, we prove Theorem 3 using Lemma 17 and Lemma 18. Leverage score sampling,
uniform sampling, and count sketch satisfy Assumption 1, and the bounds follow by setting
ε = 0.5

√
ε′/n and applying Lemma 17. For the three sketching methods, we set δ1 = 0.01

and δ2 = 0.095.

Gaussian projection and SRHT satisfy Assumption 1 and Assumption 2, and their
bounds follow by setting ε = 0.5

√
ε′kc/n and applying Lemma 18. For Gaussian projection,

we set δ1 = 0.01, δ2 = 0.09, and δ3 = 0.1. For SRHT, we set δ1 = 0.02, δ2 = 0.08, and
δ3 = 0.1.

Appendix E. Proof of Theorem 6

Since C = KP ∈ Rn×c, W = PTC ∈ Rc×c, and rank(STC) ≥ rank(W), we have that

rank(K) ≥ rank(C) ≥ rank(STC) ≥ rank(W). (11)

If rank(C) = rank(K), there exists a matrix X such that K = CX. By left multiplying
both sides by PT , it follows that

CT = PTK = PTCX = WX,

and thus rank(W) = rank(STC) = rank(C) = rank(K). It follows from K = CX and
C = XTW that

K = XTWX.
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We let Φ = XS, and it holds that

K̃fast
c,s = C(STC)†(STKS)(CTS)†CT

= XTW(STXTW)†(STXTWXS)(WXS)†WX

= XTW(ΦTW)†(ΦTWΦ)(WΦ)†WX.

Let rank(W) = rank(C) = rank(STC) = rank(K) = ρ. Since W is symmetric, we denote
the rank-ρ eigenvalue decomposition of W by

W = UW︸︷︷︸
c×ρ

ΛW︸︷︷︸
ρ×ρ

UT
W︸︷︷︸

ρ×c

.

Since STC = ΦTW and rank(STC) = rank(W) = ρ, we have that rank(ΦTW) =
rank(W) = ρ. The n × ρ matrix ΦTUW must have full column rank, otherwise
rank(ΦTW) < ρ. Thus we have

(ΦTW)† = (ΦTUWΛWUT
W)† = (ΛWUT

W)†(ΦTUW)†.

It follows that

K̃fast
c,s = XTW (ΛWUT

W)†︸ ︷︷ ︸
c×ρ

(ΦTUW)†︸ ︷︷ ︸
ρ×n

(ΦTUW)︸ ︷︷ ︸
n×ρ

ΛW(UT
WΦ)(UT

WΦ)†(UWΛW)†WX

= XTUWΛWUWX = XTWX = K.

This shows that the fast model is exact. To this end, we have shown that if rank(C) =
rank(K), then the fast model is exact.

Conversely, if the fast model is exact, that is, K = C(STC)†(STKS)(CTS)†CT , we have
that rank(K) ≤ rank(C). It follows from (11) that rank(K) = rank(C).

Appendix F. Proof of Theorem 7

We prove Theorem 7 by constructing an adversarial case. Theorem 7 is a direct consequence
of the following theorem.

Theorem 19 Let A be the n× n symmetric matrix defined in Lemma 21 with α→ 1 and
k be any positive integer smaller than n. Let P be any subset of [n] with cardinality c and
C ∈ Rn×c contain c columns of A indexed by P. Let S be any n×s column selection matrix
satisfying P ⊂ S, where S ⊂ [n] is the index set formed by S. Then the following inequality
holds:

‖A−C(STC)†(STAS)(CTS)†CT ‖2F
‖A−Ak‖2F

≥ n− c
n− k

(
1 +

2k

c

)
+
n− s
n− k

k(n− s)
s2

.

