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Abstract

In sparse principal component analysis we are given noisy observations of a low-rank matrix
of dimension n × p and seek to reconstruct it under additional sparsity assumptions. In
particular, we assume here each of the principal components v1, . . . ,vr has at most s0
non-zero entries. We are particularly interested in the high dimensional regime wherein p
is comparable to, or even much larger than n.

In an influential paper, Johnstone and Lu (2004) introduced a simple algorithm that es-
timates the support of the principal vectors v1, . . . ,vr by the largest entries in the diagonal
of the empirical covariance. This method can be shown to identify the correct support with
high probability if s0 ≤ K1

√
n/ log p, and to fail with high probability if s0 ≥ K2

√
n/ log p

for two constants 0 < K1,K2 < ∞. Despite a considerable amount of work over the last
ten years, no practical algorithm exists with provably better support recovery guarantees.

Here we analyze a covariance thresholding algorithm that was recently proposed by
Krauthgamer, Nadler, Vilenchik, et al. (2015). On the basis of numerical simulations (for
the rank-one case), these authors conjectured that covariance thresholding correctly recover
the support with high probability for s0 ≤ K

√
n (assuming n of the same order as p). We

prove this conjecture, and in fact establish a more general guarantee including higher-rank
as well as n much smaller than p. Recent lower bounds (Berthet and Rigollet, 2013; Ma and
Wigderson, 2015) suggest that no polynomial time algorithm can do significantly better.

The key technical component of our analysis develops new bounds on the norm of kernel
random matrices, in regimes that were not considered before. Using these, we also derive
sharp bounds for estimating the population covariance, and the principal component (with
`2-loss).

c©2016 Yash Deshpande and Andrea Montanari.
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1. Introduction

In the spiked covariance model proposed by Johnstone and Lu (2004), we are given data
x1,x2, . . . ,xn with xi ∈ Rp of the form1:

xi =

r∑
q=1

√
βq uq,i vq + zi , (1)

Here v1, . . . ,vr ∈ Rp is a set of orthonormal vectors, that we want to estimate, while
uq,i ∼ N(0, 1) and zi ∼ N(0, Ip) are independent and identically distributed. The quantity
βq ∈ R>0 is a measure of signal-to-noise ratio. In the rest of this introduction, in order
to simplify the exposition, we will refer to the rank one case and drop the subscript q ∈
{1, 2, . . . , r}. Further, we will assume n to be of the same order as p. Our results and proofs
hold for a broad range of scalings of r, p, n, and will be stated in general form.

The standard method of principal component analysis involves computing the sample
covariance matrix G = n−1

∑n
i=1 xix

T
i and estimates v = v1 by its principal eigenvector

vPC(G). It is a well-known fact that, in the high dimensional regime, this yields an incon-
sistent estimate (see Johnstone and Lu (2009)). Namely ‖vPC − v‖ 6→ 0 unless p/n → 0.
Even worse, Baik, Ben Arous, and Péché (2005) and Paul (2007) demonstrate the following
phase transition phenomenon. Assuming that p/n→ α ∈ (0,∞), if β <

√
α the estimate is

asymptotically orthogonal to the signal, i.e. 〈vPC,v〉 → 0. On the other hand, for β >
√
α,

|〈vPC,v〉| remains bounded away from zero as n, p→∞. This phase transition phenomenon
has attracted considerable attention recently within random matrix theory (see, e.g. Féral
and Péché, 2007; Capitaine et al., 2009; Benaych-Georges and Nadakuditi, 2011; Knowles
and Yin, 2013).

These inconsistency results motivated several efforts to exploit additional structural
information on the signal v. In two influential papers, Johnstone and Lu (2004, 2009)
considered the case of a signal v that is sparse in a suitable basis, e.g. in the wavelet
domain. Without loss of generality, we will assume here that v is sparse in the canonical
basis e1, . . . ep. In a nutshell, Johnstone and Lu (2009) propose the following:

1. Order the diagonal entries of the Gram matrix Gi(1),i(1) ≥ Gi(2),i(2) ≥ · · · ≥ Gi(p),i(p),
and let J ≡ {i(1), i(2), . . . , i(k)} be the set of indices corresponding to the s0 largest
entries.

2. Set to zero all the entries Gi,j of G unless i, j ∈ J , and estimate v with the principal
eigenvector of the resulting matrix.

Johnstone and Lu formalized the sparsity assumption by requiring that v belongs to a weak
`q-ball with q ∈ (0, 1). Instead, here we consider a strict sparsity constraint where v has
exactly s0 non-zero entries, with magnitudes bounded below by θ/

√
s0 for some constant

θ > 0. Amini and Wainwright (2009) studied the more restricted case when every entry
of v has equal magnitude of 1/

√
s0. Within this restricted model, they proved diagonal

thresholding successfully recovers the support of v provided the sample size n satisfies2

1. Throughout the paper, we follow the convention of denoting scalars by lowercase, vectors by lowercase
boldface, and matrices by uppercase boldface letters.

2. Throughout the introduction, we write f(n) & g(n) as a shorthand of ‘f(n) ≥ K g(n) for a some constant
K = K(r, β)’.
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n & s20 log p (see Amini and Wainwright, 2009). This result is a striking improvement over
vanilla PCA. While the latter requires a number of samples scaling with the number of
parameters n & p, sparse PCA via diagonal thresholding achieves the same objective with
a number of samples that scales with the number of non-zero parameters, n & s20 log p.

At the same time, this result is not as strong as might have been expected. By searching
exhaustively over all possible supports of size s0 (a method that has complexity of order
ps0) the correct support can be identified with high probability as soon as n & s0 log p. No
method can succeed for much smaller n, because of information theoretic obstructions. We
refer the reader to Amini and Wainwright (2009) for more details.

Over the last ten years, a significant effort has been devoted to developing practical algo-
rithms that outperform diagonal thresholding, see e.g. Moghaddam et al. (2005); Zou et al.
(2006); d’Aspremont et al. (2007, 2008); Witten et al. (2009). In particular, d’Aspremont
et al. (2007) developed a promising M-estimator based on a semidefinite programming (SDP)
relaxation. Amini and Wainwright (2009) also carried out an analysis of this method and
proved that, if3 (i) n ≥ K(β) s0 log(p− s0)p, and (ii) the SDP solution has rank one, then
the SDP relaxation provides a consistent estimator of the support of v.

At first sight, this appears as a satisfactory solution of the original problem. No proce-
dure can estimate the support of v from less than s0 log p samples, and the SDP relaxation
succeeds in doing it from –at most– a constant factor more samples. This picture was upset
by a recent, remarkable result by Krauthgamer et al. (2015) who showed that the rank-
one condition assumed by Amini and Wainwright does not hold for

√
n . s0 . (n/ log p).

This result is consistent with recent work of Berthet and Rigollet (2013) demonstrating
that sparse PCA cannot be performed in polynomial time in the regime s0 &

√
n, under a

certain computational complexity conjecture for the so-called planted clique problem.

In summary, the sparse PCA problem demonstrates a fascinating interplay between
computational and statistical barriers.

From a statistical perspective, and disregarding computational considerations, the sup-
port of v can be estimated consistently if and only if s0 . n/ log p. This can be done,
for instance, by exhaustive search over all the

(
p
s0

)
possible supports of v. We refer to

Vu and Lei (2012); Cai et al. (2013) for a minimax analysis.

From a computational perspective, the problem appears to be much more difficult.
There is rigorous evidence (Berthet and Rigollet, 2013; ?; Ma and Wigderson, 2015;
Wang et al., 2014) that no polynomial algorithm can reconstruct the support unless
s0 .

√
n. On the positive side, a very simple algorithm (Johnstone and Lu’s diagonal

thresholding) succeeds for s0 .
√
n/ log p.

Of course, several elements are still missing in this emerging picture. In the present paper
we address one of them, providing an answer to the following question:

Is there a polynomial time algorithm that is guaranteed to solve the sparse PCA
problem with high probability for

√
n/ log p . s0 .

√
n?

3. Throughout the paper, we denote by K constants that can depend on problem parameters r and β. We
denote by upper case C (lower case c) generic absolute constants that are bigger (resp. smaller) than 1,
but which might change from line to line.
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We answer this question positively by analyzing a covariance thresholding algorithm that
proceeds, briefly, as follows. (A precise, general definition, with some technical changes is
given in the next section.)

1. Form the empirical covariance matrix G and set to zero all its entries that are in
modulus smaller than τ/

√
n, for τ a suitably chosen constant.

2. Compute the principal eigenvector v̂1 of this thresholded matrix.

3. Denote by B ⊆ {1, . . . , p} be the set of indices corresponding to the s0 largest entries
of v̂1.

4. Estimate the support of v by ‘cleaning’ the set B. (Briefly, v is estimated by thresh-
olding Gv̂B with v̂B obtained by zeroing the entries outside B.)

Such a covariance thresholding approach was proposed in Krauthgamer et al. (2015), and
is in turn related to earlier work by Bickel and Levina (2008b); Cai et al. (2010). The
formulation discussed in the next section presents some technical differences that have been
introduced to simplify the analysis. Notice that, to simplify proofs, we assume s0 to be
known: this issue is discussed in the next two sections.

The rest of the paper is organized as follows. In the next section we provide a detailed
description of the algorithm and state our main results. The proof strategy for our results is
explained in Section 3. Our theoretical results assume full knowledge of problem parameters
for ease of proof. In light of this, in Section 4 we discuss a practical implementation of the
same idea that does not require prior knowledge of problem parameters, and is data-driven.
We also illustrate the method through simulations. The complete proofs are in Sections 5,
7 and 6 respectively.

A preliminary version of this paper appeared in (Deshpande and Montanari, 2014). This
paper extends significantly the results in Deshpande and Montanari (2014). In particular,
by following an analogous strategy, we improve greatly the bounds obtained by Deshpande
and Montanari (2014). This signifantly improves the regimes of (s0, p, n) on which we can
obtain non-trivial results. The proofs follow a similar strategy but are, correspondingly,
more careful.

2. Algorithm and main results

We provide a detailed description of the covariance thresholding algorithm for the general
model (1) in Table 1. For notational convenience, we shall assume that 2n sample vectors
are given (instead of n): {xi}1≤i≤2n.

We start by splitting the data into two halves: (xi)1≤i≤n and (xi)n<i≤2n and compute the
respective sample covariance matrices G and G′ respectively. Define Σ to be the population
covariance minus identity. i.e.

Σ ≡
r∑
q=1

βqvqv
T
q . (2)

Throughout, we let Qq and sq denote the support of vq and its size respectively, for q ∈
{1, 2, . . . , r}. We further let Q = ∪rq=1Qq and s0 = |Q|. The matrix G is used, in steps 1 to
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Algorithm 1 Covariance Thresholding

1: Input: Data (xi)1≤i≤2n, parameter s0 ∈ N, τ, ρ ∈ R≥0;
2: Compute the empirical covariance matrices G ≡∑n

i=1 xix
T
i /n , G′ ≡∑2n

i=n+1 xix
T
i /n;

3: Compute Σ̂ = G− Ip (resp. Σ̂′ = G′ − Ip);

4: Compute the matrix η(Σ̂) by soft-thresholding the entries of Σ̂:

η(Σ̂)ij =


Σ̂ij − τ√

n
if Σ̂ij ≥ τ/

√
n,

0 if −τ/√n < Σ̂ij < τ/
√
n,

Σ̂ij + τ√
n

if Σ̂ij ≤ −τ/
√
n,

5: Let (v̂q)q≤r be the first r eigenvectors of η(Σ̂);

6: Output: Q̂ = {i ∈ [p] : ∃ q s.t. |(Σ̂′v̂q)i| ≥ ρ}.

4 to obtain a good estimate η(Σ̂) for the low rank part of the population covariance Σ. The
algorithm first computes Σ̂, a centered version of the empirical covariance of the samples
as follows:

Σ̂ ≡ G− Ip, (3)

where G = n−1
∑

i≤n xix
T
i is the sample covariance matrix.

It then obtains the estimate η(Σ̂) ∈ Rp×p by soft thresholding each entry of Σ̂ at a
threshold τ/

√
n. Explicitly:

(
η(Σ̂)

)
ij
≡ η

(
Σ̂ij ;

τ√
n

)
. (4)

Here η : R× R+ → R is the soft thresholding function

η(z;λ) =


z − λ if z ≥ λ
−z + λ if z ≤ −λ
0 otherwise.

