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Abstract

Local differential privacy has recently surfaced as a strong measure of privacy in contexts
where personal information remains private even from data analysts. Working in a setting
where both the data providers and data analysts want to maximize the utility of statistical
analyses performed on the released data, we study the fundamental trade-off between local
differential privacy and utility. This trade-off is formulated as a constrained optimization
problem: maximize utility subject to local differential privacy constraints. We introduce a
combinatorial family of extremal privatization mechanisms, which we call staircase mecha-
nisms, and show that it contains the optimal privatization mechanisms for a broad class of
information theoretic utilities such as mutual information and f -divergences. We further
prove that for any utility function and any privacy level, solving the privacy-utility maxi-
mization problem is equivalent to solving a finite-dimensional linear program, the outcome
of which is the optimal staircase mechanism. However, solving this linear program can be
computationally expensive since it has a number of variables that is exponential in the size
of the alphabet the data lives in. To account for this, we show that two simple privatization
mechanisms, the binary and randomized response mechanisms, are universally optimal in
the low and high privacy regimes, and well approximate the intermediate regime.

Keywords: local differential privacy, privacy-preserving machine learning algorithms,
information theoretic utilities, f -divergences, mutual information, statistical inference, hy-
pothesis testing, estimation

1. Introduction

In statistical analyses involving data from individuals, there is an increasing tension between
the need to share data and the need to protect sensitive information about the individuals.
For example, users of social networking sites are increasingly cautious about their privacy,
but still find it inevitable to agree to share their personal information in order to benefit
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from customized services such as recommendations and personalized search (Acquisti, 2004;
Acquisti and Grossklags, 2007). There is a certain utility in sharing data for both data
providers and data analysts, but at the same time, individuals want plausible deniability
when it comes to sensitive information.

For such applications, there is a natural core optimization problem to be solved. As-
suming both the data providers and analysts want to maximize the utility of the released
data, how can they do so while preserving the privacy of participating individuals? The
formulation and study of a framework that addresses the fundamental tradeoff between
utility and privacy is the focus of this paper.

1.1 Local differential privacy

The need for data privacy appears in two different contexts: the local privacy context, as
in when individuals disclose their personal information (e.g., voluntarily on social network
sites), and the global privacy context, as in when institutions release databases of information
of several people or answer queries on such databases (e.g., US Government releases census
data, companies like Netflix release proprietary data for others to test state of the art
machine learning algorithms). In both contexts, privacy is achieved by randomizing the
data before releasing it. We study the setting of local privacy, in which data providers do
not trust the data collector (analyst). Local privacy dates back to Warner (1965), who
proposed the randomized response method to provide plausible deniability for individuals
responding to sensitive surveys.

A natural notion of privacy protection is making inference of information beyond what
is released hard. Differential privacy has been proposed in the global privacy context to
formally capture this notion of privacy (Dwork, 2006; Dwork et al., 2006b; Dwork and Lei,
2009). In a nutshell, differential privacy ensures that an adversary should not be able to
reliably infer an individual’s record in a database, even with unbounded computational
power and access to every other record in the database. Recently, Duchi et al. (2013)
extended the notion of differential privacy to the local privacy context. Formally, consider
a setting where there are n data providers each owning a data Xi defined on an input
alphabet X . The Xi’s are independently sampled from some distribution Pν parameterized
by ν. A statistical privatization mechanismQ is a conditional distribution that mapsXi ∈ X
stochastically to Yi ∈ Y, where Y is an output alphabet possibly larger than X . The Yi’s
are referred to as the privatized (sanitized) views of Xi’s. In a non-interactive setting, the
same privatization mechanism Q is used locally by all individuals. This setting is shown in
Figure 1 for the special case of n = 2. For some non-negative ε, we follow the definition of
Duchi et al. (2013) and say that a mechanism Q is ε-locally differentially private if

sup
S⊂Y,x,x′∈X

Q(S|x)

Q(S|x′)
≤ eε , (1)

where Q(S|x) = P(Yi ∈ S|Xi = x) represents the privatization mechanism. This ensures
that for small values of ε, given a privatized data Yi, it is (almost) equally likely to have
come from any data, i.e. x or x′. A small value of ε means that we require a high level of
privacy and a large value corresponds to a low level of privacy. At one extreme, for ε = 0,
the privatized output must be independent of the private data, and on the other extreme,
for ε =∞, the privatized output can be made equal to the private data.
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Figure 1: Client i owns Xi sampled from Pν . Each Xi is privatized by the same ε-locally
differentially private mechanism Q. The data analyst only observes the privatized
data (Yi’s) and makes an inference on the statistics of the original distribution of
the data.

1.2 Information theoretic utilities for statistical analysis

In analyses of statistical databases, the analyst is interested in the statistics of the data as
opposed to individual records. Naturally, the utility should also be measured in terms of the
distribution rather than sample quantities. Concretely, consider a client-server setting where
each client with data Xi releases Yi, a privatized version of the data, via a non-interactive ε-
locally differentially private privatization mechanism Q. Assume all the clients use the same
privatization mechanism Q, and each client’s data is an i.i.d. sample from a distribution Pν
for some parameter ν. Given the privatized views {Yi}ni=1, the data analyst would like to
make inferences based on the induced marginal distribution

Mν(S) ≡
∑
x∈X

Q(S|x)Pν(x) , (2)

for S ⊆ Y. We consider a broad class of convex utility functions, and identify the class
of optimal mechanisms, which we call staircase mechanisms, in Section 2. We apply this
framework to two specific applications: (a) hypothesis testing where the utility is measured
in Kullback-Leibler divergence (Section 3) and (b) information preservation where the utility
is measured in mutual information (Section 4).

In the binary hypothesis testing setting, ν ∈ {0, 1}; therefore, X can be generated by
one of two possible distributions P0 and P1. The power to discriminate data generated
from P0 to data generated from P1 depends on the ‘distance’ between the marginals M0

and M1. To measure the ability of such statistical discrimination, our choice of utility of a
particular privatization mechanism Q is an information theoretic quantity called Csiszár’s
f -divergence defined as

Df (M0||M1) =
∑
x∈X

f
(M0(x)

M1(x)

)
M1(x) , (3)
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for some convex function f such that f(1) = 0. The Kullback-Leibler (KL) divergence
Dkl(M0||M1) is a special case with f(x) = x log x, and so is the total variation distance
‖M0−M1‖TV with f(x) = (1/2)|x−1|. Such f -divergences capture the quality of statistical
inference, such as minimax rates of statistical estimation or error exponents in hypothesis
testing (Tsybakov and Zaiats, 2009; Cover and Thomas, 2012). As a motivating example,
suppose a data analyst wants to test whether the data is generated from P0 or P1 based
on privatized views Y1, . . . , Yn. According to Chernoff-Stein’s lemma, for a bounded type
I error probability, the best type II error probability scales as e−nDkl(M0||M1). Naturally,
we are interested in finding a privatization mechanism Q that minimizes the probability of
error by solving the following constraint maximization problem

maximize
Q

Dkl(M0||M1)

subject to Q ∈ Dε
, (4)

where Dε is the set of all ε-locally differentially private mechanisms satisfying (1).
In the information preservation setting, X is generated from an underlying distribution

P . We are interested in quantifying how much information can be preserved when releasing
a private view of the data. In other words, the data provider would like to release an ε-
locally differentially private view Y of X that preserves the amount of information in X as
much as possible. The utility in this case is measured by the mutual information between
X and Y

I (X;Y ) =
∑
X

∑
Y
P (x)Q (y|x) log

(
Q (y|x)∑

l∈X P (l)Q (y|l)

)
. (5)

Mutual information, as the name suggests, measures the mutual dependence between two
random variables. It has been used as a criterion for feature selection and as a measure of
similarity between two different clusterings of a data set, in addition to many other applica-
tions in signal processing and machine learning. To characterize the fundamental tradeoff
between privacy and mutual information, we solve the following constrained maximization
problem

maximize
Q

I(X;Y )

subject to Q ∈ Dε
, (6)

where Dε is the set of all ε-locally differentially private mechanisms satisfying (1).
Motivated by such applications in statistical analysis, our goal is to provide a general

framework for finding optimal privatization mechanisms that maximize information theo-
retic utilities under local differential privacy. We demonstrate the power of our techniques
in a very general setting that includes both hypothesis testing and information preservation.

