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Abstract

The rise of Internet-scale networks, such as web graphs and social media with hundreds
of millions to billions of nodes, presents new scientific opportunities, such as overlapping
community detection to discover the structure of the Internet, or to analyze trends in on-
line social behavior. However, many existing probabilistic network models are difficult or
impossible to deploy at these massive scales. We propose a scalable approach for model-
ing and inferring latent spaces in Internet-scale networks, with an eye towards overlapping
community detection as a key application. By applying a succinct representation of net-
works as a bag of triangular motifs, developing a parsimonious statistical model, deriving
an efficient stochastic variational inference algorithm, and implementing it as a distributed
cluster program via the Petuum parameter server system, we demonstrate overlapping
community detection on real networks with up to 100 million nodes and 1000 communities
on 5 machines in under 40 hours. Compared to other state-of-the-art probabilistic network
approaches, our method is several orders of magnitude faster, with competitive or improved
accuracy at overlapping community detection.

Keywords: probabilistic network models, triangular modeling, stochastic variational
inference, distributed computation, big data

1. Introduction

The rapid growth of the Internet, particularly the explosion of social media, has led to
unprecedented increases in the volume of network data worldwide. Already, the Yahoo web
graph collected in 2002 contains in excess of one billion URLs (Yahoo, 2013)), the Face-
book social network recently exceeded one billion users (Facebookl |2013), and numerous
other social networks or online communities easily claim memberships in the millions of
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users (Leskovec and Krevl, 2014)). To understand the structural and functional proper-
ties of massive networks, one important task in network analysis is unsupervised detection
of community structure—a task that frequently occurs in social media and Internet stud-
ies (Palla et al., 2005; Newman, 2006; Prakash et al., 2010; Psorakis et al., 2011; Xie and
Szymanski, 2012; Gopalan and Blei, 2013)). Although there is no clear consensus in the
literature on the definition of a network community, it is generally accepted that actors
or nodes from the same community tend to interact more frequently with each other and
share more common characteristics. In a social network, relevant characteristics might be
“(people) going to the same school, social club, or workplace”, while on the Internet, a
characteristic might be “(websites) about a specific topic, such as politics, sports, or tech-
nology”. It is well-understood that actors in a network can have multiple characteristics,
resulting in multiple community memberships that usually overlap (Palla et al.l |2005; Yang
and Leskovec, [2012b); hence, it is widely accepted that overlapping communities provide a
more accurate picture of network structure than disjoint communities (Xie et al., [2013).

To date, however, only a few overlapping community detection algorithms have been
successfully applied to large graphs in excess of hundreds of millions of nodes (Prakash
et al., 2010; [Kang et al., 2011)), and, to the best of our knowledge, none of them are based
on a probabilistic formulation. Probabilistic methods are often more flexible in that they
can serve as “building blocks” to more sophisticated models over additional non-network
data sources—particularly text and feature data (Rosen-Zvi et al., [2004; Dietz et al., 2007}
Nallapati et al., [2008; [Chang and Bleil, 2009} Balasubramanyan and Cohenl, 2011}, [Ho et al.|
2012al). They may also be extended to settings with multiple networks, e.g., the time-
varying setting in which we are given snapshots of the same network at multiple time
points (Fu et al.l 2009; Ho et al., [2011)), or to the nonparametric setting, which provides a
principled way to automatically select the number of communities (Kemp et al., 2006} [Ho
et al.l 2012a,b).

Despite some recent work showing that probabilistic methods can already be scaled up
to networks with several million nodes (Gopalan and Blei, [2013), there are currently no
probabilistic network models that have been reported to scale to hundreds of millions of
nodes or more. In this paper, we develop a new probabilistic network model and accom-
panying inference algorithm for these massive scales. We take a latent space approach, in
which each node is associated with an unobserved mixed-membership vector in the latent
space that represents a mixture distribution over the multiple possible characteristics (roles
or properties) it can have. The mixed-membership assumption can naturally capture the
multi-faceted and heterogeneous nature of nodes in real networks—for example, actors in
social networks tend to belong to multiple distinct social groups, depending on whom they
are interacting with. This is in contrast to the single-membership assumption, where each
node can only play a single latent role in its relationship with other nodes. We focus on
probabilistic inference of mixed-membership vectors of individual nodes, taking as input the
observed structural relation of Internet-scale networks with millions to hundreds of millions
of nodes. The inferred mixed-membership position vectors can then be used for overlapping
community detection. We demonstrate that our method can infer 1000 communities from
a 101-million-node web graph in less than 40 hours using a small cluster of 5 machines,
and that, on real-world networks with ground truth, our community recovery accuracy is
competitive with or outperforms other scalable probabilistic models.
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1.1 Challenges in Probabilistic Modeling of Large Networks

For a network with N nodes, its dense adjacency matrix representation contains © (N 2)
elements. Although the network data itself can be stored in a sparse format (e.g., edge list or
adjacency list), several popular probabilistic network models—such as mixed-membership
stochastic blockmodels (Airoldi et al.,|2008) and latent feature models (Miller et al., 2009)—
associate latent variables to each of the N? elements in the adjacency matrix, essentially
treating the network as non-sparse. Consequently, the inference algorithm naively requires
Q(N?) computational complexity. This may still be acceptable for small networks, but is
untenable for networks with hundreds of millions of nodes, as considered in this work.

A second difficulty is that larger networks have been observed to have more communi-
ties (Leskovec et all 2005), so the number of hidden variables or parameters in the model
often has to grow super-linearly in the number of communities K (in addition to N). Having
super-linear growth in the state space can quickly render the inference algorithm compu-
tationally intractable, even at modest network scales. Such challenges have already been
observed in the mixed-membership stochastic blockmodel (MMSB), which is infeasible for
networks with N > 100 million nodes or K > 100 communities because of its O(N?K?) per-
iteration runtime. Recent work by |Gopalan and Blei| (2013) has brought the per-iteration
inference complexity of MMSB down to O(MK), where M is the number of edges. The
resulting algorithm allows scalability of up to N = 4 million nodes and K = 1000 commu-
nities in about 1 week on a single machine. However, even that result remains about 1.4
orders of magnitude below our desired target of N > 100 million nodes.

1.2 Proposed Approach

From a scalability perspective, an ideal large-scale network inference algorithm would re-
quire only linear-time work in the number of nodes and communities. Towards this end, we
take a different approach to data representation, model construction, and algorithm design
that avoids the common edge-based representation of a network (e.g., adjacency matrices or
adjacency lists), in favor of viewing the network in terms of ¢riangular motifs (also known
as triads, or subgraphs of size 3).

Our triangular motif representation captures certain edge patterns observed in node
triples (i, j, k), such as the 2-edge triangle i — j — k and the 3-edge triangle i — j — k —4. This
is a hypergraph representation of the network, where every hyperedge is labeled with the
edge pattern over (i, 7, k)ﬂ Hypergraph representations of networks have been studied in
both the social networks (Ghoshal et al., [2009) and statistics (Stasi et al., 2014]) literature,
and there is an empirical evidence showing that triangles and higher-order subgraphs can
substantially reveal the structure and communities within a network (Milo et al.,|2002; Yang
and Leskovec, [2012b)). Moreover, this triangular representation has desirable properties for
large-scale network analysis; in particular, it is possible to subsample triangular motifs in a
manner that approximately preserves important network attributes such as the clustering
coefficient, a popular measure of cluster strength.

In the following sections, we shall discuss how to build a scalable, linear-time network
inference algorithm based on triangular motifs. We begin with the triangular data represen-
tation (Section 2), followed by statistical model design (Section 3), and then parallelizable

1. This is technically a 3-uniform hypergraph, where all hyperedges are associated with 3 nodes.



Ho, YiN AND XING

inference algorithm construction (Section 4). Finally, we implement the algorithm in the
distributed, multi-machine cluster setting (Section 5), using a large-scale machine learning
platform called Petuum (www.petuum.org). The resulting latent space inference algorithm
can be used for overlapping community detection on networks with more than 100 million
nodes and thousands of communities.

1.3 Related Work

Understanding network structure is highly important to a number of scientific domains, and
each domain has developed its own unique tools to analyze the global and local properties
of networks. Here, we provide a general overview of network analysis methods from the
computer science and statistics literature, with a focus on how well they scale to very large
networks with hundreds of millions of nodes or more.

In the general computer science literature, there has been an emphasis on achieving fast,
linear-time overlapping community detection on medium-sized networks (usually millions
of nodes). Examples include the GCE (Lee et al., 2010), Link (Ahn et al. 2010) and
SLPA (Xie and Szymanski, 2012)) algorithms. Although these algorithms are fast (less than
one hour running time on 1 million nodes), their clustering strategies are not always based
on a clearly defined optimization function or statistical model, and might be considered ad-
hoc in a statistical or machine learning setting. For example, SLPA propagates community
labels through the graph, and does not have an underlying statistical model or objective
function. There is neither consensus on which approach works best nor on generalization
guarantees to networks with different properties. Moreover, compared to a model-based
approach, it is unclear how to incorporate additional network attributes in a principled
manner, such as text or other meta-data associated with each node.

In statistics and machine learning, network algorithms are typically created by defin-
ing a formal model of the network, and deriving an inference or optimization algorithm to
learn the model’s parameters. Predominant statistical network models include exponen-
tial random graph models (ERGMs) (Morris et al., 2008; [Hunter et al., 2008; Guo et al.,
2007)), stochastic blockmodels (Bickel et al., 2013; /Anandkumar et al. 2014} Airoldi et al.,
2008; Ho et al., 2011; Gopalan et al., 2012) and latent factor models (Miller et al.| |2009;
Handcock et al.l 2007; [Hoff et all 2002). All of these models are popular for their ease
of interpretability, but their inference algorithms generally require O(N?) time due to how
they model the adjacency matrix, making them patently unscalable to massive networks
with N > 100 million. Exceptions to this trend include assortative MMSB (Gopalan et al.|
2012; \Gopalan and Blei, [2013)), which applied stochastic gradient techniques to achieve lin-
ear runtime on the MMSB (Airoldi et al., 2008]), and sparse block model (Parkkinen et al.,
2009) with O(M) latent variables (M is the number of edges). Although these methods
are scalable in their own right, they still treat network edges as the basis for the task of
community detection. In this paper, we will argue that triangular motifs are a good, if not
better, network representation for this task (Section 3), and design a network model based
on these triangular motifs.

The natural language processing and information retrieval communities have extended

the LDA topic model (Blei et al.l [2003) to a variety of text-network models by exploring
the links between documents. Examples include the relational topic model (Chang and
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Blei, [2009), Link-PLSA-LDA (Nallapati et al.. |2008), Block-LDA (Balasubramanyan and
Cohen, 2011)), the author-topic model (Rosen-Zvi et al., 2004), and the citation influence
model (Dietz et all, 2007). While these models are scalable in that they require O(M)
work on the network data, most of them (except for the Block-LDA model) cannot perform
network inference in the absence of text data because they do not use a stand-alone network
model.

In the data mining and machine learning literature, matrix factorization methods pro-
vide a principled framework for decomposing relational data (of which networks are one
type) into simpler “basis” components. Although the basis components are sometimes less
interpretable than the probability distributions that arise from statistical models (e.g., the
basis components may have negative values), the optimization algorithms to perform ma-
trix factorization are usually faster than the inference algorithms for statistical models. In
particular, the HEigen algorithm (Kang et al. |2011) computes the rank-k singular value
decomposition (SVD) on networks with N > 1 billion nodes, given a cluster with hundreds
of Hadoop machines. Furthermore, matrix factorization can be reinterpreted in a proba-
bilistic setting, as seen in the work of Singh and Gordon| (2010), who have developed a
probabilistic matrix factorization framework for an arbitrary number of relational matrices.
To incorporate network context into such a coupled matrix factorization framework, one
would require at least two matrices: the adjacency matrix and one or more matrices of
nodes against their features. Whether the resulting algorithm is scalable strongly depends
on how the objective function is constructed. If the objective function is dense in the adja-
cency matrix (i.e., work is performed even on the zeros) such as in Wang et al. (2011)), then
the algorithm requires at least Q(N?) work. It will not finish in a realistic amount of time
on networks with 100 million nodes, even if a large computer cluster is used. On the other
hand, if the objective function is sparse (i.e., no work performed on the zeros), then one may
take advantage of existing software for distributed, large-scale coupled matrix factorization,
such as FlexiFaCT (Beutel et al., [2014)). Another example of coupled matrix factorization
is the linear-time PICS network analysis algorithm (Akoglu et al., 2012)), which can analyze
networks with N &~ 75k nodes in about 1-2 hours.

