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Abstract

Parallel processing frameworks (Dean and Ghemawat, 2004) accelerate jobs by breaking
them into tasks that execute in parallel. However, slow running or straggler tasks can run
up to 8 times slower than the median task on a production cluster (Ananthanarayanan
et al., 2013), leading to delayed job completion and inefficient use of resources. Existing
straggler mitigation techniques wait to detect stragglers and then relaunch them, delaying
straggler detection and wasting resources. We built Wrangler (Yadwadkar et al., 2014), a
system that predicts when stragglers are going to occur and makes scheduling decisions to
avoid such situations. To capture node and workload variability, Wrangler built separate
models for every node and workload, requiring the time-consuming collection of substantial
training data. In this paper, we propose multi-task learning formulations that share infor-
mation between the various models, allowing us to use less training data and bring training
time down from 4 hours to 40 minutes. Unlike naive multi-task learning formulations,
our formulations capture the shared structure in our data, improving generalization perfor-
mance on limited data. Finally, we extend these formulations using group sparsity inducing
norms to automatically discover the similarities between tasks and improve interpretability.

1. Introduction

Distributed processing frameworks, such as (Dean and Ghemawat, 2004; Isard et al., 2007;
Li, 2009), split a data intensive computation job into multiple smaller tasks, which are then
executed in parallel on commodity clusters to achieve faster job completion. A natural con-
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sequence of such a parallel execution model is that the slow-running tasks, commonly called
stragglers, potentially delay overall job completion. In a recent study, Ananthanarayanan
et al. (2013) show that straggler tasks are on an average 6 to 8 times slower than the median
task of the corresponding job, despite existing mitigation techniques. Suri and Vassilvitskii
(2011) describe the intensity of straggler problem as the “curse of the last reducer”, causing
the last 1% of the computation to take much longer to finish execution. Mitigating strag-
glers thus remains an important problem. In this paper, our focus is on machine learning
approaches for predicting and avoiding these stragglers.

Existing approaches to straggler mitigation, whether reactive or proactive, fall short in
multiple ways. Commonly used reactive approaches such as speculative execution (Dean
and Ghemawat, 2004), act after the tasks have already slowed down. Proactive approaches
that launch redundant copies of a task in a hope that at least one of them will finish in a
timely manner (Ananthanarayanan et al., 2013), waste resources. It is hard to, a priori,
identify which factors, and configurations lead to stragglers, motivating a data driven ma-
chine learning approach to straggler prediction. Bortnikov et al. (2012) explored predictive
models for predicting slowdown for tasks. But they learn a single model for a cluster of
nodes, ignoring the variability caused due to the heterogeneity across nodes and across jobs
from different workloads. Moreover, they built models but did not show if these models
could indeed improve job completion times, which is what matters ultimately. Gupta et al.
(2013) explored learning based job scheduling by matching node capabilities to job require-
ments. However, their approach is not designed to deal with stragglers effectively because
it does not model the time-varying state of the nodes (for instance, how busy they are).
Moreover, the effectiveness of these methods in reducing job-completion times in real world
clusters hasn’t been shown. To this end, we built Wrangler (Yadwadkar et al., 2014), a
system that builds predictive models of straggler behavior and incorporates this model in
the scheduler, improving the 99" percentile job completion time by up to 61% as com-
pared to speculative execution for real world production level workloads! from Facebook
and Cloudera’s customers.

Proactive model based approaches including Wrangler, have previously treated each
workload and even compute node as a separate straggler estimation task with independent
models. The decision to model each workload and node independently is motivated by
the observation that the resource contention patterns that cause stragglers can vary from
node to node and workload to workload. For a detailed analysis about causes of stragglers
across nodes and workloads, see Section 4.2.2. of Wrangler, Yadwadkar et al. (2014). To
address such heterogeneity in the nodes and changing workload patterns, training sepa-
rate models for each workload being run on each node, is considered necessary. However,
such independent models pose two critical challenges: (1) each new node and workload re-
quires new training data which can take hours to collect, delaying the application of model
based scheduling, and (2) clusters with many nodes may only have limited data for a given
workload on each node leading to lower quality models.

These shortcomings can be addressed if each classifier is able to leverage information
gleaned at other nodes and from other workloads. For instance, when there is not enough

1. Clusters are used for different purposes, and statistics such as the kinds of jobs submitted, their resource
requirements and the frequency at which they are submitted vary depending upon the usage. We call
one such distribution of jobs a workload. Section 3.2 explains the notion of workloads in further detail.
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data at a node for a workload, we can gain from the data collected at that node while
it was executing other workloads, or from other nodes running the same workload. Such
information sharing falls in the ambit of multi-task learning (MTL), where the learner is
embedded in an environment of related tasks, and the learner’s aim is to leverage similarities
between the tasks to improve performance of all tasks.

In this paper, we propose an MTL formulation for learning predictors that are more
accurate and generalize better than existing straggler predicting models. Basic MTL for-
mulations often assume only limited correlation structure between learning tasks. However,
our application has an additional overlapping group structure: models built on the same
node for different workloads can be grouped together, as can be the models correspond-
ing to the same workload running on different nodes. We propose a new formulation that
leverages this overlapping group structure, and show that doing so significantly reduces the
number of parameters and improves generalization to tasks with very little data.

In applications such as ours, high accuracy is not the only objective: we also want to
be able to gain some insight into what is causing these stragglers. Such insight can aid in
debugging root causes of stragglers and system performance degradation. Automatically
learned classifiers can be opaque and hard to interpret. To this end, we propose group
sparsity inducing mixed-norm regularization on top of our basic MTL formulation to auto-
matically reveal the group structure that exists in the data, and hopefully provide insights
into how straggler behavior is related across nodes and workloads. We also explore sparsity-
inducing formulations based on feature selection that attempt to reveal the characteristics
of straggler behavior.

For our experimental evaluation, we use a collection of real-world workloads from Face-
book and Cloudera’s customers. We evaluate not only the prediction accuracy but also the
improvement in job completion times, which is the metric that directly impacts the end user.
We show that our formulation to predict stragglers allows us to reduce job completion times
by up to 59% over the previous state-of-the-art learning base system, Wrangler (Yadwadkar
et al. (2014)). This large reduction arises from a 7 point increase in prediction accuracy.
Further, we can get equal or better accuracy than Wrangler (Yadwadkar et al. (2014)) using
a sixth of the training data, thus bringing the training time down from 4 hours to about
40 minutes. We also provide empirical evidence that compared to naive MTL formulations,
our formulation indeed generalizes to new tasks, i.e, it is significantly better at predicting
straggler behavior for nodes for which we have not collected enough data.

Finally, while our initial motivation and experimental validation focus on the straggler
avoidance problem, our learning formulations are general and can be applied to other sys-
tems that train node or workload dependent classifiers (Gupta et al., 2013; Delimitrou and
Kozyrakis, 2014). For instance, ThroughputScheduler (Gupta et al., 2013) uses such clas-
sifiers to allot resources to tasks, and can benefit from such multitask reasoning. We leave
these extensions to future work.

To summarize, our key contributions are:

1. An MTL formulation of the straggler estimation problem that allows us to use less
data and reduce parameters, improving generalization (Section 4.1).
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2. A mixed-norm group sparsity inducing formulation, that automatically detects group
structure (Section 4.3) facilitating interpretability.

3. An efficient optimization technique based on a reduction to the standard SVM (Cortes
and Vapnik (1995)) formulation (Section 4.2).

4. A comprehensive evaluation as part of a complete system for predicting and avoiding
stragglers in real world production cluster traces (Section 5). We show that, compared
to existing approaches, our formulations

(a) avoid stragglers better with 7% improved prediction accuracy, improving job
completion times significantly with up to 57.8% improvement in the 99"
centile, and reducing net resource usage by up to 40%, and

per-

(b) can work even with a sixth of the training data and thus a much shorter training
period, reducing the training data collection time significantly from 4 hours to
40 minutes.

In what follows, we first give some background on stragglers in Section 2. We then
describe Wrangler and discuss its shortcomings in Section 3. In Section 4, we describe our
multi-task learning formulations. In Section 5, we empirically evaluate our formulations on
real world production level traces from Facebook and Cloudera’s customers. We end with
a discussion of related work.

2. Background and Motivation

The growing popularity of Internet-based applications, in addition to reduced costs of stor-
age media, has resulted in generation of data at an unprecedented scale. Analytics on such
huge datasets has become a driving factor for business. Parallel processing on commodity
clusters has emerged as the de-facto way of dealing with the scale and complexity of such
data-intensive applications. Dean and Ghemawat (2004) originally proposed the MapRe-
duce framework at Google to process enormous amounts of data. MapReduce is highly
scalable to large clusters of inexpensive commodity computers. Hadoop (White, 2009), an
open source implementation of MapReduce, has been widely adopted by industry over the
last decade.

A data intensive application is submitted to a cluster of commodity computers as a
MapReduce job. To accelerate completion, MapReduce divides a job into multiple tasks. A
cluster scheduler assigns these to machines (nodes), where they are executed in parallel. A
job finishes when all its tasks have finished execution. A key benefit of such frameworks
is that they automatically handle failures (which are more likely to occur on a cluster of
commodity computers) without needing extra efforts from the programmer. Two basic
modes of failures are the failure of a node and the failure of a task. If a node crashes,
MapReduce re-runs all the tasks it was executing on a different node. If a task fails,
MapReduce automatically re-launches it.

However, a tricky situation arises when a node is available, but is performing poorly.
This causes the tasks scheduled on that node to execute slower than other tasks of the same
job scheduled on other nodes in the cluster. Since a job finishes execution only when all its
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tasks have finished execution, such slow-running tasks, called stragglers, extend the job’s
completion time. This, in turn, leads to increased user costs.