Proof Let A and B be defined in Lemma 21. We prove the theorem using Lemma 21
and Lemma 23. Let n = pk. Let C consist of c column sampled from A and Ĉi consist
of ci columns sampled from the i-th diagonal block of A. Thus C = diag(Ĉ1, · · · , Ĉk).
Without loss of generality, we assume Ĉi consists of the first ci columns of B. Let Ŝ =
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diag
(
Ŝ1, · · · , Ŝk

)
be an n× s column selection matrix, where Ŝi is a p× si column selection

matrix and s1 + · · · sk = s. Then the U matrix is computed by

U =
(
STC

)†(
STAS

)(
CTS

)†
=

[
diag

(
ŜT1 Ĉ1, · · · , ŜTk Ĉk

)]†
diag

(
ŜT1 BŜ1, · · · , ŜTkBŜk

)[
diag

(
ĈT

1 Ŝ1, · · · , ĈT
k Ŝk

)]†
= diag

((
ŜT1 Ĉ1

)†(
ŜT1 BŜ1

)(
ĈT

1 Ŝ1

)†
, · · · ,

(
ŜTk Ĉk

)†(
ŜTkBŜk

)(
ĈT
k Ŝk

)†)
.

The approximation formed by the fast model is the block-diagonal matrix whose the i-th
(i ∈ [k]) diagonal block is the p× p matrix[

Ãfast
c,s

]
ii

= Ĉi

(
ŜTi Ĉi

)†(
ŜTi BŜi

)(
ĈT
i Ŝi
)†

ĈT
i .

It follows from Lemma 23 that for any i ∈ [k],

lim
α→1

‖B−
[
Ãfast
c,s

]
ii
‖2F

(1− α)2
= (p− ci)

(
1 +

2

ci

)
+

(p− si)2

s2i
.

Thus

lim
α→1

‖A− Ãfast
c,s ‖2F

(1− α)2
= lim

α→1

k∑
i=1

‖B−
[
Ãfast
c,s

]
ii
‖2F

(1− α)2

=
k∑
i=1

(p− ci)
(

1 +
2

ci

)
+

(p− si)2

s2i

=

( k∑
i=1

p− ci − 2

)
+

(
2p

k∑
i=1

1

ci

)
+

(
p2

k∑
i=1

1

s2i

)
−
(

2p
k∑
i=1

1

si

)
+ k

≥ n− c− 2k +
2nk

c
+
kn2

s2
− 2nk

s
+ k

= (n− c)
(

1 +
2k

c

)
+
k(n− s)2

s2
.

Here the inequality follows by minimizing over c1, · · · , ck and s1, · · · , sk with constraints∑
i ci = c and

∑
i si = s. Finally, it follows from Lemma 21 that

lim
α→1

‖A− Ãfast
c,s ‖2F

‖A−Ak‖2F
≥ n− c

n− k

(
1 +

2k

c

)
+
n− s
n− k

k(n− s)
s2

.

F.1 Key Lemmas

Lemma 20 provides a useful tool for expanding the Moore-Penrose inverse of partitioned
matrices.
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Lemma 20 (Page 179 of Ben-Israel and Greville (2003)) Given a matrix X ∈ Rm×n
of rank c which has a nonsingular c× c submatrix X11. By rearrangement of columns and
rows by permutation matrices P and Q, the submatrix X11 can be bought to the top left
corner of X, that is,

PXQ =

[
X11 X12

X21 X22

]
.

Then the Moore-Penrose inverse of X is

X† = Q

[
Ic
TT

] (
Ic + TTT

)−1
X−111

(
Ic + HTH

)−1 [
Ic HT

]
P,

where T = X−111 X12 and H = X21X
−1
11 .

Lemmas 21 and 23 will be used to prove Theorem 19.

Lemma 21 (Lemma 19 of Wang and Zhang (2013)) Given n and k, we let B be an
n
k×

n
k matrix whose diagonal entries equal to one and off-diagonal entries equal to α ∈ [0, 1).

We let A be an n× n block-diagonal matrix

A = diag(B, · · · ,B︸ ︷︷ ︸
k blocks

). (12)

Let Ak be the best rank-k approximation to the matrix A, then we have that

‖A−Ak‖2F = (1− α)2(n− k).