2. Data Representation: Triangular Motif Representation of Networks

In many real-world problems where computational cost is a bottleneck, transforming the
original raw data into a task-dependent representation might well suffice for subsequent
analyses and save significantly on computational cost. Classical examples include: (1) the
bag-of-words representation of a document, in which the ordering information of words is
discarded—although much grammatical information is lost, this representation has proven
effective in natural language processing tasks such as topic modeling (Blei et al., 2003)); (2)
the use of superpizels to represent images, in which adjacent pixels are grouped into larger
superpixels—the resulting image representation is compact, and leads to faster and better-
performing segmentation algorithms in computer vision (Cao and Fei-Fei, 2007} |Fulkerson
et al., 2009).

Similarly, in probabilistic modeling of networks, the traditional dense adjacency matrix
representation (Figure (1)) is not suitable for the massive scales (N > 100 million) considered
in this work. In particular, many probabilistic network algorithms touch every entry of
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Original network Adjacency matrix A list of triangular motifs
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Figure 1: Three different representations of the same network: as a graph, as an adjacency
matrix, and as a list of 2-edge and 3-edge triangular motifs.
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Figure 2: Four types of triangular motifs: @ 3-edge triangle; @ 2-edge triangle; 1-edge
triangle; @ empty-triangle. For latent space inference of Internet-scale networks, we only
focus on 3-edge and 2-edge triangles.

the adjacency matrix, leading to ©(N?) run-time complexity per iteration. To solve the
representational and computational challenges of large-scale probabilistic network inference,
we advocate the use of triangular motifs (Figures and as a foundation to achieve succinct
yet informative representation of networks. Triangular motifs have historically played an
important role in biological network analysis (Milo et al., 2002)) as well as in social network
analysis (Simmel and Wolff, 1950; |Granovetter, [1973; |Krackhardt and Handcock| 2007)).
After describing triangular motifs, we will show in the next few sections how they can be
used to construct a mixed-membership network model with O(C'N K) per-iteration inference
cost for a small constant C'.

Given an undirected network?] with N vertices, we shall use the term “l-edge” to refer
to edges that exist between two vertices, and the term “0-edge” to refer to missing edges. A
triangular motif E;;, over 3 vertices i < j < k is simply the type of subgraph exhibited by
those 3 vertices. There are four basic classes of triangular motifs (Figure , distinguished
by their number of 1-edges: 3-edge triangle As (three 1-edges), 2-edge triangle Ay (two
1-edges), 1-edge triangle A; (one l-edge), and empty-triangle Ag (no 1-edges). The total
number of triangular motifs, over all four classes, is ©(N?). However, our goal is not to
account for all four classes in a network representation; instead, we will focus on 3-edge and
2-edge triangles (A3 and Ag) while ignoring 1-edge triangles and empty-triangles (A; and
Ap). There are two key motivations for this approach:

2. Our approach can also be generalized to directed networks, though the analysis is more involved since
directed networks can have more triangular motifs than undirected networks.
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1. In the network literature, many important network measures and characteristics are
quantified and captured by the three-node connected subgraphs (namely Ag and Ay).
To name a few: (1) the network clustering coefficient (Watts and Strogatz, 1998;
Newman and Park, 2003]), a common measure of triadic closure in social network the-
ory (Simmel and Wolff, [1950; (Granovetter, 1973; [Krackhardt and Handcockl, [2007)),
is defined as the relative number of 3-edge triangles compared to the total number
of connected vertex triplets (i.e., 3-edge and 2-edge triangles); (2) the most signifi-
cant and recurrent structural patterns in many complex networks, so-called “network
motifs”, are the three-node connected subgraphs (Milo et al., 2002)). Therefore, one
naturally expects the classes of 3-edge and 2-edge triangles to capture most of the
informative structure in a large network.

2. The four classes of triangular motifs certainly contain redundant information, because
in principle one needs only ©(N?) bits to fully describe a network. Though node
triplets with only one or zero 1-edge (namely A; and Ap) are not uncommon in real-
world networks (Leskovec et al., |2009)), those information might already be contained
in the list of Az and A, triangles. For instance, one can easily conclude from the 2/3-
edge triangular motif representation of the network in Figure [l that a 1-edge triangle
A is formed among the node triplet {1,3,5}. In fact, almost all network information
found in an adjacency matrix representation is preserved by Az and Ag triangles:
every l-edge that appears in some Az or Ay can be identified in the corresponding
triangular motif. The only exception is a set of isolated 1-edges. However, these small
strongly connected components of size 2 can be easily detected and are less interesting
from a large-scale community detection perspective.

One main advantage of characterizing a network in terms of triangular motifs Az and
A, is that such representation is typically more compact than the adjacency matrix repre-
sentation®}, via the following lemma:

Lemma 1 The total number of As’s and Ay’s is ©(Y., D2), where D; is vertex i’s degree.

Proof Let N; be the neighbor set of vertex i. For each vertex i, form the set 7; of tuples
(i,7,k) where j < k and j,k € N, which represents the set of all pairs of neighbors of
i. Because j and k are neighbors of 4, the triangular motif formed among every tuple
(i,4,k) € T; is either a 3-edge triangle A3 or a 2-edge triangle Ag. It is easy to see that each
A, is accounted for by exactly one 7;, where 7 is the center vertex of the As, and that each
A3 is accounted for by three sets 7;,7; and Ty, one for each vertex in the 3-edge triangle.
Thus, >, |7i| = X, 3(D;)(D; — 1) is an upper bound to the total number of Ag’s and Ay’s.
By modifying the preceding argument slightly, we can also show that the total number of
Ag’s and Ay’s is bounded below by £ . [T;|. [ |

For networks with low maximum degree Diax, O3, D?) = O(ND?2,,) is typically

max
much smaller than ©(N?). Even in real-world networks with power-law behavior, the num-

ber of As’s and Ay’s tends to be still much smaller than the size of adjacency matrix N2

3. Recall the size of data (including both 1-edges and 0-edges) in the adjacency matrix representation of a
network is ©(N?), even if the data can be stored in a sparse manner.
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Network # nodes N # edges M | adj matrix size N*> Upper bound of #(Az, Ag)
DBLP 317,080 1,049,866 1.01 x 10" 2.2 x 107
Amazon 334,863 925,872 1.12 x 10%! 9.8 x 10°
Youtube 1,134,890 2,987,624 1.29 x 10'2 1.5 x 10°
Livejournal 3,997,962 34,681,189 1.60 x 103 4.3 x 10°
WDC Subdomain/Host | 101 million 2 billion 1.02 x 10™° 1.0 x 10™

Table 1: Networks used in this paper: number of 2-edge and 3-edge triangles versus ad-
jacency matrix size. Many (though not all) probabilistic network models use the entire
non-sparse adjacency matrix as input. The 2/3-edge triangular representation provides a
more compact alternative—in all example networks, the upper bound for the number of
Ag’s and Ag’s is at least 1000 times smaller than the full adjacency matrix.

(Table [1)), and this allows us to construct a more efficient inference algorithm scalable to
larger networks. However, the large number of triangles still poses storage and computa-
tional challenges. Our solution is to keep the triangular motifs in an implicit representation,
and subsample a mini-batch of them only when they are needed (and discard them after-
wards) in the stochastic variational inference algorithm. We will describe such technique in
Section and our results will surprisingly show that the inference algorithm only needs
to touch a small fraction of triangles before converging to an accurate result.

3. Model: Scalable Network Model (STM) Based on Triangular Motifs

Given a network, now represented by a bag of triangular motifs A3z and A (Figure ,
the goal is to perform probabilistic inference of mixed-membership vectors of individual
nodes, which can then be used for overlapping community detection. This is as opposed to
traditional single-membership community detection, which assigns each vertex to exactly
one community. By taking a mixed-membership approach, one gains many benefits over
single-membership models, such as outlier detection, improved visualization, and better
interpretability (Blei et al., [2003; |Airoldi et al., 2008]).

To construct the mixed-membership network model based on the triangular motif rep-
resentation, which we call STM for scalable triangle model, we first establish some notation
used throughout the paper. Recall that we are concerned only with 3-edge and 2-edge
triangles (Az and Ag) in the triangular motif representation of networks. For each triplet
of vertices i,j,k € {1,...,N},i < j < k, if the subgraph on i,j,k is a 2-edge triangle
with 4, j, or k at the center, then let E;jp = 1, 2, or 3 respectively; if a 3-edge triangle is
formed among ¢, j, k, then let E;;;, = 4. In other words, E;;, denotes the observed type of
triangular motif on vertices ¢, j, k. Whenever the subgraph on i, j, k is a 1-edge triangle or
an empty-triangle, we simply discard it (i.e., E;j; is not part of the model) for the reasons
that have been described in Section [2] .

Next, we assume K latent communities, and that each vertex takes a mixture distribu-
tion over them. The observed 2-edge and 3-edge triangles { ;1 } are generated according to
a latent space model that defines (1) the mixture distribution over community memberships
at each vertex, and (2) a tensor-like data structure of triangle-generating probabilities. More
formally, each vertex i is associated with a community mixed-membership vector §; € AK—1
restricted to the (K — 1)-simplex AX~1. This mixed-membership vector 6; is used to gen-



LATENT SPACE INFERENCE OF INTERNET-SCALE NETWORKS

Community Probability Community Probability Community Probability
6 . 1 0.7 9 ; 1 05 9 1 03
) J k
2 0.2 2 0.1 2 0.7
3 0.1 3 0.4 3 0.0

Z pj -
&. P ol
N

Look up B(1,3,2) to get the
2/3-edge motif distribution

) € Motif: ; } ; } &
j k
0.2 0.3

Eij: Probability: 0.4 0.1

Figure 3: High-level generative process of how the mixed-membership vectors 6;, 0, 0, and a
“tensor” of triangle-generating probabilities B are used to generate the triangular motif Fjj.
In this example, (s; jx =1, = 3, Skij = 2) represents a context-dependent instantiation
of communities for three vertices i, j, k when they are interacting, and the entry Bise is
examined to obtain the multinomial parameter of generating F;;,. All these probabilities
are unobserved and need to be inferred from the observed triangular motifs.

erate community indicators s; j;, € {1,..., K}, each of which represents the community
chosen by vertex ¢ when it is forming a triangle with vertices j and k. The probability of
observing a triangular motif F;j, depends on the community triplet (s; i, ik, Sk,i;) and a
tensor of triangle-generating parameters B. Each element B,,. of this tensor contains the
multinomial probabilities of generating the four possible 2-edge and 3-edge triangles, when
three vertices with respective communities x,y, z interact. A schematic of this generative
process is illustrated in Figure [3

3.1 Parsimonious Parameter Structure

The triangle-generating probability tensor B described above contains O(K?) distribu-
tions, one for each possible community combination (z,y,z). This presents challenging
issues in both statistical estimation and computational complexity: (1) the large number of
O(K3) parameters to be estimated leads to a loss of statistical efficiency (particularly when
K > 1000); (2) inference requires O(K?) time per iteration, which is computationally in-
tractable. An elegant solution to this problem is to reduce the number of triangle-generating
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parameters by partitioning the O(K?) community combination space intro several groups,
and then sharing parameters within the same group (Yin et al., |2013). Our parameter-
sharing strategy is based on the number of distinct states in the configuration of the com-
munity triplet (z,y, z):

1. If all three communities are the same x, the triangle-generating probability is deter-
mined by By, (this is identical to the diagonal of the O(K?) parameterization of B
tensor). There are K such parameters By, ..., Bkkk-

2. If only two communities indices exhibit the same state x (called the majority com-
munity), the probability of triangles is governed by B, no matter what the third,
minority community gy is. The intuition is that the identity of the majority community
is the dominant factor in determining the triangle-generating probabilities, regardless
of the minority community. As with any statistical assumption, this is never perfectly
true for real data, but nevertheless turns out to be a good assumption, as our results
will show. There are K such parameters Biq,..., Bxk.