1.3 Our contributions

We study the fundamental tradeoff between local differential privacy and a rich class of
convex utility functions. This class of utilities includes several information theoretic quan-
tities such as mutual information and f -divergences. The privacy-utility tradeoff is posed as
a constrained maximization problem: maximize utility subject to local differential privacy
constraints. This maximization problem is (a) nonlinear: the utility functions we consider
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are convex in Q; (b) non-standard: we are maximizing instead of minimizing a convex
function; and (c) infinite dimensional: the space of all differentially private mechanisms is
infinite dimensional. We show, in Theorem 2, that for all utility functions considered and
any privacy level ε, a finite family of extremal mechanisms (a finite subset of the corner
points of the space of differentially private mechanisms), which we call staircase mecha-
nisms, contains the optimal privatization mechanism. We further prove, in Theorem 4, that
solving the original privacy-utility problem is equivalent to solving a finite dimensional lin-
ear program, the outcome of which is the optimal mechanism. However, solving this linear
program can be computationally expensive because it has 2|X | variables. To account for
this, we show that two simple staircase mechanisms (the binary and randomized response
mechanisms) are optimal in the high and low privacy regimes, respectively, and well approx-
imate the intermediate regime. This contributes an important progress in the differential
privacy area, where the privatization mechanisms have been few and almost no exact opti-
mality results are known. As an application, we show that the effective sample size reduces
from n to ε2n under local differential privacy in the context of hypothesis testing.

We also study the fundamental tradeoff between utility and approximate differential
privacy, a generalized notion of privacy that was first introduced in Dwork et al. (2006a).
The techniques we develop for differential privacy do not generalize to approximate differ-
ential privacy. To account for this, we use an operational interpretation of approximate
differential privacy (developed in Kairouz et al. (2014a)) to prove that a simple mechanism
maximizes utility for all levels of privacy when the data is binary.

1.4 Related work

Our work is closely related to the recent work of Duchi et al. (2013) where an upper bound
on Dkl(M0||M1) was derived under the same local differential privacy setting. Precisely,
Duchi et. al. proved that the KL-divergence maximization problem in (4) is at most 4(eε −
1)2‖P1 − P2‖2TV . This bound was further used to provide a minimax bound on statistical
estimation using information theoretic converse techniques such as Fano’s and Le Cam’s
inequalities. Such tradeoffs also provide tools for comparing various notions of privacy
(Barber and Duchi, 2014).

In a similar spirit, we are also interested in maximizing information theoretic quantities
under local differential privacy. We generalize the results of Duchi et al. (2013), and provide
stronger results in the sense that we (a) consider a broader class of information theoretic
utilities; (b) provide explicit constructions for the optimal mechanisms; and (c) recover the
existing result of (Duchi et al., 2013, Theorem 1) (with a stronger condition on ε).

Our work also provides a formal connection to an information theoretic notion of pri-
vacy called information leakage (Chatzikokolakis et al., 2010; Sankar et al., 2013). Given
a privatization mechanism Q, the information leakage is measured by the mutual informa-
tion between the private data X and the released output Y , i.e. I(X;Y ). Information
leakage has been widely studied as a practical notion of privacy. However, connections to
differential privacy have been studied only indirectly through comparisons to how much
distortion is incurred under the two notions of privacy (Sarwate and Sankar, 2014; Wang
et al., 2014a). We show that under ε-local differential privacy, I(X;Y ) is upper bounded by
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0.5ε2 maxA⊆X P (A)P (Ac)+O(ε3) for small ε. Moreover, we provide an explicit privatization
mechanism that achieves this bound.

While there is a vast literature on differential privacy, exact optimality results are only
known for a few cases. The typical recipe is to propose a differentially private mechanism
inspired by the work of Dwork (2006); Dwork et al. (2006b); McSherry and Talwar (2007)
and Hardt and Rothblum (2010), and then establish its near-optimality by comparing the
achievable utility to a converse, for example in linear dynamical systems (Wang et al.,
2014b), principal component analysis (Chaudhuri et al., 2012; Blocki et al., 2012; Hardt
and Roth, 2012; Kapralov and Talwar, 2013), linear queries (Hardt and Talwar, 2010; Hardt
et al., 2012), logistic regression (Chaudhuri and Monteleoni, 2008) and histogram release
(Lei, 2011). In this paper, we take a different route and solve the utility maximization
problem exactly.

Optimal differentially private mechanisms are known only in a few cases. Ghosh et al.
(2012) showed that the geometric noise adding mechanism is optimal (under a Bayesian
setting) for monotone utility functions under count queries (sensitivity one). This was gen-
eralized by Geng et. al. (for a worst-case input setting) who proposed a family of mechanisms
and proved its optimality for monotone utility functions under queries with arbitrary sensi-
tivity (Geng and Viswanath, 2012, 2013a,b). The family of optimal mechanisms was called
staircase mechanisms because for any y and any neighboring x and x′, the ratio of Q(y|x)
to Q(y|x′) takes one of three possible values eε, e−ε, or 1. Since the optimal mechanisms
we develop also have an identical property, we retain the same nomenclature.

1.5 Organization

The remainder of the paper is organized as follows. In Section 2, we introduce the family of
staircase mechanisms, prove its optimality for a broad class of convex utility functions, and
study its combinatorial structure. In Section 3, we study the problem of private hypothesis
testing and prove that two staircase mechanisms, the binary and randomized response
mechanisms, are optimal for KL-divergence in the high and low privacy regimes, respectively,
and (nearly) optimal the intermediate regime. We show, in Section 4, similar results for
mutual information. In Section 5, we study approximate local differential privacy, a more
general notion of local privacy. Finally, we conclude this paper in Section 6 with a few
interesting and nontrivial extensions.

2. Main Results

In this section, we first present a formal definition for staircase mechanisms and prove that
they are the optimal solutions to optimization problems of the form (8). We then provide
a combinatorial representation for staircase mechanisms that allows us to reduce the infi-
nite dimensional nonlinear program of (8) to a finite dimensional linear program with 2|X |

variables. For any given privacy level ε and utility function U(·), one can solve this linear
program to obtain the optimal privatization mechanism, albeit with significant computa-
tional challenges since the number of variables scales exponentially in the alphabet size. To
address this issue, we prove, in Sections 3 and 4, that two simple staircase mechanisms,
which we call the binary mechanism and the randomized response mechanism, are optimal
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in the high and low privacy regimes, respectively, and well approximate the intermediate
regime.

2.1 Optimality of staircase mechanisms

For an input alphabet X with |X | = k, we represent the set of ε-locally differentially private
mechanisms that lead to output alphabets Y with |Y| = ` by

Dε,` = Qk×` ∩
{
Q : ∀ x, x′ ∈ X , S ⊆ Y,

∣∣∣ ln
Q (S|x)

Q (S|x′)

∣∣∣ ≤ ε} ,
where Qk×` denotes the set of all k× ` dimensional conditional distributions. The set of all
ε-locally differentially private mechanisms is given by

Dε = ∪`∈NDε,`. (7)

The set of all conditional distributions acting on X is given by Q = ∪`∈NQk,`.
We consider two types of utility functions, one for the hypothesis testing setup and

another for the information preservation setup. In the hypothesis testing setup, the utility
is a function of the privatization mechanism and two priors defined on the input alphabet.
Namely, U (P0, P1, Q) : Sk × Sk × Q → R+, where P0 and P1 are positive priors defined
on X , and Sk is the (k − 1)-dimensional probability simplex. Pν is said to be positive if
Pν (x) > 0 for all x ∈ X . In the information preservation setup, the utility is a function of
the privatization mechanism and a prior defined on the input alphabet. Namely, U (P,Q) :
Sk × Q → R+, where P is a positive prior defined on X . For notational convenience, we
will use U (Q) to refer to both U (P,Q) and U (P0, P1, Q).

Definition 1 (Sublinear Functions) A function µ (z) : Rk → R is said to be sublinear
if the following two conditions are met

1. µ (γz) = γµ (z) for all γ ∈ R+.

2. µ (z1 + z2) ≤ µ (z1) + µ (z2) for all z1, z2 ∈ Rk.

