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Abstract

We propose a new theoretical framework for analyzing the multiple-instance learning (MIL)
setting. In MIL, training examples are provided to a learning algorithm in the form of la-
beled sets, or “bags,” of instances. Applications of MIL include 3-D quantitative structure–
activity relationship prediction for drug discovery and content-based image retrieval for web
search. The goal of an algorithm is to learn a function that correctly labels new bags or
a function that correctly labels new instances. We propose that bags should be treated
as latent distributions from which samples are observed. We show that it is possible to
learn accurate instance- and bag-labeling functions in this setting as well as functions that
correctly rank bags or instances under weak assumptions. Additionally, our theoretical
results suggest that it is possible to learn to rank efficiently using traditional, well-studied
“supervised” learning approaches. We perform an extensive empirical evaluation that sup-
ports the theoretical predictions entailed by the new framework. The proposed theoretical
framework leads to a better understanding of the relationship between the MI and standard
supervised learning settings, and it provides new methods for learning from MI data that
are more accurate, more efficient, and have better understood theoretical properties than
existing MI-specific algorithms.
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1. Introduction

The standard supervised learning setting, in which labeled training examples are represented
with individual feature vectors, is well-studied with numerous applications. However, there
remain many compelling real-world problems that require learning from more structured
data. For example, in text categorization, a document might contain a set of passages
or paragraphs. A typical approach is to simply ignore the internal structure within the
document by treating it as a “bag of words,” then to represent the document with a single
feature vector based on word frequencies. However, because such an approach destroys the
internal structure of the document, it becomes challenging to determine which passages or
paragraphs correspond to the category of interest. Similarly, for the content-based image
retrieval (CBIR) domain, the goal is to learn to retrieve images that contain some object
of interest to the user. One approach is to use a flat feature vector representation of each
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image given pixel color values. Again, using such an approach, it is not clear how one might
identify which object in or region of the image was of interest to a user.

For such problems, the multiple-instance (MI) setting offers a richer representation for
structure objects as sets, or “bags,” of feature vectors, each of which is called an “instance”
(Dietterich et al., 1997). In the text categorization example above, a document is a bag of
passages or paragraphs, which are the instances. For CBIR, an image is a bag of segments
or objects. The MI setting further assumes that labels exist at both the level of instances
and bags, where a bag’s label is the logical conjunction of Boolean instance labels. That
is, a bag is positive if at least one instance in the bag is positive and negative if all of the
instances in the bag are negative. This logical relationship corresponds to the fact that a
document or an image is of the class of interest if and only if at least one of the passages
or objects it contains is of the class of interest.

In the standard supervised setting, there is typically only one target concept of interest.
For MI learning, one might be interested in learning either a bag or an instance concept from
MI data. For example, in the 3-Dimensional Quantitative Structure–Activity Relationship
(3D-QSAR) domain, the goal is to learn to predict whether a molecule will bind to a given
target receptor (Dietterich et al., 1997). Because a molecule has flexible bonds, it exists in
multiple shapes, or conformations, in solution. Thus, mapping this problem into the MI
setting, conformations are instances and molecules are bags. A bag-labeling function can
be used to predict whether a given molecule will bind to a target receptor. On the other
hand, an instance-labeling function can be used to predict which specific conformations will
bind to a receptor, providing useful, difficult-to-measure information about the receptor’s
physical structure.

Despite the importance of these two learning tasks, only the bag-labeling task has re-
ceived much attention in recent prior work characterizing the learnability of MI concepts
(Sabato and Tishby, 2012). When learnability of instance concepts has been addressed,
it has been under the strict, unrealistic assumption that instances across all bags are
independent and identically distributed (IID) samples from the same underlying distri-
bution (Blum and Kalai, 1998). However, as far as we know, the result of Blum and Kalai
(1998) has remained the only positive result on instance concept learnability in the MI
setting for over a decade. In this paper, we describe new positive results for both instance-
and bag-concept learnability. Our contributions are summarized as follows:

1. We describe a new generative model for MI data and show that it subsumes some
previously proposed generative models for MI learning (MIL).

2. We provide novel results for learning accurate bag-level concepts from MI data.

3. We describe the first positive instance concept learnability results since those of Blum
and Kalai (1998).1

4. We prove the first results, to our knowledge, that formally describe the ability to rank
both instances and bags in the MI setting.

5. We empirically evaluate a surprising implication of our theoretical results: that stan-
dard supervised approaches can effectively rank both instances and bags in the MI

1. These results were also presented in Doran and Ray (2014).
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setting. Our evaluation uses 55 data sets from a wide variety of domains, and sup-
ports both our theoretical results as well as the assumptions made by our generative
model.

2. Bags as Distributions

In this section, we describe a generative model for MI data in which bags are viewed as
distributions over instances rather than as sets of instances. We show that the proposed
generative model actually encompasses previous, standard models of MI learning in which
bags are sets or tuples. The choice of framing a problem within a particular theoretical
model has significant practical consequences for designing or selecting an algorithm to solve
the problem. This section provides a theoretical framework in which the MI classification
problem can be analyzed. The model allows us to derive positive instance- and bag-concept
learnability results for the MI setting as described in Section 3. Furthermore, as Section 4
shows, the generative model leads to a surprising yet testable hypothesis that standard
supervised algorithms can learn from MI data. This hypothesis is evaluated experimentally,
supporting the assumptions made by the model.

2.1 The Generative Model

At the heart of this work is the claim that bags are best viewed as distributions rather than
as finite sets of instances. Below, we formally define what we mean by this statement. But
first, the example domain of drug activity prediction provides an intuitive justification for
this claim. As described in Section 1, in the drug activity prediction domain, the goal is to
predict the ability of molecules to activate, or bind to, a receptor. To cast the problem as
binary classification, we select some threshold so that each molecule’s activity level either
corresponds to an “active” or “inactive” label. In this case, we can think of each molecule
(bag) as being drawn from a distribution DB over molecules. Ignoring for the moment
that each molecule has numerous conformations, this molecule either activates the receptor
or not, so in nature the labeling function is defined at the level of bags. Prior models
represent each molecule as a set or multiset of conformations, so they implicitly assume
that each molecule exists in only a finite number of conformations. In reality, a molecule
can transform continuously from conformation to conformation, producing an infinite set
of conformations. In particular, each molecule exists in a state of dynamic equilibrium
in which the amount of time it spends in each conformation is distributed according to
Gibbs free energy such that low-energy conformations are preferred. Hence, the molecule
(bag) corresponds to a distribution over instances. Constructing a bag from low-energy
conformations, the common procedure for constructing bags in the drug activity domain,
can be thought of as sampling instances from this distribution. Note that each molecule
will have a unique distribution over conformations; thus, prior generative models for MIL
that assume all instances are drawn from the same distribution are not applicable (Blum
and Kalai, 1998). In Section 2.5, we describe how this view of the MI generative process
can be applied to other problem domains.

More abstractly, our generative process needs several components. First, bags are distri-
butions over instances, and we will assume that these bags are sampled from a distribution
over bags and labeled according to a bag-labeling function. In addition to the bag-labeling

3



Doran and Ray

Bi

F (Bi)

DB

F

1 ≤ i ≤ n

(a) Generative Process for
Bags

xiBi

F (Bi)

DB

F

1 ≤ i ≤ n

(b) Generative Process for Bag-
labeled Instances

xijBi

F (Bi)

DB

F

1 ≤ j ≤ mi

1 ≤ i ≤ n

(c) Generative Process for Bag
Samples

Figure 1: A comparison of the generative processes for bags, individual bag-labeled in-
stances, and bag samples.

function, in the MI setting there is also an instance-labeling function with the standard MI
assumption relating the bag- and instance-labeling functions. We describe the instance dis-
tribution that is consistent with the generative process, which will be useful for discussing
instance concept learnability. In addition to these essential components, we introduce two
additional weak assumptions that make efficient learning in this setting possible.

Bags as Distributions. To formalize the intuition above, suppose we have an instance
space X. Typically, the space of bags is some subset of X∗, the set of all finite subsets of X.
However, here, we let the space of bags be B = P(X), the set of probability distributions
on the input space. Hence, each bag B ∈ B is a probability distribution over instances,
denoted P(x | B).

Bag Distribution. We propose that, at the level of bags, the MI generative process
is similar to that for supervised learning. In particular, bags are sampled from some fixed
distribution DB , which is a distribution over instance distributions (DB ∈P(P(X))). From
this distribution DB , we sample some set of bags {Bi}ni=1, as illustrated by the plate model
in Figure 1(a).

Bag-Labeling Function. As in supervised learning, we assume that there exists
some labeling function F : B → {0, 1} that labels bags. Thus, a supervised data set
{(Bi, F (Bi))}ni=1 could be produced by sampling bags IID from DB and applying the label-
ing function F .

Instance-Labeling Function. In the MI setting, we assume that in addition to the
bag-labeling function F , there also exists an instance-labeling function f : X → {0, 1}.
A key component of the MI setting is not only the existence of both bag and instance
labeling functions, but the relationship between the two as well. Traditionally, the MI
assumption is stated with respect to particular sets of instances so that a bag label F (Bi) is
the logical OR (for boolean labels), or maximum (for numerical labels), of its instances’ labels:
F (Bi) = maxj f(xij). However, in the proposed generative model, bags are distributions
with a priori labels regardless of the instances sampled from them. Therefore, our generative
model requires a more nuanced description of the relationship between bag and instance
labels.
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The MI Assumption. We state the relationship between F and f at the level of
the generative model. Accordingly, a bag is negative (F (B) = 0) if and only if probability
of sampling a positive instance within the bag is zero: Px∼B [f(x) = 1] = 0. In measure
theoretic terms, instances sampled within negative bags are almost surely negative, which
implies that positive instances are almost surely sampled only within positive bags. This
condition corresponds to the standard MI assumption that negative bags contain only neg-
ative instances.

Instance Distribution. In order to talk about the learnability of f , we must define
some instance distribution with respect to which we will measure risk. An instance dis-
tribution naturally arises from our generative model if we first sample a bag B randomly
from DB , then sample an instance x randomly from the distribution corresponding to B.
The instance distribution DX resulting from this two-level sampling procedure is effectively
the distribution that marginalizes out the individual bag distributions. That is, given a
probability distribution PB over bags corresponding to DB , we can define a distribution PX
corresponding to DX as

PX(x) =

∫
B

P(x | B) dPB(B). (1)

Given that “x” is used to denote instances and “B” is used to denote bags, we subsequently
drop subscripts from P when the sample space can be inferred from context. As we discuss
in Section 3.4, the ability to marginalize out bag-specific distributions in our model plays
a vital role in proving the learnability of instance- and bag-labeling functions. Given a bag
distribution, the existence of such an instance distribution is guaranteed under relatively
weak assumptions on the instance space X (Diestel and Uhl, 1977). Furthermore, note that
while we can view instances in our generative model as being sampled IID from DX , this
does not require the assumption that instances are IID across all bag distributions, as in
prior generative models for MIL (Blum and Kalai, 1998). We discuss this point in detail in
Section 3.6.

Additional Assumptions. As is the case in the standard MI framework, in our
generative model, only bag labels are observed. Suppose we sample individual instances as
illustrated in Figure 1(b) where we first sample a bag, record its label, and then sample an
instance from the bag-specific distribution P(x | B) and assign the bag label to the instance.
Then the resulting bag-labeled instances {(xi1, F (Bi))}ni=1 are distributed according to DX ,
and will appear in positive bags some of the time and negative bags the remaining fraction
of the time. Therefore, each instance will have some probability c(x) ∈ [0, 1] of appearing
with a positive label, which can be formally expressed as a probabilistic concept (p-concept)
like the kind described by Kearns and Schapire (1994):

c(x) , P [F (B) = 1 | x] . (2)

That is, the probability of observing a positive label for instance x is the conditional prob-
ability that the bag B in the two-level sampling procedure was positive, given that x was
observed within B. This conditional probability can be derived from the joint distribution
over instances and bag labels corresponding to the generative process in Figure 1(b).

It follows from the previously-stated relationship between F and f that for any positive
instance x+, c(x+) = 1, since each positive instance is observed almost surely (with proba-
bility 1) within a positive bag. In order to distinguish positive and negative instances, we
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make the following weak assumption: there exists some γ > 0 such that for every negative
instance x−, c(x−) ≤ 1 − γ. Intuitively, this corresponds to the assumption that every
negative instance is observed with some nonzero probability in a negative bag.

To see why negative instances must appear in negative bags in order to learn a concept,
consider trying to learn the instance concept “spoon” in the CBIR domain, as described
in Section 1. To learn this concept, you are given a set of images containing spoons, and
a set of images not containing spoons. However, suppose that in every image containing a
spoon, there is also a fork nearby. Furthermore, forks never appear alone in images without
spoons. In this unfortunate scenario, you have no means of determining which of the fork or
spoon is the positive instance given only image-level labels. However, if there is a guarantee
that eventually you will see a negative image containing a fork but not a spoon, you will
be able to learn that the fork is not the positive instance. We discuss learnability further
in Section 3 and Section 4.

Finally, for learning bag-level concepts, we show in Section 3.2 that we require one
additional assumption that there is some minimum fraction π of positive instances in each
positive bag. That is, for every positive bag B+, P [f(x) = 1 | B+] ≥ π. Without this
assumption, there might be positive bags that only contain negative instances. However,
this would make them indistinguishable during bag labeling from negative bags, which by
definition only contain negative instances. Interestingly, this assumption is not required if
we are only interested in learning an instance-level concept.

Now, we can formally define MI-GEN, the set of generative processes for MI data con-
sistent with the assumptions described above,

Definition 1 (MI-GEN) Given any γ ∈ (0, 1] and π ∈ [0, 1], MI-GEN(γ, π) is the set of all
tuples (DX , DB , f, F ), each consisting of an instance distribution DX (with corresponding
P(x)), bag distribution DB (with corresponding P(B)), instance-labeling function f , and
bag-labeling function F , that satisfy the conditions:

1. P(x) =
∫
B P(x | B) d P(B)

2. ∀x : f(x) = 1 =⇒ P [F (B) = 0 | x] = 0

3. ∀x : f(x) = 0 =⇒ P [F (B) = 0 | x] ≥ γ

4. ∀B : F (B) = 1 =⇒ P [f(x) = 1 | B] ≥ π.