3. If the three community indices are all distinct, the probability of triangular motifs
depends on By, a single parameter independent of the community identities. This is
similar in spirit to the combined off-diagonal blockmatrix parameters used in hier-
archical blockmodels (Ho et al. 2012a)) and the assortative MMSB (Gopalan et al.,
2012; (Gopalan and Blei|, [2013]).

This sharing strategy yields just O(K) parameters By, Byy, Byaz, © € {1,..., K} (since
there are at most four distinct 2-edge and 3-edge triangles), allowing STM to scale to far
more communities than a naive O(K?) parameterization of B tensor.

3.2 Equivalence Classes of Triangles

For certain configurations of community triplet (s; jk, S ik, Sk,ij), some of the triangular
motifs can become indistinguishable. To illustrate, consider the example illustrated in
Figure suppose that nodes ¢ and j take membership in community z (the majority
community), while the node k takes community y—that is, we have x = s, j1 = s #
skj = y. Under these assignments, one cannot distinguish the 2-edge triangle with 4 in the
center (right panel, E;j, = 1) from the triangle with j in the center (left panel, Ej;, = 2).
This is because both are 2-edge triangles centered at a vertex with majority community =z,
and are thus equivalent with respect to the underlying community configuration x —x — y.
Formally, this £ — z — y community configuration induces a set of triangle equivalence
classes {{1,2},{3},{4}} of all possible triangular motifs E;;; € {1,2,3,4}. We treat the
triangular motifs within the same equivalence class as stochastically equivalent; that is, the
conditional probabilities of events E;;r = 1 and E;j;, = 2 are assumed to be the same if
T = S jk = Sjik 7 Sk,ij- All possible cases are enumerated as follows (see also Table :

1. If all three vertices have the same community z, all three 2-edge triangles are equiv-
alent and the induced set of equivalence classes is {{1,2,3},{4}}. The probability
of Ejji, is determined by By.. € A', where Bz represents the total probability of
sampling an 2-edge triangle from {1,2,3} and By, 2 represents the 3-edge triangle
probability. Thus, the probability of a particular 2-edge triangle is Byz.1/3.

10
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Edge configuration 1 Edge configuration 2

Figure 4: An example of two indistinguishable, equivalent motifs. Although the edge con-
figuration is different in two motifs (i — 7 — k on the left versus j — i — k on the right),
the motifs are indistinguishable under the given community combination, because they are
both cases in which the central node (j and i respectively) has the majority community x.

2.

If only two vertices have the same community x (majority community), the proba-
bility of Ejjj is governed by B, € A?. Here, Byy1 and By, 2 represent the 2-edge
triangle probabilities (for 2-edge triangles centered at a vertex in majority and mi-
nority community respectively), and By, 3 represents the 3-edge triangle probability.
There are two possible 2-edge triangles with a vertex in majority community at the
center, and hence each has probability By, 1/2.

. If all three vertices have distinct community, the probability of E;;; depends on By €

A, where By represents the total probability of sampling an 2-edge triangle from
{1,2,3} (regardless of the center vertex’s community) and By represents the 3-edge
triangle probability.

3.3 Generative Process for Scalable Triangular Model (STM)

We summarize the generative process for a bag of triangular motifs under the STM:

1.

Draw By € A, B,, € A? and B, € A! for each community x € {1,...,K},
according to symmetric Dirichlet distributions Dirichlet(\).

. For each vertex i € {1,..., N}, draw a mixed-membership vector ; ~ Dirichlet («).

. For each triplet of vertices (i,7,k),i < j < k,

a) Draw community configuration s; ;5 ~ Discrete (6;), s, ~ Discrete (6;), s ~
7] J7 j b ]
Discrete (0f).

(b) Draw an equivalence class of triangular motifs { F;;;, } based on By, Byy, Brze and
the configuration of (s; ji, 85k, Sk,ij)- See Tablefor the conditional probabilities
of each equivalence class.

(c) Draw a triangular motif E;;, uniformly at random from the chosen equivalence
class (this is what we meant by stochastic equivalence earlier).

11
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(Si,jk> S ik sk’ij) Equivalence classes Conditional probability of ;i € {1,2,3,4}
T = 8k = Sjik = Sk,ij {1,2,3}, {4} Discrete([Bmgw‘l, 3“3“”1, B’”gw‘l , Bm%g])
T = Sigk = Sk # Sk (1,2}, {3}, {4} Discrete ([ 2z, Bl B o By, s))
T = 8k = Sk,ij 7 Sjik {1,3},{2}, {4} Discrete([B‘T;’1 , Baz,2, %, Bz )
T = Sjik = Skij 7 Sijk {2,3}, {1}, {4} Discrete ([ Bza,2, Beos Doos Bz )
Skij 7 Sijk 7 Sj.ik {1,2,3}, {4} Discrete([Bg’l, Bg'l , %7 BO’Q})

Table 2: Equivalence classes and conditional probabilities of E;;1, given s; ji, Sj.ik, Sk,i;j (see
text for details).

It is worth noting that STM is not a generative model of networks since (a) empty-
triangles and 1l-edge triangles are not modeled, and (b) one can possibly generate a set
of triangles that does not correspond to any network. This is a consequence of using a
bag-of-triangles model in which the generative process does not force overlapping triangles
to have consistent edge values. For example, generating a 2-edge triangle centered at i
for (i,j,k) followed by a 3-edge triangle for (j, k,¢) can produce a mismatch on the edge
(j, k). However, given a bag of triangular motifs E extracted from a network, the above
procedure defines a valid probabilistic model p(E | a, ), and we can use it for performing
posterior inference p(s,0,B | E,a, \). We stress that our goal is fast and scalable latent
space inference for overlapping community detection, not network simulationﬁ

4. Inference: Efficient Stochastic Variational Inference (SVI) for STM

In this section, we present a stochastic variational inference (SVI) algorithm (Hoffman
et al.l 2013) with O(C'NK) per-iteration cost for performing approximate inference under
our STM (where C is a small constant). The inferred posterior probability distribution
of the latent variables, in particular the mixed-membership vectors #;, can then be used
for overlapping community discovery. The high-level ideas are to (1) develop a structured
mean-field approximation—a more accurate approximation to the true posterior than the
naive mean-field solution explored in earlier mixed-membership network models (Airoldi
et al.l 2008)), but requires O(K?) run-time per triangular motif; (2) refine the structured
mean-field approximation to lower the run-time complexity to O(K) while maintaining its
high accuracy, inspired by a careful understanding of the typical structure of the posterior
distribution; (3) apply stochastic variational inference (SVI) to yield a faster approximate
inference algorithm; (4) propose a new stochastic subsampling strategy in the SVI algo-
rithm that empirically achieves high-quality results without having to touch every 2/3-edge
triangle in the network, thus ensuring scalability to very large networks which may have
more than trillions (10'2) of triangles.

4. For applications in which simulation is vital, it is possible to design a variant of STM that sequentially
generates motifs so as to have consistent edge values across overlapping triangles. In such model, all
possible triples (1, 7, k) are sequentially considered, and a new motif among them is simulated conditioning
on the patterns of other motifs that have already been generated. This non-exchangeable model is,
however, out of the scope of this work.
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4.1 Structured Mean-field Approximation

As with other mixed-membership models, computing the true posterior of the latent vari-
ables p(s,0,B | E, a, ) under the STM is intractable, and approximate inference must be
employed. There are three common strategies to perform approximate inference in mixed-
membership models: Markov chain Monte Carlo (MCMC) (Griffiths and Steyvers, [2004]),
variational inference (Blei et al., |2003; |Airoldi et al., 2008)), and spectral methods (Anand-
kumar et al., 2014)). MCMC methods are typically viewed as the “gold standard” as they
are guaranteed to eventually (but could be slow in practice) converge to the true posterior.
Variational inference provides a fast approximation that can be accurate enough for the
task at hand, provided care has been taken to design an appropriate factorized variational
distribution. Spectral methods have shown much promise in terms of accuracy and scala-
bility, but the O(K?3) run-time complexity limits its application to the setting of K > 1000
we are considering.

Based on these considerations, we choose a structured mean-field approximation for the
STM model. The corresponding inference algorithm proceeds via coordinate ascent update
on an objective function known as “variational lower bound” that depends on a set of “vari-
ational parameters”. To construct the variational lower bound, we begin by approximating
the true (but intractable) posterior p(s,8,B | E, a, \) by a partially factorized distribution
q(s,0,B),

q(s,8,B) =q(s | $)q(6 | v)a(B | n)

N K K
=| II aCsisesiinrseis| ¢ijk):| [H q(6; | %)} [H 4(Bra | 77xxx):| {H q(Bua | 77xx):| [9(Bo [ m0)],

(i,4,k)eT i=1 =1 =1
1

where [ is the set of all 2/3-edge triangles in the network, ie., I = {(i,5,k) : i < j <
k, Eiji € {1,2,3,4}}. The factorized distribution ¢(s, 8, B) contains 3 types of terms:

1. Terms for the community triplet distribution for each triangle, q(s; jk, Sj,ik» Sk,ij | Pijk);
2. Terms for the mixed-membership community distribution for each node, q(6; | v;);

3. Terms for the triangle-generating distributions, q(Bzzz | Mzwz)s ¢(Bez | Mzz), and
q(Bo | mo)-

In particular, we have defined a joint (as opposed to fully factorized) distribution
q(Si jks Sjik, Skiij | Piji) over the community triplet (s; jk, Sjiks Sk,ij):
Q(si,jk =T, Sjik = Y, Sk,ij :Z) Zszk(:EvyaZ) = ¢Zy]ja €r,Y,z = 17"'7K' (2)
The posterior ¢(6;) is a Dirichlet(~;), and the posteriors of Byyy, Bzs, Bo are parameterized
as: q(Bgyy) = Dirichlet(ngzz), ¢(Bgze) = Dirichlet(n,,), and ¢(By) = Dirichlet(no).

Rationale for the Structured Approximation. Conditioning on the observed type
of triangular motif Ejj; on vertex triplet (i, j, k)—either a 2-edge triangle Ay or a 3-edge
triangle Az, the community indicators (s; i, Sjik, Skij) are often highly correlated. For
example, suppose that nodes i, j, k form a 3-edge triangle, then it is empirically and socio-
logically far more likely that they all belong to the same community, as opposed to being a

13



Ho, YiN AND XING

mix of different communities. As a result, the true posterior distribution p(s; jk, ik, Sk.ij |
0,B,E, o, \)—a discrete distribution over K3 events—tend to concentrate around (some
of) the K “all-the-same-community” events {s; jr = sk = ski; = 1,2,..., K}. If we think
of the posterior as a third-order tensor of dimension K x K x K in which each element
(x,y, z) represents the posterior probability p(s; jx = @, s;it = ¥, sk = 2 | 6,B,E, o, \),
we see that it is very likely to be a tensor with rank greater than one due to its non-zero
diagonal entries. Therefore, it cannot be accurately approximated by a fully factorized
distribution q(s;jr | @i jk)q(Sjik | @5ik)a(Skij | dr,ij) as used in the naive mean-field ap-
proximation, because the outer product yields a rank-1 tensor. A similar argument holds
for 2-edge triangles, whose nodes are likely to be in one or two communities, with a similar
correlation structure as to the 3-edge case. For this reason, we have chosen a joint form
q(Sijks Sjik, Skij | ®iji) for the variational posterior, in order to capture the correlation
structure of the true posterior p(s; jk, S;j ik, Sk,i; | €, B, E, a, A).