Stragglers abound in the real world. According to Ananthanarayanan et al. (2013), if
stragglers did not exist in real-world production clusters, the average job completion times
would have been improved by 47%, 29% and 36% in the Facebook, Bing and Yahoo traces
respectively. We observed that 22-28% of the total tasks are stragglers in a replay? of
Facebook and Cloudera’s customers’ Hadoop production cluster traces. Thus, stragglers
are a major hurdle in achieving faster job completions.

It is challenging to deal with stragglers (Dean and Ghemawat, 2004; Zaharia et al., 2008;
Ananthanarayanan et al., 2010). Dean and Ghemawat (2004) mentioned that stragglers
could arise due to various reasons, such as competition for resources, problematic hardware,
and mis-configurations.  Ananthanarayanan et al. (2010) report that consistently slow
nodes are rarely the reason behind stragglers; the majority are caused by transient node
behavior. The reason is simple: cluster schedulers assign multiple tasks, belonging to
the same or different jobs, to be executed simultaneously on a node. Depending on the
node’s characteristics and current load, as well as the characteristics of the workloads, these
jobs may result in counterproductive resource contention patterns. Moreover, this gives
rise to dynamically changing task execution environments, causing large variations in task
execution times. We cannot simply look at the initial configuration of the node and decide
if it will cause stragglers. We must track the continuously changing state of the node (its
memory usage, cpu usage etc.) and use that to predict straggler behavior.

Above and beyond this temporal variability is the variability across nodes and workloads.
If the scheduler assigns memory hungry tasks on a memory-constrained node, stragglers
could occur due to contention for memory. While for another node that has slower disk,
straggler behavior will primarily depend on how many I/O-intensive tasks are being run.
To predict straggler behavior, we need to consider both the current state of each node and
tailor the decision to the node type (its resource capabilities) and particular kind of tasks
being executed (their resource requirements). In our experiments, we find that models that
do not take this into account do about 6-7% worse than models that do (see Table 5 in
Section 5.3).

Due to these difficulties in understanding the causes behind stragglers, and the chal-
lenges involved in predicting stragglers, initial attempts at mitigating stragglers have been
reactive (Dean and Ghemawat, 2004; Zaharia et al., 2008; Ananthanarayanan et al., 2010).
Dean and Ghemawat (2004) suggested speculative execution as a mitigation mechanism for
stragglers. This is a reactive scheme that is dominantly used on production clusters includ-
ing those at Facebook and Microsoft Bing (Ananthanarayanan et al., 2014). It operates
in two steps: (1) wait-and-speculate if a task is executing slower than other tasks of the
same job, and (2) replicate or spawn multiple redundant copies of such tasks hoping a copy
will reach completion before the original. As soon as one of the copies or the original task
finishes execution, the rest are killed.

The benefits of Speculative execution, in terms of improved job completion times at the
cost of resources consumed, are unclear. Due to the wait-and-speculate step, this scheme
is inefficient in time, leading to a delay before speculation begins. Also, due to the second

2. Please see Chen et al. (2012) for details on the faithful replay of production level traces.
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% of speculatively executed

Trace tasks that were killed
Facebook 2009 (FB2009) 77.9%
Facebook 2010 (FB2010) 88.6%
Cloudera’s Customer b (CC_b) 74.4%
Cloudera’s Customer e (CC_e) 48.8%

Table 1: Majority of the speculatively executed tasks eventually get killed since the original task finishes
execution before them.

step that replicates tasks, such mechanisms lead to increased resource consumption without
necessarily gaining performance benefits. Moreover, we observed that the original task, that
was marked as a straggler in the wait-and-speculate step, often finishes execution before
any of the redundant copies launched in the second step. Thus, a significant number of
such redundant copies end up getting killed, resulting in wastage of resources and perhaps
additional unnecessary contention. Table 1 shows that about 48% to 88% of the specu-
latively executed copies were killed in our replay of Facebook and Cloudera’s customers’
production cluster traces. LATE (Zaharia et al., 2008) improves over speculative execution
using a notion of progress scores, but still results in resource wastage due to replication.

Since reactive mechanisms fall short of efficiently mitigating stragglers, some proactive
approaches have been proposed. Dolly (Ananthanarayanan et al., 2013) is a cloning mech-
anism that avoids the wait-and-speculate phase of speculative execution and immediately
launches redundant copies of tasks belonging to small jobs. However, being replication-
based, it also incurs resource overhead.

Machine learning has shown promise in dealing with the challenges of estimating task
completion times and predicting stragglers in parallel processing environments (Bortnikov
et al., 2012; Gupta et al., 2013). We built Wrangler (Yadwadkar et al., 2014) (see Section 3),
a system that learns to predict nodes that might create stragglers and uses these predictions
as hints to the scheduler so as to avoid creating stragglers by rejecting bad placement
decisions. Thus, being proactive, Wrangler is time efficient. Also, by smarter scheduling,
we avoid replication of straggler tasks. Thus, Wrangler is also efficient in terms of reducing
the resources consumed. Wrangler was the first complete system that demonstrated the
utility of learning methods in reducing job-completion times in real world clusters.

In the following sections, we review Wrangler, describe its architecture, discuss its limi-
tations and avenues for improvements. Then in Section 4, we present our multi-task learning
based approach that improves upon Wrangler by resolving its limitations.

3. Wrangler

Wrangler is a system that predicts stragglers based on cluster resource usage counters and
uses these predictions to inform scheduling decisions. Wrangler achieves this by adding two
main components to the scheduling system of data intensive computational frameworks: (i)
model-builder, and (ii) predictive scheduler. Figure 1 summarizes Wrangler’s architecture.
The model-builder learns to predict stragglers using cluster resource usage counters. We
explain this component in more detail in the following Sections 3.1, 3.2, and 3.3. Then,
every time a task is scheduled to run on a particular node, Wrangler makes a prediction
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using these models, for whether the task will become a straggler. It then uses this prediction
to modify the scheduling decisions if straggler behavior is predicted. Section 3.4 provides a
brief explanation of the predictive scheduler.

3.1 Features and labels

To predict whether scheduling a task at a particular node will lead to straggler behav-
ior, Wrangler uses the resource usage counters at the node. Dean and Ghemawat (2004)
mentioned that stragglers could arise due to various reasons such as competition for CPU,
memory, local disk, network bandwidth. Zaharia et al. (2008) further suggest that strag-
glers could be caused due to faulty hardware and misconfiguration. Ananthanarayanan et al.
(2010) report that the dynamically changing resource contention patterns on an underlying
node could give rise to stragglers. Based on these findings, we collected the performance
counters for CPU, memory, disk, network, and other operating system level counters de-
scribing the degree of concurrency before launching a task on a node. The counters we
collected span multiple broad categories as follows:

1. CPU utilization: CPU idle time, system and user time and speed of the CPU, etc.

2. Network utilization: Number of bytes sent and received, statistics of remote read and
write, statistics of RPCs, etc.

3. Disk utilization: The local read and write statistics from the datanodes, amount of
free space, etc.

4. Memory utilization: Amount of virtual, physical memory available, amount of buffer
space, cache space, shared memory space available, etc.

5. System-level features: Number of threads in different states (waiting, running, termi-
nated, blocked, etc.), memory statistics at the system level.

In total, we collect 107 distinct features characterizing the state of the machine. See Sec-
tion 5.1 for details of our dataset.

Features: Multiple tasks from jobs of each workload may be run on each node. There-
fore to simplify notation, we index the execution of a particular task by ¢ and define S, ;
as the set of tasks corresponding to workload [ executed on node n. Before executing task
i € Sy, corresponding to workload [ on node n we collect the resource usage counters de-
scribed above on node n to form the feature vector z; € R1%7. For each feature described
above we subtract the minimum across the entire dataset and rescale so that it lies between
0 and 1 for the entire dataset.

Labels: After running task i we measure the normalized task duration nd(i) which is
the ratio of task execution time to the amount of work done (bytes read/written) by task
1. From the normalized duration, we determine whether a task has straggled using the
following definition:

Definition 1 A task i of a job J is called a straggler if

nd(i) > B x m@%i?n{nd(j)} (1)



YADWADKAR, HARIHARAN, GONZALEZ AND KATZ

where nd(3) is the normalized duration of task i computed as the ratio of task execution time
to the amount of work done (bytes read/written) by task i.

In this paper, as in Wrangler, we set 8 to 1.3. Given the definition of a straggler, for task
i we define y; € {0,1} as a binary label indicating whether the corresponding task i ended
up being a straggler relative to other tasks in the same job.

3.2 Prediction Task

While the resource usage counters do track the time-varying state of the node, they do not
model the variability across nodes, or the properties of the particular task we are executing.
To deal with the variability of nodes, Wrangler builds a separate predictor for each node.

Modeling the variability across tasks is harder since it would require understanding the
code that the task is executing. Instead, Wrangler uses the notion of “workloads”, which
we define next. Companies such as Facebook, Google, use compute clusters for various
computational purposes. The specific pattern of execution of jobs on these clusters is called
a workload. These workloads are specified using various statistics, such as submission times
of multiple jobs, number of their constituent tasks along with their input data sizes, shuffle
sizes, and output sizes. Wrangler assumes that all tasks in a particular workload have
similar properties in terms of resource requirements etc., and it captures the variability
across workloads by building separate predictors for each workload. Thus Wrangler builds
separate predictors for each node and for every workload.

Putting it all together, we can state the binary classification problem for predicting
straggler tasks more formally as follows. A datapoint in our setting corresponds to a task
i of job J from a particular workload [ that is executed on a node n in our cluster. Before
running task i we collect the features x; which characterize the state of node n. After
running task ¢ we then measure the normalized duration and determine whether the task
straggled with respect to other tasks of job J (see Definition 1). Our goal is to learn a
function:

fn,l Y,

for each node n and workload ! that maps the current characteristics z € R? of that node
(e.g., current CPU utilization) to the binary variable y € {0,1} indicating whether that
task will straggle (i.e., run longer than § times the median runtime).