Lemma 22 The following equality holds for any nonzero real number a:

(
aIc + b1c1

T
c

)−1
= a−1Ic −

b

a(a+ bc)
1c1

T
c .

Proof The lemma directly follows from the Sherman-Morrison-Woodbury matrix identity

(X + YZR)−1 = X−1 −X−1Y(Z−1 + RX−1Y)−1RX−1.

Lemma 23 Let B be any n× n matrix with diagonal entries equal to one and off-diagonal
entries equal to α. Let C = BP ∈ Rn×c; let B̃ = C(STC)†(STKS)(CTS)†CT be the fast
SPSD matrix approximation model of B. Let P and S be the index sets formed by P and
S, respectively. If P ⊂ S, the error incurred by the fast model satisfies

lim
α→1

‖B− B̃‖2F
(1− α)2

≥ (n− c)
(

1 +
2

c

)
+

(n− s)2

s2
.
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Proof Let B1 = STBS ∈ Rs×s and C1 = STC = STBP ∈ Rs×c. Without loss of
generality, we assume that P selects the first c columns and S selects the first s columns.
We partition B and C by:

B =

[
B1 BT

3

B3 B2

]
and C =

[
C1

C2

]
=

 W
C12

C2

 .

We further partition B1 ∈ Rs×s by

B1 =

[
W CT

12

C12 B12

]
,

where

C12 = α1s−c1
T
c and B12 = (1− α)Is−c + α1s−c1

T
s−c.

The U matrix is computed by

U = (STC)†(STBS)(CTS)† = C†1B1(C
†
1)
T .

It is not hard to see that C1 contains the first c rows of B1.
We expand the Moore-Penrose inverse of C1 by Lemma 20 and obtain

C†1 = W−1(Ic + HTH
)−1 [

Ic HT
]
,

where

W−1 =
(

(1− α)Ic + α1c1
T
c

)−1
=

1

1− α
Ic −

α

(1− α)(1− α+ cα)
1c1

T
c

and
H = C12W

−1 =
α

1− α+ cα
1s−c1

T
c .

It is easily verified that HTH =
(

α
1−α+cα

)2
(s− c)1c1Tc . It follows from Lemma 22 that

(Ic + HTH)−1 = Ic −
(s− c)α2

c(s− c)α2 + (1− α+ cα)2
1c1

T
c .

Then we obtain

C†1 = W−1(Ic + HTH
)−1 [

Ic HT
]

=
( 1

1− α
Ic + γ11c1

T
c

) [
Ic HT

]
, (13)

where

γ1 = cγ2γ3 − γ2 −
γ3

1− α
,

γ2 =
α

(1− α)(1− α+ cα)
,

γ3 =
(s− c)α2

c(s− c)α2 + (1− α+ cα)2
.

38



Towards More Efficient SPSD Matrix Approximation and CUR Matrix Decomposition

Then

[Ic,H
T ]B1[Ic,H

T ]T = W + BT
13H + HTB13 + HTB12H

= (1− α)Ic + γ41c1
T
c , (14)

where

γ4 =
α(3αs− αc− 2α+ α2c− 3α2s+ α2 + α2s2 + 1)

(αc− α+ 1)2
.

It follows from (13) (14) that

U = C†1B1(C
†
1)
T =

( 1

1− α
Ic + γ11c1

T
c

)(
(1− α)Ic + γ41c1

T
c

)( 1

1− α
Ic + γ11c1

T
c

)
=

1

1− α
Ic + γ51c1

T
c ,

where

γ5 = γ1 +
(
cγ1 +

1

1− α

)(
cγ1γ4 + γ1(1− α) +

γ4
1− α

)
.

Then we have

WU = Ic + γ61c1
T
c ,

γ6 = (1− α+ αc)γ5 +
α

1− α
.