However, having a structured approximation is computationally more expensive: the
variational parameter ¢;;;, used in the variational posterior q(s; jk, Sj ik Sk,ij | (;Sijk) is a
tensor containing K? entries, which would cause an unacceptable O(K?3) run-time per
triangular motif if handled naively. In the next section, we will discuss a more refined
approximation strategy that maintains the high accuracy of the structured mean-field ap-
proximation but only requires O(K) run-time per triangular motif, thus ensuring scalability
to thousands of communities K.

4.2 Stochastic Variational Inference (SVI) Algorithm

The structured mean-field approximation (Wainwright and Jordan) [2008)) aims to mini-
mize the KL divergence KL(q || p) between the approximating distribution ¢ and the true
posterior p; it is equivalent to maximizing a lower bound L(¢, n,~) of the log marginal like-
lihood of the triangular motifs (based on Jensen’s inequality) with respect to the variational
parameters {¢,n,~} defined in Equation

logp(E | a,A) > Ey[logp(E,s,0,B | a, \)] — Ey[logq(s, 0,B)] = L(¢,n, 7). (3)

To simplify the notation, we decompose the variational objective L(¢,n,~) into a
“global” term and a summation of “local” terms, where each local term corresponds to
one 2/3-edge triangle in the network (see Appendix for their exact forms).

(i,5,k)eT

The global term ¢(m,~) depends only on the global variational parameters 1, which
govern the posterior of the triangle-generating probabilities B, as well as the per-node
mixed-membership parameters . Each local term ¢(¢;jx,n,7v) depends on per-triangle
variational parameter ¢;;; as well as the global parameters. Our distributed and parallel
implementation strategy will involve splitting the inferential work along disjoint sets of local
variational parameters, as we will show in Algorithm

To understand how an SVI algorithm accelerates approximate inference, let us con-
sider Equation {| with the local parameters ¢ being maximized out. Define L(n,vy) =
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maxg L(¢,n,7), i.e., the variational objective achieved by fixing the global parameters 7,y
and optimizing the local parameters ¢:

Liny) =gm)+ 3, max(dy,m.7). (5)
(i,j.k)er "

The idea behind SVI (Hoffman et al., 2013) is as follows: instead of computing the
gradient VL(n,~) to perform the variational inference of the global parameters n and =,
which involves a costly summation over all triangular motifs as in Equation [5 an unbiased
noisy approximation of the gradient can be obtained much more cheaply by summing over a
small subsample of triangles. One can then use this approximate gradient in the stochastic
gradient ascent algorithm (Bottoul, 2004) to maximize the variational objective L(n,~).
With this unbiased estimate of the gradient and a suitable adaptive step size, the algorithm
is guaranteed to converge (in probability) to a stationary point of the variational objective
L(n,7) (Robbins and Monro, [1951)). It should be noted that the subsampling strategy comes
at the cost of introducing a variance in gradient computation, and hence more iterations
might be required for convergence. However, the time taken by each iteration can be
greatly reduced to a small fraction of the original time; for example, if we subsample 10%
of the triangles, then only 10% computation time is required to obtain the approximate
gradient. In fact, there is significant empirical evidence that SVI algorithm can lead to
faster convergence on various problems (Hoffman et al. 2013; [Yin et al.l |2013).

Subsampling Strategy. In our setting, the most natural way to obtain an unbiased
gradient of £(n,~) is to sample a “mini-batch” of triangular motifs at each iteration, and
then average the gradient of local terms in Equation [5| only for these sampled triangles.
Formally, let m = |I| be the total number of 2/3-edge trianglesﬂ and define

m
Ls(n,) =97 + g > max (g, m,7), (6)
(g, k)es

where S is a mini-batch of triangles sampled uniformly at random. It is easy to verify that
Es[Ls(n,7v)] = L(n,~), hence VLs(n,~) is unbiased: Eg[VLs(n,v)] = VL(n,~).

In our implementation, we subsample C' pairs of neighbors for each node i € {1,..., N}
in parallel, where C is a small constantﬂ resulting in a mini-batch set S containing CN
triangles in each SVI iteration. Such fast parallel subsampling procedure, however, may
induce a bias in the estimate of the gradient because the C'N triangles in S are not neces-
sarily sampled from the space of all triangles uniformly at random. We defer the discussion
of this subtlety to Section [5.1] after the detailed description of our implementation. The
performance on overlapping community detection in Section [6] shows that our SVI algo-
rithm converges to a high-quality result without having to touch all 2/3-edge triangles in
the network, i.e., C Nty < m, where tp,x is the number of iterations until convergence.

5. The total number of 2/3-edge triangles in large networks may be computationally infeasible to count—in
fact, triangle counting is a hard problem in its own right and an area of active research (Low et al.| [2012).
In Lemma [l} we have shown that 17 < m < T where T =Y, 3(D;)(Di — 1). In our implementation,
we simply let m = T, thus approximating m to within a factor of 3 of its true value.

6. All our experiments are conducted with the minimum value C' = 1, which is shown to be sufficiently
accurate for large-scale networks (Section .
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Exact Local Update. To obtain the gradient VLg(n,), one needs to compute the
optimal local variational parameters ¢;;;, (keeping 1 and ~ fixed) for each sampled triangle
(4,7, k) in the mini-batch S; these optimal ¢;;;’s are then used in Equation |§| to compute
VLs(n,v). Taking partial derivatives of Equation [4 with respect to each local term ¢}

ijk
and setting them to zero, we get for distinct z,y,z € {1,..., K},
(JSZykZ X exp {Eq[log B072]H[Eijk = 4} + ]Eq [lOg(Boyl/?))]H[Eijk 7é 4] + Eq[log Gi,x + 10g 9j7y + log Hk,z]}.
See Appendix for the update equations of 77" and qbfﬁ:y (x #y).
O(K) Approximation to Local Update. As explained earlier, because there are K3
variational parameters gbfﬁf for each sampled triangle (i, j, k), the exact local update re-

quires O(K?3) work to solve for all gzbzykz, making it unscalable. We now describe an O(K)
approximation that is almost as accurate as the exact O(K?) update (and is certainly far
more accurate than a fully factorized approximation as in the naive mean-field approach).
To enable a faster local update, we replace ¢;ji(z,y,2 | ¢ijr) in Equation [2{ with a sim-
pler, but still structured (as opposed to fully factorized), “mixture-of-deltas” variational

distribution,

Qijk(‘rvyaz | 6Z]k) = Z 5%-blfﬂ[x:a,y:b,z:c],
(a,b,c)eA

where A is a set containing O(K) strategically chosen triples (a,b,c), and 3, , yea 5%’,5 =1.
In other words, this “mixture-of-deltas” variational distribution is still a discrete probability
distribution over K3 events, but its probability mass is assumed to fall entirely on the O(K)
randomly chosen entries and community combinations not in A are assumed to have zero
probability. Conveniently, the update equations for the O(K) free parameters 5%1’,5 are
practically identical to the full O(K?®) update equations for ¢;;x (Equations EI, and
in Appendix . The only difference is normalization, which is now performed over the
set of O(K) d’s instead of all K3 events. Since we subsample CN triangles in each SVI
iteration, the total time complexity of local update is O(CNK) per iteration.

Careful selection of the O(K) entries (a,b,c) € A is critical to the performance of the
O(K) “mixture-of-deltas” approximation. In our implementation, we choose these entries
in A based on the observation that most nodes in real networks belong to just a few
communities (Yang and Leskovec, |2012b)), and hence the true mixed-membership vectors
are also concentrated around just a few entries. In fact, more than 90% of nodes in most
real-world networks studied in this paper have no more than 10 ground-truth communities.
This suggests that for any triangle (7,7, k), the number of plausible assignments to its
community triplet (s; jk,s;j ik, Sk,ij) is usually very small compared to K 3 and we should
focus our choice on triplets (a, b, ¢) such that the variational posteriors ¢(6;.4),q(0;),q(0k.c)
are all large. Furthermore, it is reasonable to add O(K') random community combinations
into consideration so as to enable the SVI algorithm to explore other communities to avoid
becoming stuck in a local optimum. We employ the following procedure to construct A:

STM-ChooseA:

1. Find the Uy largest communities in each of ¢(6;), ¢(0;) and ¢(6x), and insert them into
a set Reore (|Reore|] < 3Up). In our experiments, we use Uy = 10 because empirically
most nodes have no more than 10 communities.
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2. Pick U; communities uniformly at random from {1,..., K}, and put them into a set
Riandom- In our experiments, we use U; = K/10 so that U; > Uy for large K, thus
encouraging exploration.

3. Combine both sets: R = Rcore U Rrandom- Note that |R| = O(K).
4. Generate |R| diagonal community combinations Agiag = {(a,a,a) for all a € R}.

5. Generate 3| R| off-diagonal community combinations A.g. Each combination is gener-
ated as follows: first draw a € R uniformly at random, then draw b € R where b # a.
Finally, draw o uniformly at random from {1,2,3}. If o = 1, add (a,a,b); if 0 = 2,
add (a,b,a); and if o = 3, add (b, a,a).

6. Generate 3|R| off-off-diagonal community combinations Aqgog. Each combination is
generated as follows: first draw a € R uniformly at random, then draw b € R where
b # a, and finally draw ¢ € R where ¢ # a,c # b. Add (a,b,c) to Aofroft-

7. Combine all three sets to obtain A = Agiag U Aot U Aoftofr-

Note that we do not pick all possible community combinations for A.g¢ and Aogos,
which are of size O(K?) and O(K?), respectively. This is an intentional trade-off; we
limit the size of A to O(K) to keep the inference feasibleﬂ Because we re-select A every
time we perform the local variational update for some triangle (i, 7, k), the SVI algorithm
still manages to explore the most likely community combinations with reasonably high
probability, thus avoiding any bias due to a single choice of A. In practice, we find that this
O(K) “mixture-of-deltas” approximation works nearly as well as the full parameterization
in Equation [2| while requiring only O(K') work per sampled triangle. Finally, we stress that
the “mixture-of-deltas” variational approximation is theoretically well-justified and not a
heuristic. Standard variational inference theory states that any choice of A yields a valid
lower bound to the log marginal likelihood at the current iteration, and therefore we are
always updating variational parameters to maximize some variational lower bound.

Global Update. We appeal to stochastic natural gradient ascent (Amari, [1998; Sato,
2001; |[Hoffman et al.,|2013|) to optimize the global parameters 1 and =y, as it greatly simplifies
the update rules while maintaining the same asymptotic convergence properties as classical
stochastic gradient. The natural gradient @L’S(n,'y) is obtained by a premultiplication of
the ordinary gradient V.Lg(n, ) with the inverse of the Fisher information of the variational
posterior ¢q. See Appendix for the exact forms of the natural gradients with respect
to i and «. To update the parameters  and ~, we apply the stochastic natural gradient
ascent rule

Ne+1 = M + pt@nﬁs(m,%), Ye+l = Ve + Ptvyﬁs(nt, "Yt)7 (7)

7. A similar variational approximation was employed in our earlier development (Yin et al., 2013)). The
most salient difference is that the STM-ChooseA uses significantly fewer variational parameters (and is
therefore faster), while still maintaining high experimental accuracy. In particular, for K > 1000, the
choices of Uy = 10 and U1 = K/10 make the SVI algorithm almost 10 times faster than the method
of [Yin et al.| (2013).
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where the step size is given by p; = 79(m1 + t)~". To ensure convergence, the 79,71, K are
set such that Y, p? < oo and 3, pr = oo. The specific values used in our experiments are
70 = 50, 7 = 10000, and x = 0.5. The global update only costs O(NK) time per iteration
due to the parsimonious O(K) parameterization of the triangle-generating probability tensor
B (and hence its variational parameter n) in our STM (Section [3.1)).

Initialization. The SVI algorithm described above searches for a local maximum in a
highly non-concave variational objective function (Equation . In principle, this makes it
sensitive to the choice of initialization or seeding, a property shared by other overlapping
community detection algorithms (Xie et al., 2013). If the initialization is not too far from
the true community structure, then the algorithm will usually find the correct communities.
However, a completely random initialization will often merge many neighboring communities
into one giant community, which is undesirable.