For simplicity, we will write MI-GEN(γ) for the case when π = 0, which corresponds to
the weakest Condition 4. That is, for any fixed γ, MI-GEN(γ) ⊇ MI-GEN(γ, π) for every
π ≥ 0. Such notation will be used when discussing instance-concept learnability, which does
not require the π > 0 assumption. That is, instance-concept learning under our model is
naturally tolerant to “bag label noise” of the form where positive bags contain only negative
instances.

Finally, note that for any γ ∈ (0, 1], π ∈ [0, 1], MI-GEN(γ, π) ⊇ MI-GEN(1, 1). That is,
γ = π = 1 corresponds to the strongest constraints on the generative process. Even in this
case, for any DX and f , there exist DB and F such that (DX , DB , f, F ) ∈ MI-GEN(1, 1). In
particular, given a point mass δx centered on x, we can define DB so that PB(δx) = PX(x)
and F such that F (δx) = f(x). This choice of (DB , F ) corresponds to supervised learning
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Figure 2: An example generative process for MI data. Each bag distribution (a) is parame-
terized by θ, and the distribution over bags (b) corresponds to a distribution over
values of θ. The resulting distribution over instance (c) is derived in Equation 4
and Equation 5. The probability of instances appearing in positive bags (d) is
derived in Equation 6 and Equation 7.

expressed in our generative model. That is, sampling from our generative process in that
case is indistinguishable from sampling directly from DX with labels assigned according to
f . Below, we discuss the relationship between our generative model and other proposed
models for MI learning.

2.2 An Example of the Generative Process

As a concrete example, suppose the instance space is the closed real-valued interval X =
[−1, 1] and each bag Bθ is a distribution parameterized by a single real-valued parameter
θ ∈ [0, 1]. As illustrated in Figure 2(a), the bag distribution P(x | Bθ) assigns (1 − θ) of
the probability mass uniformly to the interval [−1, 0), and θ of the mass uniformly to the
interval [0, 1]. Each value of θ corresponds to a different bag, which is a different distribution
over instances.

In this example, a distribution over bags is essentially a distribution over the bag pa-
rameter θ. Such a distribution is illustrated in Figure 2(b), and assigns Pneg of the mass to
the set {0} and the remaining 1− Pneg portion of the mass uniformly to the interval [π, 1].
The probability of sampling a bag, P(Bθ), corresponds to the probability of sampling the
corresponding value of θ. Similarly, a bag-labeling function F can be defined in terms of θ
as follows:

F (Bθ) =

{
0 if θ = 0

1 if θ > 0.
(3)

Thus, for this example, Pneg = P [F (Bθ) = 0].
For the sake of the example, we choose the instance-labeling function to be

f(x) =

{
0 if x < 0

1 if x ≥ 0.

This choice is consistent with the bag-labeling function defined in Equation 3, since F (Bθ) =
0 implies θ = 0, which implies that the probability of sampling a positively labeled x ∈ [0, 1]
is zero as required.
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If we marginalize out the bag distribution, we obtain the single instance distribution in
Figure 2(c). Analytically, for any x− ∈ [−1, 0), we have

P(x−) =

∫ 1

0
P(x− | Bθ) P(Bθ) dθ

= 1 · Pneg +

∫ 1

π
(1− θ)1− Pneg

1− π dθ

= Pneg + 1
2(1− Pneg)(1− π) , pneg.

(4)

Similarly, for x+ ∈ [0, 1],

P(x+) =

∫ 1

0
P(x+ | Bθ) P(Bθ) dθ

= 0 · Pneg +

∫ 1

π
θ

1− Pneg

1− π dθ

= 1
2(1− Pneg)(1 + π) = 1− pneg.

(5)

Since probability density functions exist for this example, we can analytically compute
c(x) given the following expression:

c(x) = P [F (B) = 1 | x] =

∫
B+ P(x | B) d P(B)

P(x)
,

where B+ = {B : F (B) = 1}. As described, for positive instances x+ ∈ [0, 1], we have

c(x+) =

∫ 1
π P(x+ | Bθ) P(Bθ) dθ
1
2(1− Pneg)(1 + π)

= 1, (6)

since positive instances always appear in positive bags. On the other hand, for negative
instances,

c(x−) =

∫ 1
π P(x− | Bθ) P(Bθ) dθ

Pneg + 1
2(1− Pneg)(1− π)

=
1
2(1− Pneg)(1− π)

Pneg + 1
2(1− Pneg)(1− π)

, 1− γ.
(7)

The resulting values of c(x) are shown in Figure 2(d). Note that for this generative process,
except for the trivial case in which Pneg = 0, 1 − γ = c(x−) < 1, so γ > 0. Thus, the
assumption that negative instances appear in negative bags is automatically satisfied for
the example in Figure 2. By construction, this example also satisfies the π > 0 assumption
since there is zero probability of sampling a bag with θ ∈ (0, π) mass over positive bags.
Hence, this example is an element of MI-GEN.

2.3 The Empirical Bag-Labeling Function

In MI-GEN, the instance- and bag-labeling functions are defined independently at the
level of the generative model, and must satisfy the relationships indicated in Definition 1.
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DB Bi xij

F (Bi)F f(xij) f
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(
{xij}
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Figure 3: An illustration of the instance-, bag-, and empirical bag-labeling functions in
MI-GEN.

However, in the standard MI setting, bag labels are typically viewed as being derived from
instance labels. That is, if a bag is a set, then it is positive if it contains at least one positive
instance, and negative otherwise.

Unlike the plate model in Figure 1(a), we do not typically observe bags directly in
the MI setting. In the typical case, we only have access to samples Xi = {xij}mij=1, each
drawn independently according to the distribution corresponding to each bag Bi so that{(
{xij}mij=1 , F (Bi)

)}n
i=1

is the observed MI data set, as shown in Figure 1(c). Each bag

can be a different size, but we will use ml ≤ mi ≤ mu to denote the lower and upper bounds
on bag sizes, respectively.

If we think of “bags” (in the sense of the standard generative model) of instances {xij}mij=1
as empirical samples drawn from the underlying bag distributions Bi in our model, then it
is possible that samples from positive bags do not contain any positive instances. Hence,
such “bags” would be negative in the sense of the standard model. To more harmoniously
account for the standard notion of bag labels within our model, we introduce the empirical
bag-labeling function, F̂ : X∗ → {0, 1}:

F̂ (Xi) = max
j
f(xij), (8)

where Xi = {xij}mij=1 is any finite set of instances.

We can think of F̂ as the bag labels that would be assigned by an oracle that had
perfect information about the instance-labeling function f , but only an empirical sample
from each bag. An illustration of the empirical bag-labeling function is shown in Figure 3.
Figure 3 is a version of Figure 1(c) that shows the contributions of the instance-labeling
and empirical bag-labeling functions. For every instance xij in an empirical bag sample, f

assigns the label f(xij) to xij . On the other hand, F̂ is a function of the entire bag sample
Xi = {xij}mij=1 as well as the instance-labeling function f , as specified in Equation 8.

The labeling functions F and F̂ will always agree on negative bags, since only negative
instances are observed in negative bags. However, there might be some discrepancy between
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Figure 4: An example from the CBIR domain when a positive image does not contain a
positive instance (the notebook, annotated in blue) after segmentation.

F and F̂ on positive bags if only negative instances are sampled within a positive bag. We
return to characterizing the discrepancy between F and F̂ in Section 3.2.

The discrepancy between F and F̂ is essentially bag-label noise that naturally results
from our generative model. Previous generative models do not account for this potential
source of label noise, despite its presence in some domains. For example, in the drug activity
prediction domain, even if it is known that a molecule activates a receptor, a sample of
conformations from this molecule might not contain the particular positive conformation
that causes activation. Likewise, for the CBIR domain, extracting a set of objects from
images is often performed using segmentation achieved through local optimization (Andrews
et al., 2003; Carson et al., 2002). Therefore, it is possible that no single instance in a bag
generated from a positive image will correspond to the positive instance. Figure 4 shows an
example from the SIVAL data set when, due to lighting conditions, the positive “notebook”
instance in the image is grouped with the table during segmentation (Settles et al., 2008).
This kind of “noise” is naturally captured by our generative model as the discrepancy
between F̂ and F .

2.4 Relationship to Prior Models

The most general model in which instance learnability results have been previously shown
is the “IID r-tuple” model (Blum and Kalai, 1998). The model, illustrated in Figure 5(a),
assumes that each bag is generated by randomly sampling r instances in every bag from the
same underlying instance distribution, DX . However, this is an unrealistic assumption for
many domains. For example, consider the drug activity prediction setting. In this domain,
that would mean that the conformations of every molecule are sampled independently from
the same distribution, which is not true as it requires that different molecules share the same
conformations. Likewise, for CBIR, the IID assumption asserts that all segments in all im-
ages are sampled from the same distribution, when the distributions over objects/segments
clearly change between images.
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To show that our model is more general than the IID r-tuple model, we now describe
how to simulate this model within our model. First, we define each bag to be a probability
distribution parameterized by an r-tuple of instances B(x1,...,xr). This distribution will be a

weighted sum of point masses over each of the r instances: P(x | B(x1,...,xr)) = 1
r

∑r
i=1 δxi(x).

Then, for any distribution DX over instances (with P(x)) and instance-labeling function f ,
we let the distribution over bags DB be defined as P(B(x1,...,xr)) ,

∏r
i=1 P(xi), which is

the probability that the corresponding r-tuple would have been sampled from Dr
X , and the

bag-labeling function F to be F (B(x1,...,xr)) = max1≤i≤r f(xi). Let pneg = P [f(x) = 0],

then we claim that the (DX , DB , f, F ) described above is in MI-GEN
(
pr−1neg ,

1
r

)
.

First, we need to show that DB as defined satisfies Condition 1 of Definition 1:

P(x)
?
=

∫
B

P(x | B) d P(B)

=

∫
B

1

r

r∑
i=1

δxi(x) d P(B(x1,...,xr))

=
1

r

r∑
i=1

∫
X
· · ·
∫
X
δxi(x) d P(xr) · · · d P(x1)

=
1

r

r∑
i=1

∏
j 6=i

∫
X

d P(xj)

∫
X
δxi(x) d P(xi)


=

1

r

r∑
i=1

(
1r−1

)
P(x) = P(x).

So sampling instances under our two-step generative process is equivalent to sampling ac-
cording to the original instance distribution.

Condition 2 of Definition 1 is trivially satisfied, since by the definition of F , positive
instances never appear in negative bags. To show that Condition 3 holds, we must compute
the probability that negative instances appear in a negative bag. Using the definition of
conditional probability, this is,

P [F (B) = 0 | x] =

∫
B− P(x | B) d P(B)

P(x)
.
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Using the fact that in a negative bag B(x1,...,xr), all instances must be negative, we can
compute the numerator for a negative instance as∫

B−
P(x | B) d P(B) =

∫
B−

1

r

r∑
i=1

δxi(x) d P(B(x1,...,xr))

=
1

r

r∑
i=1

∫
X−
· · ·
∫
X−

δxi(x) d P(xr) · · · d P(x1)

=
1

r

r∑
i=1

∏
j 6=i

∫
X−

d P(xj)

∫
X−

δxi(x) d P(xi)


=

1

r

r∑
i=1

(
pr−1neg

)
P(x) = pr−1neg P(x).

Thus, P [F (B) = 0 | x] =
pr−1
neg P(x)
P(x) = pr−1neg . Since this probability is the same across all

negative instances, this means that γ = pr−1neg . This quantity is positive as long as pneg > 0.
Otherwise, all instances are positive, so the γ > 0 assumption is vacuously satisfied.

Finally, to show that Condition 4 of Definition 1 is satisfied, we see that for a positive
bag, Bi,

P [f(x) = 1 | B] =

∫
X
f(x)

(
1
r

r∑
i=1

δxi(x)

)
dx

=
1

r

r∑
i=1

f(xi) ≥
1

r
= π,

(9)

since at least one instance in the bag is such that f(x) = 1. Therefore, the IID r-tuple
model is a special case of our model in which γ and π are positive, and determined by the
fraction of negative instances and bag size r.

Another generative model, used to show the learnability of bag-level concepts (Sabato
and Tishby, 2012), allows arbitrary distributions over r-tuples. The model further relaxes
the r-tuple model by allowing bag sizes to vary from 1 to R, some maximum bag size. The
model is illustrated in Figure 5(b), where DX ∗ denotes the distribution over tuples of size at
most R. However, this model is also restrictive for many problem domains like drug activity
prediction, since it enforces that bag sizes are finite and bounded, whereas molecules can
exist in infinitely many conformations.

We can also represent the generative model of Sabato and Tishby (2012) in a similar way
as for the IID r-tuple model. We simplify the space of bags to be atomic distributions over
r ≤ R tuples, and allow an arbitrary distribution DB over bags rather than requiring that
P(B(x1,...,xr)) =

∏r
i=1 P(xi). Now, DX is not fixed, so we can define it in terms of Condition 1

of MI-GEN so that that condition is automatically satisfied. The bag-labeling function
F is still defined in terms of the arbitrary instance-labeling function f , so Condition 2
is still trivially satisfied. Furthermore, by similar reasoning as in Equation 9, π = 1

R
in this generative model, so Condition 4 is satisfied. However, the γ > 0 assumption
(Condition 3) is no longer automatically satisfied by this generative process, since arbitrary
distributions over tuples are allowed. Hence, while Sabato and Tishby (2012) analyze bag
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xij

1 ≤ j ≤ r

F̂
(
{xij}

)DX
f

1 ≤ i ≤ n

(a) The IID r-tuple model

{xij}ri≤Rj=1 F̂
(
{xij}

)
DX∗ f

1 ≤ i ≤ n

(b) The arbitrary R-tuple model

Figure 5: Previous generative models for MI data.

concept learnability with MI-GEN
(
0, 1

R

)
, we require MI-GEN

(
γ, 1

R

)
⊂ MI-GEN

(
0, 1

R

)
for

instance concept learnability.

Babenko et al. (2011) propose treating bags in the MI setting as manifolds in the
instance space X. While this allows describing a bag with an infinite number of instances,
it assigns an equal “weight” to every instance. However, for a domain like drug activity
prediction, a molecule is more likely to exist in certain conformations than in others. The
varying weight of instances is naturally handled in our setting, but we do not treat bags as
manifolds over instances, so our results may not apply to the generative process in which
bags are manifolds.