(5)

In step 5 of the algorithm, this estimate is used to construct good estimates v̂q of the
eigenvectors vq. Finally, in step 6, these estimates are combined with the (independent)

second half of the data G′ to construct estimators Q̂q for the support of the individual
eigenvectors vq. In the first two subsections we will focus on the estimation of Σ and the
individual principal components. Our results on support recovery are provided in the final
subsection.

2.1 Estimating the population covariance

Our first result bounds the estimation error of the soft thresholding procedure in operator
norm.
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Theorem 1 There exist numerical constants C1, C2, C > 0 such that the following happens.
Assume n > C log p, n > s20 and let τ∗ = C1(β ∨ 1)

√
log(p/s20). We keep the thresholding

level τ according to

τ =


τ∗ when τ∗ ≤

√
log p/2, s20 ≤ p/e

C2τ∗ when τ∗ ≥
√

log p/2, s0 ≤ p/e
0 otherwise.

(6)

. Then with probability 1− o(1):

∥∥η(Σ̂)−Σ
∥∥
op
≤ C

√
s20(β

2 ∨ 1)

n

(
log

p

s20
∨ 1
)
. (7)

At this point, it is useful to compare Theorem 1 with available results in the literature.
Classical denoising theory (Donoho and Johnstone, 1994; Johnstone, 2015) provides upper
bounds on the estimation error of soft-thresholding. However, estimation error is measured
by (element-wise) `p norm, while here we are interested in operator norm.

Bickel and Levina (2008a,b); Karoui (2008); Cai, Zhang, Zhou, et al. (2010); Cai and
Liu (2011) considered the operator norm error of thresholding estimators for structured
covariance matrices. Specializing to our case of exact sparsity, the result of Bickel and
Levina (2008a) implies that, with high probability:

∥∥ηH(Σ̂)−Σ
∥∥
op
≤ C0

√
s20 log p

n
. (8)

Here ηH(·, ·) is the hard-thresholding function: ηH(z) = zI(|z| ≥ τ/√n), and the threshold
is chosen to be τ = C1

√
log p. Also, ηH(M) is the matrix obtained by thresholding the

entries of M. In fact, Cai et al. (2012) showed that the rate in (8) is minimax optimal over
the class of sparse population covariance matrices, with at most s0 non-zero entries per row,
under the assumption s20/n ≤ C(log p)−3.

Theorem 1 ensures consistency under a weaker sparsity condition, viz. s20/n → 0 is
sufficient. Also, the resulting rate depends on log(p/s20) instead of log p. In other words,

in order to achieve ‖η(Σ̂) −Σ‖op < ε for a fixed ε, it is sufficient s0 . ε
√
n as opposed to

s0 .
√
n/ log p.

Crucially, in this regime for s0 = Θ(ε
√
n), Theorem 1 suggests a threshold of order

τ = Θ(
√

log(1/ε)) as opposed to τ = C1
√

log p which is used in Bickel and Levina (2008a);
Cai et al. (2012). As we will see in Section 3, this regime mathematically more challenging
than the one of Bickel and Levina (2008a); Cai et al. (2012). By setting τ = C1

√
log p for

a large enough constant C1, all the entries of Σ̂ outside the support of Σ are set to 0. In
contrast, a large part of our proof is devoted to control the operator norm of the noise part
of Σ̂.

2.2 Estimating the principal components

We next turn to the question of estimating the principal components v1, . . .vr. Of course,
these are not identifiable if there are degeneracies in the population eigenvalues β1, β2, . . . , βr.
We thus introduce the following identifiability condition.
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A1 The spike strengths β1 > β2 > . . . βr are all distinct. We denote by β ≡ max(β1, . . . , βr)
and βmin ≡ minq 6=q′(β1 − β2, β2 − β3, . . . , βr). Namely, β is the largest signal strength
and βmin is the minimum gap.

We measure estimation error through the following loss, defined for x,y ∈ Sp−1 ≡ {v ∈
Rp : ‖v‖ = 1}:

L(x,y) ≡ 1

2
min

s∈{+1,−1}

∥∥x− sy
∥∥2 (9)

= 1− |〈x,y〉| . (10)

Notice the minimization over the sign s ∈ {+1,−1}. This is required because the principal
components v1, . . . ,vr are only identifiable up to a sign. Analogous results can obtained
for alternate loss functions such as the projection distance:

Lp(x,y) ≡ 1√
2
‖xxT − yyT‖F =

√
1− 〈x,y〉2. (11)

The theorem below is an immediate consequence of Theorem 1. In particular, it uses
the guarantee of Theorem 1 to show that the corresponding principal components of η(Σ̂)
provide good estimates of the principal components vq, 1 ≤ q ≤ r.
Theorem 2 There exists a numerical constant C such that the following holds. Suppose
that Assumption A1 holds in addition to the conditions n > C log p, s20 < n, and s20 < p/e.
Set τ as according to Theorem 1, and let v̂1, . . . , v̂r denote the r principal eigenvectors of
η(Σ̂; τ/

√
n). Then, with probability 1− o(1)

max
q∈[r]

L(v̂q,vq) ≤
C

β2min

s20(β
2 ∨ 1)

n
log

p

s20
. (12)

Proof Let ∆ ≡ η(Σ̂; τ/
√
n) − Σ. By Davis-Kahn sin-theta theorem (Davis and Kahan,

1970), we have, for βmin > ‖∆‖op,

L(v̂q,vq) ≤
1

2

( ‖∆‖op
βmin − ‖∆‖op

)2

. (13)

For β2min > 2C(s20(β
2 ∨ 1)/n) log(p/s20), the claim follows by using Theorem 1. If β2min ≤

2C(s20(β
2 ∨ 1)/n) log(p/s20), the claim is obviously true since L(v̂q,vq) ≤ 1 always.

2.3 Support recovery

Finally, we consider the question of support recovery of the principal components vq. The
second phase of our algorithm aims at estimating union of the supports Q = Q1 ∪ · · · ∪ Qr
from the estimated principal components v̂q. Note that, although v̂q is not even expected to
be sparse, it is easy to see that the largest entries of v̂q should have significant overlap with
supp(vq). Step 6 of the algorithm exploit this property to construct a consistent estimator

Q̂q of the support of the spike vq.
We will require the following assumption to ensure support recovery.
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A2 There exist constants θ, γ > 0 such that the following holds. The non-zero entries of
the spikes satisfy |vq,i| ≥ θ/

√
s0 for all i ∈ Qq. Further, for any q, q′ |vq,i/vq′,i| ≤ γ for

every i ∈ Qq ∩ Qq′ . Without loss of generality, we will assume γ ≥ 1.

Theorem 3 Assume the spiked covariance model of Eq. (1) satisfying assumptions A1 and
A2, and further n > C log p, s20 < n, and s20 < p/e for C a large enough numerical constant.
Consider the Covariance Thresholding algorithm of Table 1, with τ as in Theorem 1 ρ =
βminθ/(2

√
s0).

Then there exists K0 = K0(θ, γ, β, βmin) such that, if

n ≥ K0s
2
0r log

p

s20
(14)

then the algorithm recovers the union of supports of vq with probability 1 − o(1) (i.e. we

have Q̂ = Q).

The proof in Section 7 also provides an explicit expression for the constant K0.

Remark 4 In Assumption A2, the requirement on the minimum size of |vq,i| is standard in
support recovery literature (see, e.g. Wainwright, 2009; Meinshausen and Bühlmann, 2006).
Additionally, however, we require that when the supports of vq,vq′ overlap, they are of the
same order, quantified by the parameter γ. Relaxing this condition is a potential direction
for future work.

Remark 5 Recovering the signed supports Qq,+ = {i ∈ [p] : vq,i > 0} and Qq,− = {i ∈ [p] :
vq,i < 0}, up to a sign flip, is possible using the same technique as recovering the supports
supp(vq) above, and poses no additional difficulty.

3. Algorithm intuition and proof strategy

For the purposes of exposition, throughout this section, we will assume that r = 1 and drop
the corresponding subscript q.

Denoting by X ∈ Rn×p the matrix with rows x1, . . . xn, by Z ∈ Rn×p the matrix with
rows z1, . . . zn, and letting u = (u1, u2, . . . , un), the model (1) can be rewritten as

X =
√
β u vT + Z . (15)

Recall that Σ̂ = n−1XTX − Ip = G − Ip. For β >
√
p/n, the principal eigenvector of G,

and hence of Σ̂ is positively correlated with v, i.e. |〈v̂1(Σ̂),v〉| is bounded away from zero.
However, for β <

√
p/n, the noise component in Σ̂ dominates and the two vectors become

asymptotically orthogonal, i.e. for instance limn→∞ |〈v̂1(Σ̂),v〉| = 0. In order to reduce the
noise level, we must exploit the sparsity of the spike v.

Now, letting β′ ≡ β‖u‖2/n ≈ β, and w ≡ √βZTu/n, we can rewrite Σ̂ as

Σ̂ = β′ vvT + v wT + w vT +
1

n
ZTZ − Ip, . (16)

8
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For a moment, let us neglect the cross terms (vwT + wvT). The ‘signal’ component β′ vvT

is sparse with s20 entries of magnitude β′θ2/s0, which (in the regime of interest s0 =
√
n/C)

is equivalent to Cθ2β/
√
n. The ‘noise’ component ZTZ/n− Ip is dense with entries of order

1/
√
n. Assuming s0/

√
n < c for some small constant c, it should be possible to remove

most of the noise by thresholding the entries at level of order 1/
√
n. For technical reasons,

we use the soft thresholding function η : R× R≥0 → R, η(z; τ) = sgn(z)(|z| − τ)+. We will
omit the second argument from η(·; ·) wherever it is clear from context.

Consider again the decomposition (16). Since the soft thresholding function η(z; τ/
√
n)

is affine when z � τ/
√
n, we would expect that the following decomposition holds approx-

imately (for instance, in operator norm):

η(Σ̂) ≈ η
(
β′vvT

)
+ η

(
1

n
ZTZ− Ip

)
. (17)

Since β′ ≈ β and each entry of vvT has magnitude at least θ2/s0, the first term is still
approximately rank one, with∥∥∥η (β′vvT

)
− βvvT

∥∥∥
op
≤ s0τ√

n
. (18)

This is straightforward to see since soft thresholding introduces a maximum bias of τ/
√
n

per entry of the matrix, while the factor s0 comes due to the support size of vvT (see
Proposition 14 below for a rigorous argument).

The main technical challenge now is to control the operator norm of the perturbation
η(ZTZ/n − Ip). We know that η(ZTZ/n − Ip) has entries of variance δ(τ)/n, for δ(τ) ≈
exp(−cτ2). If entries were independent with mild tail conditions, this would imply –with
high probability– ∥∥∥∥η( 1

n
ZTZ− Ip

)∥∥∥∥
op

. Cδ(τ)

√
p

n
= C exp(−cτ2)

√
p

n
, (19)

for some constant C. Combining the bias bound from Eq. (18) and the heuristic decompo-
sition of Eq. (19) with the decomposition (17) results in the bound∥∥∥η(Σ̂)− βvvT

∥∥∥
op
≤ s0τ√

n
+ C exp(−cτ2)

√
p

n
. (20)

Our analysis formalizes this argument and shows that such a bound is correct when p < n.
The matrix η

(
ZTZ/n − Ip

)
is a special case of so-called inner-product kernel random

matrices, which have attracted recent interest within probability theory (see El Karoui,
2010a,b; Cheng and Singer, 2013; Fan and Montanari, 2015). The basic object of study in
this line of work is a matrix M ∈ Rp×p of the type:

Mij = fn

(〈z̃i, z̃j〉
n

− I(i = j)

)
. (21)

In other words, fn : R → R is a kernel function and is applied entry-wise to the matrix
ZTZ/n−Ip, with Z a matrix with independent standard normal entries as above and z̃i ∈ Rn
are the columns of Z.
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The key technical challenge in our proof is the analysis of the operator norm of such
matrices, when fn is the soft-thresholding function, with threshold of order 1/

√
n. Earlier

results are not general enough to cover this case. El Karoui (2010a,b) provide conditions
under which the spectrum of fn(ZTZ/n − Ip) is close to a rescaling of the spectrum of
(ZTZ/n − Ip). We are interested instead in a different regime in which the spectrum of
fn(ZTZ/n − Ip) is very different from the one of (ZTZ/n − Ip). Cheng and Singer (2013)
consider n-dependent kernels, but their results are asymptotic and concern the weak limit
of the empirical spectral distribution of fn(ZTZ/n − Ip). This does not yield an upper
bound on the spectral norm of fn(ZTZ/n− Ip). Finally, Fan and Montanari (2015) consider
the spectral norm of kernel random matrices for smooth kernels f , only in the proportional
regime n/p→ c ∈ (0,∞).