To address this issue, we conduct the initialization of the SVI algorithm systematically,
which is highly effective on all the ground-truth networks we test on (Section . It
consists of two steps. First, we renumber all node indices via the following procedure:

STM-CANONIZE:

1. Initialize MAP to an empty dictionary and COUNT = 1. When the algorithm terminates,
MAP[i] = a. In other words, we have renumbered the old node index i to the new node
index a.

2. For each edge (7,j) in the edge list:

(a) If 7 is not in MAP, then assign MAP[i] = COUNT and COUNT = COUNT + 1.
(b) If j is not in MAP, then assign MAP[j] = COUNT and COUNT = COUNT + 1.

3. For each edge (7,7) in the edge list:
(a) Output the re-indexed edge (MAP[:], MAP[j]).

This procedure requires only linear-time work in the number of edges M, and executes
in less than 10 minutes for all ground-truth networks in our experiments. In addition to
renumbering all nodes in the range [1, N|, STM-CANONIZE often creates many sequences of
contiguous node indices a, a+1,a+2, ..., a+b such that a is connected to a+1,a+2,...,a+b.
The rationale is that nodes with numerically close indices are more likely to be close in
terms of network distance, and thus are likely to be in the same community. This happens
because the input edge list is not randomly ordered in practice, but rather usually groups
adjacent edges together—as an example of how this may happen, when an adjacency matrix
is converted to an edge list by scanning the rows one at a time, edges connecting to same
node are adjacent in the edge list. When STM-CANONIZE encounters adjacent edges whose
nodes have not been seen before, it gives those nodes contiguous indices.

The second step takes advantage of these contiguous sequences, by initializing contigu-
ous blocks of node indices to different communities: the first N/K nodes are seeded to
community 1, the second N/K nodes are seeded to community 2, and so on. Recall that
~;’s are the variational parameters for the mixed-membership vectors 6;’s; to seed node ¢ to
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community k, we initialize v; ; = 10K and the remaining non-seeded elements of v; to be
small, randomly-generated numbers close to 1.

For the variational parameters 7 corresponding to the triangle-generating probabilities
B, we initialize them as follows: (13201, Nzaz,2) = [1, 3], and [Nzz 1, Nez,2, N2z,3) = [2,1, 1] and
[M0,1,M0,2) = [3,1]. This reflects the intuition that three nodes with the same community
are likely to form a 3-edge triangle, whereas for other cases (two nodes have the same
community or three nodes have distinct community), it is likely to form a 2-edge triangle.
Note that there is no need to initialize the local variational parameters ¢;ji(z, y, 2), as they
are solved through fixed-point iteration given the current values of v,n (Equations @],
and [11)). Finally, we fix the hyperparameters of 8, B to a = A = 0.1.

5. Distributed Implementation for Internet-Scale Networks

In order to apply our SVI algorithm to massive networks, we turn to its distributed imple-
mentation. The specific challenges we are facing include:

1. Big data: given that contemporary server machines only contain between 16GB to
256GB of memory, a massive network and its triangular representation cannot fit into
the memory of a single machine. For example, the 101-million-node, 2-billion-edge
web graph (Section [7)) requires over 30GB to simply store it as an adjacency list, and
the full triangular representation would be many orders of magnitude larger (in the
TB range).

2. Big model: similarly, for a massive network, the STM parameters cannot fit into the
memory of a single machine. With N = 100 million nodes and K = 1000 communities,
we would need 400GB just to store the mixed-membership vectors 6;’s.

3. Slow inter-machine communication: typical network speeds range from 1Gbps to
10Gbps, hence inter-machine communication is several orders of magnitude slower
than CPU-to-RAM communication. This means that we cannot synchronize param-
eters as frequently as in the single machine setting.

Unfortunately, the existing Hadoop MapReduce framework (Hadoop, [2012) is not well-
suited to implement iterative convergent algorithms such as our SVI, because every map-
reduce iteration incurs significant overheads and consequently takes orders of magnitude
longer than other systems (Zaharia et al., [2010; [Low et al.l 2010). Another concern is that
the map-reduce programming model does not provide a natural way to store model param-
eters in a persistent and distributed fashion, a challenge which has recently been addressed
by high-performance parameter servers (Li et al., 2013} [Ho et al., 2013|). Based on these
considerations, we develop our distributed-parallel SVI algorithm for STM (Algorithm
on top of the Petuum parameter server (Ho et al., |2013; |Lee et al.l 2014; Dai et al., 2015,
a recent framework for general-purpose machine learning on big data and models. The
high-level ideas to tackle challenges outlined above are to (1) keep the triangles in an im-
plicit representation and use disk-based access to save machine memory; (2) partition the
model over worker machines and exploit parameter sparsity to further reduce memory us-
age; (3) use a bounded-asynchronous communication technique to strike a balance between
parameter accuracy and speed. We now discuss detailed approaches to each idea.
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Algorithm 1 Distributed-parallel Stochastic Variational Inference for STM

1: ¢t = 0. Initialize the global parameters 7 and ~, and store them in the Petuum parameter server
(www.petuum. org) for global access by any worker thread in the cluster.

2: Repeat the following steps in parallel until convergence. Parallelization is conducted in a data-parallel
fashion: each worker thread in the cluster is responsible for a disjoint set of nodes, and all N nodes are
collectively covered by all workers.

(1) Sample C'N triangles to form a mini-batch S. We do this by sampling C pairs of neighbors for
each node ¢ € {1,..., N} in parallel (see Section for details of implementation).

(2) Optimize the local parameters ¢;;,(x, y, z) for all sampled triangles in parallel by Equations EI,
and [T}

(3) Accumulate sufficient statistics for the natural gradients of 1, 4, and then discard local parameters
qijk(x,y, z) and the mini-batch S. Since the sufficient statistics are additive, we use the Petuum
parameter server to accumulate them in parallel at each worker thread.

(4) Optimize the global parameters  and ~ by the stochastic natural gradient ascent rule (Equa-
tions 7 and then distribute the new global parameters to the worker threads.

(5) Update the step size for the next iteration: p: < 7o(m1 +t) ™", t + ¢t + 1.

5.1 Handling Big Network Data and Trillions of Triangles

As shown in Lemma the number of 2/3-edge triangles is bounded below by 1 >°, 2(D;)(D;—
1). This means even a single node with 1 million neighbors, which can occur in very large
networks (N > 100 million nodes and M > 1 billion edges) with a power-law degree dis-
tribution, will contribute half a trillion triangles to the triangular representation and hence

require TBs of storage.

Implicit Triangle Representation and Disk-based Storage. Our solution is to keep
the triangles in an implicit representation, where we leverage the stochastic nature of the SVI
algorithm and only sample triangles only when they are needed in step (1) of Algorithm
(and discard them afterwards). Specifically, we represent the original network using the
following three data structures:

1. An adjacency list Adj represented as a dictionary (key-value) data structure. If the
a-th neighbor of 7 is j, then the dictionary contains Adj[(i,a)] = j. While this key-
value schema seems unorthodox compared to storing the entire neighbor set N; as the
value, they are easier to store at large scale and possibly can help improve CPU cache
efficiency because values j are fixed-byte-size scalars whereas sets of neighbors N; can
have arbitrary byte length.

2. An edge list Edg represented as a set of edge tuples (i, 7).
3. A degree list Deg represented as a vector, where Deg[i] contains the degree of node .

In order to conserve machine memory, we store these data structures in a disk-based
key-value store—our implementation uses Google leveldb (www.leveldb.org), but any other
disk database should work as well. Although storing the data on hard disks incurs significant
read latencies in principle (around 10 milliseconds per read), we have observed that leveldb’s
memory cache amortizes latencies across multiple reads very well, and therefore disk-based
access is not a bottleneck for our implementation of the SVI algorithm. In our large-
scale experiments, leveldb could sustain 100s of thousands of reads per second per machine
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(using multiple worker threads) on a standard hard drive. This throughput is more than
sufficient for the SVI algorithm for STM. The use of disk-based storage frees up roughly
40GB of memory on each machine, when we run our implementation of the SVI algorithm
on the 101-million-node web graph. Note that converting an edge list of a network with M
edges to these disk-based data structures only costs O(M) (for hash-based dictionaries) or
O(M log M) (for tree-based dictionaries) work, and in practice this step takes only a small
fraction of the time required by the SVI algorithm.

Subsampling C'N Triangles from the Implicit Representation. We employ the
following procedure to subsample a mini-batch S of CN triangles (step (1) in Algorithm [1]),
based on the aforementioned disk-based data structures.

STM-SUBSAMPLE:
e For each node i =1 to N in parallel:

— For c=1to C:
1. Let D; := Deg]i].
Draw two distinct indices a,b € {1, ..., D;} uniformly at random.
Let j := Adj[(i,a)] and k := Adj[(¢,b)].
Check if (i, j) € Edg. If yes, output (i, j, k) as a 3-edge triangle. If no, output
(i,j,k) as a 2-edge triangle centered at node i.

- 0N

Because there is no need to keep all local variational parameters after accumulating all
natural gradient sufficient statistics for the global parameters 7,~, we discard the mini-
batch S after step (3) of Algorithm [1] in order to save memory. By combining implicit
triangle representation and subsampling strategy in this manner, our SVI algorithm for
STM avoids having to store trillions of triangles in an explicit form, thus saving TBs (or
more) of disk storage and memory space.

Discussion of Subsampling Strategy. Our fast parallel procedure to subsample a mini-
batch S of CN triangles may not provide an unbiased estimate of the natural gradient of the
global parameters VLg(n,7) (Equation@). The reason is that the CN triangles in S are not
necessarily sampled from the space of all triangles uniformly at random—one can see that
triangles adjacent to low-degree nodes tend to be more likely to be sampled than triangles
attached to high-degree nodes. However, it is worth emphasizing that since low-degree
neighbors of a high-degree node are very likely to sample triangles involving that high-degree
node, the high-degree nodes are still well represented in the set of subsampled triangles.
While this bias due to nonuniform sampling can be corrected by appropriately reweighting
the subsampled triangles{ﬂ7 we have counterintuitively observed that community detection
performance is actually more accurate without the correction factor. Our hypothesis is
that, by not reweighting the triangles, low-degree nodes are given more attention because
our subsampling procedure is more likely to select their adjacent triangles, compared to
uniform triangle sampling. This improves community detection accuracy on low-degree

8. One reweighting scheme is to divide each triangle’s natural gradient contribution by its actual probability
of being sampled. Similar techniques were employed to reweight the subsampled node pairs in the
assortative MMSB inference algorithm (Gopalan et al. 2012; |Gopalan and Bleil 2013]).

21



Ho, YiN AND XING

nodes, which in turn improves overall accuracy because the majority of nodes in real-world
scale-free networks are low-degree. For this reason, we choose to not reweight the triangles
in our experiments.

Earlier development on triangular modeling (Ho et al.2012¢; Yin et al,2013) advocated
a triangle pre-selection technique called d-subsampling, where a proper subset of all triangles
is subsampled prior to inference. Our distributed-parallel SVI algorithm for STM differs in
that we never pre-select triangles, allowing the inference algorithm to (in principle) access
all triangles—thus eliminating one source of approximation. It also avoids the need to tune
the parameter §, the number of triangles to pre-select. From a practical standpoint, our new
subsampling strategy is far more memory-efficient, as triangles are immediately discarded
after use.

5.2 Handling Big STM Models with Over 100 Billion Parameters

At first estimation, the variational parameters «;’s for all the mixed-membership vectors
0;’s require N K floating point values to be stored. If N = 100 million and K = 1000,
we would need 100 billion 4-byte floating point values (400GB)H Although the Petuum
parameter server discussed in the next subsection can evenly distribute the memory load
over all participating machines, it requires additional memory to cache for high performance
because the parameter server is a caching system. Thus, the actual memory requirement of
SVI algorithm for STM is much more than NK X 4 bytes—we have observed that 400GB
of ~;’s would require multiple TBs of memory across all machines.