3.3 Training

For any workload [, Wrangler first collects data and ground truth labels for training and
validation. In particular, for every task ¢ launched on node n, Wrangler records both the
resource usage counters x; and the label y; which indicates if the task straggles or not.
Since there is a separate predictor for each node and workload, Wrangler produces separate
datasets for each node and workload. Let S, ; be the set of tasks of jobs corresponding to
workload [, executed on node n. Thus, we record the dataset for node n, workload [ as:

Dn,l = {(xmyz) S Sn,l}'

Then Wrangler divides each dataset into a training set and test set temporally, i.e, the
first few jobs constitute the train set and the rest form the validation. The predictors are



MULTI-TASK LEARNING FOR STRAGGLER AVOIDING PREDICTIVE JOB SCHEDULING

Master

Yes | Predictive

Scheduler

Model
Builder

Utilization
Counters

Scheduling
Decisions

Worker
|

Workers

Figure 1: Architecture of Wrangler.

then trained on these datasets. Stragglers, by definition are fewer than the non-straggler
tasks. Therefore for training, Wrangler statistically oversampled the class of stragglers to
avoid the skew in the strengths of the two classes. This gets the two classes represented
equally.

After this initial training phase, the classifiers are frozen, and the trained classifiers
are incorporated into the job scheduler as described above. They are then tested on the
next Tiest = 10 hours by measuring the impact of these classifiers on job completion times.
Further details about the train and test splits are in Section 5.

3.4 Model-aware scheduling

Job scheduling in Hadoop is handled by a master, which controls the workers. The master
assigns tasks to the worker nodes. The assignments depend upon the number of available
slots as well as data-locality. Wrangler modifies this scheduler to incorporate its predictions.
Before launching a task ¢ of a job coming from a workload [, on a node n, the scheduler
collects the node’s resource usage counters z; and runs the classifier f,,;. If the classifier
predicts that the task will be a straggler with high enough “confidence” (Wrangler uses
SVMs with scaling by Platt (1999) to produce a confidence), the scheduler does not assign
the task to that node. It is later assigned to a node that is not predicted to create a
straggler. See Yadwadkar et al. (2014) for details on the algorithm and implementation.

3.5 Shortcomings of Wrangler and avenues for improvements

Due to the heterogeneity of nodes in a cluster, the model builder trains a separate classifier
for each node. Note that to build a training set per node, every node should have executed
sufficient number of tasks. Wrangler takes a few hours (approximately 2-4 hours, depending
on the workload) for this process. Additionally, because each workload might be different,
these models are retrained for every new workload. Thus, for every new workload that
is executed on the cluster, there is a 2-4 hour model building period. In typical large
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production clusters with tens of thousands of nodes, it might be a long time before a node
collects enough data to train a classifier. (In Table 5 we show that the prediction accuracy
of Wrangler rapidly degrades as the amount of training data is reduced). In some cases,
workloads may only be run a few times in total, limiting the ability of systems like Wrangler
to make meaningful predictions.

Alternatively, large clusters with locality aware scheduling can lead to poor sample
coverage. Recall that, in our case, each task of a workload executed on a node amounts to
a training data point. The placement of input data on nodes in a cluster is managed by the
underlying distributed file system (Ghemawat et al., 2003). To achieve locality for faster
reading of input data, sophisticated locality-aware schedulers (Zaharia et al., 2008, 2010)
try to assign tasks to nodes already having the appropriate data. Based on the popularity
of the data, number of tasks assigned to a node could vary. Hence, we may not get uniform
number of training data points, i.e., tasks executed, across all the nodes in a cluster. There
could be other reasons behind skewed assignment of tasks to nodes (Kwon et al., 2012):
even when every map task has the same amount of data, a task may take longer depending
on the code path it takes based on the data it processes. Hence, the node slots will be busy
due to such long running tasks. This could lead to some nodes executing fewer tasks than
others.

These observations suggest that our modeling framework needs to be robust to limited
and potentially skewed data. Thus, there is a need for straggler prediction models (1) that
can be trained using minimum available data, and (2) that generalize to unseen nodes or
workloads. In the following section, we describe our multi-task learning based approach
with these goals for avoiding stragglers. We evaluate it using real world production level
traces from Facebook and Cloudera’s customers, and compare the gains with Wrangler.

4. Multi-task learning for straggler avoidance

As described in the previous section, Wrangler builds separate models for each workload
and for every node. Thus, every {node, workload} tuple is a separate learning problem.
However, learning problems corresponding to different workloads executed on the same node
clearly have something in common, as do learning tasks corresponding to different nodes
executing the same workload. We want to use this shared structure between the learning
problems to reduce data collection time.

Concretely, a task executing on a node will be a straggler because of a combination of
factors. Some of these factors involve the properties of the node where the task is executing
(for instance, the node may be memory-constrained) and some others involve particular
requirements that the tasks might have in terms of resources (for instance, the task may
require a lot of memory). These are workload-related factors. When collecting data for a
new workload executing on a given node, one must be able to use information about the
workload collected while it executed on other nodes, and information collected about the
node collected while it executed other workloads.

10
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We turn to multi-task learning to leverage this shared structure. In the terminology of
multi-task learning, each {node, workload} pair forms a separate learning-task® and these
learning problems have a shared structure between them. However, unlike typical MTL
formulations, our learning-tasks are not simply correlated with each other; they share a
specific structure, clustering along node- or workload-dependent axes. In what follows, we
first describe a general MTL formulation that can capture such learning-task grouping. We
then detail how we apply this formulation to our application of straggler avoidance.

4.1 Partitioning tasks into groups

Suppose there are T' learning tasks, with the training set for the ¢-th learning-task denoted
by Dy = {(Xit,yit) 1 = 1,..., kt}, with x;; € RY. We begin with the formulation proposed
by Evgeniou and Pontil (2004). Evgeniou, et al. proposed a basic hierarchical regression
formulation with the linear model, w;, for learning-task ¢ as:

W = Wo + V¢ (2)

The intuition here is that wg captures properties common to all learning-tasks, while v,
captures how the individual learning-tasks deviate from wy.

We then frame learning in the context of empirical loss minimization. Given the vari-
ability in node behavior and the need for robust predictions we adopt the hinge-loss and
apply lo regularization to both the base wy and learning-task specific weights v;:

T T ke
WI(J)ﬂgtlb Xol[woll® + % ; [vel|® + ; ; LHinge (yit, (wo +ve)" xit + b) (3)
where Lginge(yit, sit) = max(0,1 — y;;54) is the hinge loss.

In the above formulation, all learning-tasks are treated equivalently. However, as dis-
cussed above, in our application some learning-tasks naturally cluster together. Suppose
that the learning-tasks cluster into G non-overlapping groups, with the ¢-th learning-task be-
longing to the g()-th group. Note that while we derive our formulations for non-overlapping
groups, which is true in our application, the modification for overlapping groups is trivial.
Using the same intuition as Equation 2, we can write the classifier w; as:

Wi = Wo + Vi + Wy (4)

In general, there may be more than one way of dividing our learning-tasks into groups.
In our application, one may split learning-tasks into groups based on workload or based on
nodes. We call one particular way of dividing learning-tasks into groups a partition. The
p-th partition has G, groups, and the learning-task ¢ belongs to the g,(t) group under this
partition. Now, we also have a separate set of weight vectors for each partition p, and the
weight vector of the g-th group of the p-th partition is denoted by w, ;. Then, we can write
the classifier w; as:

P
Wy = Wo + Vi + Z Wp7gp(t) (5)
p=1

3. The machine learning notion of a “task” as a learning problem differs from the cloud computing notion
of a “task” as a part of a job that is run in parallel. The intended meaning should be clear from the
context.
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Finally, note that wg and v; can also be seen as weight vectors corresponding to trivial
partitions: wq corresponds to the partition where all learning-tasks belong to a single group,
and vy corresponds to the partition where each learning-task is its own group. Thus, we
can include wg and vy in our partitions and write Equation 5 as:

P
p=1

Intuitively, at test time, we get the classifier for the ¢-th learning-task by summing weight
vectors corresponding to each group to which ¢ belongs.

As in Equation 3, the learning problem involves minimizing the sum of Iy regularizers on
each of the weight vectors and the hinge loss:

P Gy T ke p T
minb Z Z Ap,g HWI%QHQ + Z Z Liinge | vit, Z Wpgp(t) | Xit +0 (7)
WPt 1 g=1 =1 i=1 =1
Here, the regularizer coefficient A, , = %(p’g), where #(p, g) denotes the number of

. . ce . . A7 (D,9)
learning-tasks assigned to the g-th group of the p-th partitioning. The scaling factor =*77==

interpolates smoothly between Ay, when all learning-tasks belong to a single group, and %,
when each learning-task is its own group. Lowering A, for a particular partition will reduce
the penalty on the weights of the p-th partition and thus cause the model to rely more on
the p-th partitioning. For the base partition p = 0, setting A, = 0 would thus favor as much
parameter sharing as feasible.

4.2 Reduction to a standard SVM

One advantage of the formulation we use is that it can be reduced to a standard SVM (Cortes
and Vapnik, 1995), allowing the usage of off-the-shelf SVM solvers. Below, we show how
this reduction can be achieved. Given A, for every group g of every partition p, define:

. Ap,
Wp,g = igwng (8)

Now concatenate these vectors into one large weight vector w :

=T =T T T
W= Wi, Wy, WhG ) 9)

Then, it can be seen that \||W|? = 2521 Zgﬁl Ap.gllWpgl?. Thus, with this change of
variables, the regularizer in our optimization problem resembles a standard SVM. Next, we
transform the data points x;; into ¢(x;) such that we can replace the scoring function with
w!$(x;;). This transformation is as follows. Again, define:

¢p7g(xit> = 5gp(t),g 5 Xit (10)

12
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Here, 0y, ()4 13 a kronecker delta, which is 1 if g,(t) = g (i.e. , if the learning-task ¢ belongs
to group ¢ in the p-th partitioning) and 0 otherwise. Our feature transformation is then
the concatenation of all these vectors:

¢(x) = [p11(0)", . dpg ()", dpar (0] (11)

It is easy to see that:
T

P
wWioxit) = [ Y Wy | Xt (12)
p=1

Intuitively, w concatenates all our parameters with their appropriate scalings into one long
weight vector, with one block for every group of every partitioning. ¢(x;;) transforms a data
point into an equally long feature vector, by placing scaled copies of x;; in the appropriate
blocks and zeros everywhere else.