Let Qy be the column of Q corresponding to Q(y|·) and µ be any sublinear function.
We are interested in utilities that can be decomposed into a sum of sublinear functions.
We study the fundamental tradeoff between privacy and utility by solving the following
constrained maximization problem

maximize
Q

U (Q) =
∑
y∈Y

µ(Qy)

subject to Q ∈ Dε
. (8)

This includes maximization over information theoretic quantities of interest in statistical es-
timation and hypothesis testing such as mutual information, total variation, KL-divergence,
and χ2-divergence (Tsybakov and Zaiats, 2009). Since sub-linearity implies convexity, (8)
is in general a complicated nonlinear program: we are maximizing (instead of minimizing)
a convex function in Q; further, the dimension of Q might be unbounded: the optimal
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privatization mechanism Q∗ might produce an infinite output alphabet Y. The following
theorem proves that one never needs an output alphabet larger than the input alphabet in
order to achieve the maximum utility, and provides a combinatorial representation for the
optimal solution.

Theorem 2 For any sublinear function µ and any ε ≥ 0, there exists an optimal mechanism
Q∗ maximizing the utility in (8) over all ε-locally differentially private mechanisms, such
that

(a) the output alphabet size is at most the input alphabet size, i.e. |Y| ≤ |X |; and

(b) for all y ∈ Y, and x, x′ ∈ X ∣∣∣ ln Q∗(y|x)

Q∗(y|x′)

∣∣∣ ∈ {0, ε} . (9)

The first claim of bounded alphabet size is more generally true for any general utility U (Q)
that is convex in Q (not necessarily decomposing into a sum of sublinear functions as in (8)).
The second claim establishes that there is an optimal mechanism with an extremal structure;
the absolute value of the log-likelihood ratios can only take one of the two extremal values:
0 or eε (see Figure 2 for example). We refer to such a mechanism as a staircase mechanism,
and define the family of staircase mechanisms formally as

Sε ≡ {Q | satisfying (9)} .

For all choices of U (Q) =
∑
Y µ(Qy) and any ε ≥ 0, Theorem 2 implies that the family

of staircase mechanisms includes the optimal solutions to maximization problems of the
form (8). Notice that staircase mechanisms are ε-locally differentially private, since any Q
satisfying (9) implies that Q(y|x)/Q(y|x′) ≤ eε.

For global differential privacy, we can generalize the definition of staircase mechanisms to
hold for all neighboring database queries x, x′ (or equivalently within some sensitivity), and
recover all known existing optimal mechanisms. Precisely, the geometric mechanism shown
to be optimal in Ghosh et al. (2012), and the mechanisms shown to be optimal in Geng
and Viswanath (2012, 2013a) (also called staircase mechanisms) are special cases of the
staircase mechanisms defined above. We believe that the characterization of these extremal
mechanisms and the analysis techniques developed in this paper can be of independent
interest to researchers interested in optimal mechanisms for global privacy and more general
utilities.

2.2 Combinatorial representation of the staircase mechanisms

Now that we know that staircase mechanisms are optimal, we can try to combinatorially
search for the best staircase mechanism for an instance of the function µ and a fixed ε. To
this end, we give a simple representation for all staircase mechanisms, exploiting the fact
that they are scaled copies of a finite number of patterns.

Let Q ∈ R|X |×|Y| be a staircase mechanism, and k = |X | denote the size of the input
alphabet. Then, from the definition of staircase mechanisms, Q(y|x)/Q(y|x′) ∈ {e−ε, 1, eε}
and each column Q(y|·) must be proportional to one of the canonical staircase patterns we
define next.
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y = 1
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

Figure 2: Examples of staircase mechanisms: the binary (left) and the randomized response
(right) mechanisms.

Definition 3 (Staircase Pattern Matrix) Let bj be the k-dimensional binary vector cor-

responding to the binary representation of j for j ≤ 2k − 1. A matrix S(k) ∈ {1, eε}k×2k is

called a staircase pattern matrix if the j-th column of S(k) is S
(k)
j = (eε − 1) bj−1 + 1, for

j ∈ {1, . . . , 2k}. Each column of S(k) is a staircase pattern.

When k = 3, there are 2k = 8 staircase patterns and the staircase pattern matrix is given
by

S(3) =

1 1 1 1 eε eε eε eε

1 1 eε eε 1 1 eε eε

1 eε 1 eε 1 eε 1 eε

 .

For all values of k, there are exactly 2k such patterns, and any column Q(y|·) of Q, a
staircase mechanism, is a scaled version of one of the columns of S(k). Using this pattern
matrix, we can show that any staircase mechanism Q can be represented as

Q = S(k)Θ , (10)

where Θ = diag(θ) is a 2k×2k diagonal matrix and θ is a 2k-dimensional vector representing
the scaling of the columns of S(k). We can now formulate the problem of maximizing the
utility as a linear program and prove their equivalence.
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Theorem 4 For any sublinear function µ and any ε ≥ 0, the nonlinear program of (8) and
the following linear program have the same optimal value

maximize
θ∈R2k

2k∑
j=1

µ(S
(k)
j )θj = µT θ (11)

subject to S(k)θ = 1

θ ≥ 0 ,

and the optimal solutions are related by (10).

Thus, the infinite dimensional nonlinear program of (8) is now reduced to a finite dimen-
sional linear program. The constraints in (11) ensure that we get a valid probability matrix
Q = S(k)Θ with rows that sum to one. One could potentially solve this LP with 2k variables
but its computational complexity scales exponentially in the alphabet size k = |X |. For
practical values of k this might not always be possible. However, in the following sections,
we prove that in the high privacy regime (ε ≤ ε∗ for some positive ε∗), there is a single
optimal mechanism, which we call the binary mechanism, which dominates over all other
mechanisms in a very strong sense for all utility functions of practical interest.

In order to understand the above theorem, observe that both the objective function
and differential privacy constraints are invariant under permutations (or relabelling) of the
columns of a privatization mechanism Q. In other words, shuffling the columns of an ε-
locally differentially private mechanism Q results in a new ε-locally differentially private
mechanism Q′ that achieves the same utility. Similarly, both the objective function and
differential privacy constraints are invariant under merging/splitting of outputs with the
same pattern. To be specific, consider a privatization mechanism Q and suppose that
there exist two outputs y and y′ that have the same pattern, i.e. Q(y|·) = C Q(y′|·) for
some positive constant C. Then, we can consider a new mechanism Q′ by merging the
two columns corresponding to y and y′. Let y′′ denote this new output. It follows that
Q′ satisfies the differential privacy constraints and the resulting utility is also preserved.
Precisely, using the fact that Q(y|·) = C Q(y′|·), it follows that

µ(Qy) + µ(Qy′) = µ((1 + C)Qy) = µ(Q′y′′) ,

by the homogeneity property of µ. Therefore, we can naturally define equivalence classes
for staircase mechanisms that are equivalent up to a permutation of columns and merg-
ing/splitting of columns with the same pattern:

[Q] = {Q′ ∈ Sε | ∃ a sequence of permutations and merge/split of columns from Q′ to Q} .

To represent an equivalence class, we use a mechanism in [Q] that is ordered and merged to
match the patterns of the pattern matrix S(k). For any staircase mechanism Q, there exists
a possibly different staircase mechanism Q′ ∈ [Q] such that Q′ = S(k)Θ for some diagonal
matrix Θ with nonnegative entries. Therefore, to solve optimization problems of the form
(8), we can restrict our attention to such representatives of equivalent classes. Further, for
privatization mechanisms of the form Q = S(k)Θ, the objective function takes the form∑

j µ(S
(k)
j )θj , a simple linear function of Θ.
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3. Hypothesis Testing

In this section, we study the fundamental tradeoff between local differential privacy and
hypothesis testing. In this setting, there are n individuals each with data Xi sampled from
a distribution Pν for a fixed ν ∈ {0, 1}. Let Q be a non-interactive privatization mechanism
guaranteeing ε-local differential privacy. The output of the privatization mechanism Yi is
distributed according to the induced marginal Mν defined in (2). With a slight abuse of
notation, we will use Mν and Pν to represent both probability distributions and probability
mass functions. The power to discriminate data sampled from P0 to data sampled from P1

depends on the ‘distance’ between the marginals M0 and M1. To measure the ability of
such statistical discrimination, our choice of utility of a privatization mechanism Q is an
information theoretic quantity called Csiszár’s f -divergence defined as

Df (M0||M1) =
∑
Y
M1(y)f

(M0(y)

M1(y)

)
= U (P0, P1, Q) = U (Q) , (12)

for some convex function f such that f(1) = 0. The Kullback-Leibler (KL) divergence
Dkl(M0||M1) is a special case of f -divergence with f(x) = x log x. The total variation
distance ‖M0 −M1‖TV is also special case with f(x) = (1/2)|x− 1|. Note that in general,
the f -divergence is not necessarily a distance metric since it need not be symmetric or
satisfy triangular inequality. We are interested in characterizing the optimal solution to

maximize
Q

Df (M0||M1)

subject to Q ∈ Dε
, (13)

where Dε is the set of all ε-locally differentially private mechanisms defined in (7).