Our approach to proving Theorem 1 follows instead the ε-net method: we develop high
probability bounds on the maximum Rayleigh quotient:

max
y∈Sp−1

〈y, η(ZTZ/n− Ip)y〉 = max
y∈Sp−1

∑
i,j

η

(〈z̃i, z̃j〉
n

;
τ√
n

)
yiyj , (22)

by discretizing Sp−1 = {y ∈ Rp : ‖y‖ = 1}, the unit sphere in p dimensions. For a fixed
y, the Rayleigh quotient 〈y, η(ZTZ/n− Ip)y〉 is a (complicated) function of the underlying
Gaussian random variables Z. One might hope that it is Lipschitz continuous with some
Lipschitz constant B = B(n, p, τ,y), thereby implying, by Gaussian isoperimetry (Ledoux,
2005), that it concentrates to the scale B around its expectation (i.e. 0). Then, by a
standard union bound argument over a discretization of the sphere, one would obtain that
the operator norm of η

(
ZTZ/n− Ip

)
is typically no more than

√
p supy∈Sp−1 B(n, p, τ,y).

Unfortunately, this turns out not to be true over the whole space of Z, i.e. the Rayleigh
quotient is not Lipschitz continuous in the underlying Gaussian variables Z. Our approach,
instead, shows that for typical values of Z, we can control the gradient of 〈y, η(ZTZ/n−Ip)y〉
with respect to Z, and extract the required concentration only from such local information
of the function. This is formalized in our concentration lemma 9, which we apply extensively
while proving Theorem 1. This lemma is a signficantly improved version of the analogous
result in Deshpande and Montanari (2014).

4. Practical aspects and empirical results

Specializing to the rank one case, Theorems 2 and 3 show that Covariance Thresholding
succeeds with high probability for a number of samples n & s20, while Diagonal Thresholding
requires n & s20 log p. The reader might wonder whether eliminating the log p factor has any
practical relevance or is a purely conceptual improvement. Figure 1 presents simulations on
synthetic data under the strictly sparse model, and the Covariance Thresholding algorithm
of Table 1, used in the proof of Theorem 3. The objective is to check whether the log p
factor has an impact at moderate p. We compare this with Diagonal Thresholding.

We plot the empirical success probability as a function of s0/
√
n for several values of

p, with p = n. The empirical success probability was computed by using 100 independent
instances of the problem. A few observations are of interest: (i) Covariance Threshold-
ing appears to have a significantly larger success probability in the ‘difficult’ regime where
Diagonal Thresholding starts to fail; (ii) The curves for Diagonal Thresholding appear to

10
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Figure 1: The support recovery phase transitions for Diagonal Thresholding (left) and Co-
variance Thresholding (center) and the data-driven version of Section 4 (right).
For Covariance Thresholding, the fraction of support recovered correctly increases
monotonically with p, as long as s0 ≤ c

√
n with c ≈ 1.1. Further, it appears to

converge to one throughout this region. For Diagonal Thresholding, the fraction
of support recovered correctly decreases monotonically with p for all s0 of order√
n. This confirms that Covariance Thresholding (with or without knowledge of

the support size s0) succeeds with high probability for s0 ≤ c
√
n, while Diagonal

Thresholding requires a significantly sparser principal component.

decrease monotonically with p indicating that s0 proportional to
√
n is not the right scaling

for this algorithm (as is known from theory); (iii) In contrast, the curves for Covariance
Thresholding become steeper for larger p, and, in particular, the success probability in-
creases with p for s0 ≤ 1.1

√
n. This indicates a sharp threshold for s0 = const · √n, as

suggested by our theory.
In terms of practical applicability, our algorithm in Table 1 has the shortcomings of

requiring knowledge of problem parameters s0, β, θ. Furthermore, the thresholds ρ, τ sug-
gested by theory need not be optimal. We next describe a principled approach to esti-
mating (where possible) the parameters of interest and running the algorithm in a purely
data-dependent manner. Assume the following model, for i ∈ [n]

xi = µ+
∑
q

√
βquq,ivq + σzi,

where µ ∈ Rp is a fixed mean vector, uq,i have mean 0 and variance 1, and zi have mean 0
and covariance Ip. Note that our focus in this section is not on rigorous analysis, but instead
to demonstrate a principled approach to applying covariance thresholding in practice. We
proceed as follows:

Estimating µ, σ: We let µ̂ =
∑n

i=1 xi/n be the empirical mean estimate for µ. Further

letting X = X − 1µ̂T we see that pn − (
∑

q kq)n ≈ pn entries of X are mean 0 and

variance σ2. We let σ̂ = MAD(X)/ν where MAD( · ) denotes the median absolute
deviation of the entries of the matrix in the argument, and ν is a constant scale
factor. Guided by the Gaussian case, we take ν = Φ−1(3/4) ≈ 0.6745.

Choosing τ : Although in the statement of the theorem, our choice of τ depends on the
SNR β/σ2, it is reasonable to instead threshold ‘at the noise level’, as follows. The

11
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noise component of entry i, j of the sample covariance (ignoring lower order terms)

is given by σ2〈zi, zj〉/n. By the central limit theorem, 〈zi, zj〉/
√
n

d⇒N(0, 1). Con-
sequently, σ2〈zi, zj〉/n ≈ N(0, σ4/n), and we need to choose the (rescaled) threshold

proportional to
√
σ4 = σ2. Using previous estimates, we let τ = ν ′ · σ̂2 for a constant

ν ′. In simulations, a choice 3 . ν ′ . 4 appears to work well.

Estimating r: We define Σ̂ = X
T
X/n− σ̂2Ip and soft threshold it to get η(Σ̂) using τ as

above. Our proof of Theorem 2 relies on the fact that η(Σ̂) has r eigenvalues that are
separated from the bulk of the spectrum. Hence, we estimate r using r̂: the number
of eigenvalues separated from the bulk in η(Σ̂). The edge of the spectrum can be
computed numerically using the Stieltjes transform method as in Cheng and Singer
(2013).

Estimating vq: Let v̂q denote the qth eigenvector of η(Σ̂). Our theoretical analysis in-
dicates that v̂q is expected to be close to vq. In order to denoise v̂q, we assume

Σ̂v̂q ≈ (1−δ)vq+εq, where εq is additive random noise (perhaps with some sparse cor-

ruptions). We then threshold Σ̂vq ‘at the noise level’ to recover a better estimate of vq.
To do this, we estimate the standard deviation of the “noise” ε by σ̂ε = MAD(v̂q)/ν.
Here we set –again guided by the Gaussian heuristic– ν ≈ 0.6745. Since vq is sparse,
this procedure returns a good estimate for the size of the noise deviation. We let v̂′q
denote the vector obtained by hard thresholding v̂q: set v̂′i = v̂q,i if |v̂q,i| ≥ ν ′σ̂εq and
0 otherwise. We then let v̂∗q = v̂′q/‖v̂′q‖ and return v̂∗q as our estimate for vq.

Note that –while different in several respects– this empirical approach shares the same
philosophy of the algorithm in Table 1. On the other hand, the data-driven algorithm
presented in this section is less straightforward to analyze, a task that we defer to future
work.

Figure 1 also shows results of a support recovery experiment using the ‘data-driven’
version of this section. Covariance thresholding in this form also appears to work for
supports of size s0 ≤ const

√
n. Figure 2 shows the performance of vanilla PCA, Diagonal

Thresholding and Covariance Thresholding on the “Three Peak” example of Johnstone and
Lu (2004). This signal is sparse in the wavelet domain and the simulations employ the data-
driven version of covariance thresholding. A similar experiment with the “box” example of
Johnstone and Lu is provided in Figure 3. These experiments demonstrate that, while for
large values of n both Diagonal Thresholding and Covariance Thresholding perform well,
the latter appears superior for smaller values of n.

5. Proof preliminaries

In this section we review some notation and preliminary facts that we will use throughout
the paper.

5.1 Notation

We let [m] = {1, 2, . . . ,m} denote the set of first m integers. We will represent vectors using
boldface lower case letters, e.g. u,v,x. The entries of a vector u ∈ Rn will be represented

12
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Figure 2: The results of Simple PCA, Diagonal Thresholding and Covariance Thresholding
(respectively) for the “Three Peak” example of Johnstone and Lu (2009) (see
Figure 1 of the paper). The signal is sparse in the ‘Symmlet 8’ basis. We use β =
1.4, p = 4096, and the rows correspond to sample sizes n = 1024, 1625, 2580, 4096
respectively. Parameters for Covariance Thresholding are chosen as in Section 4,
with ν ′ = 4.5. Parameters for Diagonal Thresholding are from Johnstone and Lu
(2009). On each curve, we superpose the clean signal (dotted).

by ui, i ∈ [n]. Matrices are represented using boldface upper case letters e.g. A,X. The
entries of a matrix A ∈ Rm×n are represented by Aij for i ∈ [m], j ∈ [n]. Given a matrix
A ∈ Rm×n, we generically let a1, a2, . . . ,am denote its rows, and ã1, ã2, . . . , ãn its columns.
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Figure 3: The results of Simple PCA, Diagonal Thresholding and Covariance Thresholding
(respectively) for a synthetic block-constant function (which is sparse in the Haar
wavelet basis). We use β = 1.4, p = 4096, and the rows correspond to sample sizes
n = 1024, 1625, 2580, 4096 respectively. Parameters for Covariance Thresholding
are chosen as in Section 4, with ν ′ = 4.5. Parameters for Diagonal Thresholding
are from Johnstone and Lu (2009). On each curve, we superpose the clean signal
(dotted).

For E ⊆ [m] × [n], we define the projector operator PE : Rm×n → Rm×n by letting
PE(A) be the matrix with entries

PE(A)ij =

{
Aij if (i, j) ∈ E,

0 otherwise.
(23)
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For a matrix A ∈ Rm×n, and a set E ⊆ [n], we define its column restriction AE ∈ Rm×n to
be the matrix obtained by setting to 0 columns outside E:

(AE)ij =

{
Aij if j ∈ E,
0 otherwise.

Similarly yE is obtained from y by setting to zero all indices outside E. The operator
norm of a matrix A is denoted by ‖A‖ (or ‖A‖op) and its Frobenius norm by ‖A‖F . We
write ‖x‖ for the standard `2 norm of a vector x. Other vector norms such as `1 or `∞ are
denoted with appropriate subscripts.

We let Qq denotes the support of the qth spike vq. Also, we denote the union of the
supports of vq by Q = ∪qQq. The complement of a set E ∈ [n] is denoted by Ec.

We write η(·; ·) for the soft-thresholding function. By ∂η(·; τ) we denote the derivative
of η(·; τ) with respect to the first argument, which exists Lebesgue almost everywhere. To
simplify the notation, we omit the second argument when it is understood from context.

For a random variable Z and a measurable set A we write E{Z;A} to denote E{ZI(Z ∈
A)}, the expectation of Z constrained to the event A.

In the statements of our results, consider the limit of large p and large n with certain
conditions on p, n (as in Theorem 2). This limit will be referred to either as “n large
enough” or “p large enough” where the phrase “large enough” indicates dependence of p
(and thereby n) on specific problem parameters.

The Gaussian distribution function will be denoted by Φ(x) =
∫ x
−∞ e

−t2/2 dt/
√

2π.

5.2 Preliminary facts

Let SN−1 denote the unit sphere in N dimensions, i.e. SN−1 = {x ∈ RN : ‖x‖ = 1}. We use
the following definition (see Vershynin, 2012, Definition 5.2) of the ε-net of a set X ⊆ Rn:

Definition 6 (Nets, Covering numbers) A subset T ε(X) ⊆ X is called an ε-net of X
if every point in X may be approximated by one in T ε(X) with error at most ε. More
precisely:

∀x ∈ X, inf
y∈T ε(X)

‖x− y‖ ≤ ε.

The minimum cardinality of an ε-net of X, if finite, is called its covering number.

The following two facts are useful while using ε-nets to bound the spectral norm of a
matrix. For proofs, we refer the reader to (see Vershynin, 2012, Lemmas 5.2, 5.4).