With these transformations, we can now write our learning problem as :

T
I?V%?AIIVVIIQ + Z Z Lizinge(yit, W' ¢(xit) + b) (13)

t=1 i=1

which corresponds to a standard SVM. In practice, we use this transformation and change
of variables, both at train time and at test time.

4.3 Automatically selecting groups or partitions

In many real world applications including our own, good classification accuracy is not an
end in itself. Model interpretability is of critical importance. A large powerful classifier
working on tons of features may do a very good job of classification, but will not provide
any insight to an engineer trying to identify the root causes of a problem. It will also be
difficult to debug such a classifier if and when it fails. In the absence of sufficient training
data, large models may also overfit. Thus, interpretability and simplicity of the model are
important goals. In the context of the formulation above, this means that we want to keep
only a minimal set of groups/partitions while maintaining high classification accuracy.

We can use mixed /3 and [y norms to induce a sparse selection of groups or parti-
tions (Bach et al., 2011). Briefly, suppose we are given a long weight vector w divided into
M blocks, with the m-th block denoted by w,,. Then the squared mixed /; and I3 norm is:

M 2
Qw) = (Z |Wm||2> (14)

m=1

This can be considered as an 1 norm on a vector with elements ||[w,,||2. When €(+) is used
as a regularizer, the [; norm will force some elements of this vector to be set to 0, which in
turn would force the corresponding block of weights w,,, to be set to 0. It thus encourages
entire blocks of the weight vector to be set to 0, a sparsity pattern that is often called
“group sparsity”.

In our context, our weight vector w is made up of w, ;. We consider two alternatives:
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1. We can put all the weight vectors corresponding to a single partition in the same
block. Then, the regularizer becomes:

2

P
Qs(W) = | D [Wpll2 (15)
p=1

where w, = [VNV]?,D ... ,Wg:GP}T concatenates all weight vectors corresponding to the
p-th partition. This regularizer will thus tend to kill entire partitions. In other words,
it will uncover notions of grouping, or learning-task similarity, that are the most

important.

2. We can put the weight vector of each group of each partition in separate blocks. Then
the regularizer becomes:

2

P G
Qgs(%) = { DD [ Wpgllz (16)

p=1g=1

This regularizer will tend to select a small set of groups which are needed to get a
good performance.

4.4 Automatically selecting features

Mixed norms can also be used to select a sparse set of feature blocks that are most useful
for classification. This is again useful for interpretability. In our application, features are
resource counters at a node. Some of these features are related to memory, others to cpu
usage, etc. If our model is able to predict straggler behavior solely on the basis of memory
usage counters, for instance, then it might indicate that the cluster or the workload is
memory constrained.

In our multi-task setting, such feature selection can also interact with the different
groups and partitions of learning-tasks. Suppose each feature vector x is made up of blocks
corresponding to different kinds of features, denoted by x, x® .. x(B) We can similarly
divide each weight vector w), , into blocks denoted by v~v7(,2, VNW(,?; and so on. Then we have
two alternatives.

1. One can concatenate corresponding feature blocks from all the weight vectors to get
w®, ..., w®B) . Then a mixed [; and I, regularizer using these weight blocks can be
written as:

B 2
Qpar(w) = (Z va@yz) (17)
b=1

Such a regularizer will encourage the model to select a sparse set of feature blocks on
which to base its decision, setting all weights corresponding to all the other feature
blocks to 0.
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2. An alternative would be to let each group vector choose its own sparse set of feature
blocks. This can be achieved with the following regularizer:

0yl (zzuw Hz>2 ()

p,g b=1

4.5 Kernelizing the formulation

We have till now described our formulation in primal space. However, kernelizing this
formulation is simple. First, note that if we use a simple squared l» regularizer, then
our formulation is equivalent to a standard SVM in a transformed feature space. This
transformed feature space corresponds to a new kernel:

Knew<xit7xju) = <¢(Xit)7¢(xju)>
= Z<¢P79(Xit)7¢p,g(xju)>

p.g

A
= 2 Sn0atmway, K G X5) (19)
p,g

Thus, the transformed kernel corresponds to the linear combination of a set of kernels,
one for each group. Each group kernel is zero unless both data points belong to the group,
in which case it equals a scaled version of the kernel in the original feature space.

When using the mixed-norm regularizers, the derivation is a bit more involved. We first
note that (Aflalo et al., 2011):

3 . Z [ Womll3
m == 20
( I HQ) 0<n<1h?7H1<1 (20)

im

Using this transformation leads to the following primal objective:

w
min Z | mH2 —|—ZL (@it, Yit, W (21)
m=1

w,b,0<n<1,||n|l1<1

where L(z, yit, w) is the hinge loss. This corresponds to a 1-norm multiple kernel learning
formulation (Kloft et al., 2011) where each block of feature weights corresponds to a separate
kernel. We refer the reader to Kloft et al. (2011) for a description of the dual of this
formulation.

We note that these kernelized versions are very similar to the ones derived in (Widmer
et al., 2010; Blanchard et al., 2011). However, the group and partition structure and the
application domain are unique to ours.

4.6 Application to straggler avoidance

We apply this formulation to straggler avoidance as follows. Suppose there are N nodes and
L workloads. Then there are N x L learning-tasks, and Wrangler trains as many models,
one for each {node, workload} tuple. For our proposal, we consider four different partitions:
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Node | Node 2 Node 3
I,.':’:':':':':'1:‘:::::::::::/E;:::::::::::::::}\‘.

FB2009 —ii V133 |} v2 (2] V3[X]| 11W 609
et ¢
: 1 : prem— — :
FB2010 | §V4i V(% Ve[ 3 |
CCe iivr[El vs(Z) Vo X}

_______

W1 = W0 + Wnpode; T Wrb09 + V1

Figure 2: In our context of straggler avoidance, the learning-tasks naturally cluster into various groups in
multiple partitions. When a particular learning- task, for example, node 1 and workload FB2009 (v1), has
limited training data available, we learn its weight vector, wi, by adding the weight vectors of groups it
belongs to from different partitions.

1. A single group consisting of all nodes and workloads. This gives us the single weight
vector wy.

2. One group for each node, consisting of all L learning-tasks belonging to that node.
This gives us one weight vector for each node w,,,n = 1,..., N, that captures the
heterogeneity of nodes.

3. One group for each workload, consisting of all N learning-tasks belonging to that
workload. This gives us one weight vector for each workload w;,l = 1,..., L, that
captures peculiarities of particular workloads.

4. Each {node, workload} tuple as its own group. Since there are N x L such pairs, we
get N x L weight vectors, which we denote as v¢, following the notation considered
in Evgeniou and Pontil (2004).

Thus, if we use all four partitions, the weight vector w; for a given workload [; and a
given node ny is:
W = Wo + Wy, + Wy, + V¢ (22)

Figure 2 shows an example. The learning problem for the FB2009* workload running on
node 1 belongs to one group from each of the four partitions mentioned above: (1) the global
partition, denoted by the weight vector, wg, (2) the group corresponding to node 1 from
the node-wise partition, denoted by the weight vector wyq4e,, (3) the group corresponding
to the FB2009 workload from the workload-wise partition, denoted by the weight vector
W r09, and (4) the group containing just this individual learning problem, denoted by the
weight vector vi. Thus, we can learn the weight vector wy as:

W1 = Wo + Wpode, + Wip09 + V1 (23)

The corresponding training problem is then:

4. See Section 5.1 for details about the workloads we use.
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v N w L T d
_ 2 72 2 72 2 72 2
min oflwoll +Nn_1||WnH +LH Nl +TH [[vell

T k¢

+> Y Liinge <yita (Wo + W, + Wi, + i) xip + b) (24)
t=1 =1

where A\g, v, w, 7 are hyperparameters. We ran an initial grid search on a validation
set to fix these hyperparameters and found that prediction accuracy was not very sensitive
to these settings: several settings gave very close to optimal results. We used Ay = v =
w = 7 = 1, which was one of the highest performing settings, for all our experiments.
Appendix A provides the details of this grid search experiment along with the sensitivity
of these hyperparameters to a set of values. As described in Section 4.2, we work in a
transformed space in which the above problem reduces to a standard SVM. In this space
the weight vector is

~ ~T =T ~T =T T T T T
w = [w Wiy s Wi s Wi s W Vi thT] (25)
This decomposition will change depending on which partitions we use.

As described in the previous section, we can also use mixed [; and ls norms to auto-
matically select groups or partitions. To select partitions, we combine all the node-related
weight vectors Wy, ,...,W,, into one long vector wy, all workload vectors w; ,...,w;,

into wr, and all vq,..., vy into vp. We then solve the following optimization:

I‘gi? (I%oll2 + [[Wall2 + [[Will2 + ¥7]l2)?

)

+C Z Lizinge (Yit, W' ¢ (xi¢) + b) (26)

it

This model will learn which notion of grouping is most important. For instance if wrp,
is set to 0, then we might conclude that straggler behaviour doesn’t depend that much on
the particular workload being executed.