Some prior work proposes additional generative models for MIL, some of which model
bags as distributions over instances. For example, some work uses Gaussian distributions
(Maron and Lozano-Pérez, 1998; Xu, 2003) or mixture models (Foulds and Smyth, 2011) to
represent distributions over instances, while other work uses more complex graphical (Yang
et al., 2009; Adel et al., 2013; Kandemir and Hamprecht, 2014) or hierarchical Bayesian
(Kuck and de Freitas, 2005) models. However, our work differs from these prior investiga-
tions in two important ways. First, we focus on the theoretical properties of our generative
model, whereas prior work has only empirically explored the performance of algorithms
tailored to specific generative models. Secondly, while prior generative models require that
bags or instances are sampled from specific, parametric probability distributions, our gen-
erative model does not require such assumptions. Thus, the theoretical results presented
below apply to more general scenarios than the models previously explored.

2.5 Applicability to Problem Domains

At the beginning of this section, we motivated MI-GEN using the 3D-QSAR domain. In
this section, we elaborate on how bags can naturally be viewed as distributions in various
other problem domains and which labeling tasks illustrated in Figure 3 are of interest in
each domain. Of course, as described in Section 2.4, standard generative models are special
cases of MI-GEN, so previous applications of MIL for which it is most natural to think of
bags as finite sets of instances can still be incorporated in this model.

2.5.1 Drug Activity Prediction

For the drug activity prediction or the 3D-QSAR problem, it is natural to think of each
molecule as a distribution over conformations. While it is natural to view learning molecule-
level activity F as the ultimate goal of 3D-QSAR, it is also important to learn the instance-
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labeling function f . Knowing whether an individual conformation binds to a receptor
provides information about the structure of the receptor’s binding site, which is practically
difficult to measure directly. Hence, learning both instance- and bag-labeling functions are
important in the 3D-QSAR domain.

2.5.2 Text Categorization

While it is popular to represent documents as a flat “bag of words” using a single feature
vector comprised of word frequencies (Salton and McGill, 1983), prior work has acknowl-
edged the benefits of representing document-specific structure. In particular, latent Dirich-
let allocation (LDA) models each document as a mixture of distributions over words (Blei
et al., 2003). Of course, LDA can also applied to a coarser-grained representation in which
documents are distributions over n-grams or paragraphs, which are like individual instances
in the MI setting (Blei et al., 2003). Other work attempts to infer the level of granularity in
a document in addition to modeling the distributions over the discovered “segments” (Du
et al., 2013). Hence, treating documents as distributions is already a natural and popular
representation for text. On the other hand, LDA treats each document distribution as tak-
ing a specific parametric form, whereas our results and analysis do not make any parametric
assumptions about bag-level distributions.

As for 3D-QSAR, both document-level and instance-level categorization is important
in the text categorization domain. For example, if certain types of documents like survey
articles discuss various subjects, then it might be important to determine not just that
the document as a whole discusses a particular subject, but also which specific passage or
paragraph discusses the subject.

2.5.3 Content-Based Image Retrieval

Applying our generative framework to the CBIR task requires viewing images as distribu-
tions over objects such that the objects in each image are a sample from the corresponding
distribution. As with LDA for the text categorization domain, analogous probabilistic mod-
els have been proposed for categorizing natural scenes (Fei-Fei and Perona, 2005). Thus,
while treating images as distributions is not unprecedented, our analysis is novel in that it
discuses learnability under such a model without assuming that image distributions take a
specific parametric form.

Furthermore, as for the other domains discussed, the bag-labeling function F is not the
only latent variable of interest in CBIR. In additional to labeling new images, a CBIR
system might be interested in determining the location of the object of interest within an
image, which requires learning the instance-labeling function f .

3. Learning Accurate Concepts from MI Data

In this section, we describe new theoretical results that highlight the advantages of the
generative model proposed in Section 2. In particular, the new generative model allows
new results about instance- and bag-concept learnability that previously only held under
a much stronger set of assumptions. As we describe in Section 4, additional theoretical
results imply the surprising but testable ability of standard supervised approaches to learn
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Table 1: A summary of the learnability results in Section 3 and Section 4.

Accuracy AUC

Instance f Theorem 1 Theorem 4

Bag
F̂ Theorem 2 Theorem 5
F Theorem 3 Theorem 6

Table 2: Legend of the basic notation used in Section 3.

Symbol Description/Definition

X Space of instances
B Space of bags (distributions over instances)
X∗ Set of bag samples (sets of instances)
xij Instance xij ∈ X
Bi Bag Bi ∈ B
Xi Bag sample {xij}mij=1 ∈ X∗, xij ∼ Bi (ml ≤ |Xi| ≤ mu)

mi Bag Sample Size mi = |Xi|
f Instance-Labeling Concept
F Bag-Labeling Concept

F̂ Empirical Bag-Labeling Concept F̂ (Xi) , maxj f(xij)
g Instance-Labeling Hypothesis

Ĝ Empirical Bag-Labeling Hypothesis Ĝ(Xi) , maxj g(xij)
F Instance-Labeling Concept Class

VC(F) Vapnik–Chervonenkis (VC) Dimension (Vapnik and Chervonenkis, 1971)

to rank instances and bags from MI data. Table 1 summarizes the theoretical contributions
made in this and the following sections, which demonstrate the learnability of the instance
concept f , empirical bag-labeling function F̂ , and bag-labeling function F with respect to
both accuracy and ranking as measured by area under ROC (AUC). The results in this
section and the following section use a model of the instance labeling function f to derive
models for the bag-labeling functions F̂ and F .

Defining the ability of an algorithm to learn a good approximation of a target concept
requires some metric by which the quality of the approximation is to be measured. Tra-
ditionally, the quality of a classifier is measured in terms of expected 0–1 loss. We begin
by investigating the ability of algorithms to learn accurate concepts from MI data in this
sense. While there is only one learning task in the supervised setting, there are now both
instance- and bag-concept learning tasks in the MI setting, which we explore separately in
the following sections. Table 2 shows the notation used for the concepts in this section.

3.1 Learning Accurate Instance Concepts

The probably approximately correctly (PAC) framework describes one sense in which it
is possible to learn accurate concepts from supervised data. Since the generative process
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described in Section 2 differs from that for supervised learning, we must restate what it
means to “PAC” learn an accurate instance concept under this model.

In the supervised setting, the learnability of some fixed concept class F is discussed
without making any assumptions about the distribution over instances. The definition of
MI-GEN in Definition 1 similarly allows any instance distribution, with which many bag
distributions are consistent in the sense of Condition 1. To ensure that the target concept
f is a member of the concept class F , we must further restrict the set of models allowed by
the generative process as follows:

Definition 2 (MI-GENF) For any γ ∈ (0, 1] and π ∈ [0, 1]:

MI-GENF (γ, π) ,
{

(DX , DB , f, F ) ∈ MI-GEN(γ, π) : f ∈ F
}
.

Now, we can formally define PAC learnability for the MI setting:

Definition 3 (Instance MI PAC-learning) We say that an algorithm AMI PAC-learns
instance concept class F from MI data when for any (DX , DB , f, F ) ∈ MI-GENF (γ) with
γ > 0, and εI, δ > 0, A requires O

(
poly( 1γ ,

1
εI
, 1δ )
)

bag-labeled instances sampled indepen-
dently from the MI generative process in Figure 1(b) to produce an instance hypothesis g
with risk Rf (g) < εI with probability at least 1− δ over samples.2

Note that because our generative model allows us to discuss the marginalized instance
distribution DX , the risk Rf (g) = Ex∼DX

[
1[f(x) 6= g(x)]

]
is measured with respect to

this distribution as in the supervised setting. Now we show that instance concepts are MI
PAC-learnable in the sense of Definition 3:

Theorem 1 An instance concept class F with VC dimension VC(F) is Instance MI PAC-

learnable using O
(

1
εIγ

(
VC(F) log 1

εIγ
+ log 1

δ

))
examples.

Proof By Condition 1 in Definition 1, we can treat bag-labeled instances as being drawn
from the underlying instance distribution DX . Instances are observed with some label noise
with respect to true labels given by f . Since positive instances never appear in negative
bags (by Condition 2 of Definition 1), noise on instances is one-sided. If every negative
instance appears in negative bags at least some γ fraction of the time (by Condition 3),
then the maximum one-sided noise rate is η = 1− γ. Since γ > 0, η < 1, which is required
for learnability. Under our generative assumptions, the noise is “semi-random” in that
noise rate might vary across instances, but is bounded by η < 1. Thus, learning an instance
concept is equivalent to learning from data with one-sided label noise in this sense.

The result of Simon (2012) shows that in the presence of one-sided, semi-random
noise, when a concept class F has a VC dimension of VC(F), F is PAC-learnable from

O
(

1
εI(1−η)

(
VC(F) log 1

εI(1−η) + log 1
δ

))
examples using a “minimum one-sided disagree-

ment” strategy. This strategy entails choosing a classifier that minimizes the number of dis-
agreements on positively-labeled examples while perfectly classifying all negatively-labeled
examples. This strategy also works in the special case that all instances and bags are posi-
tive (η = 0, or γ = 1, since there are no negative instances). Substituting 1− γ for η in the

2. Alternate definitions of PAC-learnability require that A also take at most polynomial time to produce
hypothesis g. We defer the discussion of time complexity to Section 3.5.
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bound of Simon (2012) yields the bound in terms of γ.

We note that Theorem 1 allows for “noisy” positive bags without positive instances (π = 0),
since the additional bag-level noise is essentially absorbed into η.

3.2 Learning Accurate Bag Concepts

As for instance concept learnability, we must formally define what we mean to learn accurate
bag concepts in the MI setting. As described in Section 2, there are two bag-labeling
functions we might be interested in learning. In our generative model, we assume that the
MI relationship between bag and instance labels holds at the level of the generative process.
That is, bags are directly assigned labels by a bag concept F . On the other hand, given a
set of instances sampled from a bag, we might be interested in learning the more traditional
bag-labeling concept in the MI setting, F̂ (Xi) = maxj f(xij), which we have called the
empirical bag-labeling function (Equation 8). We will first analyze learnability with respect
to the empirical bag-labeling function and then extend this result to the true bag-labeling
function.

We can define the risk of a bag-labeling concept Ĝ with respect to the underlying
empirical bag-labeling concept F̂ as follows:

R
F̂

(Ĝ) = E
[
1[F̂ (X) 6= Ĝ(X)]

]
=

∫
B

∫
X∗
1[F̂ (X) 6= Ĝ(X)] d P(X | B) d P(B),

(10)

where P(X | B) is the probability of sampling the set of instances X from bag B. Since
we assume that instances are sampled IID according to B, P(X | B) =

∏
x∈X P(x | B).

Given a formal definition of the risk of an empirical bag-labeling function, we can define
learnability with respect to this function below:

Definition 4 (Empirical Bag MI PAC-learning) We say that an algorithm AMI PAC-
learns empirical bag-labeling functions derived from instance concept class F when for any
(DX , DB , f, F ) ∈ MI-GENF (γ) with γ > 0, and εB, δ > 0, A requires O

(
poly( 1γ ,

1
εB
, 1δ )
)

bag-labeled instances sampled independently from the MI generative process in Figure 1(b)
to produce an empirical bag-labeling function Ĝ with risk R

F̂
(Ĝ) < εB with probability at

least 1− δ over samples.

To show empirical bag concept learnability under our generative model, we will show
that by learning an accurate enough instance concept g, the resulting empirical bag-labeling
concept given by Ĝ(Xi) = maxj g(xij) will have low risk with respect to F̂ . Thus, we start

with a bound on R
F̂

(Ĝ) in terms of Rf (g).

Lemma 1 Let Rf (g) be the risk of an instance labeling concept g, and R
F̂

(Ĝ) be the risk

of the empirical bag-labeling function Ĝ(Xi) = maxj g(xij). Then if bag sample sizes are

bounded by mu (∀i : |Xi| ≤ mu), R
F̂

(Ĝ) ≤ muRf (g).

Proof See Appendix A.

Given the bound demonstrated in Lemma 1, we can derive the following result:
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Theorem 2 Empirical bag-labeling functions derived from instance concept class F with
VC dimension VC(F) are PAC-learnable from MI data using

O
(
mu
εBγ

(
VC(F) log mu

εBγ
+ log 1

δ

))
examples.

Proof The general strategy is to learn an approximation g for f ∈ F using minimum one-
sided disagreement as mentioned in the proof of Theorem 1 and then to derive an empirical
bag-labeling function Ĝ from g.

For a desired bound εB on R
F̂

(Ĝ), by using εI = εB
mu

in Theorem 1, this ensures that
the resulting instance classifier is such that Rf (g) < εB

mu
with high probability. Combined

with the result in Lemma 1, this implies that R
F̂

(Ĝ) ≤ muRf (g) < mu

(
εB
mu

)
= εB, so

R
F̂

(Ĝ) < εB as desired. Substituting εI = εB
mu

into the bound in Theorem 1 gives the bound
as stated in Theorem 2.

Again, Theorem 2 allows for noisy positive bags without positive instances (π = 0). Fur-
thermore, in the special case when every bag sample is a singleton X = {x}, then mu = 1
and F̂ ({x}) = f(x). Thus, the instance concept learnability result in Theorem 1 is really
just a special case of learning an empirical bag-labeling function with bags of size 1 as in
Theorem 2.

Next, we turn our attention to learning the underlying bag-labeling function F . We will
still use the instance-labeling function g to derive this bag-labeling function. It is possible
to consider learning F without the use of an instance concept g, as we discuss in Section 3.3.
During both training and testing, we are only given access to a sample Xi from each bag
Bi with which we can estimate F (Bi). Therefore, we will again learn an empirical bag
labeling function Ĝ(Xi). However, now we will assess the quality of Ĝ with respect to the
underlying bag-labeling function F as follows:

RF (Ĝ) = E
[
1[F (B) 6= Ĝ(X)]

]
=

∫
B

∫
X∗
1[F (B) 6= Ĝ(X)] d P(X | B) d P(B).

(11)

The definition of bag concept learnability then takes the same form as that in Definition 4
with the risk as given in Equation 11. As we will show in Lemma 2, we now also require
the further assumption that π, minimum fraction of positive instances in positive bags, is
nonzero.

Definition 5 (Bag MI PAC-learning) We say that an algorithm A MI PAC-learns bag-
labeling functions derived from instance concept class F when for any (DX , DB , f, F ) ∈
MI-GENF (γ, π) with γ, π > 0, and εB, δ > 0, algorithm A requires O

(
poly( 1γ ,

1
π ,

1
εB
, 1δ )
)

bag-labeled instances sampled independently from the MI generative process in Figure 1(b)
to produce an empirical bag-labeling function Ĝ with risk RF (Ĝ) < εB with probability at
least 1− δ over samples.