We partition the fast SPSD matrix approximation model by

B̃ =

[
W̃ B̃T

21

B̃21 B̃22

]
,

where

B̃11 = WUW = (1− α)Ic +
(
α+ (1− α+ cα)γ6

)
1c1

T
c ,

B̃21 = WU
(
α1c1

T
n−c
)

= α(1 + cγ6)1c1
T
n−c,

B̃22 =
(
α1n−c1

T
c

)
U
(
α1c1

T
n−c
)

= α2c
( 1

1− α
+ γ5c

)
1c1

T
n−c

The approximate error is∥∥B− B̃
∥∥2
F

=
∥∥W − W̃

∥∥2
F

+ 2
∥∥B21 − B̃21

∥∥2
F

+
∥∥B22 − B̃22

∥∥2
F
,

where∥∥W − W̃
∥∥2

F
=

∥∥(1− α+ cα)γ61c1
T
c

∥∥2

F
= c2(1− α+ cα)2γ2

6 ,∥∥B21 − B̃21

∥∥2

F
=

∥∥αcγ61c1
T
n−c
∥∥2

F
= α2c3(n− c)γ2

6 ,∥∥B22 − B̃22

∥∥2

F
= (n− c)(n− c− 1)α2

( αc

1− α
+ αc2γ5 − 1

)2

︸ ︷︷ ︸
off-diagonal

+ (n− c)
( α2c

1− α
+ α2c2γ5 − 1

)2

︸ ︷︷ ︸
diagonal

.
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We let

η ,
‖B− B̃‖2F
(1− α)2

,

which is a symbolic expression of α, n, s, and c. We then simplify the expression using
MATLAB and substitute the α in η by 1, and we obtain

lim
α→1

η = (n− c)(1 + 2/c) + (n− s)2/s2,

by which the lemma follows.

Appendix G. Proof of Theorem 8

We define the projection operation PC,k(A) = CX where X is defined by

X = argmin
rank(X)≤k

∥∥A−CX
∥∥2
F
.

By sampling c = 2kε−1
(
1 + o(1)

)
columns of A by the near-optimal algorithm of

Boutsidis et al. (2014) to form C ∈ Rm×c1 , we have that

E
∥∥A− PC,k(A)

∥∥2
F
≤ (1 + ε)

∥∥A−Ak

∥∥2
F
.

Applying Lemma 3.11 of Boutsidis and Woodruff (2014), there exists a much smaller column
orthogonal matrix Z ∈ Rm×k such that range(Z) ⊂ range(C) and

E
∥∥A−CC†A

∥∥2
F
≤ E

∥∥A− ZZTA
∥∥2
F
≤
∥∥A− PC,k(A)

∥∥2
F
.

Notice that the algorithm does not compute Z.
Let RT

1 ∈ Rn×r1 be columns of AT selected by the randomized dual-set sparsification
algorithm of Boutsidis et al. (2014). When r1 = O(k), it holds that

E
∥∥A−R1R

T
1 A
∥∥2
F
≤ 2(1 + o(1))‖A−Ak‖2F .

Let RT
2 ∈ Rn×r2 be columns of AT selected by adaptive sampling according to the residual

AT − RT
1 (RT

1 )†AT . Set r2 = 2kε−1
(
1 + o(1)

)
. Let RT = [RT

1 ,R
T
2 ]. By the adaptive

sampling theorem of Wang and Zhang (2013), we obtain

E
∥∥A− ZZTAR†R

∥∥2
F
≤ E

∥∥A− ZZTA
∥∥2
F

+
k

r2
E
∥∥A−AR†1R

T
1

∥∥2
F

≤ (1 + ε)
∥∥K−Kk

∥∥2
F

+ ε
∥∥K−Kk

∥∥2
F

≤ (1 + 2ε)
∥∥K−Kk

∥∥2
F
. (15)

Obviously RT contains
r = r1 + r2 = 2kε−1

(
1 + o(1)

)
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columns of AT .