A motivating example for this choice of utility is the Neyman-Pearson hypothesis testing
framework (Cover and Thomas, 2012). Given the privatized views {Yi}ni=1, the data analyst
wants to test whether they are generated from M0 or M1. Let the null hypothesis be H0 :
Yi’s are generated from M0, and the alternative hypothesisH1 : Yi’s are generated from M1.
For a choice of rejection region R ⊆ Yn, the probability of false alarm (type I error) is
α = Mn

0 (R) and the probability of miss detection (type II error) is β = Mn
1 (Yn \ R). Let

βα
∗

= minR⊆Yn,α<α∗ β denote the minimum type II error achievable while keeping the type
I error rate at most α∗. According to Chernoff-Stein lemma (Cover and Thomas, 2012), we
know that

lim
n→∞

1

n
log βα

∗
= −Dkl(M0||M1) .

Suppose the analyst knows P0, P1, and Q. Then in order to achieve optimal asymptotic
error rate, one would want to maximize the KL divergence of the induced marginals, over
all ε-locally differentially private mechanisms Q. The results we present in this section
(Theorems 5 and 8 to be precise) provide an explicit construction of optimal mechanisms
in high and low privacy regimes. Using these optimality results, we prove a fundamental
limit on the achievable error rates under differential privacy. Precisely, with data collected
from an ε-locally differentially privatization mechanism, one cannot achieve an asymptotic

11
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type II error smaller than

lim
n→∞

1

n
log βα

∗ ≥ −(1 + δ)(eε − 1)2

(eε + 1)
‖P0 − P1‖2TV ≥ −

(1 + δ)(eε − 1)2

2(eε + 1)
Dkl(P0||P1) ,

whenever ε ≤ ε∗, where ε∗ is dictated by Theorem 5 and δ > 0 is some arbitrarily small
but positive constant. In the equation above, the second inequality follows from Pinsker’s
inequality. Since (eε − 1)2 = O(ε2) for small ε, the effective sample size is now reduced
from n to ε2n. This is the price of privacy. In the low privacy regime where ε ≥ ε∗, for ε∗

dictated by Theorem 8, one cannot achieve an asymptotic type II error smaller than

lim
n→∞

1

n
log βα

∗ ≥ −Dkl(P0||P1) + (1− δ)G(P0, P1)e−ε .

3.1 Optimality of staircase mechanisms

From the definition of Df (M0||M1), we have that

Df (M0||M1) =
∑
Y

(P T1 Qy)f(P T0 Qy/P
T
1 Qy) =

∑
Y
µ (Qy) ,

where P Tν Qy =
∑
X Pν (x)Q (y|x) and µ (Qy) = (P T1 Qy)f(P T0 Qy/P

T
1 Qy). For any γ > 0,

µ (γQy) =
(
P T1 (γQy)

)
f
(
P T0 (γQy) /P

T
1 (γQy)

)
= γ

(
P T1 Qy

)
f
(
P T0 Qy/P

T
1 Qy

)
= γµ (Qy) .

Moreover, since the function φ(z, t) = tf
(
z
t

)
is convex in (z, t) for 0 ≤ z, t ≤ 1, then

µ is convex in Qy. Convexity and homogeniety together imply sublinearlity. Therefore,
Theorems 2 and 4 apply to Df (M0||M1) and we have that staircases are optimal.

3.2 Optimality of the binary mechanism

For a given P0 and P1, the binary mechanism is defined as a staircase mechanism with only
two outputs y ∈ {0, 1} satisfying (see Figure 2)

Q(0|x) =


eε

1 + eε
if P0(x) ≥ P1(x) ,

1

1 + eε
if P0(x) < P1(x) .

Q(1|x) =


eε

1 + eε
if P0(x) < P1(x) ,

1

1 + eε
if P0(x) ≥ P1(x) .

(14)

Although this mechanism is extremely simple, perhaps surprisingly, we will establish that
it is the optimal mechanism when a high level of privacy is required. Intuitively, the output
should be very noisy in the high privacy regime, and we are better off sending just one bit
of information that tells you whether your data is more likely to have come from P0 or P1.

Theorem 5 For any pair of distributions P0 and P1, there exists a positive ε∗ that depends
on P0 and P1 such that for any f -divergences and any positive ε ≤ ε∗, the binary mechanism
maximizes the f -divergence between the induced marginals over all ε-locally differentially
private mechanisms.

12
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This implies that in the high privacy regime, which is a typical setting studied in much
of the differential privacy literature, the binary mechanism is universally optimal for all
f -divergences. In particular this threshold ε∗ is universal, in that it does not depend on the
particular choice of which f -divergence we are maximizing. It is only a function of P0 and
P1. This is established by proving a very strong statistical dominance using Blackwell’s cel-
ebrated result on comparisons of statistical experiments Blackwell (1953). In a nutshell, we
prove that any ε-locally differentially private mechanism can be simulated from the output
of the binary mechanism for sufficiently small ε. Hence, the binary mechanism dominates
over all other mechanisms and at the same time achieves the maximum divergence. A simi-
lar idea has been used previously in (Kairouz et al., 2013) to exactly characterize how much
privacy degrades under composition attacks.

The optimality of binary mechanisms is not just for high privacy regimes. The next
theorem shows that it is the optimal solution of (13) for all ε, when the objective function
is the total variation distance: Df (M0||M1) = ‖M0 −M1‖TV.

Theorem 6 For any pair of distributions P0 and P1, and any ε ≥ 0, the binary mechanism
maximizes the total variation distance between the induced marginals M0 and M1 among all
ε-locally differentially private mechanisms.

When maximizing the KL divergence between the induced marginals, we show that the
binary mechanism still achieves good performance for ε ≤ C where C is a constant that
does not depend on P0 and P1. For the special case of KL divergence, let OPT denote the
maximum value of (13) and BIN denote the KL divergence when the binary mechanism is
used. The next theorem shows that

BIN ≥ 1

2(eε + 1)2
OPT .

Theorem 7 For any ε and any pair of distributions P0 and P1, the binary mechanism is an
1/(2(eε+1)2) approximation of the maximum KL divergence between the induced marginals
M0 and M1 among all ε-locally differentially private mechanisms.

Observe that 2(eε + 1)2 ≤ 32 for ε ≤ 1. Therefore, for any ε ≤ 1, the simple binary
mechanism is at most a constant factor away from the optimal mechanism.

3.3 Optimality of the randomized response mechanism

The randomized response mechanism (see Figure 2) is a staircase mechanism with Y = X
satisfying

Q(y|x) =


eε

|X | − 1 + eε
if y = x ,

1

|X | − 1 + eε
if y 6= x .

(15)

In other words, the randomized response is a simple randomization over the same alphabet
where the true data is released with probability eε/ (|X | − 1 + eε). We view it as a multiple

13
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choice generalization to the randomized response method proposed by Warner (1965). We
now establish that for the special case of optimizing the KL divergence between the induced
marginals, the randomized response mechanism is the optimal solution of (13) in the low
privacy regime (i.e., ε ≥ ε∗ for some threshold ε∗ that depends on P0 and P1).

Theorem 8 There exists a positive ε∗ that depends on P0 and P1 such that for all P0

and P1, and all ε ≥ ε∗, the randomized response mechanism maximizes the KL divergence
between the induced marginals among all ε-locally differentially private mechanisms.