To select individual groups, we solve the optimization problem:

N L T 2
_min <||V~VOH2 ) M Wallz + D IWillz +> \|‘7tH2>
w,b,6> n=1 =1 t=1

+C Z LHinge (yita WTQb (Xit) + b) (27)

it

This formulation can set some individual node or workload models to 0. This would
mean that straggler behavior on some nodes or workloads can be predicted by generic
models, but others require more node-specific or workload-specific reasoning.

We can also use mixed norms for feature selection. The features in our feature vector
correspond to resource usage counters, and we divide them into 5 categories, as explained
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in Section 3.1: counters based on cpu, those based on network, those based on disk, those
based on memory, and other system-level counters. Then each w,,, w; and v; gets similarly

split up. As described before, we can either let each model choose its own set of features
using this regularizer:

QW) = (W o+ NGl + NG o + [ + W52 > +
S W™ o - (W o - ([ [+ [0 4 (W]

+ 00 N 2 4 (W2 - ([ |2 + ([t | + |9 |2]

~ - ~ syst
+ i (™ g A+ [l + 957" |2 4 9700 g + |95 |2])? (28)

or choose a single set of features globally using this regularizer:

. 2
() = (I s + [+ [ 3 4 ek 4 [tem )

(29)
where w™¢™ concatenates all memory related weights from all models,
~ mem __ [cmemT = memT ~ memT memT’ ~ memTT
W = [wg W W W N ] (30)

WP Wk ete. are defined similarly.

4.7 Exploring the relationships between the weight vectors

Before getting into the experiments, we can get some insights on what our formulation will
learn by looking at the KKT conditions. Equation 24 can equivalently be written as:

N L
. 2 vV 2 W 2
min of[wol|” + NZHwnH + LZleH

T k¢

e Z S (31)
t=1 =1
s.t. Yt ((WQ + Wy, + Wy, + vt) Xit + b) >1—=&: Vi, t
git Z 0 V’L,t

The Lagrangian of the formulation in Equation 31 is:

N L
1% W
L(w,b07) = dol[wol[* + 5 D Iwall* + 7 3 Iwill
n=1 =1

— T ki T ke
o D vl 3D G = DD i (32)
t=1 t=1 i=1 t=1 i=1

T ke
+ Z Z i (1= &t — yie (Wi xi0 + b))
=1 i=1
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Taking derivatives w.r.t the primal variables and setting to 0 gives us relationships between
W, Vi, W, and wy:

Mowh = = > vi (33)

t
vw) = T/LN t:;n vy (34)
wwi = TL/L t%;z vi (35)
AW = % Z w (36)
Nowp = = > wi (37)

Evgeniou and Pontil (2004) also obtain Equation 33 in their formulation, but the other
relationships are specific to ours. These relationships imply that these variables shouldn’t
be considered independent. w,,, w; and wq are scaled means of the v;’s of the group they
capture.

4.8 Generalizing to unseen nodes and workloads

Consider what happens when we remove the partition corresponding to individual {node,
workload} tuples, i.e., v¢, from our formulations. We now do not have any parameters
specific to a node-workload combination, but can still capture both node- and workload-
dependent properties of the learning problem. Such formulations are thus similar to fac-
torized models where the node and workload dependent factors are grouped into separate
blocks. We end up with only (N + L)d parameters, whereas a formulation like that of (Ev-
geniou and Pontil, 2004; Evgeniou et al., 2005; Jacob et al., 2009) will still have N Ld
parameters (here d is the input dimensionality). Thus, we can reduce the number of pa-
rameters while still capturing the essential properties of the learning problems.

In addition, since we no longer have a separate weight vector for each {node, workload}
tuple, we can generalize to node-workload pairs that are completely unseen at train time:
the classifier for such an unseen combination ¢ will simply be wo + w,,, + w;,. We thus
explicitly use knowledge gleaned from prior workloads run on this node (through wy,,) and
other nodes running this workload (through wy,). This is especially useful in our application
where there may be a large number of nodes and workloads. In such cases, collecting data for
each node-workload pair will be time consuming, and generalizing to unseen combinations
will be a significant advantage.

In most of our experiments, therefore, we remove the partition corresponding to indi-
vidual {node, workload} tuples. We explicitly evaluate how well we generalize by doing so
in Section 5.4.

5. Empirical Evaluation

In this section, we describe our dataset, provide variants to our proposed formulation and
then evaluate them using the following metrics: first, classification accuracy when there is
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Trace #Machines Length  Date #Jobs
FB2009 600 6 month 2009 1129193
FB2010 3000 1.5 months 2010 1169184

CcC.ob 300 9 days 2011 22974

CC.e 100 9 days 2011 10790

Total ~ 4000 ~ 8.5 months - 2332141

Table 2: Dataset. FB: Facebook, C'C: Cloudera Customer.

sufficient data and also when sufficient data is not available, and second, improvement in
overall job completion times, and third, reduction in resources consumed.

5.1 Datasets

The set of real-world workloads considered in this paper are collected from the production
compute clusters at Facebook and Cloudera’s customers, which we denote as F'B2009,
FB2010, CCb and CC_e. Table 2 provides details about these workloads in terms of the
number of machines in the actual clusters, the length and date of data capture, total number
of jobs in those workloads. Chen, et al., explain the data in further details in (Chen et al.,
2012). Together, the dataset consists of traces from over about 4000 machines captured
over almost eight months. For faithfully replaying these real-world production traces on
our 20 node EC2 cluster, we used a statistical workload replay tool, SWIM (Chen et al.,
2011) that synthesizes a workload with representative job submission rates and patterns,
shuffle/input data size and output/shuffle data ratios (see Chen et al. (2011) for details of
replay methodology). SWIM scales the workload to the number of nodes in the experimental
cluster.

For each workload, we need data with ground-truth labels for training and validating
our models. We collect this data by running tasks from the workload as described above
and recording the resource usage counters z; at a node at the time a task ¢ is launched,
and the ground truth label y; by checking if it ends up becoming a straggler. Then we
divide this dataset temporally into a training set and a validation set. In other words, the
first few tasks that were executed form the train set and the rest of the tasks form the
validation set. In the experiments below, we vary the percentage of data that is used for
training, and compute the prediction accuracy on the validation set. We train our final
model using two-thirds of this dataset and proceed to evaluate it on our ultimate metric,
i.e., job completion times.

To measure job completion times, we then incorporate the trained models into the job
scheduler (as in Wrangler). We then run the replay for the workload again, but with a fresh
set of tasks. These fresh set of tasks form our test set, and this test set is only used to
measure job completion times. Table 3 shows the sizes of the datasets.

Each data point is represented by a 107 dimensional feature vector comprising the
node’s resource usage counters at the time of launching a task on it. We optimize all our
formulations using Liblinear (Fan et al., 2008) for the [y regularized variants and using the
algorithm proposed by Aflalo et al. (2011) (modified to work in the primal) for the mixed
norm variants.
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Workload No of tasks No of tasks
(Training+ Validation) Test
FB2009 4885 13632
FB2010 3843 38158
CcClh 5991 30203
CC.e 39014 94550

Table 3: Number of tasks we use for each workload in the train+val and test sets.

Below, we describe (1) how we use different MTL formulations and prediction accuracy
achieved by these formulations, (2) how we learn a classifier for previously unseen node
and/or workload and the prediction accuracy it achieves, (3) the improvement in overall
job completion times achieved by our formulation and Wrangler over speculative execution,
and (4) reduction in resources consumed using our formulation compared to Wrangler.

5.2 Variants of proposed formulation

We consider several variants of the general formulation described in Section 4. Using a
simple squared ls regularizer, we first consider wg, w,, and wy, individually:

e fo: In this formulation, we consider only the global partition in which all learning
problems belong to a single group. This corresponds to removing vy, w,, and w;.
This formulation thus learns a single global weight vector, wq, for all the nodes and
all the workloads.

e f,: Here we consider only the partition based on nodes. This corresponds to only
learning a w,,, that is, one model for each node. This model learns to predict stragglers
based on a node’s resource usage counters across different workloads, but it cannot
capture any properties that are specific to a particular workload.

e f;: Here we consider only the partition based on workloads. This means we only learn
wy, i.e., a workload dependent model across nodes executing a particular workload.
This model learns to predict stragglers based on the resource usage pattern caused
due to a workload across nodes, but ignores the characteristics of a specific node.

The above three formulations either discard the node information, the workload infor-
mation, or both. We now consider multi-task variants that capture both, node and workload
properties:

e fo,: This is the formulation proposed by Evgeniou and Pontil (2004), and corresponds
to using the global partition where all learning-tasks belong to one group, and the
partition where each learning-task is its own group. This learns wg and vy. Note that
this formulation still has to learn on the order of N Ld different parameters, and has
to collect enough data to learn a separate weight vector for each {node, workload}
combination.

o fo..: This formulation extends the formulation in fo; by additionally adding the
partition based on workloads. It learns wg, w; and v;.
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o fon: We remove the partition corresponding to individual {node, workload} tuples,
removing v; entirely and only learning wg, w; and w,,. As described in Section 4.8,
this formulation reduces the total number of parameters to (N + L)d and can also
generalize to unseen {node, workload} tuples.

For all these formulations, the hyperparameters Ay, v, w and 7 were set to 1 wherever
applicable. We found this setting to be close to optimal in our initial cross-validation
experiments (see Appendix A).

In addition to these, we also consider sparsity-inducing formulations for automatically
selecting partitions or groups or blocks of features, as explained in Sections 4.3, 4.4, and 4.6.

o fps : We use the global, node-based and workload-based formulations thus removing
v; entirely as in fj,,; and use mixed /; and /3 norms to automatically select the useful
partitions from among these. This model will learn the notion of grouping that is
most important. To select partitions, we combine all the node-related weight vectors
Wn,, ..., Wp, into one long vector wy and all workload vectors into wy, as shown

below:

N

W= [Wg, W), W W W T (38)

Thus our weight vector w is split up into blocks corresponding to node, workload and
global models.

o fgs : This is the formulation where we use mixed I; and Il norms to automatically
select groups within a partition. Again, we only consider the global, node-based and
workload-based formulations. This formulation can set individual node or workload
models to zero, unlike f,s, that can set a complete partition, i.e. in our case, a
combined model of all the nodes or all the workloads to zero. This would mean that
predicting straggler behavior on some nodes or workloads does not need reasoning
that is specific to those nodes or workloads; instead a generic model would work.