Lemma 7 Let Sn−1 be the unit sphere in n dimensions. Then there exists an ε-net of
Sn−1, T ε(Sn−1) satisfying:

|T ε(Sn−1)| ≤
(

1 +
2

ε

)n
.
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Lemma 8 Let A ∈ Rn×n be a symmetric matrix. Then, there exists x ∈ T ε(Sn−1) such
that

|〈x,Ax〉| ≥ (1− 2ε)‖A‖. (24)

Proof Firstly, we have ‖A‖ = maxx∈Sn−1 |〈x,Ax〉| = maxx∈Sn−1‖Ax‖. Let x∗ be the
maximizer (which exists as Sn−1 is compact and |〈x,Ax〉| is continuous in x). Choose
x ∈ T εn so that ‖x− x∗‖ ≤ ε. Then:

〈x,Ax〉 = 〈x− x∗,A(x + x∗)〉+ 〈x∗,Ax∗〉 . (25)

The lemma then follows as |〈x,A(x− x∗)〉| ≤ ‖x + x∗‖‖A‖‖x− x∗‖ ≤ 2ε‖A‖.

Throughout the paper we will denote by T εN an ε-net on the unit sphere SN−1 that
satisfies Lemma 7. For a subset of indices S ⊂ [N ] we denote by T εN (S) the natural isometric
embedding of T εS in SN−1.

We now state a general concentration lemma. This will be our basic tool to establish
Theorem 2, and thereby Theorem 3.

Lemma 9 Let z ∼ N(0, IN ) be vector of N i.i.d. standard normal variables. Suppose S is
a finite set and we have functions Fs : RN → R for every s ∈ S. Assume G ∈ RN × RN is
a Borel set such that for Lebesgue-almost every (x,y) ∈ G:

max
s∈S

max
t∈[0,1]

‖∇Fs(
√
tx +

√
1− ty)‖ ≤ L . (26)

Then, for any ∆ > 0:

P
{

max
s∈S
|Fs(z)− EFs(z)| ≥ ∆

}
≤ C|S| exp

(
− ∆2

CL2

)
+

C

∆2
E
{

max
s∈S

[
(Fs(z)− Fs(z′))2

]
;Gc
}
.

(27)

Here z′ is an independent copy of z.

Proof We use the Maurey-Pisier method along with symmetrization. By centering, assume
that EFs(z) = 0 for all s ∈ S. Further, by including the functions −Fs in the set S (at
most doubling its size), it suffices to prove the one-sided version of the inequality:

P{max
s∈S

Fs(z) ≥ ∆} ≤ C|S| exp
(
− ∆2

CL2

)
+

C

∆2
E{max

s
(Fs(z)− Fs(z′))2;Gc} . (28)

We first implement the symmetrization. Note that:

{x : max
s
Fs(x) ≥ ∆} ⊆ {x : max

x∈R,s∈S
[2xFs(x)− x2] ≥ ∆2} (29)

{x,y : max
s

[Fs(x)− Fs(y)] ≥ ∆} ⊆ {x,y : max
x∈R,s∈S

[2x(Fs(x)− Fs(y))− x2] ≥ ∆2}. (30)
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Furthermore, by centering, Fs(z) = E{Fs(z) − Fs(z
′)|z}. Hence for any non-decreasing

convex function φ(z):

E
{
φ
(

max
x,s

[2xFs(z)− x2]
)}
≤ E

{
φ
(

max
x,s

[
E{2xFs(z)− 2xFs(z

′)− x2|z}
])}

(31)

(a)

≤ E
{
φ
(
E
{

max
x,s

[2x(Fs(z)− Fs(z′))− x2]|z
})}

(32)

(b)

≤ E
{
φ
(

max
x,s

[2x(Fs(z)− Fs(z′))− x2]
)}
. (33)

Here we use Jensen’s inequality with the monotonicity of φ(·) to obtain (a) and with the
convexity of φ(·) to obtain (b).

Now we choose φ(z) = (z − a)+, for a = ∆2/2.

P{max
s
Fs(z) ≥ ∆} ≤ P

{
max
x,s

[2xFs(z)− x2] ≥ ∆2
}

(34)

(a)

≤ φ(∆2)−1E
{
φ
(

max
x,s

[2xFs(z)− x2]
)}

(35)

(b)

≤ φ(∆2)−1E
{
φ
(

max
x,s

[2x(Fs(z)− Fs(z′))− x2]
)}

(36)

= φ(∆2)−1E
{
φ
(

max
s

[(Fs(z)− Fs(z′))2]
)}

(37)

= φ(∆2)−1
(
E
{
φ
(

max
s

[(Fs(z)− Fs(z′))2]
)
;G
}

+ E
({
φ(max

s
[(Fs(z)− Fs(z′))2];Gc

})
. (38)

Here (a) is Markov’s inequality, and (b) is the symmetrization bound Eq. (33), where we
use the fact that φ(z) = (z − a)+ is non-decreasing and convex in z.

At this point, it is easy to see that the lemma follows if we are able to control the
first term in Eq. (38). We establish this via the Maurey-Pisier method. Define the path
z(θ) ≡ z sin θ + z′ cos θ, the velocity ż ≡ dz/dθ = z cos θ − z′ sin θ.

E
{
φ
(

max
s

[(Fs(z)− Fs(z′))2]
)
;G
}

=

∫ ∞
0

P
{(

max
s

[(Fs(z)− Fs(z′))2]− a
)
+
I(G) ≥ x

}
dx

(39)

=

∫ ∞
0

P
{

max
s

[|Fs(z)− Fs(z′)|] ≥
√
x+ a;G

}
dx (40)

≤ 2|S|
∫ ∞
a

e−λ
√
x max

s

[
E
{

exp{λ(Fs(z)− Fs(z′))};G
}]

dx ,

(41)

where, in the last inequality we use the union bound followed by Markov’s inequality. To

control the exponential moment, note that Fs(z)−Fs(z′) =
∫ π/2
0 〈∇F (z(θ)), ż(θ)〉dθ whence,
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using Jensen’s inequality:

E
{

exp
{
λ(Fs(z)− Fs(z′))

}
;G
}

= E
{

exp
(∫ π/2

0
λ〈∇Fs(z(θ)), ż(θ)〉dθ

)
;G
}

(42)

≤ 2

π

∫ π/2

0
E
{

exp
(
λπ〈∇Fs(z(θ)), ż(θ)〉/2

)
;G
}

dθ. (43)

Define the set Gθ = {(z, z′) : maxs‖∇Fs(z(θ))‖ ≤ L}. Then:

E
{

exp
{
λ(Fs(z)− Fs(z′))

}
;G
} (a)

≤ 2

π

∫ π/2

0
E
{

exp
(
λπ〈∇Fs(z(θ)), ż(θ)〉/2

)
;Gθ
}

dθ (44)

(b)
=

2

π

∫ π/2

0
E
{

exp
(λ2π2‖∇Fs(z(θ))‖2

8
;Gθ
)}

dθ (45)

(c)

≤ exp
(λ2π2L2

8

)
. (46)

Here (a) follows as Gθ ⊇ G. Equality (b) follows from noting that Gθ is measurable with
respect to z(θ) and, hence, first integrating with respect to ż(θ) = z cos θ − z′ sin θ, a
Gaussian random variable that is independent of z(θ). The final inequality (c) follows by
using the fact that ‖∇Fs(z(θ))‖ ≤ L on the set Gθ.

Since this bound is uniform over s ∈ S, we can use it in (41):

E
{
φ(max

s
(Fs(z)− Fs(z′))2);G

}
≤ 2|S|

∫ ∞
a

exp
(
− λ√x+

λ2π2L2

8

)
dx (47)

≤ 4|S|
λ2

(1 + λ
√
a) exp

(
− λ√a+

λ2π2L2

8

)
(48)

We can now set λ = 4
√
a/π2L2, to obtain the exponent above as −2a/π2L2 = −∆2/π2L2.

The prefactor (1 + λ
√
a)λ−2 is bounded by CL2 max(, L2/∆2) when a = ∆2/2. Therefore,

as required, we obtain:

E
{
φ(max

s
(Fs(z)− Fs(z′))2);G

}
≤ C max(1, L4/∆4) exp

(
− ∆2

CL2

)
(49)

Combining this with Eq. (38) and the fact that φ(∆2)−1 ≤ C∆−2 gives Eq. (28) and, con-
sequently, the lemma.

By a simple application of Cauchy-Schwarz, this lemma implies the following.

Corollary 10 Under the same conditions as Lemma 9,

P
{

max
s∈S
|Fs(z)− EFs(z)| ≥ ∆

}
≤ C|S| exp

(
− ∆2

CL2

)
+

C

∆2
E
{

max
s∈S

[
(Fs(z)− Fs(z′))4

]}1/2
P{Gc}1/2. (50)

The following two lemmas are well-known concentration of measure results. The forms below
can be found in (Vershynin, 2012, Corollary 5.35), (Laurent and Massart, 2000, Lemma 1)
respectively.
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Lemma 11 Let A ∈ RM×N be a matrix with i.i.d. standard normal entries, i.e. Aij ∼
N(0, 1). Then, for every t ≥ 0:

P
{
‖A‖op ≥

√
M +

√
N + t

}
≤ exp

(
− t

2

2

)
. (51)

Lemma 12 Let z ∼ N(0, IN ). Then

P{‖z‖2 ≥ N + 2
√
Nt+ 2t} ≤ exp(−t). (52)

6. Proof of Theorem 1

Since Σ̂ = XTX/n− Ip, we have:

Σ̂ =
r∑
q=1

{
βq‖uq‖2

n
vq(vq)

T +

√
βq

n

(
vq(Z

Tuq)
T + (ZTuq)v

T
q

)}

+
∑
q 6=q′

{√
βqβq′〈uq,uq′〉

n
vq(vq′)

T

}
+

ZTZ

n
− Ip . (53)

We let D = {(i, i) : i ∈ [p] \Q} be the diagonal entries not included in any support. (Recall
that Q = ∪qQq denote the union of the supports.) Further let E = Q×Q, F = (Qc×Qc)\D,
and G = [p] × [p]\(D ∪ E ∪ F), or, equivalently G = (Q × Qc) ∪ (Qc × Q). Since these are
disjoint we have:

η(Σ̂) = PE
{
η(Σ̂)

}
︸ ︷︷ ︸

S

+PF
{
η
(
Σ̂
)}

︸ ︷︷ ︸
N

+PG
{
η(Σ̂)

}
︸ ︷︷ ︸

C

+PD
{
η(Σ̂)

}
︸ ︷︷ ︸

D

. (54)

The first term corresponds to the ‘signal’ component, while the last three terms correspond
to the ‘noise’ component.

Theorem 1 is a direct consequence of the next five propositions. The first demonstrates
that, even for a low level of thresholding, viz. τ <

√
log p/2, the term N has small operator

norm. The second demonstrates that the soft thresholding operation preserves the signal
in the term S. The next two propositions show that the cross and diagonal terms C and D
are negligible as well. Finally, in the last proposition, we demonstrate that, for the regime
of thresholding far above the noise level, i.e. τ > C

√
log p, the noise terms N and C vanish

entirely.

Proposition 13 Let N denote the second term of Eq. (54). Since F = Qc × Qc\D,

N = PF
(
η(Σ̂)

)
= PF

{
η

(
1

n
ZTZ

)}
. (55)

Then, there exists an absolute constant C such that the following happens. Assuming that
(i) τ <

√
log p/2 and (ii) n > C log p, then with probability 1− o(1)

‖N‖op ≤ C
(√

p

n
∨ p
n

)
e−τ

2/C . (56)
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Proposition 14 Let S denote the first term in Eq. (54):

S = PE
{
η(Σ̂)

}
. (57)

Assume that (i) s0/n < 1 and (ii)n > C log p: Then with probability 1− o(1):

∥∥S−Σ
∥∥
op
≤ 2τs0√

n
+ C(β ∨ 1)

√
s0
n
. (58)

Proposition 15 Let C denote the matrix corresponding to the third term of Eq. (54):

C = PG
{
η(Σ̂)

}
.

Assuming the conditions of Proposition 13 and, additionally, that s20 ≤ p, there exist con-
stants C, c such that with probability 1− o(1)

‖C‖op ≤ C τe−cτ
2/(β∨1)

√
p

n
∨ p
n
. (59)

Proposition 16 Let D denote the matrix corresponding to the third term of Eq. (54):

D = PD
{
η(Σ̂)

}
.

With probability 1− o(1) we have that ‖D‖op ≤ C
√
n−1 log p.

Proposition 17 For some absolute constant C0, we have for τ ≥ C0(β ∨ 1)
√

log p that,
with probability 1− o(1):

∀i, j Nij = Cij = 0. (60)

Therefore, ‖N‖op = 0 and ‖C‖op = 0.