The randomized response mechanism is particularly important because it does not depend
on P0 or P1. Thus, even if the data providers and analysts do not have access to the
priors, they can still use the randomized response mechanism to achieve the optimal (or
near-optimal) utility in the moderate to low privacy regimes.

3.4 Numerical Experiments

A typical approach for achieving ε-local differential privacy is to add geometric noise with
appropriately chosen variance. For an input with alphabet size |X | = k, this amounts
to relabelling the inputs as integers {1, . . . , k} and adding geometric noise, i.e., Q(y|x) =
((1− ε1/(k−1))/(1 + ε1/(k−1)))ε|y−x|/(k−1) for y ∈ Z. The output is then truncated at 1 and
k to preserve the support.

For 100 instances of randomly chosen P0 and P1 defined over an input alphabet of
size |X | = 6, we compare the average performance of the binary, randomized response,
and geometric mechanisms to the average performance of the optimal staircase mechanism
for various values of ε. The optimal staircase mechanism is computed by solving the linear
program in Equation (11) for each fixed pair (P0, P1) and ε. The left panel of Figure 3 shows
the average performance measured by the normalized divergence Dkl(M0||M1)/Dkl(P0||P1)
for all 4 mechanisms. The average is taken over the 100 instances of P0 and P1. In the
low privacy (large ε) regime, the randomized response achieves optimal performance (which
converges exponentially in ε to 1) as predicted. In the high privacy regime (small ε), the
binary mechanism achieves optimal performance (which converges quadratically in ε to 0)
as predicted. In all regimes, both the binary and randomized response mechanisms provide
significant gains over the geometric mechanism.

To illustrate how much worse the binary and the randomized response mechanisms
can be relative to the optimal staircase mechanism, we plot in the right panel of Figure
3 the divergence under each mechanism normalized by the divergence under the optimal
mechanism. This is done for all 100 instances of P0 and P1. In all instances, the binary
mechanism is optimal for small ε and the randomized response mechanism is optimal for
large ε. However, Dkl(M0||M1) under the randomized response mechanism can be as bad as
10% of the optimal one (for small ε). Similarly, Dkl(M0||M1)) under the binary mechanism
can be as bad as 25% of the optimal one (for large ε). To overcome this issue, we propose the
following simple strategy: use the better among these two mechanisms. The performance
of this strategy is illustrated in Figure 4. For various input alphabet size |X | ∈ {3, 4, 6, 12},
we plot the performance of this mixed strategy for each value of ε and each of the 100
randomly generated instances of P0 and P1. This mixed strategy achieves at least 70% for
|X | = 6 (and 55% for |X | = 12) of the optimal divergence for all instances. Figure 4 shows
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Figure 3: The binary and randomized response mechanisms are optimal in the high-privacy
(small ε) and low-privacy (large ε) regimes, respectively, and improve over the
geometric mechanism significantly (left). When the regimes are mismatched,
Dkl(M0||M1) under these mechanisms can be as bad as 10% of the optimal one
(right).

that this mixed strategy is not too sensitive to the size of the alphabet k. Therefore, this
strategy provides a good mechanism that can be readily used in practice for any value of ε.

3.5 Lower bounds

In this section, we provide converse results on the fundamental limit of differentially private
mechanisms; these results follow from our main theorems and are of independent interest
in other applications where lower bounds in statistical analysis are studied (Beimel et al.,
2008; Hardt and Talwar, 2010; Chaudhuri and Hsu, 2012; De, 2012). For example, a bound
similar to (16) was used to provide converse results on the sample complexity for statistical
estimation with differentially private data in Duchi et al. (2013).

Corollary 9 For any ε ≥ 0, let Q be any conditional distribution that guarantees ε-local
differential privacy. Then, for any pair of distributions P0, P1 and any positive δ > 0,
there exists a positive ε∗ that depends on P0, P1 and δ such that for any ε ≤ ε∗ the induced
marginals M0 and M1 satisfy the bound

Dkl

(
M0||M1

)
+Dkl

(
M1||M0

)
≤ 2(1 + δ)(eε − 1)2

(eε + 1)

∥∥P0 − P1

∥∥2

TV
. (16)
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Figure 4: For varying input alphabet size |X | ∈ {3, 4, 6, 12}, at least 55% of the optimal
divergence can be achieved by taking the better one between the binary and the
randomized response mechanisms.

This follows from Theorem 5 and observing that the binary mechanism achieves

Dkl

(
M0||M1

)
=

(eε − 1)P0(T ) + 1

eε + 1
log
(1 + (eε − 1)P0(T )

1 + (eε − 1)P1(T )

)
+

(eε − 1)P0(T c) + 1

eε + 1
log
(1 + (eε − 1)P0(T c)

1 + (eε − 1)P1(T c)

)
=

(eε − 1)2

eε + 1
(P0(T )− P1(T )) +O(ε3)

=
(eε − 1)2

eε + 1

∥∥P0 − P1

∥∥2

TV
+O(ε3) ,

where T ⊆ X is the set of x such that P0(x) ≥ P1(x). Compared to (Duchi et al., 2013,
Theorem 1), we recover their bound of 4(eε − 1)2‖P0 − P1‖2TV with a smaller constant.
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We want to note that Duchi et al.’s bound holds for all values of ε and uses a different
technique of bounding the KL divergence directly, however no achievable mechanism has
been provided. We instead provide an explicit mechanism, that is optimal in high privacy
regime.

Similarly, in the low privacy regime, we can show the following converse result.

Corollary 10 For any ε ≥ 0, let Q be any conditional distribution that guarantees ε-local
differential privacy. Then, for any pair of distributions P0 and P1 and any positive δ > 0,
there exists a positive ε∗ that depends on P0 and P1 and δ such that for any ε ≥ ε∗ the
induced marginals M0 and M1 satisfy the bound

Dkl

(
M0||M1

)
+Dkl

(
M1||M0

)
≤ Dkl(P0||P1)− (1− δ)G(P0, P1)e−ε . (17)

where G(P0, P1) =
∑
X (1− P0(x)) log(P1(x)/P0(x)).

This follows directly from Theorem 8 and observing that the randomized response mecha-
nism achieves Dkl(M0||M1) = Dkl(P0||P1)−G(P0, P1)e−ε +O(e−2ε) .

Figure 5 illustrates the gap between the divergence achieved by the geometric mechanism
described in the previous section and the optimal mechanisms (the binary mechanism for the
high privacy regime and the randomized response mechanism for the low privacy regime).
For each instance of the 100 randomly generated P0 and P1 defined over input alphabets
of size k = 6, we plot the resulting divergence Dkl(M0||M1) as a function of ‖P0 − P1‖TV

for ε = 0.1, and as a function of Dkl(P0||P1) for ε = 10. The binary and the randomized
response mechanisms exhibit the scaling predicted by Equation (16) and (17), respectively.
Similarly, for total variation, we can get the following converse result.
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Figure 5: For small ε = 0.1 (left) the binary mechanism achieves the optimal KL diver-
gence, which scales as Equation (16). For large ε = 10 (right) the randomized
response achieves the optimal KL divergence, which scales as Equation (17). Both
mechanisms improve significantly over the geometric mechanism.
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Corollary 11 For any ε ≥ 0, let Q be any conditional distribution that guarantees ε-local
differential privacy. Then, for any pair of distributions P0 and P1, the induced marginals
M0 and M1 satisfy the bound

∥∥M0−M1

∥∥
TV
≤ ((eε − 1)/(eε + 1))

∥∥P0−P1

∥∥
TV

, and equality
is achieved by the binary mechanism.

This follows from Theorem 6 and explicitly computing the total variation achieved by the
binary mechanism.

4. Information Preservation

In this section, we study the fundamental tradeoff between local privacy and mutual in-
formation. Consider a random variable X distributed according to P . The information
content in X is captured by entropy

H (X) = −
∑
X
P (x) logP (x) .

We are interested in releasing a differentially private version of X represented by Y . The
random variable Y should preserve the information content of X as much as possible while
meeting the local differential privacy constraints. Similar to the hypothesis testing setting,
we will show that a variant of the binary mechanism is optimal in the high privacy regime
and the randomized response mechanism is optimal in the low privacy regime.