Finally, we also try the following two mixed norms formulations for feature selection.
As before, both these formulations remove the partition corresponding to individual {node,
workload} tuples, i.e., remove v;.

e frs1 : As explained in Equation 28, we divide our features into five categories corre-
sponding to cpu, memory, disk, network and other system-level counters. Then each
weight vector gets similarly split up into these categories. This formulation learns
which categories of features are more important for some nodes or workloads than
others.

o frs2 : This formulation, as given in Equation 29, selects a category of features across

all the weight vectors of nodes and workloads. This formulation can learn if stragglers
in a cluster are caused due to contention for a specific resource.
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5.3 Prediction accuracy

In this section, we evaluate the formulations described in the previous section for their
straggler prediction accuracy. In the following subsection 5.3.1, we evaluate formulations
that use [y regularizers, viz., fo, fn, fi, foni, fot, and fo;;. Then, in Section 5.3.2, we
evaluate the mixed norm formulations (a) that automatically selects partitions, fps, (b)
that automatically selects groups, fgs, and then the formulations (c) frs1, and (d) fre
that can automatically select features. We list our formulations with a brief description in
Table 4.

5.3.1 FORMULATIONS WITH ly REGULARIZERS

We aim at learning to predict stragglers using as small amount of data as feasible, as this
means shorter data capture time. Note that stragglers are fewer than non-stragglers, so
we oversample from the stragglers’ class to represent the two classes equally in both, the
training and validation sets®. Table 5 shows the percentage accuracy of predicting stragglers
with varying amount of training data. We observe that:

e With very small amounts of data, all MTL variants outperform Wrangler. In fact, all
of fo to fo,,; need only one sixth of the training data to achieve the same or better
accuracy.

e It is important to capture both node- and workload-dependent aspects of the problem:
fon,is for and fo; consistently outperform fy, f, and f;.

e fo: and fo;; perform up to 7 percentage points better than Wrangler with the same
amount of training data, with fq,; not far behind.

For a better visualization, Figure 3 shows the comparison of prediction accuracy of these
formulations, in terms of percentage true positives and percentage false positives when 50%
of total data is available.

Next, we evaluate and discuss the sparsity-inducing formulations, f,s (Equation 26), fg.
(Equation 27), frs1 (Equation 28), and fre (Equation 29).

5.3.2 FORMULATIONS WITH MIXED [; AND ly NORMS

Automatically selecting partitions or groups: In this Section, we evaluate f,s and
fgs- Table 6 shows the prediction accuracy of these formulations compared to fo, f,, fi and
foni- fps and fgs show comparable prediction accuracy to fo, ;. We also found interesting
sparsity patterns in the learnt weight vectors.

e fps @ Recall that f,s attempts to set the weights of entire partitions to 0. In our case
we have a global partition, a node-based partition and a workload-based partition. We
observed that only wy is zero in the resulting weight vector learned. This means that
given node-specific and workload-specific factors, the global factors that are common
across all the nodes and workloads do not contribute to the prediction. In other
words, similar accuracy could be achieved without using wg. However, both node-
and workload-dependent weights are necessary.

5. An alternative to statistical oversampling would be to use class-sensitive miss-classification penalties.
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’ Formulation ‘ Description

fo uses a single, global weight vector
fn uses only node-specific weights
fi uses only workload-specific weights
Jont uses global, node- and workload-specific weights
Joit uses global weights and weights specific to {node, workload} tuples
fo.el uses global and workload-specific weights and weights specific to {node, workload} tuples
Ips selects partitions automatically
fos selects groups automatically
frst selects feature-blocks automatically for individual groups
frs2 selects feature-blocks automatically across all the groups

Table 4: Brief description of all our formulations.

%Training Wrangler
Data Yadwadkar et al. (2014) Joof | e o | Joe | Jos
1 Insufficient data 66.9 | 63.5 | 66.5 | 65.5 | 63.7 | 66.2
2 Insufficient Data 67.1 | 63.3 | 67.7 | 67.5 | 64.3 | 67.7
5 Insufficient Data 67.5 | 68.1 | 69.1 | 69.8 | 69.6 | 69.1
10 63.9 67.8 | 70.9 | 69.4 | 72.3 | 73.1 | 72.9
20 67.2 68.0 | 72.6 | 70.1 | 72.9 | 74.7 | 74.8
30 68.5 68.5 | 73.2 | 70.3 | 74.1 | 75.9 | 75.8
40 69.7 68.2 | 73.9 | 70.5 | 74.3 | 76.4 | 76.4
50 70.1 68.5 | 74.1 | 70.4 | 75.3 | 77.1 | 77.2

Table 5: Prediction accuracies (in %) of various MTL formulations for straggler prediction with varying
amount of training data. See Section 5.3.1 for details.

o fus o In fgs, we encourage individual nodes-specific or individual workloads-specific
weight vectors separately to be set to zero. We observed that some of the nodes’
weight vectors and some of the workload-specific weight vectors were zero, indicating
that in some cases we do not need node or workload specific reasoning. (One can use
the learnt sparsity pattern and attempt to correlate it with some node and workload
characteristics; however we have not explored this in this paper.)

We also note that our mixed-norm formulations automatically learn a grouping that achieves
comparable accuracy with lesser total number of groups, and thus fewer parameters.

Automatically selecting features: In this section, we evaluate the remaining formula-
tions frs1 and frg. These two formulations group sets of features based on resources. We
divide the features in five different categories viz., features measuring (1) CPU utilization,
(2) memory utilization, (3) network usage, (5) disk utilization, (6) other system level per-
formance counters. We evaluate their straggler prediction accuracy and then discuss their
interpretability in terms of understanding the causes behind stragglers.
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Classification Accuracy using 50% of the

total data
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Figure 3: Classification accuracy of various MTL formulations as compared to Wrangler using 50% of the
total data. This plot shows the percentage of true positives and the percentage of false positives in each of
the cases. These quantities are computed as: % True Positive = (fraction of stragglers predicted correctly as
stragglers) x 100, and % False Positive = (fraction of non-stragglers predicted incorrectly to be stragglers)
x 100.

Formulation Straggler Prediction Accuracy

fo 68.5
fn 74.1
fi 70.4
fon 75.3
fos 74.4
fas 73.8

Table 6: Straggler prediction accuracies (in %) using the four mixed-norm formulations fps and fgs compared
with formulations that use Iz regularizers. Note that f,s and fys perform with comparable accuracy with
fo,n,1, however, use lesser number of groups and parameters, resulting in simpler models.

Table 7 shows the percentage prediction accuracies of these formulations on our test set.
Note that these formulations show comparable prediction accuracy. Next, we discuss the
impact of frs1 and frse on understanding the straggler behavior.

e frs1: Because this formulation divides each group weight vector further into blocks
based on the kind of features, it can potentially provide fine-grained insight into what
kinds of features are most important for each group weight vector. Indeed, we found
that some node models assign zero weight to features from the network category, while
others assign a zero weight to the disk category. However, no global patterns emerge.
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Formulation — Straggler Prediction Accuracy (in %)
ffsl 74.9
Freo 74.9

Table 7: Straggler prediction accuracies (in %) using frs1 and frs2 that encourage sparsity across bocks of
features.

FB2009 FB2010 CCob CC_e

Jong  foi | fomg Joi | foni  Sfoi | fona  Sor
73.1 453 | 46.7 483 | 50.2 494 | 52.8 68.2
56.2 57.5| 57.3 587 | 61.0 535 | 64.4 48.9
63.9 55.5| 50.0 488 | 594 53.4 | 48.9 65.1
63.2 47.7| 60.6 57.4 | 55.7 495 | 47.3 73.9
50.7 424 | 51.4 56.2 | 50.8 44.6 | 71.2 59.9

Table 8: Straggler Prediction accuracies (in %) of fo,»,; and fo+ on test data from an unseen node-workload
pair. See Section 5.4 for details.

This reinforces our belief that the causes of stragglers vary quite a bit from node to
node or workload to workload.

o frs2: This formulation considers these feature categories across the various nodes and
workloads and provides a way of knowing if there are certain dominating factors caus-
ing stragglers in a cluster. However, we observed that none of the feature categories
had zero weights in the weight vector learned for our dataset. Again, this means
that there is no single, easily discoverable reason for straggler behavior, and provides
evidence to the claim made by Ananthanarayanan et al. (2013, 2014) that the causes
behind stragglers are hard to figure out.

5.4 Prediction accuracy for a {node, workload} tuple with insufficient data

One of our goals in this work is to reduce the amount of training data required to get a
straggler prediction model up and running. When a new workload begins to execute on a
node, we want to learn a model as quickly as possible. Recall that (Section 5.3) with enough
training data available we found that fy,, fo: and fo:; seem to perform similarly, with
fon,g performing slightly worse. However, as mentioned in Section 4.8, formulation fy .,
has fewer parameters and, because it has no weight vector specific to a particular {node,
workload} tuple, can generalize to new {node, workload} tuples unseen at train time. This
is in contrast to fo; which has to fall back on wq in such a situation, and thus may not
generalize as well. In this section, we see if this is indeed true.