In order to show learnability of the bag-labeling concept F , we adopt a similar strategy
as for Theorem 2 in which we first learn an instance-labeling concept g, then use g to derive
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an empirical bag-labeling concept Ĝ. Since Theorem 2 shows that we can a learn a concept
Ĝ that accurately models F̂ , what remains to be shown is that F̂ is an accurate model of F
under some additional conditions. First, we prove the following lemma, which decomposes
the risk RF (Ĝ) into the discrepancy between Ĝ and F̂ , and the discrepancy between F̂ and
F .

Lemma 2 For any empirical bag-labeling concept Ĝ,

RF (Ĝ) ≤ R
F̂

(Ĝ) +RF (F̂ ).

Proof See Appendix A.

Now, we derive a bound on the discrepancy between the empirical bag-labeling function
F̂ and the underlying bag-labeling function F . Since this discrepancy arises when we do
not sample a positive instance within a positive bag, the bound depends on the minimum
bag sample size and the minimum fraction π of positive instances in every positive bag.

Lemma 3 Suppose bag samples are of size at least ml (∀i : ml ≤ |Xi|), then RF (F̂ ) ≤
(1− π)ml.

Proof See Appendix A.

Finally, we can now show the following learnability result with respect to the underlying
bag-labeling function. However, note that in Lemma 3, the error RF (F̂ ) decreases with the
minimum bag size ml. Thus, in order to achieve low error with respect to F , we must ensure
that bags in the test set are sufficiently large. Therefore, the following result is stated under
the additional condition that the test bag sample sizes mi satisfy some constraints. Note
that these constraints arise naturally from the process that samples instances from bag
distributions.

Theorem 3 Bag-labeling functions derived from instance concept class F with VC dimen-
sion VC(F) are PAC-learnable from MI data using

O
(

1
ε2Bγπ

(
VC(F) log 1

εBγπ
+ log 1

δ

))
(12)

examples when test bag sample sizes are bounded by ml ≤ m ≤ mu and ml is large enough
such that ml ≥ 1

π log 2
εB

.

Proof Intuitively, we can learn an instance-labeling function g according to Theorem 1
and then use the resulting empirical bag-labeling function Ĝ. By combining the previously
stated results, we can bound RF (Ĝ) as

RF (Ĝ) ≤ R
F̂

(Ĝ) +RF (F̂ ) (by Lemma 2)

≤ muRf (g) +RF (F̂ ) (by Lemma 1)

≤ muRf (g) + (1− π)ml . (by Lemma 3)
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In the case that π = 1, then the second term in the sum is zero. Otherwise, suppose the
minimum bag size is such that

ml ≥ 1
π log 2

εB
≥ log εB

2

log(1− π)
= log1−π

εB
2 ,

where the second inequality follows from the fact that π ≤ − log(1 − π) for π ∈ (0, 1).
Therefore, since (1− π) < 1, we have that

(1− π)ml ≤ (1− π)log1−π
εB
2 = εB

2 .

Furthermore, when learning the instance concept g, we can choose εI to be such that
εI = εB

2mu
. Since g will be such that Rf (g) < εI with probability (1 − δ), with the same

probability we have that

RF (Ĝ) ≤ muRf (g) + (1− π)ml

< mu

(
εB
2mu

)
+ εB

2 = εB.

Substituting the expression for εI in terms of εB into the bound in Theorem 1 gives the
sample complexity bound:

O
(
mu
εBγ

(
VC(F) log mu

εBγ
+ log 1

δ

))
,

which is the same bound as stated in Theorem 2.

It is also possible to sub-sample large bags such that there is also a conservative upper

bound on sample size mu = O
(

1
εBπ

)
, which is consistent with ml ≥ 1

π log 2
εB

. Then, we

can derive an expression for learnability in terms of π. Substituting this bound into that of
Theorem 2 gives the second sample complexity bound as stated in Equation 12.

3.3 Discussion

The results presented in Section 3.1 and Section 3.2 follow the same basic strategy. First,
minimum one-sided disagreement is used to learn an accurate instance concept g in the
presence of one-sided noise on bag-labeled instances. Then, for the bag-labeling task, in-
stance labels are aggregated using an empirical bag-labeling function Ĝ to approximate the
empirical bag-labeling function F̂ or the underlying bag-labeling function F . The idea of
combining instance labels to produce a bag-labeling function is used by many existing MI
algorithms.

However, under the generative model that treats bags as distributions, the bag-labeling
results derived in Section 3.2 are somewhat counterintuitive. On the one hand, if bags
are distributions from which we observe samples, then the larger the samples, the more
information an algorithm has about the underlying bag distribution. Intuitively, it seems
that the better an algorithm can estimate the underlying bag distribution, which is the
object of interest for classification, the better it can learn a concept to label new bags. On
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Figure 6: Relation to prior learnability results.

the other hand, the result in Theorem 2 suggests that it is harder to learn from larger bag
sizes, since roughly O(mu logmu) more examples are required to learn an accurate concept.

Essentially, the source of this incoherence in reasoning is the use of an instance-labeling
concept g to derive the bag-labeling concept Ĝ. In the process of combining instance labels
to label a bag, small errors in the instance labeling function g compound quickly. For
example, g must label all instances in a negative bag correctly for Ĝ to label the bag
correctly. As bag size increases, it becomes less likely that g will agree with f across all
instances.

Therefore, despite our positive results suggesting that learning an accurate instance-
labeling function is sufficient to learn an accurate bag-labeling function, in practice, it is
possible to imagine an alternative approach in which bag-labeling functions are learned
directly by representing bags in a supervised fashion. Several practical approaches, such
as bag-level kernels (Gärtner et al., 2002; Zhou et al., 2009) and embeddings (Chen et al.,
2006; Foulds, 2008) do precisely this, and essentially turn the bag-label learning problem
into a supervised learning problem. Further investigating the trade-offs between techniques
that classify bags using instance classifiers and those that directly learn bag classifiers is an
interesting direction for future work.

3.4 Relation to Prior Learnability Results

An overview of our results in the context of prior work is shown in Figure 6. Early work on
instance learnability shows that axis-parallel rectangles (APRs) are learnable from MI data,
but under the restrictive assumption that each bag contains r IID instances sampled from a
product distribution (Long and Tan, 1998). Later work by Auer et al. (1998) extends these
results to the case when the instance distribution is no longer a product distribution, but
the instances are still sampled IID from a single distribution across bags. The most recent
results on instance concept learnability in the MI setting are described by Blum and Kalai
(1998). Like the proof of Theorem 1, Blum and Kalai (1998) also reduce the problem of
learning instance concepts to learning from noisy examples. However, the proof in Blum
and Kalai (1998) requires that the label noise on negative examples be uniformly random.
This condition is met under the strong assumption made in that work, that instances in
all bags are drawn IID from the same distribution over instances. On the other hand, the
result in Theorem 1 applies to our more general model in which the noise rate can vary
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across instances. Hence, our results rely on the recent work of Simon (2012), which shows
that it is possible to learn from instances corrupted with semi-random one-sided noise.

The bag learnability results in Section 3.2 show that an accurate bag concept can be
learned by learning an accurate instance concept and deriving a bag concept by combining
instance labels within a bag. Other recent work on bag concept learnability takes a different
approach. The strategy of Sabato and Tishby (2012) is to directly learn empirical bag-
labeling concepts using empirical risk minimization (ERM). That is, they suppose that
an algorithm selects an instance-labeling function g ∈ F that minimizes R

F̂
(Ĝ). Since

general sample complexity bounds exist for ERM in terms of capacity measures such as VC
dimension of a hypothesis class (Blumer et al., 1989), Sabato and Tishby (2012) proceed

by proving that the capacity of the function class
{
Ĝ : Ĝ(Xi) = maxj g(xij), g ∈ F

}
is

bounded in terms of the capacity of F . In fact, the results of Sabato and Tishby (2012)
apply to more general cases in which the combining function used to derive a bag-labeling
function from an instance-labeling function is other than the max function. However, the
results of Sabato and Tishby (2012) do not prove positive results about instance-labeling
concepts.

As indicated in Figure 6, the results in Section 3.2 are not a strict generalization of those
in Sabato and Tishby (2012), nor are those in Sabato and Tishby (2012) a generalization of
those in Section 3.2. In particular, since MI-GEN treats bags as distributions, the results
in Section 3.2 apply to cases not considered in Sabato and Tishby (2012), in which bags are
assumed to have finite size. On the other hand, while our generative model can encapsulate
aspects of the generative model in Sabato and Tishby (2012) (see Section 2.4), arbitrary
distributions over r-tuples are not permitted. However, it may be that we are able to prove
positive instance learnability results precisely because of this constraint on the generative
process.

Other recent work has discussed the difficulty, both theoretically and in practice, to
relate the performance of the same classifier on the instance- and bag-labeling tasks (Tra-
gante do Ó et al., 2011). In contrast, Lemma 1 illustrates a clear connection between the
accuracy of an instance concept and that of the resulting empirical bag concept. This new
connection is made possible by the relationship between bag and instance distributions in
our generative model, as highlighted in Lemma 1. In particular, Condition 1 of Definition 1
is employed to marginalize out the effect of individual bag distributions so that error on
bags can be expressed directly in terms of the error on instances. There are at least two
reasons why this relationship is not obvious from empirical results. First, contrasting the
sample complexity expressions Theorem 1 and Theorem 3, we see that larger samples are
required to learn accurate bag concepts. Thus, for a fixed sample size, there might be a
significant discrepancy in performance of a single algorithm on the two learning tasks. Sec-
ondly, the relationship we demonstrate holds when an accurate instance concept is learned
and then applied to the bag-labeling task. However, in practice, many algorithms attempt
to learn an instance function to label bags using ERM at the bag-level. It is not clear that
the instance-labeling function found via bag-level ERM in this way will successfully label
instances.
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3.5 Relation to Prior Hardness Results

The positive learnability results in Section 3.1 and Section 3.2 do not contradict existing
hardness results about learning in the MI setting. Essentially, most hardness results are
shown under the scenarios that lie on the far right of Figure 6. For example, Sabato
and Tishby (2012) observe that if only positive bags are generated, then learning the bag-
labeling function is trivial, but no label information about instances is provided. In this
case, learning instance labels is equivalent to learning in the unsupervised learning setting,
for which no PAC-style guarantees can be made. However, the additional assumptions in
MI-GEN preclude the case when only positive bags appear, since the negative instances
would never appear in negative bags as required by Condition 3 in Definition 1.

Similarly, under the weak assumption in which arbitrary distributions over r-tuples are
allowed, Auer et al. (1998) show that that efficiently PAC-learning MI instance concepts is
impossible (unless NP = RP3). While the results on instance and bag learnability stemming
from Theorem 1 show that a polynomial number of examples can be used to learn accurate
concepts, they do not bound the computational complexity of learning from the examples.
In particular, minimum one-sided disagreement is known to be NP-hard for certain concept
classes and loss functions (Simon, 2012). Therefore, for some concept classes, instance and
bag concepts are not efficiently PAC-learnable: learnable with a polynomial number of
examples in polynomial time.

The apparent contradiction between our learnability results and the hardness results
of Auer et al. (1998) is resolved by observing that MI-GEN precludes the scenario used
to reduce learning disjunctive normal form (DNF) formulae to learning APRs from MI
data. In the reduction used by Auer et al. (1998), each instance corresponds to a (variable
assignment, clause) pair, and a bag is formed for each variable assignment by including a
pair with that variable assignment for each clause. Bags are sampled uniformly over all
variable assignments. Suppose a particular variable assignment v satisfies the first clause
c1, but not the second clause c2. Then the instance (v, c1) is positive, but (v, c2) is negative.
However, (v, c2) only ever appears in bags along with (v, c1); that is, in positive bags. This
violates the condition that γ > 0, or that negative instances appear with some probability
in negative bags, so our results do not apply to this hard scenario.

Similarly, our generative model precludes scenarios used to show the hardness of learning
hyperplane concepts for MI data (Kundakcioglu et al., 2010; Diochnos et al., 2012; Doran
and Ray, 2013). It is unknown whether there is an algorithm to efficiently learn hyperplanes
that minimize one-sided disagreement. However, even ERM under 0–1 loss is NP-hard for
the concept class of hyperplanes (Ben-David et al., 2003), which are widely used in practice
for supervised learning. Thus, while previous results have characterized the hardness of MI
learning as resulting from arbitrary distributions across bags, our results suggest that the
hardness arises from cases in which γ = 0, or when negative instances only occur in negative
bags.

3. RP is the class of decision problems for which a probabilistic Turing machine terminates in polynomial
time, always returns NO when the answer is NO, and returns YES with probability at least 1

2
when the

answer is YES.
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3.6 Must Instances be Dependent Samples?

As observed in prior work, most real-world examples of MIL have bags that contain non-IID
instances (Zhou et al., 2009). Thus, our assumption that bag samples Xi are drawn IID
according to their corresponding bag distributions Bi might seem unrealistic. However,
note that our generative model does allow for dependencies between instances at the level
of bag distributions, Bi. That is, although the samples Xi are drawn from bag distribu-
tions independently, we can use such independent samples to approximate the behavior of
empirical bag-labeling functions on nonindependent samples.

The arbitrary R-tuple model, as illustrated in Figure 5(b), allows for arbitrary distri-
butions over tuples of size at most R, which can be used to represent any generative model
in which there is a relationship between instances in bags (i.e., bags in which instances are
non-IID). As described in Section 2.4, it is possible to represent this model within MI-GEN
where each bag is an atomic distribution over the instances in the tuple and the distribution
over bags corresponds to the original distribution over tuples. Given this representation,
π = 1

R in our model. In the traditional MI setting, we would directly observe these R in-
stances. Our generative model, on the other hand, assumes that we perform the equivalent
of repeatedly sampling an instance from these R instances uniformly and independently at
random. In this case, we have the following result:

Corollary 1 (MI PAC-learning from Dependent Instances) When distributions of
instances in bags are defined by a set of R dependent instances sampled from a distri-
bution over R tuples, bag-labeling functions derived from instance concept class F with VC
dimension VC(F) are PAC-learnable from MI data using

O
(

R
εBγ

log 1
εB

(
VC(F) log R

εBγ
+ log 1

δ

))
examples with test bags of size m =

⌈
R log 2

εB

⌉
drawn independently with replacement from

the R dependent instances.