Let Q be a non-interactive privatization mechanism guaranteeing ε-local differential
privacy. The output of the privatization mechanism Y is distributed according to the
induced marginal M given by

M(S) =
∑
x∈X

Q(S|x)P (x) ,

for S ⊆ Y. With a slight abuse of notation, we will use M and P to represent both
probability distributions and probability mass functions. The information content in Y
about X is captured by the well celebrated information theoretic quantity called mutual
information. The mutual information between X and Y is given by

I (X;Y ) =
∑
X

∑
Y
P (x)Q (y|x) log

(
Q (y|x)∑

l∈X P (l)Q (y|l)

)
= U (P,Q) = U (Q) .

Notice that I (X;Y ) ≤ H (X) and I (X;Y ) is convex in Q (Cover and Thomas, 2012). To
preserve the information context in X, we wish to choose a privatization mechanism Q such
that the mutual information between X and Y is maximized subject to differential privacy
constraints. In other words, we are interested in characterizing the optimal solution to

maximize
Q

I (X;Y )

subject to Q ∈ Dε
, (18)

where Dε is the set of all ε-locally differentially private mechanisms defined in (7). The
above mutual information maximization problem can be thought of as a conditional entropy
minimization problem since I (X;Y ) = H (X)−H (X|Y ).
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4.1 Optimal staircase mechanisms

From the definition of I (X;Y ), we have that

I (X;Y ) =
∑
Y

∑
X
P (x)Q (y|x) log

(
Q (y|x)

P TQy

)
=
∑
Y
µ (Qy) ,

where P TQy =
∑
X P (x)Q (y|x) and µ (Qy) =

∑
X P (x)Q (y|x) log

(
Q (y|x) /P TQy

)
. No-

tice that µ (γQy) = γµ (Qy), and by the log-sum inequality, µ is convex. Convexity and
homogeneity together imply sublinearity. Therefore, Theorems 2 and 4 apply to I (X;Y )
and we have that staircase mechanisms are optimal.

For a given P , the binary mechanism for mutual information is defined as a staircase
mechanism with only two outputs y ∈ {0, 1} (see Figure 2). Let T ⊆ X be the set that
partitions X into two partitions, T and T c, such that |P (T )−P (T c)| is minimized. Precisely,

T ∈ arg min
A⊆X

∣∣∣P (A)− 1

2

∣∣∣ . (19)

Observe that there are always multiple choices for T . Indeed, for any minimizing set T , T c

is also a minimizing set since |P (T ) − 1/2| = |P (T c) − 1/2|. When there is only one such
pair, the binary mechanism is uniquely defined as

Q(0|x) =


eε

1 + eε
if x ∈ T ,

1

1 + eε
if x /∈ T .

Q(1|x) =


eε

1 + eε
if x /∈ T ,

1

1 + eε
if x ∈ T .

(20)

When there are multiple pairs, any pair (T, T c) can be chosen to define the binary mecha-
nism. All resulting binary mechanisms are equivalent from a utility maximization perspec-
tive.

In what follows, we will establish that this simple mechanism is the optimal mechanism in
the high privacy regime. Intuitively, in the high privacy regime, we cannot release more than
one bit of information, and hence, the input alphabet is reduced to a binary output alphabet.
In this case we have to maximize the information contained in the released bit by maximizing
its entropy: T ∈ arg max

A⊆X

(
− P (A) logP (A)− P (Ac) logP (Ac)

)
= arg max

A⊆X
|P (A)− 1/2| (see

Section 9.1 for a proof).

Theorem 12 For any distribution P , there exists a positive ε∗ that depends on P such that
for any positive ε ≤ ε∗, the binary mechanism maximizes the mutual information between
the input and the output of a privatization mechanism over all ε-locally differentially private
mechanisms.

This implies that in the high privacy regime, the binary mechanism is the optimal solution
for (18).

Next, we show that the binary mechanism achieves near-optimal performance for all
(X , P ) and ε ≤ 1 even when ε∗ < 1. Let OPT denote the maximum value of (18) and BIN
denote the mutual information achieved by the binary mechanism given in (20). The next
theorem shows that

BIN ≥ 1

1 + eε
OPT .
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Theorem 13 For any ε ≤ 1 and any distribution P , the binary mechanism is an (1 + eε)-
approximation of the maximum mutual information between the input and the output of a
privatization mechanism among all ε-locally differentially private mechanisms.

Note that 1 + eε ≤ 4 for ε ≤ 1 which is a commonly studied regime in differential privacy
applications. Therefore, we can always use the simple binary mechanism and the resulting
mutual information is at most a constant factor away from the optimal.

In the low privacy regime (ε ≥ ε∗), the randomized response mechanism defined in(15)
is optimal.

Theorem 14 There exists a positive ε∗ that depends on P such that for any distribution P
and all ε ≥ ε∗, the randomized response mechanism maximizes the mutual information be-
tween the input and the output of as privatization mechanism over all ε-locally differentially
private mechanisms.

4.2 Numerical Experiments

For 100 instances of randomly chosen P defined over input alphabet of size |X | = 6, we
compare the average performance of the binary, randomized response, and the geometric
mechanisms to the optimal mechanism. We plot (in Figure 6, left) the average performance
measured by the normalized mutual information I (X;Y )/H (X) for all 4 mechanisms. The
average is taken over the 100 instances of P . In the low privacy (large ε) regime, the
randomized response achieves optimal performance as predicted, which converges to one.
In the high privacy regime (small ε), the binary mechanism achieves optimal performance
as predicted. In all regimes, both mechanisms significantly improve over the geometric
mechanism. To illustrate how much worse the binary and randomized response mechanisms
can be (relative to the optimal staircase mechanism), we plot (in Figure 6, right) the mutual
information under each mechanism normalized by the mutual information under the optimal
staircase mechanism. This is done for all 100 instances of P . In all instances, the binary
mechanism is optimal for small ε and the randomized response mechanism is optimal for
large ε. However, I (X;Y ) under the randomized response mechanism can be as bad as
35% of the optimal one (for small ε). Similarly, I (X;Y ) under the binary mechanism can
be as bad as 40% of the optimal one (for large ε).

For |X | ∈ {3, 4, 6, 12}, we plot (in Figure 7) the performance of better between the
binary and randomized response mechanisms normalized by the optimal mechanism for all
100 randomly generated instances of P . This mixed strategy achieves at least 75% for
|X | = 6 (and 65% for |X | = 12) of the optimal mutual infirmation for all instances of P .
Moreover, it is not sensitive to the size of the alphabet |X |.

4.3 Lower bounds

In this section, we provide converse results on the fundamental limit of locally differentially
private mechanisms when utility is measured via mutual information.

Corollary 15 For any ε ≥ 0, let Q be any conditional distribution that guarantees ε-local
differential privacy. Then, for any distribution P and any positive δ > 0, there exists a
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Figure 6: The binary and randomized response mechanisms are optimal in the high-privacy
(small ε) and low-privacy (large ε) regimes, respectively, and improve over the
geometric mechanism significantly (left). When the regimes are mismatched,
I (X;Y ) under these mechanisms can each be as bad as 35% of the optimal one
(right).

positive ε∗ that depends on P and δ such that for any ε ≤ ε∗ the following bound holds

I (X;Y ) ≤ (1 + δ)
1

2
P (T )P (T c) ε2, (21)

where T is defined in (19).

This follows from Theorem 12 (optimality of the binary mechanism) and observing that the
binary mechanism achieves

I (X;Y ) =
1

eε + 1

{
P (T ) eε log

eε

P (T c) + eεP (T )
+ P (T c) log

1

P (T c) + eεP (T )

}
+

1

eε + 1

{
P (T c) eε log

eε

P (T ) + eεP (T c)
+ P (T ) log

1

P (T ) + eεP (T c)

}
=

1

2
P (T )P (T c) ε2 +O

(
ε3
)
.

Similarly, in the low privacy regime, we can show the following converse result.

Corollary 16 For any ε ≥ 0, let Q be any conditional distribution that guarantees ε-local
differential privacy. Then, for any distributions P and any positive δ > 0, there exists a
positive ε∗ that depends on P and δ such that for any ε ≥ ε∗ the following bound holds

I (X;Y ) ≤ H (X)− (1− δ) (k − 1) εe−ε.