To reduce memory usage to practical levels, we exploit the observation that most nodes
in real networks belong to just a few communities, as seen in ground-truth data (Yang and
Leskovec, 2012b)). In other words, the mixed-membership vectors 6;’s and the corresponding
variational parameters 7;’s are extremely sparse. Therefore, we use dictionary data struc-
tures to store 7;’s, and perform two approximations at every iteration of the SVI algorithm
in order to reduce the memory requirement:

1. We delete elements of v;’s that are already close to zero—defined as being less than
2a = 0.2 in the ground-truth experiments (Section @ See Section for an alterna-
tive threshold value used for a 101-million-node web graph.

2. During the global update for each ~; (Equation , we only commit the Uy largest
vector elements in the natural gradient of «; and set the rest of elements to be zeros.
We use Uy = 10 in our experiments, because empirically most nodes exhibit no more
than 10 communities and thus it suffices to retain the 10 most significant communities
per node.

When the SVI algorithm terminates, we also output 7;’s in a sparse format in order
to conserve hard disk space. Experimentally, we have observed that these approximations
incur little impact on community detection accuracy, and they allow us to analyze a 101-
million-node network with 1000 communities, using only 500GB of memory spread across 5
machines (i.e., 100GB per machine, which is readily available from cloud compute providers
such as Amazon EC2).

9. Note that there are only O(K) variational parameters m for the triangle-generating probability tensor
B, which is extremely small compared to the size of ~;’s.
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5.3 Overcoming Slow Network Interfaces

Our distributed-parallel SVI algorithm for STM (Algorithm|1)) adopts a data-parallel scheme:
each worker thread in the cluster is responsible for a disjoint set of nodes and all N nodes
are collectively covered by all workers, in order to update a single set of shared global pa-
rameters v and 7. This requires workers to frequently synchronize all parameter updates to
each other. However, due to the higher latency and lower bandwidth of computer network
interfaces (e.g., 1Gb or 10Gb Ethernet) compared to internal CPU-to-RAM communica-
tion, the workers are often forced to wait for communication to complete, thus wasting as
much as > 80% of CPU power (Ho et al., [2013).

In order to alleviate this communication bottleneck, various bounded-asynchronous pa-
rameter synchronization systems have been developed (Ho et al., 2013} |[Li et al., 2013; Dai
et al., 2015)), which essentially reduce the frequency of communication so as to allow for
much higher CPU utilization. The trade-off is that reduced communication leads to stal-
eness (i.e., out-of-date values) in the workers’ view of the model parameters, which could
incur errors in algorithm execution. By using the right “consistency models”, most iterative
optimization and sampling-based algorithms can be made to theoretically and empirically
converge despite staleness. Furthermore, while having stale values of the model parame-
ters could decrease convergence progress per iteration, the increase in CPU utilization more
than makes up by enabling more iterations per minute, thus yielding much faster distributed
machine learning algorithm execution.

These considerations apply to our SVI algorithm for STM as well, because the global
variational parameters v and 7 are subject to frequent additive updates from all workers
(Equation due to the relatively small mini-batch sizes being used (C'N triangles per
iteration with C' = 1 in our experiments). To overcome these challenges, we develop our
C++ implementation of the SVI algorithm on top of the Petuum system for scalable dis-
tributed machine learning (Ho et al., |2013; |Lee et al., [2014; |Dai et al., [2015), using its
bounded-asynchronous parameter server for data-parallel machine learning programming.
Petuum features an machine-learning-specific “consistency model”, Stale Synchronous Par-
allel (SSP), that exploits the concept of bounded staleness to speed up distributed compu-
tation while still providing theoretical guarantees on the convergence of various machine
learning algorithms (e.g., stochastic gradient descent). More formally, a worker reading pa-
rameters at iteration ¢ will see the effects of all updates from iteration 0 to ¢ — s — 1, where
s > 0 is a user-controlled staleness threshold. In our experiments, we found that configuring
the SSP staleness setting to either s = 0 or s = 1 yielded very good, near-linear scaling
from 1 through 5 machines (note that 5 machines are sufficient for performing community
detection on a 101-million-node network).

6. Empirical Study on Networks with Ground-truth Communities

In this section, we evaluate the overlapping community detection performance of the SVI
algorithm for STM, comparing it to both probabilistic and non-probabilistic baseline algo-
rithms. It is also possible to use our algorithm to perform link prediction, although we do
not pursue it in this paper. See [Yin et al.| (2013) for an appropriate procedure.
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Network ‘ # nodes N # edges M # communities Edge density M/N 2 Fraction of closed triangles

DBLP 317,080 1,049,866 13,477 1.044 x 10°° 0.1283

Amazon 334,363 925,872 75,149 8.257 x 10~° 0.07925
Youtube 1,134,800 2,987,624 8,385 2.320 x 1076 0.002081
Livejournal | 3,997,962 34,681,189 287,512 2.170 x 1076 0.04559

Table 3: Basic statistics of the networks with ground-truth overlapping communities used
in our evaluation. These networks are available at http://snap.stanford.edu/data/.

6.1 Ground-truth Data

Because there has been debate over the appropriateness of simulated networks in the commu-
nity detection task (Leskovec et al., 2009; [Yang and Leskovec, 2012b)), we performed all our
experiments on real-world networks with ground-truth communities provided by [Yang and
Leskovec| (2012b)), rather than using synthetic benchmarks such as Lancichinetti-Fortunato-
Radicchi (LFR) (Lancichinetti and Fortunatol 2009). The ground-truth communities were
constructed based on the publicly available meta-data associated with each network (e.g.,
self-declared interests, hobbies, and affiliations in social networks such as LiveJournal). The
size of these networks ranges from N a 300000 to 65 million, and the number of created
communities ranges from K ~ 8000 in a 1.1-million-node network to K =~ 6.3 million in
a 3-million-node network. However, not all of the communities were well-defined. Thus,
Yang and Leskovec| (2012b)) also provided the top 5000 communities with highest quality
in each network, where the quality of a community is measured by averaging over several
well-known community scoring functions such as conductance, modularity, and triangle-
participation-ratio—the idea being that communities that score well on all functions are
very likely to be of high quality. We do not claim these ground-truth communities are the
only valid way to decompose the network, and acknowledge that there may exist alternative
ways to extract plausible communities from large networks.

Table |3| provides basic statistics that are taken from the original directed form of each
network in this evaluation. When our algorithm loaded a network, it converted the network
to its undirected form via symmetrization because our STM is a probabilistic network model
for undirected triangular motifs. When running those baselines that are able to to exploit
directed form, we always provided the original directed network as input.

6.2 Evaluation by Normalized Mutual Information (NMI)

We used the normalized mutual information (NMI) (Lancichinetti and Fortunato, 2009)),
one of the most widely used measures, for evaluating the quality of discovered overlapping
communities. The NMI is on a scale of 0 to 1, with 1 corresponding to a perfect matching
with the ground-truth communities. In these ground-truth networks, the top 5000 com-
munities were provided by |[Yang and Leskovec| (2012b) as hard assignments of nodes: for
a particular community, each node is either in that community or it is not (i.e., no partial
membership). Two issues must be addressed before the outputs of different algorithms can
be evaluated against the ground truth.

First, because the SVI algorithm for STM outputs the variational parameters v;’s that
are then normalized to produce continuous-valued mixed-membership vectors to represent
soft community assignments, we must threshold to obtain hard community assignments

24


http://snap.stanford.edu/data/

LATENT SPACE INFERENCE OF INTERNET-SCALE NETWORKS

that can be compared to the ground truth. Based on the observation that more than 90%
of nodes have no more than 10 ground-truth communities, we chose the threshold value to
be 0.1, i.e., community k contains node ¢ if élk = Yik/ > Vi > 0.1. This allows us to
detect up to 10 communities per node. We also applied this thresholding procedure to any
baselines that output soft community assignments; baselines that output hard assignments
were left as it is.

The second issue is that the top 5000 ground-truth communities only cover a small
fraction of the network—in other words, the majority of nodes have missing ground-truth
community assignments. However, all the algorithms being evaluated assign every node
to at least one community, and the NMI cannot handle missing community assignments.
Thus, for every node ¢ without a ground-truth assignment in the top 5000 communities,
we removed node ¢ from its corresponding communities discovered by each algorithm. This
ensures that the NMI is computed only on nodes found within the top 5000 ground-truth
communities. We emphasize that such post-processing is fair because it is performed for all
the algorithms being evaluated.

6.3 Experimental Settings

Termination Criterion. We monitored the convergence of the SVI algorithm by com-
puting the variational mini-batch lower bound Lg(n,7) (Equation [6) at each iteration,
which serves as an unbiased approximation to the true variational lower bound L(n,~y)
(Equation . We never compute the true lower bound as it involves all triangles in the
network, which would be computationally prohibitive. In our ground-truth experiments, we
terminated the algorithm when Lg(n, ) decreases for the first time. This signifies that the
SVI algorithm is beginning to oscillate, and will not make much further progress. All our
trials on ground-truth networks terminated with high-quality results within 200 iterations
under this criterion (using C' = 1 triangle subsampled for each node, per iteration); in other
words, the SVI algorithm only had to process < 200N triangles in total. The intuition is
that node community memberships are empirically sparse—each node is unlikely to partic-
ipate in more than a few communities, and thus a small number of subsampled adjacent
triangles suffices to determine its community membership.

Baselines. For comparison with the SVI algorithm for STM, we selected baselines that
(1) are able to perform overlapping community detection and (2) are scalable enough to
analyze 1-million-node networks in at most a few days. These two criteria greatly narrow
the list of candidate baselines, and eventually we considered the following four algorithms:

1. a-MMSB: the assortative MMSB (Gopalan et all [2012; Gopalan and Blei, 2013)), which
requires the number of communities K to be input as a parameter. We used the
single-machine C code available at https://github.com/premgopalan/svinet| and
applied the “link-sampling” subsampling scheme, as recommended by the user manual.

2. PM: the Poisson model (Ball et al., [2011)), which requires the number of communities
K to be input as a parameter. We used the single-machine C code provided by the
authors.

3. SLPA: the speaker-listener label propagation algorithm (SLPA) (Xie and Szymanski,
2012), which can automatically detect the number of communities in the network,
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given a threshold r € [0,1]. We found that the NMI score did not vary significantly
with different choices of r, so we fixed r = 0.25 in all experiments. The single-machine
Java code is available at https://sites.google.com/site/communitydetectionslpa/
ganxis under the name GANXiS.

4. SVD+M: a baseline that first applies a rank-K SVD to the adjacency matrix and then ex-
tracts communities from the singular vectors using modularity as a stopping criterion,
as proposed in |Prakash et al. (2010) and Kang et al| (2011). As code was unavailable
from the authors, we wrote our own single-machine MATLAB implementation, based
on the multi-threaded svds () sparse low-rank SVD function.

Both a-MMSB and PM are mixed-membership models based on adjacency matrix rep-
resentation of networks; SLPA is a message-passing algorithm, in which community labels
are propagated along edges until convergence; SVD+M is a matrix factorization algorithm.
We ran all algorithms with their default settings, unless otherwise stated. For algorithms
that require the number of communities K as input (including our SVI algorithm for STM),
we repeated the experiments for different values of K: 5000, 10000, 15000 and 20000.

Machine Configuration. We used server machines equipped with 128GB RAM and 2
Intel Xeon E5-2450 8-core processors, for a total of 16 CPU cores per machine running
at 2.10GHz. We ran the distributed-parallel SVI algorithm using 4 such machines, for a
total of 64 cores/worker threads and 512GB distributed RAM. The baselines a-MMSB, PM,
and SLPA are all single-machine and single-threaded, while SVD+M is single-machine but
multithreaded; we ran all algorithms using one machine with 128GB RAM.

6.4 Experimental Results

We first investigate how the mini-batch size CN influences the performance of the SVI
algorithm for STM. Then we compare it to various baseline algorithms in terms of NMI
score, runtime, and size of detected communities.