Proof Following the same line of reasoning as in Theorem 3, we can derive the sample
complexity bound

O
(
m
εBγ

(
VC(F) log m

εBγ
+ log 1

δ

))
, (13)

when there are m instances per bag. Choosing m =
⌈
R log 2

εB

⌉
satisfies the conditions of

that theorem, since π = 1
R . Substituting m into Equation 13 implies the sample complexity

as stated in the corollary.

Thus, even though the bag distribution is representable using only R dependent instances,

when sampling independently, we must sample a factor of O
(

log 1
εB

)
more instances to

ensure that we can learn an accurate bag-labeling concept with high probability.

4. Learning to Rank from MI Data

Learnability results are often stated as in Section 3 with respect to the accuracy metric.
However, other metrics often provide a more useful characterization of algorithm perfor-
mance in practice. For example, for the 3D-QSAR problem, it is not necessary to accurately
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Table 3: Legend of the basic notation used in Section 4.

Symbol Description/Definition

X Space of instances

B Space of bags (distributions over instances)

X∗ Set of bag samples (sets of instances)

xij Instance xij ∈ X
Bi Bag Bi ∈ B
Xi Bag sample {xij}mij=1 ∈ X∗, xij ∼ Bi (ml ≤ |Xi| ≤ mu)

mi Bag Sample Size mi = |Xi|
c p-concept for bag-labeled instances c(x) , P [F (B) = 1 | x]

h Instance-Labeling p-concept

Ĥ Empirical Bag-Labeling p-concept Ĥ(Xi) , maxj h(xij)

pneg, p pneg , P [f(x) = 0] p , min{pneg, 1− pneg}
P̂neg, P̂ P̂neg , P

[
F̂ (X) = 0

]
P̂ , min{P̂neg, 1− P̂neg}

Pneg, P Pneg , P [F (B) = 0] P , min{Pneg, 1− Pneg}
C Instance-Labeling p-concept Class

PD(C) Pseudo-Dimension of C (Haussler, 1992)

predict the activity of every molecule. Instead, a classifier can produce a ranked list in-
dicating its confidence that each molecule is active. The set of active molecules with the
highest predicted activity can then be investigated further by chemists. Unlike the prior
work on learning accurate concepts from MI data as shown in Figure 6, there has been
virtually no prior work on learning to rank in the MI setting. That is, although ranking
algorithms have been developed for MIL (Bergeron et al., 2008), there is no formal analysis
of the performance of such approaches. We provide such an analysis in this section.

In the 3D-QSAR example, a desirable property of a classifier is that it appropriately
ranks bags or instances. That is, it assigns a higher real-valued confidence that a confor-
mation is positive to actual positive conformations than to negative conformations. The
AUC metric is commonly used to measure the ranking performance of a classifier. We show
in this section that classifiers with high AUC are also learnable from MI data under our
generative model. Furthermore, we show that learning high-AUC concepts from MI data is
easier than learning accurate concepts in the sense that it can be achieved using standard
ERM approaches. This suggests that standard supervised algorithms can learn high-AUC
concepts from MI data generated according to MI-GEN, a surprising hypothesis that we
evaluate in the final section.
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4.1 Learning High-AUC Instance Concepts

Prior work has shown that the AUC is equivalent to the probability that a randomly selected
positive example will be assigned a higher confidence than a randomly selected negative
example (Hanley and McNeil, 1982). We can define a corresponding instance AUC error
of a real-valued hypothesis h as 1 − AUC, or the probability that a negative instance is
assigned a higher confidence than a positive instance:

RAUC
f (h) =

∫
X

∫
X
1[h(x−) > h(x+)] d P(x+ | f(x+) = 1) d P(x− | f(x−) = 0)

=

∫
X−

∫
X+

1[h(x−) > h(x+)] d P(x+) d P(x−)

P [f(x) = 1] P [f(x) = 0]

=
1

(1− pneg)pneg

∫
X−

∫
X+

1[h(x−) > h(x+)] d P(x+) d P(x−).

(14)

The first step follows from the definition of conditional probability, and we introduce pneg =
P [f(x) = 0] for notational convenience (see Table 3 for a list of notation used in this section).
By definition, this quantity is zero in the cases when either all instance are positive or all
instances are negative.

Given the formal definition of AUC, we can begin to describe how it is possible to
learn high-AUC instance concepts from MI data. Since a classifier’s confidence values
are relevant for the AUC metric, we will consider the hypothesis class corresponding to a
classifier to be a p-concept class C. The p-concept model is a model for binary classification
in which a p-concept c : X → [0, 1] represents the probability that an instance X is observed
with a positive label (Kearns and Schapire, 1994). For high-AUC instance learnability,
we will show that it is sufficient to learn a p-concept h ∈ C that models the p-concept
c(x) = P [F (B) = 1 | x], the probability of observing instance x in a positive bag as defined
in Equation 2.

To ensure that the target concept c is also a member of C, we must formally restrict the
set of bag labeling functions and distributions that are permitted by the generative model
as follows:

Definition 6 (MI-GENC) For any γ ∈ (0, 1] and π ∈ [0, 1]:

MI-GENC(γ, π) ,
{

(DX , DB , f, F ) ∈ MI-GEN(γ, π) :
(
x 7→ P [F (B) = 1 | x]

)
∈ C
}
.

Learnability of a p-concept with high AUC is then defined with respect to p-concept
class C:

Definition 7 (Instance MI AUC-PAC-learning) We say that an algorithm AMI AUC-
PAC-learns instance p-concept class C from MI data when for any (DX , DB , f, F ) ∈ MI-GENC(γ)
with γ > 0, and εI, δ > 0, algorithm A requires O

(
poly( 1γ ,

1
εI
, 1δ )
)

bag-labeled instances sam-
pled independently from the MI generative process in Figure 1(b) to produce an instance
p-concept hypothesis h with risk RAUC

f (h) < εI with probability at least 1− δ over samples.

Whereas learning accurate instance concepts as in Definition 3 required the use of min-
imum one-sided disagreement, we show in Theorem 4 that it is possible to learn high-AUC
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Figure 7: The intuition behind Theorem 4. A hypothesis h that closely approximates c will
correctly rank instances with high probability.

concepts using ERM. In particular, the strategy used in the following theorem is to learn
a p-concept h that models the concept c defined in Equation 2 using standard ERM. The
intuition is that c already achieves perfect AUC; that is, RAUC

f (c) = 0. The reason is that
for any negative instance x− and positive instance x+, c(x−) ≤ 1 − γ < 1 = c(x+), see
Figure 7 for an illustration. If we learn a p-concept h that closely approximates c to within
some ε, then with high probability, h will also correctly rank instances.

Stating the learnability of a p-concept with ERM requires use of the pseudo-dimension
of the concept class C, just as VC dimension can be used to characterize the capacity of
a deterministic concept class. The pseudo-dimension is similar to the VC dimension, but
uses a different notion of “shattering.” In particular, for a set of points with real-valued
labels, {(xi, yi)}ni=1, a p-concept class C shatters the points if for any binary labeling of the
points {bi}, there exists some c ∈ C such that c(xi) ≥ yi if bi = 1 and c(xi) < yi if bi = 0
(Haussler, 1992). The pseudo-dimension of C, denoted PD(C), is the size of the largest set
such that C shatters some set of that size.

Theorem 4 An instance p-concept class C with pseudo-dimension PD(C) is Instance MI

AUC-PAC-learnable using O
(

1
(εIγp)4

(
PD(C) log 1

εIγp
+ log 1

δ

))
examples with standard ERM

approaches, where p = min{pneg, 1− pneg}.

Proof See Appendix A.

Comparing Theorem 4 with Theorem 1 on learning accurate instance concepts, we see
that neither results require that positive instances appear in positive bags (π > 0). In both
cases, the addition label noise affects γ, but is tolerated by the underlying algorithm. The
key difference between these results is that high-AUC concepts can be learned via standard
ERM approaches, whereas accurate concept learning requires minimum one-sided disagree-
ment. Additionally, the sample complexity bound in Theorem 4 contains an additional
factor p that accounts for class imbalance. Intuitively, this factor appears because it is
difficult to learn to effectively rank instances from different classes when one class appears
very infrequently in the training set (p is small).
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4.2 Learning High-AUC Bag Concepts

As for accuracy, we might be interested in learning either high-AUC instance or bag concepts
from MI data. Following a similar strategy as employed in Section 3.2 for learning accurate
bag concepts, here we will consider two measures of bag-level performance of a bag concept
Ĥ derived from an instance concept h. The same combining function as in Section 3,
Ĥ(Xi) = maxj h(xij), is commonly used to derive real-valued bag-labeling functions in
prior work (Ray and Craven, 2005). Following the analysis in Section 3.2, we will measure
performance of Ĥ with respect to both F̂ , the empirical bag-labeling function, and later F ,
the underlying bag-labeling function.

For the empirical bag-labeling function, F̂ , the intuitive definition of AUC is the prob-
ability that a bag-level hypothesis Ĥ assigns a higher value to a bag sample given that it is
labeled positive by F̂ (that is, containing at least one positive instance) than another bag
sample labeled negative by F̂ (containing no positive instances). Formally, we can define
the corresponding AUC-based risk as follows:

RAUC
F̂

(Ĥ) =

∫
B
∫
B
∫
X∗−

∫
X∗+

1
[
Ĥ(X−) > Ĥ(X+)

]
. . .

. . . d P(X+ | B+) d P(X− | B−) d P(B+) d P(B−)

P
[
F̂ (X) = 1

]
P
[
F̂ (X) = 0

]

=

∫
B
∫
B
∫
X∗−

∫
X∗+

1
[
Ĥ(X−) > Ĥ(X+)

]
. . .

. . . d P(X+ | B+) d P(X− | B−) d P(B+) d P(B−)

(1− P̂neg)P̂neg

.

(15)

Above, X∗− is the set of all negative bag samples, and X∗+ the set of all positive bag samples.

The notation P̂neg = Pr
[
F̂ (X) = 0

]
is used for convenience. Now, we can define learnability

with respect to this metric:

Definition 8 (Empirical Bag MI AUC-PAC-learning) We say that an algorithm A
MI AUC-PAC-learns empirical bag-labeling functions derived from p-concept class C when
for any (DX , DB , f, F ) ∈ MI-GENC(γ) with γ > 0, and εB, δ > 0, algorithm A requires
O
(
poly( 1γ ,

1
εB
, 1δ )
)

bag-labeled instances sampled independently from the MI generative pro-

cess in Figure 1(b) to produce an empirical bag-labeling function Ĥ with risk RAUC
F̂

(Ĥ) < εB
with probability at least 1− δ over samples.

We will now show learnability of empirical bag-labeling functions by reducing the prob-
lem to learning an accurate model of the p-concept c. Hence, the approach of the proof
follows that for learning accurate empirical bag-labeling functions.

Theorem 5 Empirical bag-labeling functions derived from p-concept class C with pseudo-
dimension PD(C) are AUC-PAC-learnable from MI data using

O

(
m4
u

(εBγP̂)
4

(
PD(C) log mu

(εBγP̂)
+ log 1

δ

))
examples with standard ERM approaches, where

P̂ , min{P̂neg, 1− P̂neg} ≥ min{Pneg, 1− pneg},
and mu is an upper bound on bag sample size.
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Proof See Appendix A.

Note that Theorem 4 is a special case of Theorem 5 when mu = 1. In this case P̂neg = pneg
when samples all have size 1, so P̂ = p and the sample complexity is the same.

Now, we can examine AUC-learnability with respect to the true bag-labeling function,
F . To define AUC with respect to F , we measure the probability that a sample X+ is
labeled higher by Ĥ than X− is, given that X+ is sampled from a positive bag and X− is
sampled from a negative bag. Formally, the AUC risk of Ĥ with respect to F is

RAUC
F (Ĥ) =

∫
B−

∫
B+

∫
X∗
∫
X∗ 1

[
Ĥ(X−) > Ĥ(X+)

]
. . .

. . . d P(X+ | B+) d P(X− | B−) d P(B+) d P(B−)

P [F (B) = 1] P [F (B) = 0]

=

∫
B−

∫
B+

∫
X∗
∫
X∗ 1

[
Ĥ(X−) > Ĥ(X+)

]
. . .

. . . d P(X+ | B+) d P(X− | B−) d P(B+) d P(B−)

(1− Pneg)Pneg
.

(16)

The notation Pneg = P [F (B) = 0] is used to denote the probability of sampling a negative
bag from the distribution over bags. We define the risk to be zero in the case that this
probability is equal to either 0 or 1.

As for accuracy, the risk of an empirical bag-labeling function now depends on how
representative a sample is of the underlying bag. Thus, in the definition of AUC-learnability
with respect to F (Definition 9), we now again require an additional assumption that positive
instances appear some π > 0 fraction of the time in positive bags.

Definition 9 (Bag MI AUC-PAC-learning) We say that an algorithm A MI AUC-
PAC-learns bag-labeling functions derived from the p-concept class C when for any tuple
(DX , DB , f, F ) ∈ MI-GENC(DX , f, γ, π) with γ, π > 0, and εB, δ > 0, algorithm A requires
O
(
poly( 1γ ,

1
π ,

1
εB
, 1δ )
)

bag-labeled instances sampled independently from the MI generative pro-

cess in Figure 1(b) to produce an empirical bag-labeling function Ĥ with risk RAUC
F (Ĥ) < εB

with probability at least 1− δ over samples.

Again, we will learn an instance p-concept h that models c, and then show that a suf-
ficiently accurate p-concept can produce an empirical bag-labeling function Ĥ that models
F with high AUC. To do this, we will show that the AUC error of Ĥ with respect to F ,
RAUC
F (Ĥ), is bounded in terms of the AUC error of Ĥ with respect to F̂ , RAUC

F̂
(Ĥ).

Lemma 4 Suppose bag samples are of size at least ml (∀i : ml ≤ |Xi|), then RAUC
F (Ĥ) ≤

1
Pneg

RAUC
F̂

(Ĥ) + (1− π)ml.

Proof See Appendix A.

Finally, given the bound in Lemma 4, we can derive a result on learning high-AUC bag
concepts with respect to the underlying bag-labeling function F . As with the results in
Theorem 3, we state the results conditioned on the fact that bag sizes mi respect some
constraints to account for the error that naturally results from insufficiently large samples
of instances in positive bags.