This follows directly from Theorem 14 (optimality of the randomized response mechanism)
and observing that the randomized response mechanism achieves

I (X;Y ) = H (X)− (k − 1) εe−ε +O(e−2ε). (22)
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Figure 7: For varying input alphabet size |X | ∈ {3, 4, 6, 12}, at least 65% of the maximum
I (X;Y ) can be achieved by taking the better one between the binary and the
randomized response mechanisms.

Figure 8 illustrates the gap between the mutual information achieved by the geometric
mechanism and the optimal mechanisms (the binary mechanism for the high privacy regime
and the randomized response mechanism for the low privacy regime). For each instance
of the 100 randomly generated P over input of size k = 6, we plot the resulting mutual
information I (X;Y ) as a function of P (T )P (T c) for ε = 0.1, and as a function of H (X) for
ε = 10. The binary and the randomized response mechanisms exhibit the scaling predicted
by Equations (21) and (22), respectively.

5. Generalizations to approximate differential privacy

In this section, we generalize the results of the previous sections in the following ways.

1. We consider the class of utility functions that obey the data processing inequality.
Consider the composition of two privatization mechanisms QW = Q ◦W where the
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Figure 8: For ε = 0.1 (left) the binary mechanism achieves the maximum I (X;Y ), which
scales as Equation (21). For ε = 10 (right) the randomized response mechanism
achieves the optimal mutual information, which scales as Equation (22).

output of the first mechanism Q is applied to another mechanism W . We say that a
utility function U(·) obeys the data processing inequality if the following inequality
holds for all Q and W

U(QW ) ≤ U(Q) .

The following proposition, proved in Section 10, shows that the class of utilities obey-
ing the data processing inequality includes all the utility functions we studied in
Section 2.

Proposition 17 Any utility function that can be written in the form of U (Q) =∑
Y µ(Qy), where µ is any sublinear function, obeys the data processing inequality.

2. We consider (ε, δ)-differential privacy which generalizes the notion of ε-differential
privacy. (ε, δ)-differential privacy is commonly referred to as approximate differential
privacy and it was first introduced in Dwork et al. (2006a). For the release of a random
variable X ∈ X , we say that a mechanism Q is (ε, δ)-locally differentially private if

Q (S|x) ≤ eεQ
(
S|x′

)
+ δ, (23)

for all S ⊆ Y and all x, x′ ∈ X . Note that ε-local differential privacy is a special case
of (ε, δ)-local differential privacy where δ = 0.

3. We prove that the quaternary mechanism, defined in Equation (24), is optimal for any
ε and any δ. This is different from the treatment conducted in the previous sections
where we proved the optimality of the binary (randomized response) mechanism for
sufficiently small (large) ε and δ = 0.
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The treatment in this section, even though more general than the one in previous sections in
the ways described above, holds only for binary alphabets (i.e., |X | = 2). Finding optimal
privatization mechanisms under (ε, δ)-local differential privacy for larger input alphabets
(i.e., |X | > 2) is an interesting open question. Unlike ε-local differential privacy, the pri-
vacy constraints under (ε, δ)-local differential privacy no longer decompose into separate
constraints on each output y. This makes it difficult to generalize the techniques developed
in previous sections of this paper. However, for the special case of binary input alphabets,
we can prove the optimality of one mechanism for all values of (ε, δ) and all utility functions
that obey the data processing inequality.

For a binary random variable X ∈ X = {0, 1}, the quaternary mechanism maps X to a
quaternary random variable Y ∈ Y = {0, 1, 2, 3} and is defined as

QQT(0|x) =

{
δ if x = 0 ,
0 if x = 1 .

QQT(1|x) =

{
0 if x = 0 ,
δ if x = 1 .

(24)

QQT(2|x) =

{
(1− δ) 1

1+eε if x = 0 ,

(1− δ) eε

1+eε if x = 1 .
QQT(3|x) =

{
(1− δ) eε

1+eε if x = 0 ,

(1− δ) 1
1+eε if x = 1 .

In other words, the quaternary mechanism passes X unchanged with probability δ and
applies the binary mechanism (defined in previous sections) with probability 1 − δ. The
main result of this section can be stated formally as follows.

Theorem 18 If |X | = 2, then for any ε, any δ, and any U (Q) that obeys the data process-
ing inequality, the quaternary mechanism maximizes U (Q) subject to Q ∈ D(ε,δ), the set of
all (ε, δ)-locally differentially private mechanism.

The proof of Theorem 18 depends on an operational definition of differential privacy
which we describe next. Consider a privatization mechanism Q that maps X ∈ {0, 1}
stochastically to Y ∈ Y. Given Y , construct a binary hypothesis test on whether X = 0
or X = 1. Any binary hypothesis test is completely described by a, possibly randomized,
decision rule X̂ : Y → {0, 1}. The two types of error associated with X̂ are false alarm:
X̂ = 1 when X = 0, and miss detection: X̂ = 0 when X = 1. The probability of false
alarm is given by PFA = P(X̂ = 1|X = 0) while the probability of miss detection is given
by PMD = P(X̂ = 0|X = 1). For a fixed Q, the convex hull of all pairs (PMD, PFA) for all
decision rules X̂ defines a two-dimensional error region where PMD is plotted against PFA.
For example, the quaternary mechanism given in Figure 9a has an error region RQQT

shown
in Figure 9b.

It turns out that (ε, δ)-local differential privacy imposes the following conditions on the
error region of all (ε, δ)-locally differentially private mechanisms

PFA + eεPMD ≥ 1− δ , and eεPFA + PMD ≥ 1− δ ,

for any decision rule X̂. These two conditions define an error region Rε,δ shown in Figure
9b. Interestingly, the next theorem shows that the converse result is also true.

Theorem 19 A mechanism Q is (ε, δ)-locally differentially private if and only if RQ ⊆
Rε,δ.
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Figure 9: The quaternary mechanism

The proof of the above theorem can be found in Kairouz et al. (2013). Notice that it is no
coincidence that RQQT

= Rε,δ. This property will be essential in proving the optimality of
the quaternary mechanism.

Theorem 19 allows us to benefit from the data processing inequality (DPI) and its
converse, which follows from a celebrated result by Blackwell (1953). These inequalities,
while simple by themselves, lead to surprisingly strong technical results. Indeed, there is a
long line of such a tradition in the information theory literature (see Chapter 17 of Cover
and Thomas (2012)). Consider two privatization mechanisms, Q(1) and Q(2). Let Y and
Z denote the output of the mechanisms Q(1) and Q(2), respectively. We say that Q(1)

dominates Q(2) if there exists a coupling of Y and Z such that X–Y –Z forms a Markov
chain. In other words, we say Q(1) dominates Q(2) if there exists a stochastic mapping Q
such that Q(2) = Q(1) ◦Q.

Theorem 20 A mechanism Q(1) dominates a mechanism Q(2) if and only if RQ(2) ⊆ RQ(1).

The proof of the above theorem can be found in Blackwell (1953). Observe that by Theorems
20 and 19, and the fact that RQQT

= Rε,δ, the quaternary mechanism dominates any other
differentially private mechanism. In other words, for any differentially private mechanism
Q, there exists a stochastic mapping W such that Q = W ◦ QQT. Therefore, for any
(ε, δ) and any utility function U(.) obeying the data processing inequality, we have that
U(Q) ≤ U(QQT). This finishes the proof of Theorem 18.

6. Discussion

In this paper, we have considered a broad class of convex utility functions and assumed a
setting where individuals cannot collaborate (communicate with each other) before releasing
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their data. It turns out that the techniques developed in this work can be generalized to find
optimal privatization mechanisms in a setting where different individuals can collaborate
interactively and each individual can be an analyst (Kairouz et al., 2014b).

Binary hypothesis testing and information preservation are two canonical problems with
a wide range of applications. However, there are a number of non-trivial and interesting
extensions to our work.

Correlation among data. In some scenarios the Xi’s could be correlated (e.g., when
different individuals observe different functions of the same random variable). In this case,
the data analyst is interested in inferring whether the data was generated from Pn0 or Pn1 ,
where Pnν is one of two possible joint priors on X1, ..., Xn. This is a challenging problem be-
cause knowing Xi reveals information about Xj , j 6= i. Therefore, the utility maximization
problems for different individuals are coupled in this setting.