Remark 18 At this point we remark that the probability 1−o(1) can be made quantitative,
for e.g. of the form 1− exp(−min(

√
p, n)/C1), for every n large enough. For simplicity of

exposition we do not pursue this in the paper.

We defer the proofs of Propositions 13, 14, 15, 16 and 17 to Sections 6.1, 6.2, 6.3, 6.4
and 6.5 respectively. By combining them for β = O(1), we immediately obtain the following
bound.

Theorem 19 There exist numerical constants C0, C1 such that the following happens. As-
sume β ≤ C0, n > C1 log p and τ ≤ √log p/2. Then with probability 1− o(1):

∥∥η(Σ̂)−Σ
∥∥
op
≤ 2τs0√

n
+ C

(√ p

n
∨ p
n

)
e−τ

2/C + C

√
s0 ∨ log p

n
. (61)
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Proof The proof is obtained by adding the error terms from Propositions 13, 14, 15 and
16, and noting that β is bounded.

Using Propositions 13, 14, 15 and 16, together with a suitable choice of τ , we obtain
the proof of Theorem 1.
Proof [Proof of Theorem 1] Note that in the case s20 > p/e there is no thresholding and

hence the result follows from the fact that ‖Σ̂−Σ‖op ≤ C
√
p/n (Vershynin, 2012, Remark

5.40).
We assume now that s20 ≤ p/e and the case that τ∗ = C1(β ∨ 1)

√
log(p/s20) ≤

√
log p/2.

In that case we set τ = τ∗ ≤
√

log p/2. Below we will keep C1 a large enough constant,
and check that each of the error terms in Propositions 13, 14, 15 and 16 is upper bounded
by (a constant times) the right-hand side of Eq. (7). Throughout C will denote a generic
constant that can be made as large as we want, and can change from line to line.

We start from Proposition 13:

‖N‖op ≤ C
(√

p

n
∨ p
n

) (
s20
p

)C
(62)

≤ C
√
p

n

(
p

s20

)−C−1
∨ C

√( p
n

)2( p

s20

)−C−2
(63)

≤ C
√
s20
n

(
p

s20

)−C
∨ C

√(
s20
n

)2(
p

s20

)−C
(64)

≤ C
√
s20
n

log
p

s20
, (65)

where in the last step we used (e s20/p), (s
2
0/n) ≤ 1.

Next consider Proposition 14:

∥∥S−Σ
∥∥
op
≤ C

√
s20τ

2

n
+ C

√
s0(β ∨ 1)2

n
(66)

≤ C
√
s20(β

2 ∨ 1)

n
log

p

s20
. (67)

From Proposition 15, we get, using the same argument as in Eq. (65)

‖C‖op ≤ C
√
β ∨ 1

(√
p

n
∨ p
n

) (
s20
p

)C
(68)

≤ C(β ∨ 1)

√
s20
n

log
p

s20
. (69)

Finally, the term of Proposition 16 is also bounded as desired using log p ≤ s20 log(p/s20)
(dividing both sides by p and using the fact that x 7→ x log(1/x) is increasing).

The case of τ∗ ≥
√

log p/2 is easier. In that case, we can keep τ = C2τ∗ with C2 large
enough so that τ ≥ C0(β ∨ 1)

√
log p for C0 of Proposition 17. Then, by Proposition 17, we
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know that N = 0 and C = 0. Therefore we only need consider the terms S−Σ and D. For
these terms we can use Propositions 14 and 16 respectively and, arguing as in the earlier
case τ∗ ≤

√
log p, we obtain the desired result.

6.1 Proof of Proposition 13

Define Ñ as

Ñ = Pnd
{
η

(
1

n
ZTZ

)}
.

Since N is a principal submatrix of Ñ, it suffices to prove the same bound for Ñ. Our main
tool in the proof will be the concentration lemma 9 which we use on multiple occasions.
With a view to using the lemma, we let let Z′ ∈ Rn×p denote an independent copy of Z,
and z̃′i it’s ith column. The proof relies on two preliminary lemmas. For some A ≥ 1 (to be
chosen later), we first state and prove the following lemma that controls the norm of any
principal submatrix of Ñ of size at most p/A.

Lemma 20 Fix any A ≥ 1. There exists an absolute constants C, c such that:

P
{

max
S⊆[p],|S|≤p/A

‖PS×S(Ñ)‖op ≥ ∆
}
≤ C exp

(
p

logCA

A
− n2∆2

C(n+ p)

)
+ C

(np)C

∆2
exp(−cn).

(70)

Proof For any subset S ⊂ [p] recall that T εp (S) denotes an ε-net of unit vectors in Sp−1
supported on the subset S. For simplicity let T (A) = ∪S:|S|≤p/AT εp (S). It suffices, by Lemma

8, to control 〈y, Ñy〉 on the set T (A). In particular:

P
{

max
S⊆[p],|S|≤p/A

‖PS×S(Ñ)‖op ≥ ∆
}
≤ P

{
max

y∈T (A)
|〈y, Ñy〉| ≥ ∆(1− 2ε)

}
. (71)

Consider the good set G1 given by:

G1 = {(Z,Z′) : max(‖Z‖, ‖Z′‖) ≤
√

2(
√
n+
√
p))}. (72)

To use Lemma 9, we need to compute E〈y, Ñy〉 and the gradient of 〈y, Ñy〉 with respect to
the underlying random variables Z. Since η(·) is an odd function the expectation vanishes.
To compute the gradient, we let t ∈ [0, 1] and W =

√
tZ+

√
1− tZ′, and consider 〈y, Ñy〉 =

〈y, η(WTW/n)y〉 as a function of the W. Taking the gradient with respect to a column
w̃` for ` ∈ S:

∇w̃`
〈y, Ñy〉 =

y`
n

∑
i 6=`,i∈S

w̃iyi∂η(〈w̃i, w̃`〉/n) (73)

=
y`
n

Wσ, (74)
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where

σi =

{
yi∂η(〈w̃i, w̃`〉/n) if i 6= `, i ∈ S

0 otherwise.
(75)

Since ‖σ‖ ≤ ‖y‖ = 1, we have that ‖∇w̃`
〈y, Ñy〉‖2 ≤ y2` ‖W‖2/n2. Summing over ` ∈ S we

obtain the gradient bound, holding on the good set G1:

‖∇W〈y, Ñy〉‖2 ≤
∑

` y
2
`

n2
‖W‖2 (76)

≤ C(n+ p)

n2
, (77)

which holds because of triangle inequality and the fact that
√
t +
√

1− t ≤
√

2. We can
now apply Lemma 9 to bound the RHS of Eq. (71) and get:

P
{

max
S⊆[p],|S|≤p/A

PS×S(Ñ) ≥ ∆
}
≤ C|T (A)| exp

(
− n2∆2

C(n+ p)

)
+

C

∆2
E
{

max
y∈T
〈y, Ñy〉2;Gc1

}
. (78)

We can simplify the terms on the right-hand side to obtain the result of the lemma. With
ε = 1/4, Stirling’s approximation and Lemma 7 we have:

|T (A)| ≤ exp
(
p

logCA

A

)
. (79)

We use a crude bound on the complement of the good set G1. It is easy to see that, for any
unit vector y, 〈y, Ñy〉2 ≤ ‖Ñ‖2F ≤ ‖ZTZ‖2F /n2. Cauchy-Schwarz then implies that

E{max〈y, Ñy〉2;Gc1} ≤ n−2
(
E{‖ZTZ‖4F }

)1/2P{Gc1}1/2 (80)

≤ (np)C exp(−c(n+ p)), (81)

where the bound on P{Gc1} follows from Lemma 11. This concludes the lemma.

Note that Lemma 20, with A = 1, tells us that ‖Ñ‖op is of order
√
p/n+ (p/n)2

(uniformly in τ) with high probability. Already this non-asymptotic bound is non-trivial,
since the previous results of Cheng and Singer (2013) and Fan and Montanari (2015) do not
extend to this case. However, Proposition 13 is stronger, and establishes a rate of decay
with the thresholding level τ .

The second lemma we require controls the Rayleigh quotient 〈y, Ñy〉 when the entries
of y are “spread out”.

Lemma 21 Assume that τ ≤ √log p/2. Given A ≥ 1 and a unit vector y, let S = {i :
|yi| ≤

√
A/p} and yS,ySc denote the projections of y onto supports S,Sc respectively. We

have:

P
{

max
y∈T 1/4

p

|〈yS, ÑyS〉| ≥ ∆
}
≤ C exp

(
− n2∆2

L2
1

+ Cp
)

+ (np)C exp
(
− cmin(

√
p, n)

)
, (82)
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for any ∆ ≥ L1 where L1 = C1

√
A exp(−τ2/16)(n+ p)/n2. The same bound holds for

P
{

max
y∈T 1/4

p
|〈ySc , ÑyS〉| ≥ ∆

}
.

Proof We first prove the claim for 〈yS, ÑyS〉. Firstly, we have E〈yS, ÑyS〉 = 0. Consider
the “good set” G2 of pairs (W,W′) ∈ Rn×p × Rn×p satisfying the conditions:

‖W‖, ‖W′‖ ≤
√

2(
√
n+
√
p) , (83)

∀i ∈ [p],
1

p

∑
j∈[p]\i

|I(〈w̃i, w̃j〉| ≥ τ
√
n/2) ≤ 2 exp(−τ2/16) , (84)

∀i ∈ [p],
1

p

∑
j∈[p]\i

|I(〈w̃′i, w̃′j〉| ≥ τ
√
n/2) ≤ 2 exp(−τ2/16) , (85)

∀i ∈ [p],
1

p

∑
j∈[p]

I(|〈w̃i, w̃
′
j〉| ≥ τ

√
n/2) ≤ 2 exp(−τ2/16). . (86)

Also, for any pair W,W′ ∈ G2, for W(t) =
√
tW +

√
1− tW′ (and its columns w̃(t)i

defined appropriately) we have:

‖W(t)‖ ≤ max
t

(
√
t+
√

1− t)(
√

2n+
√

2p) = 2(
√
n+
√
p), (87)

∀i ∈ [p]
1

p

∑
j∈[p]\i

I(〈w̃(t)i, w̃(t)j〉 ≥ τ
√
n) ≤ 6 exp(−τ2/16). (88)

Equation (87) follows by a simple application of triangle inequality and condition (83)
defining G2. For inequality (88), expanding the product 〈w̃(t)i, w̃(t)j〉:

〈w̃(t)i, w̃(t)j〉 = t〈w̃i, w̃j〉+ (1− t)〈w̃′i, w̃′j〉+
√
t(1− t)〈w̃i, w̃

′
j〉, (89)

whence, by triangle inequality and
√
t(1− t) < 1

I(|〈w̃(t)i, w̃(t)j〉| ≥ τ
√
n) ≤ I(|〈w̃i, w̃j〉| ≥ τ

√
n/2) + I(|〈w̃′i, w̃′j〉| ≥ τ

√
n/2)

+ I(|〈w̃i, w̃
′
j〉| ≥ τ

√
n/2). (90)

The gradient of 〈yS, η(WTW/n)yS〉 with respect to a column w̃` of W is given by:

∇w̃`
〈yS, η(WTW/n)yS〉 =

y`
n

∑
j∈S\`

yj∂η
(〈w̃j , w̃`〉

n
;
τ√
n

)
w̃j (91)

=
y`
n

Wσ, (92)

where σi =

{
∂η(〈w̃i, w̃`〉/n; τ/

√
n)yi when i ∈ S\`

0 otherwise.
(93)
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Therefore

‖∇w̃`
〈yS, ÑyS〉‖2 ≤

y2`
n2
‖W‖2‖σ‖2 (94)

≤ y2` ‖W‖2
n2

∑
i 6=`

(yi∂η(〈w̃i, w̃`〉/n))2 (95)

(a)

≤ y2` ‖W‖2
n2

∑
i 6=`

A

p
I(|〈w̃i, w̃`〉| ≥ τ

√
n) (96)

(b)

≤ y2`
n2
C(n+ p)A exp(−τ2/16) (97)

Here (a) follows from fact that the entries of yS are bounded by
√
A/p and the definition

of the soft thresholding function. Inequality (b) follows follows when we set W = Z(t) =√
tZ+

√
1− tZ′ and (Z,Z′) ∈ G2. Therefore, summing over ` we obtain the following bound

for the gradient of 〈yS, ÑyS〉

‖∇Z(t)〈yS, ÑyS〉‖2 ≤ C1
A exp(−τ2/16)(n+ p)

n2
≡ L2

1. (98)

We can use now Lemma 9, to get, for L1 > 0 as defined above and any ∆ ≥ L1:

P
{

max
y∈T 1/4

p

〈yS, ÑyS〉 ≥ ∆
}
≤ C exp

(
− ∆2

CL2
1

+ Cp
)

+ CL−21 E{max
y∈T ε

p

〈yS, ÑyS〉2;G2} (99)

≤ C exp
(
− ∆2

CL2
1

+ Cp
)

+ C(np)CP{Gc2}1/2, (100)

where the last line follows by Cauchy-Schwarz, as in the proof of Lemma 20, and the fact
that L1 ≥ (np)−C2 using the upper bound τ ≤ √log p/2.