Why Choose C' = 17 Table [4] shows NMI scores and time to convergence for running
the SVI algorithm with C' = 1 v.s. C' = 10 on three networks. Note that using C' =1 is
5-10 times faster than C' = 10, while maintaining comparable NMI scores. Accordingly, we
set the mini-batch size to C' = 1 triangle per node, resulting in a total of N triangles per
iteration.

NMI Score and Runtime. Table |5 shows NMI scores and runtimes for all the algo-
rithms being evaluated. Performing overlapping community detection at these large scales
is extremely computationally intensive, and our distributed-parallel SVI algorithm for STM
finished execution in far less time than the baselines. None of the baseline algorithms were
able to finish the 4-million-node, 35-million-edge Livejournal network within our experimen-
tal limit of 5 days, and the SVD+M algorithm was not able to finish any experiment within
this limi@ Given a larger compute cluster, we expect our approach to finish more rapidly,

10. The main reason is that high-rank SVD is expensive to compute in MATLAB. The call to svds() alone
took 4 days to complete on the smallest DBLP network (N = 317K) for just K = 5000, despite being a
multithreaded implementation. Furthermore, svds() simply ran out of memory on larger experiments,
despite equipped with 128GB RAM.
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NMI Time to convergence
Network cC=1 C=10|C=1 C=10
DBLP (N = 317K)
K = 5000 0.439 0.451 15min 2.8h
K = 10000 0.506 0.505 18min 1.5h
K = 15000 0.542 0.535 26min 2.1h
K = 20000 0.559 0.553 30min 3.1h
Amazon (N = 334K)
K = 5000 0.790 0.791 38min 3.4h
K = 10000 0.758 0.771 18min 1.4h
K = 15000 0.743 0.752 24min 2.2h
K = 20000 0.733 0.739 31min 3.2h
Youtube (N = 1.1M)
K = 20000 0.433 0.434 7.6h 93h

Table 4: NMI scores and time to convergence for running the SVI algorithm for STM with
C =1 v.s. C =10 on three networks. Using C' =1 is nearly as accurate as C' = 10, while
requiring much less computational time.

allowing even larger networks to be analyzed in a matter of hours. The STM SVI algorithm
is also memory-efficient, due to sparse data structures in the Petuum parameter server used
for sharing the global variational parameters ~;’s. In particular, the largest experiment
on the Livejournal network with K = 20000 only required 24GB RAM on each of the 4
machines (for a total of 96GB). The a-MMSB inference algorithm implementation does not
use sparse storage, which caused it to run out of memory on relatively small experiments,
even on a machine with 128GB RAM. We believe this underscores the importance of sparse
memory management for large-scale problems (Section [5.2]).

In terms of accuracy of recovering ground-truth overlapping communities, the STM
SVI algorithm outperformed other mixed-membership models a-MMSB and PM, but had
lower NMI scores than SLPA (a message-passing algorithm that is not based on a statis-
tical model). This suggests that mixed-membership network models have some room for
improvement. However, there are still two advantages of the STM SVI algorithm compared
to SLPA: (1) the STM SVI algorithm finishes execution in far less time on a distributed
compute cluster, allowing it to scale to much larger networks; (2) SLPA only outputs hard,
binary community assignments, so it may not be suitable for analyses that require soft,
probabilistic assignments, which the STM SVI algorithm can provide.

Though faster execution of our STM SVI algorithm hinges on the distributed imple-
mentation, we would like to point out that even on smaller networks (N ranges from
10000 to 200000) in the absence of distributed computing, our earlier development (Ho
et all 2012c; |Yin et al.l [2013) has demonstrated the benefits of triangular modeling over
adjacency-matrix-based modeling in terms of scalability and accuracy. The single-machine
SVI algorithm on these smaller networks usually converges after several passes on all tri-
angles in the network (4-5 passes at most), and achieves competitive or improved accuracy
for latent space recovery and link prediction compared to MMSB (Yin et al.l |2013). This
is compatible with our observation that, in the distributed setting, at most 200N triangles
needed to be subsampled and processed to achieve the indicated NMI scores in Table
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NMI Time to completion
Network STM SVI a-MMSB PM SLPA SVD+M | STM SVI  a-MMSB PM SLPA SVD+M
DBLP (N = 317K)
K = 5000 0.439 0.379 0.251 0.581 DNF 15min 17.4h 8.9h 2.6h > 5 days
K = 10000 0.506 0.437 0.294 (16874 coms) DNF 18min 48h 18h > 5 days
K = 15000 0.542 OOM 0.322 OOM 26min OOM 51h OOM
K = 20000 0.559 OOM 0.341 OOM 30min OOM 96h OOM
Amazon (N = 335K)
K = 5000 0.790 0.750 0.483 0.867 DNF 38min 31h 4.4h 3.2h > 5 days
K = 10000 0.758 OOM 0.548 (29021 coms) DNF 18min OOM 11h > 5 days
K = 15000 0.743 OOM 0.571 OOM 24min OOM 22h OOM
K = 20000 0.733 OOM 0.576 OOM 31min OOM 31h OOM
Youtube (N = 1.1M)
K = 5000 0.374 OOM 0.129 0.424 OOM 2.2h OOM 76h 21h OOM
K = 10000 0.422 OOM DNF (5972 coms) OOM 3.2h OOM > 5 days OOM
K = 15000 0.456 OOM DNF OOM 3.9h OOM > 5 days OOM
K = 20000 0.433 OOM DNF OOM 7.6h OOM > 5 days OOM
Livejournal (N = 4.0M)
K = 20000 0.743 OOM DNF DNF OOM 63h OOM > b5 days > 5 days OOM

Table 5: NMI scores and runtimes for all the algorithms being evaluated. “OOM” means the algorithm ran out of memory and
failed, while “DNF” means the algorithm did not finish within a reasonable amount of time (5 days of continuous computation).
Note that the SLPA algorithm can automatically select the number of communities K, thus we report only one NMI score and
runtime per network (with the number of detected communities in parentheses).

ONIX ANV NIX ‘OH



LATENT SPACE INFERENCE OF INTERNET-SCALE NETWORKS

Youtube Network: Size of largest 50 communities from each baseline
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Figure 5: Youtube network: size of the largest 50 detected communities by STM SVI,
a-MMSB, PM, and SLPA, plotted on a logarithmic scale.

Size of Detected Communities. Figure 5| plots the size of the largest 50 detected com-
munities in the Youtube network by STM SVI, a-MMSB, PM, and SLPA, on a logarithmic
scale. For algorithms that require the number of communities K as input, we set K = 1000.
It was necessary for us to use the Youtube network with K = 1000 communities, in order to
obtain a plot of community size for a-MMSB; otherwise, it ran out of memory (see Table .
We observed that STM SVI and SLPA were able to detect several very large communities
containing over 50K nodes, whereas a-MMSB and PM could not recover communities with
more than 10K nodes. Furthermore, the vast majority of communities detected by STM SVI
and SLPA are much smaller than the ones discovered by a-MMSB and PM. In other words,
the distributions of STM SVI and SLPA community size are far more skewed (power-law-
like) than a-MMSB’s and PM’s. We hypothesize that the better NMI performance of STM
SVI and SLPA is partly due to their ability to detect very large and very small communities,
which are present in real-world networks with power-law behavior (Leskovec et al., 2009).
We also conjecture that because larger communities in real-world networks are likely to
be edge-sparse, with intra-community edge probability p not much larger than the inter-
community edge probability ¢ (Leskovec et al., [2009)), it would be theoretically difficult for
models such as a-MMSB to detect these large communities (Anandkumar et al., 2014)).

7. Empirical Study on a 101-million-node Web Graph

Our SVI algorithm for STM is intended for latent space inference in very large, Internet-
scale networks. In that vein, we conclude with a brief analysis of the 101-million-node, 2-
billion-edge Subdomain/Host web graph, from the Web Data Commons (available at http:
//webdatacommons.org/hyperlinkgraph/). This web graph was constructed from the
Common Crawl 2012 web corpus, which originally contained 3.5 billion web pages and 128
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billion hyperlinks. The 3.5 billion web pages were aggregated by their subdomairfir] or host,
resulting in a new graph with 101 million nodes/subdomains. An edge was created between
two subdomains if at least one hyperlink was found between their aggregated pages, resulting
in 2 billion directed edges. When we ran our algorithm, it was treated as an undirected,
unweighted network via symmetrization.

Our primary aim is to demonstrate that the our distributed-parallel SVI algorithm for
STM finished execution on this massive web graph in an acceptable amount of time on
a small cluster—37.3 hours using K = 1000 overlapping communities. This scale is 25
times larger than a recent experiment by |Gopalan and Blei| (2013)), who ran the a-MMSB
inference algorithm on an N =~ 4M patent network using K = 1000. We also performed
light qualitative analysis to show that the discovered mixed-membership vectors 6;’s reveal
sensible insights about the structure of the web graph.

7.1 Experimental Settings

We used the experimental settings that were mostly similar to the experiments on ground-
truth networks, with the following exceptions:

Number of Machines. We used 5 machines with 16 CPU cores and 128GB RAM per
machine, configured identically to the 4 machines used in the ground-truth experiments.
The extra machine was required because the algorithm ran out of memory on 4 machines.

Termination Criterion. On such a large network, the SVI algorithm may take a long
time before the variational mini-batch lower bound starts oscillating, which is the termina-
tion criterion used in the ground-truth experiments. For this web graph, we observed that
by iteration ¢ = 50, the lower bound was only changing at the 5th significant figure (relative
to the first few iterations). We thus concluded that the algorithm was no longer making
significant progress, and stopped the algorithm at ¢ = 50 iterations.

Threshold of v;’s to Maintain Sparsity. As explained in Section[5.2] this massive web
graph requires 100 billion floating point values for the variational parameters ~;’s, which is
estimated at TBs of memory if stored densely (after accounting for algorithmic overheads).
In order to keep the ~;’s sparse enough to fit on 5 machines with 640GB total RAM,
we zeroed out any element 7;; < 10 at the end of every iteration. Though this is more
aggressive than the threshold 2a = 0.2 used in the ground-truth experiments, it has little
impact on the detected communities because of the way we obtain the final hard community
assignments based on the inferred 0;’s (Section . When the SVI algorithm terminated,
the vast majority of nodes i had an unnormalized “total variational mass” ", ~; x > 100.
Thus, any zeroed-out element +; ;, would have been normalized to ézk =i/ QO wvik) <
0.1, which is below the threshold of being detected as part of community k.

7.2 Qualitative Analysis

To decide the size of detected communities, we treated the mixed-membership vectors é@k
as an N x K continuous-valued matrix. The column sum of the kth column accounts for

11. A subdomain is an Internet host name with 3 or more levels. For example, www.cmu.edu and
www.ml.cmu.edu are considered to be two distinct subdomains.
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all partial memberships in community k, and thus is regarded as the effective number of
nodes in that community.

To identify significant nodes associated with each community k, we computed a score
sE(i) = ézk x D; for each node i—its partial membership in community k& multiplied by
its node degree—and then sorted si(1),...,s;(IN) in descending order. Table [6] shows the
top-scoring 10 nodes from each of the largest 5 communities, as well as the estimated
fraction of 3-edge triangles in each community (i.e., the parameter By 2 in Table [2). The
largest community is a giant core dominated by well-known websites including youtube.com,
google.com, and twitter.com, with a much lower fraction of 3-edge triangles (0.062) than
the other communities. The 2nd to 5th largest communities are:

e Community 2: mostly “online stores” that focus on specific products (kitchenware,
phones, or cars). However, these are not real online stores as the entries all link to
eBay auction pages. The community memberships ézk of the top 10 nodes are all
perfect (1.0), which suggests that these sites (1) form a compact community with few
outside links and (2) are probably copies of each other. It is likely that these sites
are meant to increase the visibility of certain eBay auctions—essentially, a form of
search engine optimization (SEQO). It is unclear whether the auctions themselves are
fraudulent or not.

e Community 3: dominated by webpages from Lycos/Tripod, two related companies in
the search and website creation business. It also contains w3schools.com, a site that
provides instructions for website creation. The top websites in this community do not
appear suspicious.

e Community 4: Spanish-language websites, particularly Hispavista, an Internet firm
based in Spain. The top websites in this community do not appear suspicious.

e Community 5: dominated by blackmagic.org/com, a website that maintains a large list
of websites crawled from the Internet in 2006. It is likely that blackmagic.org/com
acts as a hub for the other nodes in the community, which all have much smaller
scores si (7). The extremely high fraction of 3-edge triangles (0.985) suggests that this
community is close to a full clique, or perhaps several cliques connected by one or
two bridge nodes. Previous works have shown that such clique-like patterns in web
graphs are highly indicative of web duplication or fraud (Kang et al., [2009} 2011); a
cursory look at the websites in this community (such as the skimium.* nodes) reveals
that many of them are near-exact copies of each other.