We trained classifiers based on fp,,; and fo+ leaving out 95% of the data of one node-
workload pair every time. We then test the models on the left-out data. Table 8 shows the
percentage classification accuracy from 20 such runs. We note the following:

e For 13 out of 20 classification experiments, fq ,; performs better than fy;. For 10 out
of these 13 cases, the difference in performance is more than 5 percentage points.

e For workloads F'B2009 and CC_b, we see fq,; performs better consistently.
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Figure 4: Improvement in the overall job completion times achieved by fo ,; and Wrangler over speculative
execution.

o fon, sometimes performs worse, but in only 3 of these cases is it significantly worse
(worse by more than 5 percentage points). All 3 of these instances are in case of the
CC'_e workload. In general, for this workload, we also notice a huge variance in the
numbers obtained across multiple nodes. See Yadwadkar et al. (2014), for a discussion
of some of the issues in this workload.

This shows that f,,; works better in real-world settings where one cannot expect enough
data for all node-workload pairs. Therefore, we evaluate fy,; in our next experiment
(Section 5.5) to see if it improves job completion times.

5.5 Improvement in overall job completion time

We now evaluate our formulation, fy 5 ;, using the second metric, improvement in the overall
job completion times over speculative execution. We compare these improvements to that
achieved by Wrangler (Figure 4). Improvement at the 99" percentile is a strong indica-
tor of the effectiveness of straggler mitigation techniques. We see that fy ,; significantly
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% Reduction in total task-seconds

Workload
(MTL with fon,) (Wrangler)
FB-2009 73.33 55.09
FB-2010 8.9 24.77
CCob 64.12 40.15
CC-e 13.04 8.24

Table 9: Resource utilization with fo,,; and with Wrangler over speculative execution, in terms of total
task execution times (in seconds) across all the jobs. fo ., reduces resources consumed over Wrangler for
FB2009, CC.b and CC_e.

improves over Wrangler, reflecting the improvements in prediction accuracy. At the 99"
percentile, we improve Wrangler’s job completion times by 57.8%, 35.8%, 58.9% and 5.7%
for FB2009, FB2010,CC_b and CC e respectively. Note that Wrangler is already a strong
baseline. Hence, the improvement in job completion times on top of the improvement
achieved by Wrangler is significant.

5.6 Reduction in resources consumed

When a job is launched on a cluster, it will be broken into small tasks and these tasks will be
run in a distributed fashion. Thus, to calculate the resources used, we can sum the resources
used by all the tasks. As in Yadwadkar et al. (2014), we use the time taken by each task as
a measure of the resources used by the task. Note that, because these tasks will likely be
executing in parallel, the total time taken by the tasks will be much larger than the time
taken for the whole job to finish, which is what job completion time measures (shown in
Figure 4). Ideally, straggler prediction will prevent tasks from becoming stragglers. Fewer
stragglers means fewer tasks that need to be replicated by straggler mitigation mechanisms
(like speculative execution) and thus lower resource consumption. Thus, improved straggler
prediction should also reduce the total task-seconds i.e., resources consumed.

Table 9 compares the percentage reduction in resources consumed in terms of total
task-seconds achieved by fo ,; and Wrangler over speculative execution. We see that the
improved predictions of fj ,,; reduce resource consumption significantly more than Wrangler
for 3 out of 4 workloads, thus supporting our intuitions. In particular, for ' B2009 and
CCDb, fon,; reduces Wrangler’s resource consumption by about 40%, while for CC_e the
reduction is about 5%.

6. Related Work on Multi-task Learning

The idea that multiple learning problems might be related and can gain from each other
dates back to Thrun (1996) and Caruana (1993). They pointed out that humans do not
learn a new task from scratch but instead reuse knowledge gleaned from other learning
tasks. This notion was formalized by, among others, Baxter (2000) and Ando and Zhang
(2005), who quantified this gain. Much of this early work relied on neural networks as
a means of learning these shared representations. However, contemporary work has also
focused on SVMs and kernel machines.

Our work is an extension of the work of Evgeniou and Pontil (2004), who proposed an
additive model for MTL that decomposes classifiers into a shared component and a task-
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specific component. In later work, Evgeniou et al. (2005) propose an MTL framework that
uses a general quadratic form as a regularizer. They show that if the tasks can be grouped
into clusters, they can use a regularizer that encourages all the weight vectors of the group to
be closer to each other. Jacob et al. (2009) extend this formulation when the group structure
is not known a priori. Xue et al. (2007) infer the group structure using a Bayesian approach.
The approach of Widmer et al. (2010) is similar to ours and groups tasks into “meta-tasks”,
and tries to automatically figure out the meta-tasks required to get good performance. The
formulation we propose is also designed to handle group structure, but allows us to dispense
with task-specific classifiers entirely, reducing the number of parameters drastically. This
allows us to handle tasks that have very little training data by transferring parameters learnt
on other tasks. Our formulation shares this property with that of Blanchard et al. (2011),
and indeed our basic formulation can be written down in the kernel-based framework they
describe for learning to generalize onto a completely unseen task. Other ways of controlling
parameters include learning a distance metric (Parameswaran and Weinberger, 2010), and
using low rank regularizers (Pong et al., 2010).

Our setting is an example of multilinear multitask learning where each learning problem
is indexed by two indices: the node and the workload. Previous work on this subfield of
multitask learning has typically used low-rank regularizers on the weight matrix represented
as tensors (Romera-Paredes et al., 2013; Wimalawarne et al., 2014). It is also possible to
define a similarity between tasks based on how many indices they share (Signoretto et al.,
2014). Our formulation captures some of the same intuitions, but has the added advantage
of simplicity and ease of implementation.

Using mixed norms for inducing sparsity has a rich history. Donoho (2006) showed that
minimizing the [; norm recovers sparse solutions when solving linear systems. When used
as a regularizer, the [y norm learns sparse models, where most weights are 0. The most
well known of such sparse formulations is the lasso (Tibshirani, 1996), which uses the I3
norm to select features in regression. Yuan and Lin (2006) extend the lasso to group lasso,
where they use a mixed [; and ls norm to select a sparse set of groups of features. Bach
(2008) study the theoretical properties of group lasso. Since these initial papers, mixed
norms have found use in a variety of applications. For instance , Quattoni et al. (2008)
use a mixed [, and [; norm for feature selection. Such mixed norms also show up in the
literature on kernel learning, where they are used to select a sparse set of kernels (Varma
and Ray, 2007; Kloft et al., 2011) or a sparse set of groups of kernels (Aflalo et al., 2011).
Bach et al. (2011) provides an accessible review of mixed norms and their optimization, and
we direct the interested reader to that article for more details.

7. Conclusion

Through this work, we have shown the utility of multitask learning in solving the real-world
problem of avoiding stragglers in distributed data processing. We have presented a novel
MTL formulation that captures the structure of our learning-tasks and reduces job comple-
tion times by up to 59% over prior work (Yadwadkar et al., 2014). This reduction comes
from a 7 percentage point increase in prediction accuracy. Our formulation can achieve
better accuracy with only a sixth of the training data and can generalize better than other
MTL approaches for learning-tasks with little or no data. We have also presented extensions
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to our formulation using group sparsity inducing mixed norms that automatically discover
the structure of our learning tasks and make the final model more interpretable. Finally,
we note that, although we use straggler avoidance as the motivation, our formulation is
more generally applicable, especially for other prediction problems in distributed comput-
ing frameworks, such as resource allocation (Gupta et al., 2013; Delimitrou and Kozyrakis,
2014).

Appendix A. Cross-validating hyperparameter settings

Our formulation reduces the number of hyperparameters to just one per partitioning, which
makes it much easier to cross-validate to set their values. In particular, our formulation
in the context of straggler avoidance, Equation (24), has four hyperparameters: Ao, v, w,
7. To tune these parameters we used a simple grid search with cross-validation (results are
shown in Tables 10, 11, 12, and 13). In general we found that the model formulation is
relatively robust to the choice of hyperparameters so long as they are within the correct
order of magnitude.
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’ Ao ‘ v ‘ w ‘ T ‘ Accuracy (%) ‘
1|1 1 1 75.38
1 1 1 10 75.57
1 1 1 100 | 75.24
1 1 1 1000 | 74.39
1 1 10 1 74.93
1 1 10 10 75.51
1 1 10 100 | 75.05
11 10 | 1000 | 74.38
1 1 100 1 74.84
1 1 100 10 | 74.84
1 1 100 | 100 | 73.95
1 1 100 | 1000 | 73.04
1 1 | 1000 1 73.03
1 1 | 1000 10 72.60
1 1 | 1000 | 100 | 72.11
1 1 | 1000 | 1000 | 71.17
1 ]10 1 1 74.95
1 ]10 1 10 | 75.17
1 1]10 1 100 | 74.34
1 |10 1 1000 | 74.05
1 |10 10 1 75.42
1 |10 | 10 10 | 75.05
1 |10 | 10 100 | 74.69
1 (10| 10 | 1000 | 75.00
1 |10 | 100 1 74.84
1 |10 | 100 10 | 74.77
1 |10| 100 | 100 | 74.42
1 |10 | 100 | 1000 | 73.53
1 | 10 | 1000 1 72.88
1 | 10 | 1000 10 72.23
1 |10 | 1000 | 100 | 72.07
1 |10 | 1000 | 1000 | 71.16

’ X | v \ w ‘ T ‘ Accuracy (%) ‘
1 100 1 1 75.39
1 100 1 10 74.95
1 100 1 100 | 74.42
1 100 1 1000 | 74.00
1 100 10 1 75.58
1 100 10 10 75.14
1 100 10 100 | 74.92
1 100 10 1000 | 73.90
1 100 100 1 74.87
1 100 100 10 74.72
1 100 100 100 | 74.09
1 100 | 100 | 1000 | 72.95
1 100 | 1000 1 73.08
1 100 | 1000 10 72.15
1 100 | 1000 | 100 | 72.47
1 100 | 1000 | 1000 | 70.72
1 | 1000 1 1 75.47
1 | 1000 1 10 | 75.37
1 | 1000 1 100 | 74.73
1 | 1000 1 1000 | 74.49
1 | 1000 10 1 75.78
1 | 1000 10 10 74.73
1 | 1000 10 100 | 74.87
1 | 1000 10 1000 | 74.40
1 | 1000 | 100 1 74.97
1 | 1000 | 100 10 75.06
1 | 1000 | 100 | 100 | 73.68
1 | 1000 | 100 | 1000 | 72.51
1 | 1000 | 1000 1 72.29
1 | 1000 | 1000 10 72.02
1 | 1000 | 1000 | 100 | 71.94
1 | 1000 | 1000 | 1000 | 70.34