29



Doran and Ray

Theorem 6 Bag-labeling functions derived from p-concept class C with pseudo-dimension
PD(C) are AUC-PAC-learnable from MI data using

O

(
1

(ε2BγπP̂Pneg)
4

(
PD(C) log 1

(εBγπP̂Pneg)
+ log 1

δ

))
. (17)

examples using standard ERM approaches when bag sample sizes are bounded by ml ≤ m ≤
mu and ml ≥ 1

π log 2
εB

, where P̂ = min{P̂neg, 1− P̂neg}.
Proof See Appendix A.

4.3 Discussion

The results on AUC learnability in the MI setting are surprising, because they imply the
testable hypothesis that standard supervised approaches can be used to learn about instance
and bag labels in the MI setting. The work that introduced the MI setting evaluated the
performance, in terms of accuracy, of supervised approaches on MI problems and found them
to perform poorly (Dietterich et al., 1997). Later empirical work found that supervised
algorithms actually performed quite well on MI problems, in terms of AUC (Ray and
Craven, 2005). This apparent discrepancy can be explained with the results in this section.
Supervised approaches can perform well in terms of AUC on MI problems, but not, it seems,
with respect to accuracy.

While the results in Section 3 do not formally show that supervised approaches cannot
learn high-accuracy concepts, we conjecture that this is the case due to the one-sided noise
inherent in learning to discriminate classes. As illustrated in Figure 7, the fact that negative
instances appear some γ > 0 fraction of the time in negative bags means that learning to
approximate c can be used to rank instances. However, accurately labeling instances using
an approximation of c requires choosing a threshold to discriminate between positive and
negative instances. If the value of γ were known in advance, then such a threshold might be
selected at 1− γ

2 , for example. However, without knowledge of γ or other further assumptions
about the generative process, proving that such a threshold might be selected accurately is
a direction for future work.

5. Empirical Evaluation

Because the results in this work imply the surprising fact that standard supervised algo-
rithms can be used to learn concepts with high-AUC, but not high accuracy, from MI data,
we explicitly evaluate this hypothesis using real-world MI data sets. As always, there are
some differences between theory and practice that might confound the experimental results.
Below we first explain these two key differences and argue why they do not threaten the
validity of our experimental results. Then, we discuss the remainder of our experimental
methodology and results.

5.1 Single Instance Learning

In these experiments, we use single-instance learning (SIL) to apply supervised algorithms
to MI data. The SIL procedure takes an MI data set and applies to every instance the
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label of its bag. Hence, like in the generative model described in Section 2 used to show the
theoretical results in this work, the SIL training set consists of bag-labeled instances. How-
ever, unlike in the generative model used in this work, SIL samples more than one instance
per bag. As a result, SIL potentially introduces some “correlation” between instances in
the training set. Figure 1 provies a comparison of the generative model of Section 2 (Fig-
ure 1(b)) and that of SIL (Figure 1(c)).

We could make SIL more closely resemble our generative model by randomly discarding
all but one instance in every bag. However, this would dramatically reduce the size of most
practical MI data sets and would needlessly “throw away” the information associated with
the discarded instances. Instead, we use all instances in the data set, and ignore the fact
that they are potentially correlated, thereby assuming that every instance is sampled from
an independent bag. The correlation could change the training distribution over instances,
but this should hurt the performance of the supervised algorithm if it has any significant
effect at all. Therefore, comparing SIL to MI-specific algorithms provides a comparison
that is fair to the MI approaches.

5.2 Risk Minimization Approaches

The results on AUC learnability for MI data use results on learning via empirical risk
minimization (ERM). ERM requires that some concept class C is fixed in advance, and
a hypothesis h ∈ C that minimizes empirical risk (in terms of accuracy) is selected. In
practice, however, C might not be known a priori. Thus, structural risk minimization
(SRM) strategies are often used in practice, which simultaneously select a hypothesis h
that minimizes empirical risk while controlling the capacity of the class from which h is
selected. The standard support vector machine (SVM) is an SRM approach, where the
parameter C, selected via cross-validation, controls the trade-off between risk minimization
and regularization. Although our theoretical result holds for ERM, we will use the SRM-
based SVM for these experiments. The same SRM strategy is used across all of the baseline
algorithms.

Similarly, the SVM outputs confidence values that range from (−∞,∞) rather than
from [0, 1]. Thus, the SVM technically does not learn a p-concept. However, prior work has
shown how it is possible to fit a logistic regression model to an SVM’s outputs to derive
associated probabilities (Platt, 1999). However, since rescaling the data does not affect the
relative rankings of the real-valued outputs produced by the SVM, the AUC of the classifier
does not change. Accordingly, we report results using the raw confidence values produced
by the SVM in these experiments.

5.3 Methodology

To evaluate our hypothesis that a supervised SVM can perform well with respect to AUC for
learning instance- and bag-labeling functions, we use a total of 55 real-world data sets across
a variety of problem domains, including 3D-QSAR (Dietterich et al., 1997), CBIR (Andrews
et al., 2003; Maron and Ratan, 1998; Rahmani et al., 2005), text categorization (Andrews
et al., 2003; Settles et al., 2008), and audio classification (Briggs et al., 2012). Of the 55
data sets, 45 of them have instance labels, which are only used to test the instance-level
performance of classifiers, not for training.
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Figure 8: The average ranks (lower is better) of approaches on the instance- and bag-
labeling tasks, evaluated using AUC. Statistically insignificant differences in per-
formance are indicated with horizontal lines.

The SIL approach combined with a standard supervised SVM is compared with four
popular baseline MI SVM approaches: mi-SVM, MI-SVM (Andrews et al., 2003), MICA
(Mangasarian and Wild, 2008), and the “instance” variant of KI-SVM (Li et al., 2009),
which have been specifically designed to learn bag or instance labels from MI data. Prior
empirical results show that these approaches constitute the state-of-the-art in instance-based
MI SVM approaches (Doran and Ray, 2013).

The experiments used for this work were implemented in Python using NumPy (As-
cher et al., 2001) and SciPy (Jones et al., 2001) for general matrix computations and the
CVXOPT library (Dahl and Vandenberghe, 2009) for solving quadratic programs (QPs).
We use the authors’ original MATLAB code, found at http://lamda.nju.edu.cn/code_

KISVM.ashx, for the key instance SVM (KI-SVM) approach (Liu et al., 2012). We evalu-
ate algorithms using 10-fold stratified cross-validation, with 5-fold inner-validation used to
select parameters using random search (Bergstra and Bengio, 2012). Parameter selection
is performed with respect to bag-level labels (since instance-level labels are unavailable at
training time, even during cross-validation). We use the radial basis function (RBF) kernel
with all algorithms, with scale parameter γ ∈ [10−6, 101], and regularization–loss trade-off
parameter C ∈ [10−2, 105]. The L2 norm is used for regularization in all algorithms.

To statistically compare the classifiers, we use the approach described by Demšar (2006).
We use the nonparametric Friedman test to reject the null hypothesis that the algorithms
perform equally at an α = 0.001 significance level. Finally, we plot the average ranks using
a critical difference diagram, which uses the Nemenyi test to identify statistically equivalent
groups of classifiers at an α = 0.05 significance level.

5.4 Results and Discussion

The results are summarized using critical difference diagrams in Figure 8. Using AUC to
measure performance, the ranks of the approaches are averaged across the 45 instance-
labeled data sets for the instance-level metrics and across the 55 data sets for the bag-level
metrics. Lower ranks indicate better performance. Full results can be found in Table 4 and
Table 5.

Prior work has found that with respect to accuracy, the näıve SIL approach applied to
MI data does not perform well (Dietterich et al., 1997; Doran and Ray, 2014). On the other
hand, with respect to AUC, the relative performance of SIL increases significantly, and SIL
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Figure 9: Comparison of supervised and MI-specific approaches in terms of running time
and classification performance (AUC). Lower ranks correspond to better perfor-
mance and faster training time. The Pareto frontier shows algorithms that are
not dominated by any other algorithm along both dimensions.

performs as well the best MI approaches. For instance-level AUC, SIL is the highest-ranked
approach. For bag-level AUC, SIL is not the best approach on average, but it is statistically
equivalent to the top MI approaches. Since more samples are required to learn a bag-level
concept using SIL, it could be that performance would improve even more with a larger
training sample.

These surprising results support the theoretical framework described in Section 2. In
particular, the experimental results suggest that the assumptions made by our generative
model hold in practice in many cases. For example, we claim that the assumption that
negative instances appear in negative bags (γ > 0) is weak and reasonable for many MI
domains. In CBIR, negative background segments are likely to appear at least some of the
time in images without the object of interest. The experimental results provide empirical
support for this claim across the four domains on which we evaluate the classifiers. Of
course, there might be domains for which this assumption does not hold. Determining
whether any learnability results can be derived under weaker assumptions is an interesting
question for future work.

There are also several ways that the theoretical and empirical results in this work can
inform future work on MI learning. As mentioned earlier, the first work on MIL used
accuracy as a performance measure, and found the SIL approach to be inaccurate in the
MI setting for labeling bags (Dietterich et al., 1997). As a result, subsequent studies rarely
used it as a baseline when evaluating new MI techniques. However, our results suggest
that SIL should be used as a baseline when evaluating new MI approaches, especially if the
intended application involves ranking bags or instances.
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For researchers looking to learn high-AUC instance concepts from MI data, our results
suggest that supervised approaches often suffice for this purpose in practice. Since super-
vised approaches are typically more computationally efficient than their MI counterparts,
our theoretical and empirical justification for using supervised approaches with MI data
provides a valuable practical benefit. The results in Figure 9 support this claim. The train-
ing time required by the algorithms for each data set is ranked with 1 corresponding to
the fastest algorithm, and these ranks are averaged across data sets. Then, the combined
performance of each approach in terms of both AUC and training time is shown in Figure 9.
The Pareto frontier, the set of algorithms for which there does not exist any other algorithm
that has better performance along both dimensions, is indicated in the figure. SIL is at or
near the Pareto frontier for both instance- and bag-labeling.

For learning high-AUC bag-labeling concepts, MI algorithms still had a slight (but
statistically insignificant) advantage over SIL in terms of classifier performance and training
time. However, we have observed that even better performance can be attained by applying
standard supervised approaches directly to the bag-level learning task using kernel methods
(Doran and Ray, 2013).

Table 4: Instance-level AUC results for Section 5.4. The best
result is indicated in boldface.

Dataset SIL MI-SVM mi-SVM KI-SVM MICA

SIVAL01 0.758 0.872 0.836 0.758 0.898
SIVAL02 0.867 0.841 0.782 0.761 0.815
SIVAL03 0.676 0.588 0.795 0.690 0.934
SIVAL04 0.647 0.651 0.859 0.595 0.836
SIVAL05 0.954 0.810 0.961 0.906 0.754
SIVAL06 0.619 0.489 0.603 0.516 0.703
SIVAL07 0.895 0.784 0.903 0.780 0.725
SIVAL08 0.868 0.852 0.768 0.556 0.759
SIVAL09 0.829 0.730 0.824 0.771 0.581
SIVAL10 0.882 0.788 0.948 0.686 0.721
SIVAL11 0.965 0.795 0.952 0.746 0.600
SIVAL12 0.566 0.541 0.515 0.690 0.623

Newsgroups01 0.980 0.953 0.968 0.834 0.584
Newsgroups02 0.904 0.899 0.864 0.850 0.572
Newsgroups03 0.866 0.783 0.782 0.686 0.576
Newsgroups04 0.923 0.883 0.885 0.846 0.612
Newsgroups05 0.951 0.922 0.906 0.796 0.537
Newsgroups06 0.946 0.948 0.895 0.824 0.587
Newsgroups07 0.907 0.853 0.835 0.827 0.604
Newsgroups08 0.753 0.881 0.909 0.808 0.551
Newsgroups09 0.711 0.962 0.979 0.869 0.560
Newsgroups10 0.660 0.947 0.908 0.746 0.565
Newsgroups11 0.728 0.971 0.980 0.968 0.702
Newsgroups12 0.958 0.961 0.942 0.767 0.536

continued. . .
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Table 4: Instance-level AUC results (continued).

Dataset SIL MI-SVM mi-SVM KI-SVM MICA

Newsgroups13 0.970 0.939 0.911 0.920 0.608
Newsgroups14 0.823 0.903 0.884 0.902 0.614
Newsgroups15 0.736 0.949 0.955 0.930 0.553
Newsgroups16 0.454 0.938 0.906 0.940 0.600
Newsgroups17 0.946 0.913 0.921 0.854 0.565
Newsgroups18 0.964 0.914 0.922 0.797 0.605
Newsgroups19 0.931 0.914 0.826 0.803 0.558
Newsgroups20 0.573 0.884 0.914 0.912 0.556

Birdsong01 0.762 0.925 0.907 0.704 0.708
Birdsong02 0.895 0.884 0.849 0.574 0.748
Birdsong03 0.782 0.729 0.673 0.636 0.599
Birdsong04 0.966 0.927 0.932 0.905 0.858
Birdsong05 0.686 0.439 0.641 0.422 0.498
Birdsong06 0.627 0.741 0.581 0.540 0.719
Birdsong07 0.782 0.570 0.857 0.441 0.814
Birdsong08 0.836 0.615 0.796 0.552 0.774
Birdsong09 0.920 0.940 0.915 0.889 0.702
Birdsong10 0.858 0.859 0.879 0.763 0.757
Birdsong11 0.989 0.971 0.970 0.982 0.712
Birdsong12 0.954 0.907 0.918 0.490 0.745
Birdsong13 0.799 0.640 0.806 0.605 0.589

Table 5: Bag-level AUC results for Section 5.4. The best
result is indicated in boldface.

Dataset SIL MI-SVM mi-SVM KI-SVM MICA

musk1 0.922 0.845 0.943 0.836 0.849
musk2 0.897 0.949 0.661 0.665 0.913

elephant 0.919 0.912 0.916 0.676 0.871
fox 0.662 0.589 0.632 0.500 0.615

tiger 0.859 0.856 0.853 0.673 0.688
field 0.923 0.871 0.908 0.687 0.847

flower 0.907 0.873 0.921 0.810 0.759
mountain 0.916 0.915 0.935 0.759 0.830
SIVAL01 0.626 0.954 0.875 0.643 0.933
SIVAL02 0.826 0.952 0.731 0.747 0.863
SIVAL03 0.785 0.666 0.716 0.708 0.906
SIVAL04 0.657 0.683 0.831 0.697 0.957
SIVAL05 0.985 0.964 1.000 0.938 0.914
SIVAL06 0.648 0.756 0.753 0.542 0.918
SIVAL07 0.793 0.993 0.972 0.969 0.974

continued. . .
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Table 5: Bag-level AUC results (continued).