We also explored significant nodes that are in 2 or more communities in this web graph
(recall that a node i is assigned to community & if ézk > 0.1). Of these T00K websites, the
one with the highest node degree, wordpress.org, has a partial membership 0.89 in the giant
core and 0.11 in the 25th largest community. By examining the top websites in the 25th
largest community, we found several domains of hostgator.com, a website hosting business.
Further inspection revealed that the wordpress forums frequently recommend hostgator.com
to host wordpress-powered blogs, and similarly, the hostgator support pages explain how to
set up a wordpress blog on hostgator itself.
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k-th largest community  Fraction of 3-edge triangles Website 0; 1 sk (7)
1 0.062 youtube.com 0.96  2906030.5
(mass 71038.3K) wordpress.org 0.89  2102190.9
en.wikipedia.org 0.93  1899359.3
gmpg.org 0.92 1638740.7
tumblr.com 0.94 1096803.3
twitter.com 0.95 1057107.2
flickr.com 1.00 931931.7
serebella.com 1.00 757930.4
google.com 0.92 738368.1
top20directory.com 1.00 691007.1
2 0.604 kitchensnstuff.com 1.00 163675.0
(mass 165.7K) shopping.mia.net 1.00  105814.0
thenichestorebuilder.com 1.00 57502.3
generator.mia.net 1.00 56772.0
phone.mia.net 1.00 53360.0
seekwonder.com 1.00 44767.9
hostinglizard.com 1.00 44496.5
corvette-auction.com 1.00 43633.9
gotomeeting.mia.net 1.00 43611.0
cashadvance.mia.net 1.00 43587.9
3 0.481 tripod.lycos.com 0.69 697557.6
(mass 88.7K) w3schools.com 0.99  499886.4
domains.lycos.com 0.99  476899.0
club.tripod.com 0.13 63429.6
wired.com 0.37 46150.2
search.lycos.com 0.94 29350.7
news.lycos.com 0.94 20329.7
moreover.com 0.15 613.1
metallica.com 0.09 421.4
google-pagerank.net 0.56 407.8
4 0.695 hispavista.com 0.80 156246.8
(mass 69.7K) dominios.hispavista.com 0.94  138596.5
inmobiliaria.hispavista.com 0.93 138045.6
globedia.com 0.87 134000.4
galeon.com 0.84 133910.6
neopolis.com 0.94 133033.7
trabajos.com 0.89 132235.4
horoscopo.hispavista.com 0.95 131548.8
paginasamarillas.hispavista.com  0.95 131476.2
software.hispavista.com 0.94 131310.0
5 0.985 blackmagic.org 0.60 103660.8
(mass 65.2K) blackmagic.com 0.60  102844.9
opera.com 0.04 2265.0
skimium.fr 0.88 1289.3
skimium.co.uk 0.97 1181.0
skimium.es 0.97 1167.6
skimium.nl 0.96 1140.9
skimium.it 0.94 1137.8
skimium.be 0.94 1111.3
inetgiant.com 0.24 665.6

Table 6: Subdomain/Host web graph: the 10 top-scoring nodes in each of the largest 5
communities by mass (the effective number of nodes in the community). The score s (i) is
computed as éi,k X D;, i.e., the partial membership of node 7 in community k& multiplied by its
node degree. For each community, we also report the estimated fraction of 3-edge triangles.
A quick look at the top websites in communities 2 and 5 reveals suspicious behavior (see
main text for details).
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8. Conclusion and Discussion

Massive Internet-scale networks are technically challenging to explore, manipulate, and vi-
sualize. One approach to understanding the structural and functional properties of massive
networks is to perform latent space inference for overlapping community detection. At the
time of writing, there are few inference algorithms that can scale to hundreds of millions of
nodes in order to detect thousands of distinct communities, and almost none of them are
based on a probabilistic model.

In this work, starting with the mixed-membership class of statistical models as a founda-
tion, we systematically tackle the statistical and computational challenges associated with
Internet-scale network inference. Our major contributions include: (1) characterization of
the network as a more compact—and arguably more salient for community detection—
triangular representation; (2) design of a parsimonious generative model with only O(K)
instead of K2 or K3 parameters; (3) construction of an efficient structured stochastic vari-
ational inference algorithm; (4) a careful consideration of the distributed implementation
in order to handle big network data, big network model, and slow inter-machine com-
munication. The resulting distributed-parallel STM SVI algorithm is able to detect 1000
communities from a 100-million-node network in 1.5 days on just 5 cluster machines, and
we believe that networks with NV > 1 billion nodes can be analyzed with a sufficiently large
cluster, thus opening the door to Facebook-scale social networks and beyond.

We would like to end with some directions and open issues for future research. One
limitation of STM is that it only applies to undirected and unweighted networks (and
triangular motifs), although we have demonstrated good community detection NMI scores
relative to baselines. We believe that accounting for edge direction and weights could further
improve accuracy, which are more common in non-social-network domains such as biology
and finance. Sensitivity to initialization is another issue that we would like to address: while
the STM-CANONIZE procedure worked well in our experiments, we believe that there are more
systematic ways to address the issue, such as augmenting the variational inference algorithm
with split-merge-like search moves that can change many node community assignments
at once. Finally, we believe that triangular modeling could also be extended to other
probabilistic network model for overlapping community detection, such as the Community-
Affiliation Graph Model (AGM) by Yang and Leskovec| (2012al).
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Appendix A. Details of Stochastic Variational Inference

In this section, we provide details of our SVI algorithm, including the exact form the
variational lower bound, the exact and approximate local update equations, and the natural
gradients with respect to the global parameters.

A.1 Exact Form of the Variational Lower Bound

The variational lower bound (Equation [3|) of the log marginal likelihood of the triangular
motifs based on the variational distribution (Equation (1)) is

logp(E | o, A) > Ey[log p(E,s,0,B | o, \)] — Ey[logg(s, 8,B)] = L(d,n,7) (8)
K
= Eq[Ing(BO | )‘)] - Eq [log Q(BO | 7’0)] + Z {Eq [IOgP(Bm | A)] - Eq[l()g Q(Brx | nrz)}}

K N
+ > {Eallog p(Buas | )]~ Eqll08 a(Boas | el + 3 {Eqllogp(6: | 0)] — Eylloga(6: | )]}

z=1 i=1

{Eq[logp(si,jk | 0;) +logp(sjir | 0;) +1ogp(skqj | 9k)]}

+
(]

(4,5,k)ET

+ Z {Eq[logp(Eijk | Si,jks Sgiks Sk, B)| — Eq[log q(sijk, S5k, ki | ¢z'jk)}}.
(i,5,k)el

The first two lines of Equation [§| represent the global terms g(v,n) that depend only the
global variational parameters v and 77, whereas the last two lines are a summation of the
local terms 4(¢;ji,7y,n), one for each triangle.

A.2 Local Update (Exact and Approximate)

For each sampled triangle (i, j, k) in a mini-batch, the exact local update algorithm updates
all the K3 entries of ®ijk, and then renormalizes them to sum to one. The K 3 entries of
¢iji can be segregated into three broad categories: @7, ¢fﬁy, (;52%:, which correspond to
the following cases:

1. (bfﬁf corresponds to the case that all nodes choose the same community: s; ji = s i =
Sk,ij = T;

2. ¢y (or ¢y, or @) corresponds to the case that two nodes choose the same
o i _ o . . s TYT yTTy,
community: s; jr = Sjix =  and s ;; = y (with similar variations for ¢z‘jk and qﬁijk )

3. ¢%?Ikz corresponds to the case that all nodes choose different communities: s; ;. = x,

Sjik =Y, Skij = 2
The update equations for each category are:

1. For z € {1,..., K},

558 o exp { Bql10g Braa 2l Bijk = 4] + Eql08(Booe,1 /3)1Eijk # 4]+ Eqllog 0.0 +10g 0.0 + log O]}
)
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2. For xz,y € {1,...,K} and x # v,

d)ffky o exp {]Eq [log Bya 3]I[E;j, = 4] 4+ Eq[log Bea 2)I[Es ;5 = 3] + Eq[log(Bez,1/2)|I[E;j, =1 or 2] (10)

+Eg[log 8 o + log 0 » + log ek,y]}.

The update equations for quyz and qﬁym are similar to my (

ment of variables), thus we omlt thelr details.
3. For distinct z,y,z € {1,..., K},

up to a trivial rearrange-

SIY o exp {Eq llog Bo 2]I[Eijx = 4] + Eqllog(Bo,1 /3)]1[Eijk # 4] + Eqllog 0;  + log 0., + log 9k,z}}. (11)

The above are the ezact update equations for ¢;;, and they require O(K 3) run-time per
triangle (i,7,k). The update equations for the O(K) “mixture-of-deltas” approximation
(described in Section are almost exactly equivalent to the exact O(K?) update proce-
dure, with two minor modifications: (1) we simply zero out entries (a, b, ¢) that are not in
the chosen set A, and (2) we renormalize the chosen entries (a, b, ¢) € A amongst themselves
so that they sum to 1. This follows because the “mixture-of-deltas” variational distribution
is essentially a categorical or multinomial distribution with some elements constrained to
be zero.

A.3 Global update

The global update (Equation @ in our SVI algorithm requires computing the natural gra-
dient VLg(n,~). For clarity, we decompose VLg(n,7) over each part of n,7. The natural
gradient with respect to 7 is:

e Forz € {1,...,K},

~ m
Vipea 1 £8(1M,7) = A+ 5] > k(@ 2)[Eijk # 4] = Newa,1, (12)
(i,5,k)ES
~ m
(i,5,k)€S
e Forze{l,...,K},
Viea 1 £5(M7) = X+ E Z > (Qijk(~rax7 W Eijr = 1,2] + qijr (2, y, ©)[[Ejp = 1, 3] (14)

L (i,5,k)€ES y:y#z

+ qijr(y, z, x)[Eyjp = 2,3])] — Naa,1,

~ m
Vna:'r 2£’ (77>'7) = + E Z Z (%]k(z x,y H[Ewk - 3] + q”k(xayvx)ﬂ[Ezjk - 2} (15)
L (i,5,k)€S y:y#x

+ Qijk(yvxax)H[Eijk = 1})} — Nax,2,

677:r:a:,3£‘5("77"7) =2+ Z Z (qu(x Z, y + qzyk(m Y,z )+ qu(yax:x))H[Eljk = 4}:| — Nzz,3-

L (i,4,k)€S yry#z

E\s

(16)
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e For the sole 1y parameter:

Vinoa Ls(m,y) =X+ = [ > > Gijk (@, Y, 2)[Eij5 # 4]} — 10,1, (17)

S
151 (4,5,k) €S (z,y,2): xF#y#2

~ m
Vinoa Ls(m,7) = A+ s [ > Y. ikl y, l[Ei = 4]] —"0,2- (18)
(4,5,k)ES (z,y,2):x#y#=z

The natural gradient @L’,g(n, ~) with respect to v is, foreachi =1,...,Nandz =1,..., K,

S0 D aik(my, ) + > > ajin(sw, 2) (19)

(4,k):(i,5,k)ES ¥:2 (4,k):(4,1,k)ES ¥:2

+ Z qu'ki(yvsz)} — Yi,x-

(4,k):(3,k,i) €S Y»2

~ m
Voo Ls(my) =a+ s
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