To obtain the thesis, we need to now bound P{Gc2}. It suffices to control the failure
probability of conditions (83), (84), (85), (86) of the good set G2 individually, and apply
the union bound. For Z,Z′ independent, max(‖Z‖, ‖Z′‖) ≥

√
2(
√
n+
√
p) with probability

at most 2 exp(−c(n + p)) by Lemma 11. Now consider condition (84) with i = 1, without
loss of generality. First, for any h > 0 we have:

P
{1

p

∑
j 6=1

I(|〈z̃1, z̃j〉| ≥ τ
√
n/2) ≥ h

}
≤ P

{1

p

∑
j 6=1

I(|〈z̃1, z̃j〉| ≥ τ
√
n/2) ≥ 2h; ‖z̃1‖ ≤ 2

√
n
}

+ P
{
‖z̃1‖ ≥

√
2n
}
. (101)

Lemma 12 guarantees that the second term is at most exp(−cn). To control the first term,
we note that, conditional on z̃1, 〈z̃j , z̃1〉, j 6= 1 are independent Gaussian random variables
with variance ‖z̃1‖2. Therefore, conditional on z̃1, I(|〈z̃1, z̃j〉| ≥ τ

√
n/2) are independent

Bernoulli random variables with success probability h0 = 2Φ
(
−τ√n/(2‖z̃1‖)

)
, where Φ(·) is
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the Gaussian cumulative distribution function. It follows, by the Chernoff-Hoeffding bound
for Bernoulli random variables that

P
{1

p

∑
j 6=1

I(|〈z̃1, z̃j〉| ≥ τ
√
n/2) ≥ h

∣∣z̃1} ≤ exp
(
− pD(h‖h0)

)
, (102)

where D(a‖b) = a log(a/b) + (1− a) log[(1− a)/(1− b)]. Choosing h = 4Φ(−τ/(2
√

2)), and
conditional on ‖z̃1‖ ≤

√
2n, D(h‖h0) ≥ ch for a constant c, implying that

P
{1

p

∑
j 6=1

I(|〈z̃1, z̃j〉| ≥ τ
√
n/2) ≥ h; ‖z̃1‖ ≤

√
2n
}
≤ exp(−cph). (103)

By standard bounds h = 4Φ(−τ/2
√

2) ≤ 2 exp(−τ2/16) and, as τ ≤ √log p/2, h ≥ 1/
√
p,

we have

P
{1

p

∑
j 6=1

I(|〈z̃1, z̃j〉| ≥ τ
√
n/2) ≥ h; ‖z̃1‖ ≤

√
2n
}
≤ exp(−c√p). (104)

Combining this with Eq. (101) we now get:

P
{1

p

∑
j 6=1

I(|〈z̃1, z̃j〉| ≥ τ
√
n/2) ≥ h

}
≤ 2 exp(−cmin(n,

√
p)). (105)

A similar bound holds for i 6= 1 and the other conditions (85) and (86), whence we have
by the union bound that P{Gc2} ≤ p2 exp(−cmin(

√
p, n)). This completes the proof of the

claim (82).
The proof of the claim for 〈yS, ÑySc〉 is analogous, so we only sketch the points at which

it differs from that of Eq. (82). We use the same good set G2, as defined earlier. Computing
the gradient as for 〈yS, ÑyS〉 we obtain:

∇w̃`
〈yS, ÑySc〉 =

y`
n

∑
j∈S(`)

yjw̃j∂η
(〈w̃j , w̃`〉

n
;
τ√
n

)
. (106)

Here S(`) = Sc if ` ∈ S and S otherwise. Define the vector σ(`) ∈ Rp as

(σ(`))j =

{
y`yj∂η

(
〈w̃j ,w̃`〉

n ; τ√
n

)
if j ∈ S(`)

0 otherwise.
(107)

As before, we have that ‖∇w̃`
〈yS, ÑySc〉‖ = n−1‖Wσ(`)‖ ≤ n−1‖W‖‖σ(`)‖. Therefore,

summing over ` ∈ [p]:

‖∇W〈yS, ÑySc〉‖2 ≤
‖W‖
n2

∑
`∈[p]

‖σ(`)‖2 (108)

≤ ‖W‖
2

n2

∑
`∈[p]

∑
j∈S(`)

y2` y
2
j∂η

(〈w̃j , w̃`〉
n

;
τ√
n

)
(109)

=
2‖W‖2
n2

∑
`∈S

∑
j∈Sc

y2j y
2
`∂η

(〈w̃j , w̃`〉
n

;
τ√
n

)
(110)

≤ 2‖W‖2
n2

A

p
max
`∈[p]

∑
j 6=p

∂η
(〈w̃j , w̃`〉

n
;
τ√
n

)
. (111)
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Under the condition of G2, the gradient also satisfies, when evaluated at W = Z(t) =√
tZ +

√
1− tZ′:

‖∇Z(t)〈yS, ÑySc〉‖2 ≤
CA exp(−τ2/16)(n+ p)

n2
. (112)

The rest of the proof is then the same as before.

Given these lemmas, we can now establish Proposition 13.

Proof [Proof of Proposition 13] We use a variant of the ε-net argument of Lemma 20. To
bound the probability that ‖Ñ‖op is large, with Lemma 8, we obtain:

P
{
‖Ñ‖op ≥ ∆

}
≤ P

{
max
y∈T ε

p

|〈y, Ñy〉| ≥ ∆(1− 2ε)
}
. (113)

Let S = {i : |yi| ≤
√
A/p} for some A ≥ 1 to be chosen later. Then let y = yS + ySc

denote the projections of y onto supports S, Sc respectively. Since 〈y, Ñy〉 = 〈ySc , ÑySc〉+
〈yS, ÑyS〉+ 2〈yS, ÑySc〉 by triangle inequality and union bound:

P
{
‖Ñ‖op ≥ ∆

}
≤ P

{
max
y∈T ε

p

|〈ySc , ÑySc〉|+ |〈yS, ÑyS〉|+ 2|〈yS, ÑysSc〉| ≥ ∆(1− 2ε)
}

(114)

≤ P
{

max
y∈T ε

p

|〈ySc , ÑySc〉| ≥ ∆(1− 2ε)/4
}

+ P
{

max
y∈T ε

p

|〈yS, ÑyS〉| ≥ ∆(1− 2ε)/4
}

+ P
{

max
y∈T ε

p

|〈yS, ÑySc〉| ≥ ∆(1− 2ε)/4
}

(115)

≤ P
{

max
S′:|S′|≤p/A

‖PS′×S′(Ñ)‖ ≥ ∆(1− 2ε)/4
}

+ P
{

max
y∈T ε

p

|〈yS, ÑyS〉| ≥ ∆(1− 2ε)/4
}

+ P
{

max
y∈T ε

p

|〈yS, ÑySc〉| ≥ ∆(1− 2ε)/4
}
. (116)

With ε = 1/4, the first term is controlled by Lemma 20 while the final two are controlled
by Lemma 21. We choose ε = 1/4 in Eq. (116), and

∆ = ∆∗ ≡ C
√
p

n

(
1 +

p

n

)( logA

A
+A exp

(
− τ2

16

))
, (117)

for large enough C so that, using the bounds of Lemmas 20 and 21, we have:

P
{
Ñ ≥ ∆∗

}
≤ C(np)C exp

[
− cmin

(√
p, n, p

logA

A

)]
. (118)

This probability bound is o(1) providedA is not too large: we chooseA = 0.25
√
τ exp(τ2/16)�√

p which guarantees that the bound above is o(1) when n > C log p for some C large enough.
This concludes the proposition.
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6.2 Proof of Proposition 14

We decompose the empirical covariance matrix (53) as

PE(Σ̂) = Σ + ∆1 + ∆2 + ∆T
2 + PE

( 1

n
ZTZ− Ip

)
, (119)

∆1 ≡
r∑

q,q′=1

√
βqβ′q

( 1

n
〈uq,u′q〉 − 1q=q′

)
vqv

′T
q , (120)

∆2 ≡
r∑
q=1

√
βq

n
vq(Z

Tuq)
T
Q . (121)

Next notice that, for any x ∈ R, ∣∣η(x)− x
∣∣ ≤ τ√

n
. (122)

With a view to employing this inequality, we use Eq. (119) and the triangle inequality:

∥∥PE(η(Σ̂))−Σ
∥∥
op

=
∥∥∥PE(η(Σ̂)

)
− PE

(
Σ̂
)
−∆1 −∆2 −∆T

2 − PE
( 1

n
ZTZ− Ip

)∥∥∥
op

(123)

≤
∥∥PE(η(Σ̂)− Σ̂

)∥∥
op

+ ‖∆1‖op + 2‖∆2‖op +
∥∥∥PE( 1

n
ZTZ− Ip

)∥∥∥
op

(124)

≤ s0τ√
n

+ ‖∆1‖op + 2‖∆2‖op +
∥∥∥PE( 1

n
ZTZ− Ip

)∥∥∥
op
, (125)

where the last line follows by noticing that the first term is supported on E of size s0 × s0
and then using bias bound Eq. (122) entry-wise. We next bound each of the three terns on
the right hand side.

For the first term in Eq (125), note that with a change of basis to the orthonormal
set v1, . . .vr ∆1 is equivalent to an r × r matrix with entries Mqq′

√
βqβq′ , where Mqq′ =(

〈uq,u′q〉/n − 1q=q′
)
. Denote by B ∈ Rr×r the diagonal matrix with Bqq =

√
βq and by

U ∈ Rr×n, the matrix with columns u1,. . . ur. Then, we have, with high probability

‖∆1‖op = ‖BMB‖op (126)

≤ ‖B‖2op‖M‖op = β‖ 1

n
UTU− Ir×r

∥∥
op

(127)

≤ Cβ
√
r

n
. (128)

The last inequality follows from the Bai-Yin law on eigenvalues of Wishart matrices (see
Vershynin, 2012, Corollary 5.35).

Consider the second term in Eq (125). By orthonormality of v1, . . . ,vr, the matrix ∆2

is orthogonally equivalent to BZT
QU/n, where we recall that ZQ denotes the submatrix of

Z formed by the columns in Q. Denoting by PU the orthogonal projector onto the column
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space of U, we then have, with high probability,

‖∆2‖op ≤
1

n
‖B‖op‖ZT

QPUU‖op (129)

≤ β

n
‖PUZQ‖op‖U‖op (130)

≤ Cβ

n

(√
s0 +

√
r
)(√

n+
√
r
)
≤ Cβ

√
s0
n
. (131)

Here the penultimate inequality follows by Lemma 11 noting that, by invariance under
rotations (and since PU project onto a random subspace of r dimensions independent of
Z), ‖PUZQ‖op is distributed as the norm of a matrix with i.i.d. standard normal entries,
with dimensions |Q| × r, |Q| ≤ s0.

Finally, for the third term of Eq. (125) we use the Bai-Yin law of Wishart matrices (see
Vershynin, 2012, Corollary 5.35) to obtain, with high probability:∥∥∥PE( 1

n
ZTZ− Ip

)∥∥∥
op

=
∥∥∥ 1

n
ZT
QZQ − Is0

∥∥∥
op

(132)

≤ C
√
s0
n
, (133)

Finally, substituting the above bounds in Eq. (125), we get

∥∥PE(η(Σ̂))−Σ
∥∥
op

=
τs0√
n

+ C(1 + β)

√
s0
n
, (134)

which implies the proposition.