It remains to show ‖A−CC†AR†R‖2F ≤ ‖A−ZZTAR†R‖2F . Since the columns of Z
are contained in the column space of C, for any matrix Y the inequality ‖(Im−CC†)Y‖2F ≤
(Im − ZZT )Y‖2F holds. Then we obtain

‖A−CC†AR†R‖2F = ‖A−AR†R + AR†R−CC†AR†R‖2F
= ‖A(In −R†R)‖2F + ‖(Im −CC†)AR†R‖2F
≤ ‖A(In −R†R)‖2F + ‖(Im − ZZT )AR†R‖2F
= ‖A(In −R†R) + (Im − ZZT )AR†R‖2F
= ‖A− ZZTAR†R‖2F . (16)

The theorem follows from (15) and (16) and by setting ε′ = 2ε.

Appendix H. Proof of Theorem 9

In Section H.1 we establish a key lemma to decompose the error incurred by the
approximation. In Section H.2 we prove Theorem 9 using the key lemma.

H.1 Key Lemma

We establish the following lemma for decomposing the error of the approximate solution.

Lemma 24 Let A ∈ Rm×n, C ∈ Rm×c, and R ∈ Rr×n be any fixed matrices, and A =
UAΣAVT

A, C = UCΣCVT
C, R = URΣRVT

R be the SVD. Assume that STCUC and STRVR

have full column rank. Let U? and Ũ be defined in (8) and (9), respectively. Then the
following inequalities hold:

‖A−CŨR‖2F ≤ ‖A−CU?R‖2F +
(
fR
√
hR + fC

√
hC + fCfR

√
g′CgR

)2
,

‖A−CŨR‖2F ≤ ‖A−CU?R‖2F +
(
fR
√
hR + fC

√
hC + fCfR

√
gCg′R

)2
,

where α ∈ [0, 1] is arbitrary, and

fC = σ−1min(UT
CSCSTCUC), fR = σ−1min(VT

RSRSTRVR),

hC =
∥∥UT

CSCSTC(A−UCUT
CA)

∥∥2
F
, hR =

∥∥(A−AVRVT
R)SCSTCVR

∥∥2
F
,

gC =
∥∥UT

CSCSTC(Im −UCUT
C)UAΣα

A

∥∥2
F
, gR =

∥∥Σ1−α
A VA(In −VRVT

R)SRSTRVR

∥∥2
F
,

g′C =
∥∥UT

CSCSTC(Im −UCUT
C)UAΣα

A

∥∥2
2
, g′R =

∥∥Σ1−α
A VA(In −VRVT

R)SRSTRVR

∥∥2
2
.

Proof Let kc = rank(C) ≤ c and kr = rank(R) ≤ r. Let UC ∈ Rm×kc be the left singular
vectors of C and VR ∈ Rn×kr be the right singular vectors of R. Define Z?, Z̃ ∈ Rkc×kr by

Z? = UT
CAVR, Z̃ = (STCUC)†(STCASR)(VT

RSR)†.
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We have that CU?R = CC†AR†R = UCUT
CAVRVT

R = UCZ?VT
R. By definition, it holds

that that

Ũ = (STCC)†(STCASR)(RSR)†

= (STCUCΣCVT
C)†(STCASR)(URΣRVT

RSR)†

= (ΣCVT
C)†(STCUC)†(STCASR)(VT

RSR)†(URΣR)†

= (ΣCVT
C)†Z̃(URΣR)†,

where the third equality follows from that STCUC and STRVR have full column rank and
that ΣCVT

C and VT
RSR have full row rank. It follows that

CŨR = UCΣCVT
C(ΣCVT

C)†Z̃(URΣR)†URΣRVT
R = UCZ̃VT

R.