Dataset SIL MI-SVM mi-SVM KI-SVM MICA

SIVAL08 0.874 0.998 0.812 0.488 0.865
SIVAL09 0.907 0.979 0.822 0.768 0.709
SIVAL10 0.819 0.772 0.930 0.643 0.785
SIVAL11 0.981 1.000 0.987 0.817 0.736
SIVAL12 0.601 0.621 0.516 0.692 0.710

Newsgroups01 0.928 0.931 0.870 0.746 0.535
Newsgroups02 0.873 0.794 0.878 0.826 0.538
Newsgroups03 0.755 0.715 0.805 0.640 0.517
Newsgroups04 0.765 0.767 0.727 0.631 0.511
Newsgroups05 0.776 0.842 0.760 0.800 0.538
Newsgroups06 0.814 0.862 0.837 0.741 0.521
Newsgroups07 0.802 0.798 0.789 0.844 0.576
Newsgroups08 0.674 0.810 0.837 0.759 0.532
Newsgroups09 0.728 0.925 0.918 0.784 0.552
Newsgroups10 0.752 0.904 0.900 0.696 0.550
Newsgroups11 0.709 0.975 0.957 0.816 0.669
Newsgroups12 0.844 0.805 0.858 0.695 0.530
Newsgroups13 0.971 0.911 0.914 0.930 0.602
Newsgroups14 0.648 0.825 0.861 0.869 0.600
Newsgroups15 0.742 0.886 0.913 0.928 0.555
Newsgroups16 0.564 0.860 0.538 0.838 0.543
Newsgroups17 0.630 0.787 0.751 0.674 0.533
Newsgroups18 0.864 0.874 0.797 0.771 0.558
Newsgroups19 0.754 0.812 0.745 0.640 0.548
Newsgroups20 0.575 0.807 0.757 0.770 0.520
OHSUMED1 0.958 0.914 0.954 0.779 0.816
OHSUMED2 0.740 0.638 0.775 0.520 0.715
Birdsong01 0.894 0.974 0.976 0.807 0.824
Birdsong02 0.902 0.895 0.895 0.570 0.827
Birdsong03 0.908 0.916 0.909 0.747 0.755
Birdsong04 0.999 0.998 0.989 0.992 0.945
Birdsong05 0.664 0.623 0.542 0.529 0.699
Birdsong06 0.926 0.915 0.964 0.728 0.975
Birdsong07 0.931 0.928 0.934 0.617 0.919
Birdsong08 0.913 0.901 0.921 0.723 0.908
Birdsong09 0.984 0.941 0.962 0.897 0.787
Birdsong10 0.947 0.975 0.956 0.819 0.862
Birdsong11 0.991 0.988 0.991 0.995 0.803
Birdsong12 0.996 0.961 0.993 0.609 0.737
Birdsong13 0.980 0.948 0.985 0.885 0.780
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6. Conclusion

In this work, we describe a new generative model for the MI setting in which bags are
viewed as distributions over instances. The sets of instances observed in a training sample
are then viewed as samples from each underlying bag distribution. We then introduce
several additional assumptions that we show entail instance and bag concept learnability.
We discuss the relationship between the proposed model and those found in prior work.

Next, we describe new positive learnability results for learning instance or bag con-
cepts from data generated by MI-GEN. We describe how our generative model allows for
learnability while excluding scenarios used to show hardness under other generative models.
Nevertheless, our generative process extends prior results on instance concept learnability
that are over a decade old (Blum and Kalai, 1998). We also show that MI-GEN can incor-
porate the non-IID instance assumption within bag-specific distributions over instances, so
assuming that samples from individual bags are drawn independently is not a restrictive
assumption in our model.

Finally, we argue that for many real-world applications of MIL, it is sufficient to rank
instances or bags rather than assign accurate binary labels. Accordingly, we derived results
demonstrating the ability to learn high-AUC rankings of instances or bags from data gener-
ated by a process in MI-GEN. The surprising aspect of these results is that such rankings
can be found via standard supervised approaches. We evaluate this surprising hypothesis
empirically and find that supervised approaches can in fact learn to rank from MI data in
practice. Thus, the empirical results support the assumptions made by MI-GEN.

Our work provides a starting point for many future investigations of learning in the MI
framework. For example, we plan to extend our learnability results to the multi-class and
multi-label settings. Furthermore, we plan to investigate generalizations of our generative
model that allow for other previously studied instance- and bag-label relationships (Scott
et al., 2005). Finally, some recent work has investigated learnability of real-valued bag-level
concepts under a similar generative process for MI regression (Szabó et al., 2015). We plan
to investigate instance-level learning in the MI regression setting.
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Appendix A. Detailed Proofs

Lemma 1 Let Rf (g) be the risk of an instance labeling concept g, and R
F̂

(Ĝ) be the risk

of the empirical bag-labeling function Ĝ(Xi) = maxj g(xij). Then if bag sample sizes are

bounded by mu (∀i : |Xi| ≤ mu), R
F̂

(Ĝ) ≤ muRf (g).

Proof First, observe that when all elements of an empirical bag Xi are labeled correctly
by g, F̂ (Xi) = Ĝ(Xi), so when F̂ (Xi) 6= Ĝ(Xi), at least one instance in Xi is labeled
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incorrectly by g. In set notation, this implication is equivalent to the statement{
Xi : F̂ (Xi) 6= Ĝ(Xi)

}
⊆
{
Xi :

(
f(xi1) 6= g(xi1)

)
∨ . . . ∨

(
f(xim) 6= g(xim)

)}
.

Using indicator function (1[·]) notation, the statement above implies

1
[
F̂ (Xi) 6= Ĝ(Xi)

]
≤ 1

[(
f(xi1) 6= g(xi1)

)
∨ . . . ∨

(
f(xim) 6= g(xim)

)]
= 1

[∨
xij∈Xi

(
f(xij) 6= g(xij)

)]
≤
∑

xij∈Xi

1 [f(xij) 6= g(xij)] .

Using this inequality in the definition of risk for empirical bag-labeling functions (Equa-
tion 10) yields

R
F̂

(Ĝ) =

∫
B

∫
X∗
1
[
F̂ (Xi) 6= Ĝ(Xi)

]
d P(Xi | B) d P(B)

≤
∫
B

∫
X∗

∑
xij∈Xi

1 [f(xij) 6= g(xij)] d P(Xi | B) d P(B).

By the independence of the instances xij ∈ Xi, and the bound mu on bag sample sizes, we
can rewrite the inner integral to conclude that

R
F̂

(Ĝ) ≤
∫
B
mu

∫
X
1 [f(x) 6= g(x)] d P(x | B) d P(B)

= mu

∫
X
1 [f(x) 6= g(x)] d P(x)

= muRf (g).

Exchanging the order of the integrals and marginalizing out the individual bag distributions
to obtain an integral with respect to the instance distribution follows from Condition 1 in
Definition 1.

Lemma 2 For any empirical bag-labeling concept Ĝ,

RF (Ĝ) ≤ R
F̂

(Ĝ) +RF (F̂ ).

Proof First, note that if Ĝ(X) = F̂ (X) and F̂ (X) = F (B), then Ĝ(X) = F (B). Thus,
if Ĝ(X) 6= F (B), then either Ĝ(X) 6= F̂ (X) or F̂ (X) 6= F (B). In set notation, this is
equivalent to the statement{

(X,B) : Ĝ(X) 6= F (B)
}
⊆
{

(X,B) :
(
Ĝ(X) 6= F̂ (X)

)
∨
(
F̂ (X) 6= F (B)

)}
.

Using indicator function notation, the statement above implies

1
[
Ĝ(X) 6= F (B)

]
≤ 1

[(
Ĝ(X) 6= F̂ (X)

)
∨
(
F̂ (X) 6= F (B)

)]
≤ 1

[(
Ĝ(X) 6= F̂ (X)

)]
+ 1

[(
F̂ (X) 6= F (B)

)]
.
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Finally, substituting the expression above into the definitions of risk yields

RF (Ĝ) =

∫
B

∫
X∗
1
[
Ĝ(X) 6= F (B)

]
d P(X | B) d P(B)

≤
∫
B

∫
X∗
1
[(
Ĝ(X) 6= F̂ (X)

)]
d P(X | B) d P(B)

+

∫
B

∫
X∗
1
[(
F̂ (X) 6= F (B)

)]
d P(X | B) d P(B)

= R
F̂

(Ĝ) +RF (F̂ ).

Lemma 3 Suppose bag samples are of size at least ml (∀i : ml ≤ |Xi|), then RF (F̂ ) ≤
(1− π)ml.

Proof Given the definition of RF (F̂ ), we can decompose it as such

RF (F̂ ) =

∫
B

∫
X∗
1[F (Bi) 6= F̂ (Xi)] d P(Xi | Bi) d P(Bi)

=

∫
B+

∫
X∗
1[F (Bi) 6= F̂ (Xi)] d P(Xi | Bi) d P(Bi)

+

∫
B−

∫
X∗
1[F (Bi) 6= F̂ (Xi)] d P(Xi | Bi) d P(Bi).

On the set of negative bags B−, F and F̂ always agree, since only negative instances are
sampled within negative bags. Therefore, the second term of the decomposition can be
eliminated and we are left with

RF (F̂ ) =

∫
B+

∫
X∗
1[F (Bi) 6= F̂ (Xi)] d P(Xi | Bi) d P(Bi).

Now, we observe that for a positive bag Bi, the only way that F and F̂ can disagree is if
every instance in Xi is negative. Using basic properties of indicator functions (namely, that
1 [
∧
iEi] =

∏
i 1[Ei]), we can use this fact to rewrite the expression above as

RF (F̂ ) =

∫
B+

∫
X∗
1[F (Bi) 6= F̂ (Xi)] d P(Xi | Bi) d P(Bi)

=

∫
B+

∫
X∗
1
[∧

xij∈Xi
(
f(xij) = 0

)]
d P(Xi | Bi) d P(Bi)

=

∫
B+

∫
X∗

∏
xij∈Xi

1 [f(xij) = 0] d P(Xi | Bi) d P(Bi).
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Since the instances xij ∈ Xi are independent, we can rewrite the integral as

RF (F̂ ) =

∫
B+

∫
X∗

∏
xij∈Xi

1 [f(xij) = 0] d P(Xi | Bi) d P(Bi)

=

∫
B+

∏
xij∈Xi

(∫
X
1 [f(xij) = 0] d P(xij | Bi)

)
d P(Bi)

≤
∫
B+

∏
xij∈Xi

(1− π) d P(Bi)

≤
∫
B+

(1− π)ml d P(Bi)

= (1− π)ml
∫
B+

d P(Bi)

≤ (1− π)ml .

Theorem 4 An instance p-concept class C with pseudo-dimension PD(C) is Instance MI

AUC-PAC-learnable using O
(

1
(εIγp)4

(
PD(C) log 1

εIγp
+ log 1

δ

))
examples with standard ERM

approaches, where p = min{pneg, 1− pneg}.

Proof For any c ∈ C, we can use ERM with respect to the quadratic loss function to learn
a hypothesis h such that E

[
(h(x)− c(x))2

]
< ε with probability 1− δ across samples. By

Jensen’s inequality, this bounds the expected absolute deviation between h and c:

E
[
|h(x)− c(x)|

]
≤
√

E
[
(h(x)− c(x))2

]
<
√
ε.

Then, by Markov’s inequality, this expression bounds the probability over examples that
|h(x)− c(x)| exceeds some constant t:

P
[
|h(x)− c(x)| > t

]
≤ E

[
|h(x)− c(x)|

]
t

<

√
ε

t
. (18)

Therefore, with high probability, |h(x)− c(x)| is small for small ε.
Now, we can proceed by following the intuition illustrated in Figure 7. In particular,

we will show that the AUC risk is bounded when h and c agree on examples with high
probability. First, suppose |h(x)− c(x)| ≤ γ

2 for both of a pair (x+, x−) of positive and
negative instances. Then for the negative instance, x−, by Definition 1, Condition 3,

h(x−) ≤ c(x−) + γ
2 ≤ (1− γ) + γ

2 = 1− γ
2 .

Similarly, for the positive instance, x+, by Definition 1, Condition 2,

h(x+) ≥ c(x+)− γ
2 = 1− γ

2 .
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Hence, we have that h(x−) ≤ h(x+).
By contraposition of the conclusion above, if h(x−) > h(x+), then it is either the case

that |h(x−)− c(x−)| > γ
2 or that |h(x+)− c(x+)| > γ

2 . In set theoretic terms, this means{
(x+, x−) : h(x−) > h(x+)

}
⊆
{

(x+, x−) : |h(x−)− c(x−)| > γ
2 ∨ |h(x+)− c(x+)| > γ

2

}
In indicator function notation, this implies

1
[
h(x−) > h(x+)

]
≤ 1

[
|h(x−)− c(x−)| > γ

2 ∨ |h(x+)− c(x+)| > γ
2

]
≤ 1

[
|h(x−)− c(x−)| > γ

2

]
+ 1

[
|h(x+)− c(x+)| > γ

2

]
.

Substituting this expression into the definition of RAUC
f (h) (Equation 14) yields

RAUC
f (h) =

∫
X−

∫
X+

1[h(x−) > h(x+)] d P(x+) d P(x−)

(1− pneg)pneg

≤
∫
X−

∫
X+

1
[ ∣∣h(x−)− c(x−) > γ

2

∣∣ ]d P(x+) d P(x−)

(1− pneg)pneg

+

∫
X−

∫
X+

1
[
|h(x+)− c(x+)| > γ

2

]
d P(x+) d P(x−)

(1− pneg)pneg

=

∫
X− 1

[ ∣∣h(x−)− c(x−) > γ
2

∣∣ ]d P(x−)

pneg

+

∫
X+

1
[
|h(x+)− c(x+)| > γ

2

]
d P(x+)

1− pneg
.

Then, using the definition p = min{pneg, 1− pneg}, this becomes

RAUC
f (h) ≤

∫
X− 1

[ ∣∣h(x−)− c(x−) > γ
2

∣∣ ]d P(x−)

p

+

∫
X+

1
[
|h(x+)− c(x+)| > γ

2

]
d P(x+)

p

=

∫
X 1
[ ∣∣h(x)− c(x) > γ

2

∣∣ ]d P(x)

p
=

P
[
|h(x)− c(x)| > γ

2

]
p

.