6.3 Proof of Proposition 15

Note that C = C̄ + C̄T where C̄ = PQ×Qc

(
η(Σ̂)

)
. It is therefore sufficient to control C̄,

and then use triangle inequality. The proof is similar to that of Proposition 13. We let
U ∈ Rn×r denote the matrix with columns u1, u2,. . . ur, and introduce the set

U ≡
{

U ∈ Rn×r :
∥∥∥ 1

n
UTU− Ir×r

∥∥∥
op
≤ 5

√
r

n

}
. (135)

We then have

P
(
‖C̄‖op ≥ ∆

)
≤ sup

U∈U
P
(
‖C̄‖op ≥ ∆

∣∣U)+ P
(
U 6∈ U

)
. (136)

Notice that, by the Bai-Yin law on eigenvalues of Wishart matrices (see Vershynin, 2012,
Corollary 5.35), limn→∞ P(U ∈ U) = 1 (throughout r < cn for c a small constant). It is
therefore sufficient to show supU∈U P

(
‖C̄‖op ≥ ∆

∣∣U)→ 0 for ∆ as in the statement of the
theorem.

In order to lighten the notation, we will write P̃( · ) ≡ P( · |U) and bound the above
probability uniformly over U ∈ U . (In other words P̃ denotes expectation over Z with U
fixed). We first control the norms of small submatrices of C̄, following which we control the
full matrix.
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Lemma 22 Fix an A ∈ [1, p1/3], and let L =
√

((β ∨ 1)n+ p)/n2. Then, there exists an
absolute constant C > 0 such that, for any ∆ > 0:

P̃
{

max
Qc⊇S:|S|≤p/A

‖PQ×S
(
η(Σ̂)

)
‖op ≥ ∆

}
≤ C exp

(
Cs0 +

p log(CA)

A
− ∆2

CL2

)
+ L−2(np)C exp(−n/C). (137)

Proof Let, as before, T εp (S) denote the ε-net of unit vectors supported on S ⊂ Qc of size
at most p/A and let T = ∪ST εp (S). Then, by Lemma 8, with ε = 1/4:

P̃
{

max
S⊆Qc|S|≤p/A

∥∥PQ×S(η(Σ̂)
)∥∥
op
≥ ∆

}
≤ P̃

{
max

y∈T,w∈T ε
s0

〈w, C̄y〉 ≥ ∆(1− 2ε)/2
}
. (138)

It now suffices to control the right hand side via Lemma 9. We first compute the gradients
with respect to z̃` as before:

∇z̃`〈w, C̄y〉 =

{
w`
n

∑
i∈Qc yi∂η(〈x̃`, z̃i〉/n)z̃j when ` ∈ Q, .

y`
n

∑
i∈Qwi∂η(〈z̃`, x̃i〉/n)x̃i when ` ∈ Qc,

(139)

Therefore, arguing as in proof of Proposition 13 (see Lemma 20):

‖∇Z〈w, C̄y〉‖2F =
∑
`

‖∇z̃`〈w, C̄y〉‖2 ≤ ‖Z‖
2 + ‖XQ‖2
n2

. (140)

Let B ∈ Rr×r be the diagonal matrix with entries Bq,q =
√
βq, and V ∈ Rp×r be the matrix

with columns v1, . . . ,vr. We then have X = UBVT + Z, whence, recalling U ∈ U , and
r ≤ c n with c small enough

‖XQ‖ ≤ ‖X‖ ≤ ‖UBVT‖+ ‖Z‖ (141)

≤
√
β‖U‖+ ‖Z‖ ≤ 5

√
βn+ ‖Z‖ . (142)

Consider the good set G4 of pairs
(
Z,Z′

)
satisfying:

max(‖Z‖, ‖Z′‖) ≤
√

2n+
√

2p , (143)

max(‖ZQ‖, ‖Z′Q‖) ≤
√

2n+
√

2k . (144)

For
(
(Z,Z′

)
∈ G4, and t ∈ [0, 1], define Z(t) =

√
tZ +

√
1− tZ′. Now Using Eqs. (140) and

(142, the gradient ∇〈w, C̄y〉 evaluated at Z(t) satisfies:

‖∇〈w, C̄y〉‖2 ≤ 3‖Z(t)‖2 + 10βn

n2
(145)

≤ C (n+ p) + βn

n2
(146)

≤ C (β ∨ 1)n+ p

n2
. (147)
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Now applying Corollary 10, for L = C
√

((β ∨ 1)n+ p)/n2:

P̃
{

max
S⊆Qc|S|≤p/A

∥∥PQ×S(η(Σ̂)
)∥∥
op
≥ ∆

}
≤ C|T | exp

(
− ∆2

CL2

)
+ CL−2Ẽ{max

w,y
〈w, C̄y〉4}1/4P{G4}1/2. (148)

Let ε = 1/4, observing that T ⊆ ∪S:|S|≤p/AT εp (S), we have the bound (using Lemma 7 and
Stirling’s approximation):

|T | ≤ exp(Cs0 +A−1p logCA), (149)

for some absolute C. Now, as in the proof of Proposition 13, |〈w, C̄y〉| ≤ ‖C‖ ≤ ‖C‖F ≤
‖Σ̂‖F . From this it follows that Ẽ

{
maxw,y〈w, C̄y〉4

}
≤ (np)C for some C. Finally

P{Gc4} ≤ exp(−cn) using Lemmas 11, 12 and the union bound. Combining these bounds in
Eq. (148) yields the lemma.

Now we prove a similar lemma when y has entries that are “spread out”.

Lemma 23 Fix an A ∈ [1, p1/3], and a unit vector y ∈ RQc
let S = {i : |yi| ≤

√
A/p, and

yS denote the projection of y on the set of indices S. Then there exists a numerical constant
C such that, assuming τ ≤ √log p/2, we have

P̃
{

max
w∈T ε

Q,y∈T
ε
Qc

〈w, C̄yS〉 ≥ ∆
}
≤ C exp

(
− ∆2

CL2
∗

+ Cp
)

+ (np)C exp
(
− cmin(

√
p, n)

)
,

(150)

where L∗ =
√
A exp(−τ2/C(β ∨ 1))(n(β ∨ 1) + p)/n2.

Proof For simplicity of notation, it is convenient to introduce the vector y′ = yS. Through-
out the proof, we will use that ‖y′‖ ≤ 1 and ‖y′‖∞ ≤

√
A/p. We compute the gradients as

follows:

∇z̃`〈w, C̄y′〉 =

{
w`
n

∑
i∈Qc y′i∂η(〈x̃`, z̃i〉/n)z̃j when ` ∈ Q

y′`
n

∑
i∈Qwi∂η(〈z̃`, x̃i〉/n)x̃i when ` ∈ Qc .

(151)

Therefore we have

∑
`∈Q
‖∇z̃`〈w, C̄y′〉‖2 ≤

∑
`∈Q

w2
`

n2
‖Z‖2

∑
i∈Qc

(
y′i∂η(x̃`, z̃`)

)2
(152)

≤ A‖Z‖2
pn2

max
`∈Q

∑
i∈Qc

∂η(〈x̃`, z̃i〉/n), (153)
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where we used the fact that |y′i| ≤
√
A/p and that ∂η(·) ∈ {0, 1}. Similarly, for ` ∈ Qc:∑

`∈Qc

‖∇z̃`〈w, C̄y′〉‖2 ≤
∑
`∈Qc

(y′i)
2‖XQ‖2
n2

∑
i∈Q

(
wi∂η(〈z̃`, x̃i〉/n)

)2
(154)

=
∑
i∈Q

w2
i ‖XQ‖2
n2

∑
`∈Qc

(y′`)
2∂η(〈z̃`, x̃i〉/n)2 (155)

≤ A‖XQ‖2
pn2

max
`∈Q

∑
i∈Qc

∂η(〈z̃i, x̃`〉/n). (156)

Combining the bounds in Eqs.(153), (156), we obtain

‖∇Z〈w, C̄y′〉‖2F =
∑
`∈[p]

‖∇z̃`〈w, C̄y′〉‖2 (157)

≤ 2A

pn2
(‖XQ‖2 + ‖Z‖2) max

i∈Q

∑
j∈Qc

∂η(〈x̃i, z̃j〉/n). (158)

With K = Cβ ∨ 1, we define the good set G5 of pairs (Z,Z′) satisfying

‖Z‖, ‖Z′‖ ≤
√

2n+
√

2p (159)

∀i ∈ Q,
1

p

∑
j∈Qc

I(〈x̃i, z̃j〉 ≥ τ
√
n/2) ≤ 2 exp(−τ2/K) (160)

∀i ∈ Q,
1

p

∑
j∈Qc

I(〈x̃′i, z̃′j〉 ≥ τ
√
n/2) ≤ 2 exp(−τ2/K) (161)

∀i ∈ Q,
1

p

∑
j∈Qc

I(〈x̃′i, z̃j〉 ≥ τ
√
n/4) ≤ 2 exp(−τ2/K) (162)

∀i ∈ Q,
1

p

∑
j∈Qc

I(〈x̃i, z̃′j〉 ≥ τ
√
n/4) ≤ 2 exp(−τ2/K). (163)

Define Z(t) =
√
tZ +

√
1− tZ′ with (Z,Z′) ∈ G5. By Eq. (158) the gradient evaluated at

Z(t) is bounded by

‖∇〈w, C̄y〉‖2 ≤ 2A

pn2
(‖XQ(t)‖2 + ‖Z(t)‖2) max

i∈Q

∑
j∈Qc

∂η(〈x̃(t)i), z̃(t)j〉/n) (164)

≤ CA

pn2
((β ∨ 1)n+ p) max

i∈Q

∑
j∈Qc

∂η(〈x̃(t)i), z̃(t)j〉/n) , (165)

where we bounded ‖XQ(t)‖ as in Eq. (142), and used ‖Z(t)‖op ≤ 2(
√
n+
√
p), which follows

from Eq. (159) and triangle inequality. Furthermore, as 〈x̃(t)i, z̃(t)j〉 = t〈x̃i, z̃j〉 + (1 −
t)〈x̃′i, z̃′j〉+

√
t(1− t)(〈x̃i, z̃′j〉+ 〈x̃′i, z̃j〉), we have that:

∂η(〈x̃(t)i), z̃(t)j〉/n) = I(|〈x̃(t)i, z̃(t)j〉| ≥ τ
√
n) (166)

≤ I(|〈x̃i, z̃j〉| ≥ τ
√
n/2) + I(|〈x̃′i, z̃′j〉| ≥ τ

√
n/2)

+ I(|〈x̃′i, z̃j〉| ≥ τ
√
n/4) + I(|〈x̃′i, z̃j〉| ≥ τ

√
n/4). (167)
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Hence on the good set G5, we have:

max
i∈Q

∑
j∈Qc

∂η(〈x̃(t)i), z̃(t)j〉/n) ≤ 4p e−τ
2/K . (168)

Therefore the gradient satisfies, on the good set:

‖∇Z〈w, C̄y〉‖2 ≤ C A

n2
((β ∨ 1)n+ p) e−τ

2/K = CL2
∗ . (169)

Hence, by Lemma 9, we obtain:

P̃
{

max
w∈T ε

Q,y∈T ε
p

〈w, C̄y′〉 ≥ ∆
}
≤C|T εQ||T εp | exp

(
− ∆2

CL2
∗

)
(170)

+ CL−2∗ Ẽ{max〈w, C̄y′〉4}1/4P{Gc5}1/2 .

By Lemma 7, keeping ε = 1/4 we have that the first term is at most C exp(Cp+exp(−∆2/CL2
∗)).

For the second term, we have |〈w, C̄y〉| ≤ ‖C̄‖ ≤ ‖C̄‖F ≤ ‖Σ̂‖F . Since E{‖Σ̂‖4F } ≤ (np)C ,
we have that E{maxw,y〈w, C̄y〉4}1/4 ≤ (np)C . Also as τ <

√
log p, L∗ ≥ (np)−C , implying

that the second term is bounded above by (np)CP{Gc5}1/2. Therefore:

P̃
{

max
w∈T ε

Q,y∈T ε
p

〈w, C̄y′〉 ≥ ∆
}
≤ C exp

(
Cp− ∆2

CL2
∗

)
+ (np)CP{Gc5}1/2 . (171)

It remains to control the probability of the bad set Gc5. For this, we control the probability
of violating any one condition among (159), (160), (161), (162) and (163) defining G5 and
then use the union bound. By Lemmas 11, condition (159) hold with probability 1 −
C exp(−cn). The argument controlling the probability for conditions (160), (161), (162)
and (163) to hold are essentially the same, so we restrict ourselves to condition (160)
keeping i = 1 ∈ Q, without loss of generality. Conditional on x̃1, 〈x̃1, z̃j〉 for j ∈ Qc are
independent N(0, ‖x̃1‖2) variables. Therefore, conditional on x̃1, I(|〈x̃1, z̃j〉| ≥ τ

√
n/2) are

independent Bernoulli random variables with success probability Φ{−τ√n/2‖x̃1‖}. Define
h1 to be the success probability, i.e. h1 = Φ(−τ√n/(2‖x̃1‖)).