Since CU?R = UCZ?VT
R and CŨR = UCZ̃VT

R, it suffices to prove the two inequalities:

‖A−UCZ̃VT
R‖2F ≤ ‖A−UCZ?VT

R‖2F +
(
fR
√
hR + fC

√
hC + fCfR

√
gCg′R

)2
,

‖A−UCZ̃VT
R‖2F ≤ ‖A−UCZ?VT

R‖2F +
(
fR
√
hR + fC

√
hC + fCfR

√
g′CgR

)2
.(17)

The left-hand side can be expressed as∥∥A−UCZ̃VT
R

∥∥2
F

=
∥∥(A−UCZ?VT

R) + UC(Z? − Z̃)VT
R

∥∥2
F

=
∥∥(Im −UCUT

C)A + UCUT
CA(In −VRVT

R) + UC(Z? − Z̃)VT
R

∥∥2
F

=
∥∥(Im −UCUT

C)A
∥∥2
F

+
∥∥UCUT

CA(In −VRVT
R) + UC(Z? − Z̃)VT

R

∥∥2
F

=
∥∥(Im −UCUT

C)A
∥∥2
F

+
∥∥UCUT

CA(In −VRVT
R)
∥∥2
F

+
∥∥UC(Z? − Z̃)VT

R

∥∥2
F

=
∥∥(Im −UCUT

C)A + UCUT
CA(In −VRVT

R)
∥∥2
F

+
∥∥UC(Z? − Z̃)VT

R

∥∥2
F

=
∥∥A−UCUT

CAVRVT
R

∥∥2
F

+
∥∥UC(Z? − Z̃)VT

R

∥∥2
F
.

From (17) we can see that it suffices to prove the two inequalities:∥∥Z? − Z̃
∥∥
F
≤ fR

√
hR + fC

√
hC + fCfR

√
gCg′R,∥∥Z? − Z̃

∥∥
F
≤ fR

√
hR + fC

√
hC + fCfR

√
g′CgR. (18)

We left multiply both sides of Z̃ = (STCUC)†(STCASR)(VT
RSR)† by (STCUC)T (STCUC)

and right multiply by (VT
RSR)(VT

RSR)T . We obtain

(UT
CSCSTCUC)Z̃(VT

RSRSTRVR)

= (STCUC)T (STCUC)(STCUC)†(STCASR)(VT
RSR)†(VT

RSR)(VT
RSR)T

= (STCUC)T (STCASR)(VT
RSR)T

= UT
CSCSTC(A⊥ + UCZ?VT

R)SRSTRVR.

Here the second equality follows from that YTYY† = YT and Y†YYT = YT for any Y,
and the last equality follows by defining A⊥ = A−UCZ?VT

R. It follows that

(UT
CSCSTCUC)(Z̃− Z?)(VT

RSRSTRVR) = UT
CSCSTCA⊥SRSTRVR.
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We decompose A⊥ by

A⊥ = A−UCUT
CA + UCUT

CA−UCUT
CAVRVT

R

= UCUT
CA(In −VRVT

R) + (Im −UCUT
C)AVRVT

R + (Im −UCUT
C)A(In −VRVT

R).

It follows that

(UT
CSCSTCUC)(Z̃− Z?)(VT

RSRSTRVR)

= UT
CSCSTCUCUT

CA(In −VRVT
R)SRSTRVR

+ UT
CSCSTC(Im −UCUT

C)AVRVT
RSRSTRVR

+ UT
CSCSTC(Im −UCUT

C)A(In −VRVT
R)SRSTRVR,

and thus

Z̃− Z? = UT
CA(In −VRVT

R)SRSTRVR(VT
RSRSTRVR)−1

+ (UT
CSCSTCUC)−1UT

CSCSTC(Im −UCUT
C)AVR

+ (UT
CSCSTCUC)−1UT

CSCSTC(Im −UCUT
C)A(I−VRVT

R)SRSTRVR(VT
RSRSTRVR)−1.

It follows that

‖Z̃− Z?‖F ≤ σ−1
min(VT

RSRSTRVR)
∥∥A(In −VRVT

R)SRSTRVR

∥∥
F

+ σ−1
min(UT

CSCSTCUC)
∥∥UT

CSCSTC(Im −UCUT
C)AVR

∥∥
F

+ σ−1
min(UT

CSCSTCUC)σ−1
min(VT

RSRSTRVR)
∥∥UT

CSCSTC(Im −UCUT
C)A(I−VRVT

R)SRSTRVR

∥∥
F
.

This proves (18) and thereby concludes the proof.