Finally, using the inequality derived in Equation 18, we have

RAUC
f (h) ≤ P

[
|h(x)− c(x)| > γ

2

]
p

<
2
√
ε

γp
.

Therefore, it is sufficient to choose ε = (εIγp)
2

4 when learning h via ERM as so that
RAUC
f (h) < εI.

Finally, the sample complexity bound results from substituting ε = (εIγp)
2

4 into the ex-
isting bound O

(
1
ε2

(
PD(C) log 1

ε + log 1
δ

))
for learning p-concepts using ERM (Kearns and

Schapire, 1994).
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Theorem 5 Empirical bag-labeling functions derived from p-concept class C with pseudo-
dimension PD(C) are AUC-PAC-learnable from MI data using

O

(
m4
u

(εBγP̂)
4

(
PD(C) log mu

(εBγP̂)
+ log 1

δ

))
examples with standard ERM approaches, where

P̂ , min{P̂neg, 1− P̂neg} ≥ min{Pneg, 1− pneg},
and mu is an upper bound on bag sample size.

Proof As in Theorem 4, we will learn a p-concept h to model c accurately with high
probability. Then, given bag samples X+ with at least one positive instance and X− with
all negative instances, suppose that |h(x)− c(x)| ≤ γ

2 for all instances across both samples.
Then by the same argument as in Theorem 4 as illustrated in Figure 7, at least one instance
in X+ is assigned a label by h that is at least 1 − γ

2 , and all instances in X− are assigned

a label by h of at most 1 − γ
2 . Therefore, the maximum label assigned in X+, Ĥ(X+), is

greater than or equal to the maximum label in X−, Ĥ(X−).
By contraposition, if Ĥ(X−) > Ĥ(X+), then the label h(x) of some instance x in either

X+ or X− deviates by more than γ
2 from c(x). That is,{

(X+, X−) : Ĥ(X−) > Ĥ(X+)
}

⊆

(X+, X−) :

 ∨
x∈X+

|h(x)− c(x)| > γ
2

 ∨
 ∨
x∈X−

|h(x)− c(x)| > γ
2


Therefore, in indicator function notation,

1
[
Ĥ(X−) > Ĥ(X+)

]
≤
∑
x∈X+

1
[
|h(x)− c(x)| > γ

2

]
+
∑
x∈X−

1
[
|h(x)− c(x)| > γ

2

]
.

Using the inequality above in the definition of RAUC
F̂

(Ĥ) in Equation 15 gives

RAUC
F̂

(Ĥ) ≤

∫
B
∫
B
∫
X∗−

∫
X∗+

∑
x∈X+

1
[
|h(x)− c(x)| > γ

2

]
. . .

. . . d P(X+ | B+) d P(X− | B−) d P(B+) d P(B−)

(1− P̂neg)P̂neg

+

∫
B
∫
B
∫
X∗−

∫
X∗+

∑
x∈X− 1

[
|h(x)− c(x)| > γ

2

]
. . .

. . . d P(X+ | B+) d P(X− | B−) d P(B+) d P(B−)

(1− P̂neg)P̂neg

Since the integrands above only depend on X+ and X−, we can rewrite the expression using
the fact that ∫

X∗−
d P(X− | B−) d P(B−) = P

[
F̂ (X) = 0

]
= P̂neg∫

X∗+
d P(X+ | B+) d P(B+) = P

[
F̂ (X) = 1

]
= 1− P̂neg.
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The result is

RAUC
F̂

(Ĥ) ≤
∫
B
∫
X∗+

∑
x∈X+

1
[
|h(x)− c(x)| > γ

2

]
d P(X+ | B+) d P(B+)

(1− P̂neg)

+

∫
B
∫
X∗−

∑
x∈X− 1

[
|h(x)− c(x)| > γ

2

]
d P(X− | B−) d P(B−)

P̂neg

≤
∫
B
∫
X∗+

∑
x∈X+

1
[
|h(x)− c(x)| > γ

2

]
d P(X+ | B+) d P(B+)

P̂

+

∫
B
∫
X∗−

∑
x∈X− 1

[
|h(x)− c(x)| > γ

2

]
d P(X− | B−) d P(B−)

P̂

=

∫
B
∫
X∗
∑

x∈X 1
[
|h(x)− c(x)| > γ

2

]
d P(X | B) d P(B)

P̂
.

By the independence of instances x ∈ X, the upper bound mu on bag size, and Condition 1
in Definition 1, we can rewrite the expression above as

RAUC
F̂

(Ĥ) ≤ mu

P̂

∫
B

∫
X
1
[
|h(x)− c(x)| > γ

2

]
d P(x | B) d P(B)

=
mu

P̂

∫
X
1
[
|h(x)− c(x)| > γ

2

]
d P(x)

=
mu

P̂
P
[
|h(x)− c(x)| > γ

2

]
.

Then, by Markov’s inequality in Equation 18,

RAUC
F̂

(Ĥ) ≤ mu

P̂
P
[
|h(x)− c(x)| > γ

2

]
<

2mu
√
ε

γP̂
. (19)

Therefore, choosing ε =
(εBγP̂)

2

4m2
u

, is sufficient to learn Ĥ with RAUC
F̂

(Ĥ) < εB. Substituting

this ε into the bound of Kearns and Schapire (1994) gives the sample complexity of learning
Ĥ as stated in the theorem.

Finally, we show that P̂ ≥ min{Pneg, 1−pneg} as asserted in the theorem, which demon-

strates that P̂ is independent of the bag size m (so there is no hidden dependence on bag
size). First, observe that P̂neg ≥ Pneg. The reason is that whenever a negative bag is sam-
pled, a sample of only negative instances is guaranteed to be sampled from the bag. Thus,
the probability of a negative sample of instances is at least the probability of sampling a
negative bag.

Additionally, 1 − P̂neg ≥ 1 − pneg. This is true because the probability of a sample
containing a positive instance is at least the probability that the very first instance sampled
is positive, which is 1− pneg.

Combining the observations above, we get

P̂ , min{P̂neg, 1− P̂neg}
≥ min{Pneg, 1− pneg}.
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Lemma 4 Suppose bag samples are of size at least ml (∀i : ml ≤ |Xi|), then RAUC
F (Ĥ) ≤

1
Pneg

RAUC
F̂

(Ĥ) + (1− π)ml.

Proof We can derive the inequality in Lemma 4 by transforming the definition of RAUC
F (Ĥ)

in Equation 16 to that of RAUC
F̂

(Ĥ) in Equation 15. Starting from RAUC
F (Ĥ), we get

RAUC
F (Ĥ) =

∫
B−

∫
B+

∫
X∗
∫
X∗ 1

[
Ĥ(X−) > Ĥ(X+)

]
. . .

. . . d P(X+ | B+) d P(X− | B−) d P(B+) d P(B−)

(1− Pneg)Pneg

=

∫
B−

∫
B+

∫
X∗
∫
X∗+

1
[
Ĥ(X−) > Ĥ(X+)

]
. . .

. . . d P(X+ | B+) d P(X− | B−) d P(B+) d P(B−)

(1− Pneg)Pneg
(A)

+

∫
B−

∫
B+

∫
X∗
∫
X∗−

1
[
Ĥ(X−) > Ĥ(X+)

]
. . .

. . . d P(X+ | B+) d P(X− | B−) d P(B+) d P(B−)

(1− Pneg)Pneg
. (B)

Starting with (B), we see that since 1
[
Ĥ(X−) > Ĥ(X+)

]
≤ 1, we can rewrite this term as

(B) ≤
∫
B−

∫
B+

∫
X∗
∫
X∗−

d P(X+ | B+) d P(X− | B−) d P(B+) d P(B−)

(1− Pneg)Pneg

=

∫
B+

∫
X∗−

d P(X+ | B+) d P(B+)

(1− Pneg)

≤
∫
B+(1− π)ml d P(B+)

(1− Pneg)
= (1− π)ml .

The second step follows from the fact that
∫
X∗−

d P(X+ | B+) is the probability of sampling

only negative instances within a positive bag of size at least ml, which is at most (1−π)ml .

Continuing with term (A), we can rewrite this as

(A) =

∫
B−

∫
B+

∫
X∗−

∫
X∗+

1
[
Ĥ(X−) > Ĥ(X+)

]
. . .

. . . d P(X+ | B+) d P(X− | B−) d P(B+) d P(B−)

(1− Pneg)Pneg
(C)

+

∫
B−

∫
B+

∫
X∗+

∫
X∗+

1
[
Ĥ(X−) > Ĥ(X+)

]
. . .

. . . d P(X+ | B+) d P(X− | B−) d P(B+) d P(B−)

(1− Pneg)Pneg
. (D)

Now, we see that (D) = 0, since it involves an integral over bags with positive instances in
negative bags, which occurs with probability zero by Condition 2 in Definition 1. For (C),

44



Multiple-Instance Learning from Distributions

since 0 ≤ 1
[
Ĥ(X−) > Ĥ(X+)

]
, we can bound this term by taking the outermost integrals

with respect to the entire bag space:

(C) ≤

∫
B
∫
B
∫
X∗−

∫
X∗+

1
[
Ĥ(X−) > Ĥ(X+)

]
. . .

. . . d P(X+ | B+) d P(X− | B−) d P(B+) d P(B−)

(1− Pneg)Pneg

≤
(

(1− P̂neg)P̂neg

(1− Pneg)Pneg

) ∫
B
∫
B
∫
X∗−

∫
X∗+

1
[
Ĥ(X−) > Ĥ(X+)

]
. . .

. . . d P(X+ | B+) d P(X− | B−) d P(B+) d P(B−)

(1− P̂neg)P̂neg

.

Using the definition of RAUC
F̂

(Ĥ) in Equation 15, we get that

(C) ≤
(
(1−P̂neg)P̂neg

(1−Pneg)Pneg

)
RAUC
F̂

(Ĥ) ≤ 1
Pneg

RAUC
F̂

(Ĥ).

The second inequality results by observing that samples of only negative instances can be
sampled within negative or positive bags, so Pneg ≤ P̂neg ≤ 1 and 1− Pneg ≥ 1− P̂neg.

Combining the terms above, we have that

RAUC
F (Ĥ) = (A) + (B) =

(
(C) + (D)

)
+ (B)

≤ 1
Pneg

RAUC
F̂

(Ĥ) + (1− π)ml .

Theorem 6 Bag-labeling functions derived from p-concept class C with pseudo-dimension
PD(C) are AUC-PAC-learnable from MI data using

O

(
1

(ε2BγπP̂Pneg)
4

(
PD(C) log 1

(εBγπP̂Pneg)
+ log 1

δ

))
. (17)

examples using standard ERM approaches when bag sample sizes are bounded by ml ≤ m ≤
mu and ml ≥ 1

π log 2
εB

, where P̂ = min{P̂neg, 1− P̂neg}.

Proof As in Theorem 5, we will use ERM to learn a p-concept h to model c accurately
with high probability. Then, we can bound RAUC

F (Ĥ) using

RAUC
F (Ĥ) ≤ 1

Pneg
RAUC
F̂

(Ĥ) + (1− π)ml (by Lemma 4)

≤ 2mu
√
ε

γP̂Pneg

+ (1− π)ml . (by Theorem 5, Equation 19)

In the case that π = 1, then the second term in the sum is zero. Otherwise, suppose the
minimum bag size is such that

ml ≥ 1
π log 2

εB
≥ log εB

2

log(1− π)
= log1−π

εB
2 ,
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where the second inequality follows from the fact that π ≤ − log(1 − π) for π ∈ (0, 1).
Therefore, since (1− π) < 1, we have that

(1− π)ml ≤ (1− π)log1−π
εB
2 = εB

2 .

Furthermore, when learning the instance p-concept h, we can choose ε to be such that

ε =
(
εBγP̂Pneg

4mu

)2
. By the bound on RAUC

F (Ĥ), with probability (1− δ), we have

RAUC
F (Ĥ) ≤ 2mu

√
ε

γP̂Pneg

+ (1− π)ml

≤ εB
2

+
εB
2

= εB.

Substituting the expression for ε in terms of εB into the bound for learning p-concepts
using ERM (Kearns and Schapire, 1994) gives a sample complexity of

O

(
m4
u

(εBγP̂Pneg)
4

(
PD(C) log mu

(εBγP̂Pneg)
+ log 1

δ

))
.

By sub-sampling large bags, we can place a conservative upper bound on bag sample size

mu = O
(

1
εBπ

)
. Then by substituting this bound into that above gives the bound as stated

in Equation 17.
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T. Gärtner, P. Flach, A. Kowalczyk, and A. Smola. Multi-instance kernels. In Proceedings
of the International Conference on Machine Learning, pages 179–186, 2002.

J. A. Hanley and B. J. McNeil. The meaning and use of the area under a receiver operating
characteristic (ROC) curve. Radiology, 143(1):29–36, 1982.

D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other
learning applications. Information and computation, 100(1):78–150, 1992.

E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for Python,
2001. http://www.scipy.org/.

M. Kandemir and F. A. Hamprecht. Instance label prediction by Dirichlet process multiple
instance learning. In Uncertainty in Artificial Intelligence, 2014.

M. J. Kearns and R. E. Schapire. Efficient distribution-free learning of probabilistic con-
cepts. Journal of Computer and System Sciences, 48(3):464–497, 1994.

H. Kuck and N. de Freitas. Learning about individuals from group statistics. In Uncertainty
in Artificial Intelligence, 2005.

O. Kundakcioglu, O. Seref, and P. Pardalos. Multiple instance learning via margin maxi-
mization. Applied Numerical Mathematics, 60(4):358–369, 2010.

Y.-F. Li, J. T. Kwok, I. W. Tsang, and Z.-H. Zhou. A convex method for locating regions
of interest with multi-instance learning. In Machine Learning and Knowledge Discovery
in Databases, pages 15–30. Springer, 2009.

G. Liu, J. Wu, and Z.-H. Zhou. Key instance detection in multi-instance learning. In
Proceedings of the Asian Conference on Machine Learning, pages 253–268, 2012.

P. Long and L. Tan. PAC learning axis-aligned rectangles with respect to product distri-
butions from multiple-instance examples. Machine Learning Journal, 30(1):7–21, 1998.

O. Mangasarian and E. Wild. Multiple instance classification via successive linear program-
ming. Journal of Optimization Theory and Applications, 137:555–568, 2008.

48

http://www.scipy.org/


Multiple-Instance Learning from Distributions
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