Since K = C(β ∨ 1) we can enlarge C to a large absolute constant. Letting V ∈ Rn×r
be the matrix with columns v1, . . . ,vr, and B the diagonal matrix with Bq,q =

√
βq, we

have, with probability at least 1− exp(−n/C),

‖x̃1‖ ≤ ‖UBVTe1‖+ ‖z̃1‖ ≤ ‖B‖‖U‖+ ‖z̃1‖ ≤
√
Kn

4
, (172)

where the last equality holds since U ∈ U and by tail bounds on chi-squared random
variables. Further

P̃
{ ∑
j∈Qc

I(|〈x̃1, z̃j〉 ≥ τ
√
n/2) ≥ |Qc|h

}
≤ P̃{‖x̃1‖2 ≥ Kn}

+ sup
‖x̃1‖2≤Kn

P̃
{ ∑
j∈Qc

I(|〈x̃1, z̃j〉 ≥ τ
√
n/2) ≥ |Qc|h

∣∣∣ x̃1

}
.

(173)
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By the above argument, the first term is at most exp(−n/C) and we turn to the second
term. By the Chernoff bound

P̃
{ ∑
j∈Qc

I(|〈x̃1, z̃j〉 ≥ τ
√
n/2) ≥ |Qc|h

∣∣x̃1

}
≤ exp

(
− |Qc|D(h||h1)

)
, , (174)

with h1 < exp(−τ2/K) when ‖x̃1‖2 ≤ Kn/4. Choosing h = 2 exp(−τ2/K) implies that
h1 ≤ h/2 when and, thereby, that D(h‖h1) ≥ h/C. Further since τ <

√
log p/2, h ≥ 1/

√
p.

This implies that

exp(−|Qc|D(h− h1‖h1)) = exp(−(p− s0)h/C) ≥ exp(−√p/C). (175)

Combining this with Eq. (173) we have that P{Gc} ≤ Cp2 exp(−min(n,
√
p)/C) for some

absolute C. Plugging this in Eq. (171) yields the lemma.

We are now ready to prove Proposition 15. Indeed, as in Proposition 13, for any unit
vector y ∈ RQc

, let S = {i : |yi| ≥
√
A/p} and yS,ySc denote the projections on the indices

in S,Sc respectively.

P̃
{
‖C̄1‖ ≥ ∆} ≤ P̃

{
max

w∈T ε
Q,y∈T

ε
Qc

|〈w, C̄y〉| ≥ ∆(1− 2ε)
}

(176)

≤ P̃
{

max
w∈T ε

Q,y∈T
ε
Qc

|〈w, C̄yS〉| ≥ ∆(1− 2ε)/2
}

+ P
{

max
w∈T ε

Q,y∈T
ε
Qc

|〈w, C̄ySc〉| ≥ ∆(1− 2ε)/2
}
. (177)

As before, we will let ε = 1/4. The first term is controlled via Lemma 22, while the second
is controlled by Lemma 23. We keep ∆ = ∆∗ where

∆∗ = C
(
L∗
√
p+ L

√
p logA

A

)
. (178)

so that, via the bounds of Lemmas 22, 23 and that s20 ≤ p:

P{‖C1‖ ≥ ∆∗} ≤ C exp
(
− cp logA

A

)
+ L−2∗ (np)C exp

(
− cmin(

√
p, n)

)
. (179)

We now set A =
(
(τ2/K) exp(τ2/K)

)1/2
with K = C(β ∨ 1) for a suitable constant C and,

since τ ≤ √log p/2, we get that A ≤ p1/3. Furthermore, it is straightforward to see that
L ≥ (np)−C , and this implies that

P{‖C1‖ ≥ ∆∗} ≤ (np)C exp(−cmin(
√
p, n)) = o(1). (180)

With this setting of A, we get the form of ∆∗ below, as required for the proposition.

∆∗ ≤ C e−cτ
2/K

√
τ2 ∨ 1

K
· pn(β ∨ 1) + p2

n2
(181)

≤ C (τ ∨ 1)e−cτ
2/K

√
p

n
∨ p
n
. (182)
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6.4 Proof of Proposition 16

Since D is a diagonal matrix, its spectral norm is bounded by the maximum of its entries.
This is easily done as, for every i ∈ Qc:

|(D)ii| =
∣∣∣∣η(‖z̃i‖2n

− 1;
τ√
n

)∣∣∣∣ (183)

≤
∣∣∣‖z̃i‖2 − n

n

∣∣∣ . (184)

By the Chernoff bound for χ2-squared random variables as in Lemma 12 followed by the
union bound, with probability 1− o(1):

max
i

∣∣∣‖z̃i‖2
n
− 1
∣∣∣ ≤ C√ log p

n
(185)

for some absolute C. Here we used the fact that (log p)/n < 1.

6.5 Proof of Proposition 17

It suffices to show that with probability 1− o(1)

max
i,j∈F∪G

|Σ̂ij | ≤
τ√
n

= C0(β ∨ 1)

√
log p

n
. (186)

This is a standard argument (see Bickel and Levina, 2008b, Lemma A.3) where (following
the dependence on β) it suffices to take τ ≥ C0(β ∨ 1)

√
log p for C0 a sufficiently large

absolute constant. We note here that the same can also be proved via the conditioning
technique applied in the proofs of Propositions 13 and 15.

7. Proof of Theorems 3

Throughout this section, to lighten notation, we drop the prime from Σ̂′ and X′ while
keeping in mind that these are independent from v̂1, . . . , v̂r. We further write X = UBVT+
Z, where U ∈ Rn×r is the matrix with columns u1, . . . ,ur, B is diagonal with Bii =

√
βi

and V ∈ Rp×r has columns v1, . . . ,vr.
Define the event

U ≡
{

U ∈ Rn×r :
∥∥∥ 1

n
UTU− Ir×r

∥∥∥
op
≤ 3

√
r

n

}
. (187)

By the Bai-Yin law on eigenvalues of Wishart matrices (see Vershynin, 2012), limn→∞ P(U ∈
U) = 1. In the rest of the proof, we will therefore assume U ∈ U fixed, and denote by
P̃( · ) = P( · |U) the expectation conditional on U. In other words, P̃( · ) denotes expectation
with respect to Z.

Note that

Σ̂ =
1

n
VBUTUBVT +

1

n
ZTUBVT +

1

n
VBUTZ +

1

n
ZTZ− I . (188)
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We then have, for q ∈ {1, . . . , r} and i ∈ {1, . . . , p},∣∣(Σ̂v̂q)i − βq〈vq, v̂q〉 vq,i
∣∣ ≤ T (1)

i,q + T
(2)
i,q + T

(3)
i,q , (189)

T
(1)
i,q ≡

∣∣∣ 1
n
〈ei,VBUTUBVTv̂q〉 − βq〈vq, v̂q〉vq,i

∣∣∣ , (190)

T
(2)
i,q ≡

1

n

∣∣∣〈Z, [(UBVTei)v̂
T
q + (UBVTv̂q)e

T
i

]
〉
∣∣∣ , (191)

T
(3)
i,q ≡

∣∣∣〈ei,( 1

n
ZTZ− I

)
v̂q〉
∣∣∣ . (192)

We next bound, with high probability, maxi,q T
(a)
i,q for a ∈ {1, 2, 3}. Throughout we let

ε ≡ maxq∈[r] ‖v̂q − vq‖.
Considering the first term, we have

T
(1)
i,q ≤

∣∣∣〈ei,VB
( 1

n
UTU− I

)
BVTv̂q〉

∣∣∣+
∣∣∣〈ei,VB2VTv̂q〉 − βq〈vq, v̂q〉vq,i

∣∣∣ (193)

≤ 2β

√
r

n
+ βε

√
r max
q′∈[r]\q

|vq′,i| , (194)

where in the last inequality we used
∑

q′∈[r]\q〈vq′ , v̂q〉2 ≤ 1− 〈vq, v̂q〉2 ≤ ε2/2.

Consider next the second term. Since Zij ∼iid N(0, 1), it follows that T
(2)
i,q = |Wi,q|, for

Wi,q ∼ N(0, σ2i,q) a Gaussian random variable with variance

σ2i,q =
1

n2
∥∥(UBVTei)v̂

T
q + (UBVTv̂q)e

T
i

∥∥2
F

(195)

≤ 2

n2

{
‖UBVTei‖2 + ‖UBVTv̂q‖2

}
(196)

≤ 4

n2
‖UBVT‖2op (197)

≤ 4

n2
‖U‖2op‖B‖2op ≤

8β2

n
. (198)

By union bound over i ∈ [p], q ∈ [r] we obtain

max
i∈[p],q∈[r]

T
(2)
i,q ≤ 8β

√
log p

n
. (199)

Finally, consider the last term. By rotational invariance of Z, the distribution of T
(3)
i,q

only depends on the angle between ei and v̂q. Calling this angle ϑ, we have

T
(3)
i,q

d
=
∣∣∣〈e1,( 1

n
ZTZ− I

)
e1〉 cosϑ+ 〈e1,

( 1

n
ZTZ− I

)
e2〉 sinϑ

∣∣∣ (200)

≤
∣∣∣ 1
n
‖z̃1‖2 − 1

∣∣∣+
∣∣∣ 1
n
〈z̃1, z̃2〉

∣∣∣ . (201)

Both of these terms have Bernstein-type tail bonds, whence

P̃
(
T
(3)
i,q ≥

t√
n

)
≤ 2 exp

{
− cmin(t

√
n, t2)

}
. (202)
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Using t = C0
√

log p, and recalling that n ≥ C log p for C a large constant, we obtain

P̃
(
T
(3)
i,q ≥ C0

√
(log p)/n

)
≤ 2 p−10. Hence by union bound

max
i∈[p],q∈[r]

T
(3)
i,q ≤ C0

√
log p

n
. (203)

By putting together Eqs. (194), (199), (203), and using assumption A2, we get

∣∣(Σ̂v̂q)i − βq〈vq, v̂q〉 vq,i
∣∣ ≤ Cβ√ r

n
+ C(β ∨ 1)

√
log p

n
+ βεγ

√
r |vq,i| I(i ∈ Q) . (204)

Let Q̂q = {i ∈ [p] : |(Σ̂′v̂q)i| ≥ ρ}. We claim that the above implies that, with high

probability, Qq ⊆ Q̂q ⊆ Q for all q.

For i 6∈ Q, we have

∣∣(Σ̂v̂q)i
∣∣ ≤ Cβ√ r

n
+ C(β ∨ 1)

√
log p

n
(205)

<
βminθ

2
√
s0
, (206)

where the last inequality follows from Eq. (14).

On the other hand, By Theorem 2 and using the assumption (14), we can guarantee

ε ≤ 1

8

( βmin

βγ
√
r
∧ 1

)
. (207)

Hence for i ∈ Qq, and considering –to be definite– vq,i > 0, we get

(Σ̂v̂q)i ≥ βq〈vq, v̂q〉 vq,i − Cβ
√
r

n
− C(β ∨ 1)

√
log p

n
− βεγ√r |vq,i| (208)

≥ βmin

(
1− ε− β

βmin
εγ
√
r
)
vq,i − Cβ

√
r

n
− C(β ∨ 1)

√
log p

n
(209)

≥ 3βminθ

4
√
s0
− Cβ

√
r

n
− C(β ∨ 1)

√
log p

n
(210)

>
βminθ

2
√
s0
. (211)

where, in the first inequality, we used 〈vq, v̂q〉 ≥ 1− ε.
This concludes the proof. Keeping track of the dependence on θ, γ, β, βmin, we get

that the following conditions are sufficient for the theorem’s conclusion to hold (with C a
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suitable numerical constant):

n ≥ C (β2 ∨ 1)

β2minθ
2
s0 log p , (212)

n ≥ C β2

β2minθ
2
rs0 , (213)

n ≥ C
{
β4 ∨ β2
β2min

γ2
}
r s20 log

p

s20
, (214)

n ≥ C (β2 ∨ 1)

β2min

s20 log
p

s20
. (215)

All of these conditions are implied by the assumptions of Theorem 3, namely Eq. (14). In
particular, this is shown by using the fact that s0 log p ≤ s20 log(p/s20) for s0 ≤ √p.
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