Table 10: Tuning the hyperparameters Ao, v, w and 7 using grid search.
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Ao ‘ v ‘ w ‘ T ‘ Accuracy (%) ‘
10| 1 1 1 65.93
10| 1 1 10 | 67.67
10| 1 1 100 | 63.99
10| 1 1 1000 | 64.67
10| 1 10 1 69.97
10| 1 10 10 74.92
10| 1 10 100 | 75.13
10| 1 10 | 1000 | 74.52
10| 1 100 1 61.19
10| 1 100 10 | 75.85
10| 1 100 | 100 | 75.44
10| 1 100 | 1000 | 75.30
10 | 1 | 1000 1 68.35
10 | 1 | 1000 10 | 74.20
10 | 1 | 1000 | 100 | 74.45
10 | 1 | 1000 | 1000 | 73.90
10 | 10 1 1 64.50
10 | 10 1 10 | 66.59
10 | 10 1 100 | 64.90
10 | 10 1 1000 | 61.98
10 [ 10 | 10 1 69.95
10 [ 10 | 10 10 | 75.61
10 [ 10 | 10 100 | 75.02
10 [ 10 | 10 | 1000 | 74.63
10 | 10 | 100 1 73.26
10 | 10 | 100 10 | 75.19
10 | 10 | 100 | 100 | 74.77
10 | 10 | 100 | 1000 | 74.68
10 | 10 | 1000 1 58.03
10 | 10 | 1000 10 | 74.83
10 | 10 | 1000 | 100 | 74.95
10 | 10 | 1000 | 1000 | 73.83

Ao ‘ v ‘ w T ‘ Accuracy (%) ‘
10 | 100 1 1 66.44
10 | 100 1 10 | 64.54
10 | 100 1 100 | 64.98
10 | 100 1 1000 | 62.97
10 | 100 10 1 68.87
10 | 100 10 10 | 75.84
10 | 100 10 100 | 75.09
10 | 100 10 | 1000 | 75.41
10 | 100 | 100 1 69.45
10 | 100 | 100 10 | 75.41
10 | 100 | 100 | 100 | 75.74
10 | 100 | 100 | 1000 | 75.30
10 | 100 | 1000 1 72.66
10 | 100 | 1000 | 10 | 75.19
10 | 100 | 1000 | 100 | 74.30
10 | 100 | 1000 | 1000 | 74.03
10 | 1000 1 1 67.33
10 | 1000 1 10 | 63.73
10 | 1000 1 100 | 61.84
10 | 1000 1 1000 | 60.44
10 | 1000 10 1 67.40
10 | 1000 10 10 | 75.60
10 | 1000 10 100 | 75.26
10 | 1000 10 1000 | 75.30
10 | 1000 | 100 1 72.45
10 | 1000 | 100 10 | 75.44
10 | 1000 | 100 | 100 | 75.30
10 | 1000 | 100 | 1000 | 75.03
10 | 1000 | 1000 1 66.71
10 | 1000 | 1000 | 10 | 75.00
10 | 1000 | 1000 | 100 | 75.07
10 | 1000 | 1000 | 1000 | 74.42

Table 11: Tuning the hyperparameters Ao, v, w and 7 using grid search.
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’ Ao ‘ v ‘ w ‘ T ‘ Accuracy (%) ‘
100 | 1 1 1 67.36
100 | 1 1 10 | 66.39
100 | 1 1 100 | 63.79
100 | 1 1 1000 | 65.24
100 | 1 10 1 65.46
100 | 1 10 10 | 67.84
100 | 1 10 100 | 64.63
100 | 1 10 1000 | 60.97
100 | 1 100 1 72.27
100 | 1 100 10 | 56.05
100 | 1 100 | 100 | 66.44
100 | 1 100 | 1000 | 70.18
100 | 1 | 1000 1 52.14
100 | 1 | 1000 10 | 71.03
100 | 1 | 1000 | 100 | 65.30
100 | 1 | 1000 | 1000 | 73.16
100 | 10 1 1 65.87
100 | 10 1 10 | 65.94
100 | 10 1 100 | 67.53
100 | 10 1 1000 | 64.05
100 | 10 | 10 1 69.18
100 | 10 10 10 62.42
100 | 10 10 100 | 62.87
100 | 10 10 1000 | 63.63
100 | 10 | 100 1 56.48
100 | 10 | 100 10 | 66.43
100 | 10 | 100 100 | 75.18
100 | 10 | 100 | 1000 | 75.57
100 | 10 | 1000 1 53.74
100 | 10 | 1000 | 10 | 69.14
100 | 10 | 1000 | 100 | 75.5
100 | 10 | 1000 | 1000 | 75.24

’ Ao ‘ v ‘ w ‘ T ‘ Accuracy (%) ‘
100 | 100 1 1 64.43
100 | 100 1 10 | 65.58
100 | 100 1 100 | 65.06
100 | 100 1 1000 | 63.42
100 | 100 10 1 57.59
100 | 100 10 10 | 65.14
100 | 100 10 100 | 67.08
100 | 100 10 1000 | 68.03
100 | 100 100 1 72.68
100 | 100 100 10 | 65.14
100 | 100 | 100 | 100 | 75.01
100 | 100 | 100 | 1000 | 75.26
100 | 100 | 1000 1 64.70
100 | 100 | 1000 10 | 55.27
100 | 100 | 1000 | 100 | 75.24
100 | 100 | 1000 | 1000 | 74.79
100 | 1000 1 1 65.79
100 | 1000 1 10 | 65.15
100 | 1000 1 100 | 60.47
100 | 1000 1 1000 | 61.25
100 | 1000 | 10 1 67.20
100 | 1000 10 10 | 63.50
100 | 1000 10 100 | 66.72
100 | 1000 10 1000 | 61.48
100 | 1000 | 100 1 67.65
100 | 1000 | 100 10 | 66.88
100 | 1000 | 100 100 | 75.71
100 | 1000 | 100 | 1000 | 75.40
100 | 1000 | 1000 1 57.90
100 | 1000 | 1000 | 10 | 69.47
100 | 1000 | 1000 | 100 | 75.91
100 | 1000 | 1000 | 1000 | 75.49

Table 12: Tuning the hyperparameters Ao, v, w and 7 using grid search.
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| X | v ] w | 7 | Accuracy (%) |
1000 | 1 1 1 64.42
1000 | 1 1 10 | 62.57
1000 | 1 1 100 | 65.63
1000 | 1 1 1000 | 62.00
1000 | 1 10 1 64.62
1000 | 1 10 10 | 65.87
1000 | 1 10 100 | 65.36
1000 | 1 10 | 1000 | 65.51
1000 | 1 100 1 71.64
1000 | 1 100 10 | 65.88
1000 | 1 | 100 | 100 | 61.27
1000 | 1 | 100 | 1000 | 71.41
1000 | 1 | 1000 1 66.75
1000 | 1 | 1000 | 10 | 74.07
1000 | 1 | 1000 | 100 | 54.60
1000 | 1 | 1000 | 1000 | 71.88
1000 | 10 1 1 63.93
1000 | 10 1 10 | 63.35
1000 | 10 1 100 | 63.68
1000 | 10 1 1000 | 64.02
1000 | 10 | 10 1 71.02
1000 | 10 | 10 10 | 65.37
1000 | 10 | 10 100 | 66.78
1000 | 10 | 10 | 1000 | 64.47
1000 | 10 | 100 1 56.41
1000 | 10 | 100 10 | 60.10
1000 | 10 | 100 | 100 | 68.24
1000 | 10 | 100 | 1000 | 61.10
1000 | 10 | 1000 1 55.50
1000 | 10 | 1000 | 10 | 66.23
1000 | 10 | 1000 | 100 | 65.71
1000 | 10 | 1000 | 1000 | 72.19

’ Ao ‘ v ‘ w ‘ T ‘ Accuracy (%) ‘
1000 | 100 1 1 63.52
1000 | 100 1 10 66.93
1000 | 100 1 100 | 65.36
1000 | 100 1 1000 | 64.37
1000 | 100 10 1 55.54
1000 | 100 10 10 62.08
1000 | 100 10 100 | 64.24
1000 | 100 10 1000 | 62.66
1000 | 100 100 1 63.72
1000 | 100 100 10 69.01
1000 | 100 100 100 | 61.42
1000 | 100 100 | 1000 | 64.31
1000 | 100 | 1000 1 60.21
1000 | 100 | 1000 10 71.92
1000 | 100 | 1000 | 100 | 67.46
1000 | 100 | 1000 | 1000 | 75.28
1000 | 1000 1 1 63.09
1000 | 1000 1 10 68.08
1000 | 1000 1 100 | 63.58
1000 | 1000 1 1000 | 59.18
1000 | 1000 10 1 69.81
1000 | 1000 10 10 68.01
1000 | 1000 10 100 | 67.49
1000 | 1000 10 1000 | 66.57
1000 | 1000 | 100 1 59.24
1000 | 1000 | 100 10 61.69
1000 | 1000 | 100 100 | 66.04
1000 | 1000 | 100 | 1000 | 61.54
1000 | 1000 | 1000 1 71.65
1000 | 1000 | 1000 10 58.39
1000 | 1000 | 1000 | 100 | 71.65
1000 | 1000 | 1000 | 1000 | 75.59

Table 13: Tuning the hyperparameters Ao, v, w and 7 using grid search.
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