H.2 Proof of the Theorem

Assumption 3 assumes that the sketching matrices SC and SR satisfy the first two
approximate matrix multiplication properties. Under the assumption, we obtain Lemma 25,
which shows that Ũ is nearly as good as U? in terms of objective function value.

Assumption 3 Let B be any fixed matrix. Let C ∈ Rm×c and C = UCΣCVT
C be the SVD.

Assume that a certain sketching matrix SC ∈ Rm×sc satisfies

P
{∥∥UCSCSTCUC − I

∥∥
2
≥ 1

10

}
≤ δ1

P
{∥∥UT

CSCSTCB−UT
CB
∥∥2
F
≥ ε‖B‖2F

}
≤ δ2

for any δ1, δ2 ∈ (0, 0.2). Let R ∈ Rr×n and R = URΣRVT
R be the SVD. Similarly, assume

SR ∈ Rn×sr satisfies

P
{∥∥VT

RSRSTRVR − I
∥∥
2
≥ 1

10

}
≤ δ1

P
{∥∥VT

RSRSTRB−VT
RB
∥∥2
F
≥ ε‖B‖2F

}
≤ δ2.
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Lemma 25 Let A ∈ Rm×n, C ∈ Rm×c, and R ∈ Rr×n be any fixed matrices. Let U? and
Ũ be defined in (8) and (9), respectively. Let kc = rank(C), kr = rank(R), q = min{m,n},
and ε ∈ (0, 1) be the error parameter. Assume that the sketching matrices SC and SR satisfy
Assumption 3 and that ε−1 = o(q). Then

‖A−CŨR‖2F ≤ (1 + 4ε2q) ‖A−CU?R‖2F

holds with probability at least 1− 2δ1 − 3δ2.

Proof Let fC , fR, hC , hR, gC , gR, g′C , g′R be defined Lemma 24. Under Assumption 3, we
have that

fC ≤
10

9
, hC ≤ ε‖A−UCUT

CA‖2F ≤ ε‖A−CU?RT ‖2F ,

fR ≤
10

9
, hR ≤ ε‖A−AVRVT

R‖2F ≤ ε‖A−CU?RT ‖2F ,

hold simultaneously with probability at least 1− 2δ1 − 2δ2.

We fix α = 1, then gC = hC , and g′R ≤
∥∥(In−VRVT

R)SRSTRVR

∥∥2
2
. Under Assumption 3,

we have that √
g′R ≤

∥∥(In −VRVT
R)SRSTRVR − (In −VRVT

R)VR

∥∥
F

≤
√
ε
∥∥(In −VRVT

R)
∥∥
F
≤
√
εn

holds with probability at least 1− δ2. It follows from Lemma 24 that

‖A−CŨR‖2F − ‖A−CU?R‖2F

≤
(
fR
√
hR + fC

√
hC + fCfR

√
gCg′R

)2
≤
(20

9

√
ε‖A−CU?RT ‖F +

102

92
ε
√
n‖A−CU?RT ‖F

)2
=

104

94
ε2n
(
1 + o(1)

)
‖A−CU?RT ‖2F ≤ 4ε2n‖A−CU?RT ‖2F

holds with probability at least 1−2δ1−3δ2. Here the equality follows from that ε−1 = o(n).

Alternatively, if we fix α = 0, we will obtain that

‖A−CŨR‖2F ≤ ‖A−CU?R‖2F + 4ε2m‖A−CU?RT ‖2F

with probability 1 − 2δ1 − 3δ2. Therefore, if n ≤ m, we fix α = 1; otherwise we fix α = 0.
This concludes the proof.

In the following we further assume that the sketching matrices SC and SR satisfy the
third approximate matrix multiplication property. Under Assumption 3 and Assumption 4,
we obtain Lemma 26 which is stronger than Lemma 25.
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Assumption 4 Let B be any fixed matrix. Let C ∈ Rm×c, kc = rank(C), and C =
UCΣCVT

C be the SVD. Assume that a certain sketching matrix SC ∈ Rn×sc satisfies

P
{∥∥UT

CSCSTCB−UT
CB
∥∥2
2
≥ ε‖B‖22 +

ε

kc
‖B‖2F

}
≤ δ3

for any ε ∈ (0, 1) and δ3 ∈ (0, 0.2). Let R ∈ Rr×n, kr = rank(R), and R = URΣRVT
R be

the SVD. Similarly, assume that SR ∈ Rn×sr satisfies

P
{∥∥VT

RSRSTRB−VT
RB
∥∥2
2
≥ ε‖B‖22 +

ε

kr
‖B‖2F

}
≤ δ3.

Lemma 26 Let A ∈ Rm×n, C, R, U?, Ũ, kc, kr be defined in Lemma 25. Let q =
min{m,n} and q̃ = min{m/kc, n/kr}. Assume that the sketching matrices SC and SR
satisfy Assumption 3 and Assumption 4 and that ε−1 = o

(
q̃
)
. Then

‖A−CX̃R‖2F ≤ (1 + 4ε2q̃) ‖A−CX?R‖2F

holds with probability at least 1− 2δ1 − 2δ2 − δ3.

Proof Let fC , fR, hC , hR, gC , gR, g′C , g′R be defined Lemma 24. Under Assumption 3, we
have shown in the proof of Lemma 25 that

fC ≤
10

9
, hC ≤ ε‖A−CU?RT ‖2F ,

fR ≤
10

9
, hR ≤ ε‖A−CU?RT ‖2F ,

hold simultaneously with probability at least 1− 2δ1 − 2δ2.
We fix α = 1, then gC = hC , and g′R ≤

∥∥(In−VRVT
R)SRSTRVR

∥∥2
2
. Under Assumption 4,

we have that

g′R ≤
∥∥(In −VRVT

R)SRSTRVR − (In −VRVT
R)VR︸ ︷︷ ︸

=0

∥∥2
2

≤ ε
∥∥In −VRVT

R

∥∥2
2

+
ε

kr

∥∥In −VRVT
R

∥∥2
F
≤ ε+

ε(n− kr)
kr

=
εn

kr

holds with probability at least 1− δ3. It follows from Lemma 24 that

‖A−CŨR‖2F − ‖A−CU?R‖2F

≤
(
fR
√
hR + fC

√
hC + fCfR

√
gCg′R

)2
≤
(20

9

√
ε‖A−CU?RT ‖F +

102

92
ε
√
n/kr‖A−CU?RT ‖F

)2
=

104

94
ε2nk−1r

(
1 + o(1)

)
‖A−CU?RT ‖2F ≤ 4ε2nk−1r ‖A−CU?RT ‖2F

holds with probability at least 1 − 2δ1 − 2δ2 − δ3. Here the equality follows from that
ε−1 = o(n/kr).
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Analogously, by fixing α = 0 and assuming ε−1 = o(m/kc), we can show that

‖A−CŨR‖2F − ‖A−CU?R‖2F ≤ 4ε2mk−1c ‖A−CU?RT ‖2F

holds with probability at least 1− 2δ1 − 2δ2 − δ3. This concludes the proof.

Finally, we prove Theorem 9 using Lemma 25 and Lemma 26.

For leverage score sampling, uniform sampling, and count sketch, Assumption 3 is
satisfied. Then the bound follows by setting ε = 0.5

√
ε′/q and applying Lemma 25. Here

q = min{m,n}. For the three sketching methods, we set δ1 = 0.01 and δ2 = 0.093.

For Gaussian projection and SRHT, Assumption 3 and Assumption 4 are satisfied.
Then the bound follows by setting ε = 0.5

√
ε′/q̃ and applying Lemma 26. Here q̃ =

min{m/kc, n/kr}. For Gaussian projection, we set δ1 = 0.01, δ2 = 0.09, and δ3 = 0.1. For
SRHT, we set δ1 = 0.02, δ2 = 0.08, and δ3 = 0.1.
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