Robust and m-ary hypothesis testing. In some cases the data analyst need not have
access to P0 and P1, but rather two classes of prior distribution Pθ0 and Pθ1 for θ0 ∈ Λ0 and
θ1 ∈ Λ1. Such problems are studied under the rubric of universal hypothesis testing and
robust hypothesis testing. One possible direction is to select the privatization mechanism
that maximizes the worst case utility: Q∗ = arg maxQ∈Dε minθ0∈Λ0,θ1∈Λ1 Df (Mθ0 ||Mθ1),
where Mθν is the induced marginal under Pθν .

The more general problem of private m-ary hypothesis testing is also an interesting
but challenging one. In this setting, the Xi’s can follow one of m distributions P0, P1, ...,
Pm−1. Consequently, the Yi’s can follow one of m distributions M0, M1, ..., Mm−1. The
utility can be defined as the average f -divergence between any two distributions: 1/(m(m−
1))
∑

i 6=j Df (Mi||Mj), or the worst case one: mini 6=j Df (Mi||Mj).

Non-exchangeable utility functions. The utility studied in this paper was measured by
functions that are exchangeable, i.e. the utility did not depend on the naming (labelling) of
the private and privatized data (X and Y ). This made sense for statistical learning appli-
cations that depend on information theoretic quantities such as f -divergences and mutual
information. However, in some other applications, the utility might be defined over X ∪ Y
in a metric space, where there exists a natural measure of distance (or distortion) between
the data points. In this case, we can formulate the problem as a distortion minimization
one

minimizeQ∈Dε
∑
x,y

d(x, y)P (x)Q(y|x) ,

where d(x, y) is some distortion metric. Wang et al. (2014a) studied this problem, and
showed that the mechanism Q(y|x) ∝ eε(1−d(x,y))/(k− 1 + eε) achieves near optimal perfor-
mance when ε is large enough, which is the low privacy regime. Notice that when Hamming
distance is used, d(x, y) = I(x 6= y), this recovers the randomized response mechanism
exactly. This provides a starting point for generalizing the search for optimal mechanisms
under non-exchangeable utility functions.
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7. Proof of Theorems 2 and 4

We start the proof with a few definitions, a lemma, and a general result that applies to any
convex utility function that obeys a mild assumption.

Recall that for an input alphabet X with |X | = k, we represent the set of ε-locally
differentially private mechanisms that lead to output alphabets Y with |Y| = ` by Dε,`. The
set of all ε-locally differentially private mechanisms is given by Dε = ∪`∈NDε,`. A utility
function U (Q) is convex in Q if U

(
λQ(1) + (1− λ)Q(2)

)
≤ λU

(
Q(1)

)
+(1− λ)U

(
Q(2)

)
for

any λ ∈ (0, 1). Convex utility functions are ubiquitous in information theory and statistics.

Assumption 1 If a k×` privatization mechanism Q(1) ∈ Dε,` is obtained by deleting an all-
zero column of a k×`+1 privatization mechanism Q(2) ∈ Dε,`+1, then U

(
Q(1)

)
= U

(
Q(2)

)
.

Naturally, one would expect that if we delete the zero columns of a privatization mechanism
Q(2) to obtain a new privatization mechanism Q(1), we would still get the same utility. This
is because a “reasonable” utility function should not depend on output alphabets with zero
probability.

Theorem 21 If U (Q) is a convex utility function that satisfies Assumption 1, then the
following holds

max
Q∈Dε

U (Q) = max
Q∈∪k`=1Dε,`

U (Q) .

This theorem implies that among all ε-locally differentially private mechanisms, we only
need to consider those that lead to output alphabets of size ` ≤ k. In other words, enlarging
the input alphabet cannot further maximize the utility. The proof of Theorem 21 is given
in Section 7.1.

Lemma 22 A k× ` conditional distribution Q is ε-locally differentially private if and only
if it can be written as Q = SΘ, where S is a k × ` matrix with Sij ∈ [1, eε] and Θ =
diag (θ1, . . . , θ`) with its diagonal entries in R+.

The proof of Lemma 22 is provided in Section 7.2. With the above results, we are now
ready to prove Theorems 2 and 4. By Lemma 22, for any Q ∈ Dε,` we have that Qj = θjSj .
Suppose U (Q) =

∑
j∈[`] µ(Qj), where µ is a sublinear function. Since µ is sublinear, it is

convex and µ (θjSj) = θjµ (Sj). U (Q) is convex in Q because

U
(
λQ(1) + (1− λ)Q(2)

)
=

∑
j∈[`]

µ
(
λθ

(1)
j S

(1)
j + (1− λ) θ

(2)
j S

(2)
j

)
≤

∑
j∈[`]

λµ
(
θ

(1)
j S

(1)
j

)
+ (1− λ)µ

(
θ

(2)
j S

(2)
j

)
= λU

(
Q(1)

)
+ (1− λ)U

(
Q(2)

)
, (25)

for any λ ∈ (0, 1). Furthermore, U (Q) satisfies Assumption 1 because µ (Qj) = 0 whenever
θj = 0. Let Q∗ = S∗Θ∗ ∈ arg maxQ∈∪k`=1Dε,`

U (Q) and note that by Theorem 21, U (Q∗) =
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maxQ∈Dε U (Q). Suppose that Q∗ is of dimensions k×`, where ` ≤ k. Each of the ` columns
of Q∗ can be expressed as a convex combination of the columns of S(k), the staircase pattern
matrix. This is because the 2k columns of S(k) are the corner points of the cube [1, eε]k

and each S∗j ∈ [1, eε]k. Therefore, S∗j =
∑2k

i=1 λijS
(k)
i , where λij ≥ 0 for all i and j, and∑2k

i=1 λij = 1 for all j. Create the 2k-dimensional vector θ̃ such that θ̃i =
∑`

j=1 λijθ
∗
j and

let Q̃ = S(k)Θ̃.

U (Q∗)− U(Q̃) =
∑̀
j=1

µ
(
S∗j
)
θ∗j −

2k∑
i=1

µ

∑̀
j=1

λijθ
∗
j

S
(k)
j


=

∑̀
j=1

µ

 2k∑
i=1

λijS
(k)
i

 θ∗j −
2k∑
i=1

∑̀
j=1

λijθ
∗
jµ
(
S

(k)
j

)

=
∑̀
j=1

θ∗j

µ
 2k∑
i=1

λijS
(k)
i

− 2k∑
i=1

λijµ
(
S

(k)
j

)
≤ 0, (26)

by the convexity of µ (z) and the non-negativity of θ∗j ’s. Moreover, observe that since

S(k)θ̃ = 1, θ̃ is a valid choice for the linear program of (11). This implies that

max
S(k)θ=1,θ≥0

2k∑
j=1

µ
(
S

(k)
j

)
θj ≥ U(Q̃) ≥ U (Q∗) = max

Q∈Dε
U (Q)

On the other hand, for any Q̃ = S(k)Θ̃, where θ̃ is valid for the linear program of (11), we

have that Q̃ ∈ Dε,2k ⊂ Dε and therefore, maxS(k)θ=1,θ≥0

∑2k

j=1 µ
(
S

(k)
j

)
θj ≤ maxQ∈D U (Q).

Thus, maxS(k)θ=1,θ≥0

∑2k

j=1 µ
(
S

(k)
j

)
θj = maxQ∈D U (Q). This proves Theorem 4.

The polytope given by S(k)θ = 1 and θ ≥ 0 is a closed and bounded one. Thus, the
linear program of (11) is bounded and has a solution, say θ∗, at one of the corner points of
the polytope. Since there are k equality constraints given by S(k)θ = 1 and 2k inequality
constraints given by θ ≥ 0, any corner point, including θ∗, cannot have more than k non-
zero entries. Form S̃ by deleting the columns of S(k) corresponding to zero entries of θ∗.
Similarly, form θ̃ by deleting the zero entries of θ∗ and let Q̃ = S̃Θ̃, where Θ̃ = diagθ̃.
It is easy to verify that U(Q̃) = U(Q∗) = µT θ∗; hence, Q̃ solves linear program of (11).
Moreover, Q̃ has at most k columns and S̃ij = {1, eε}. Therefore, Q̃ is a staircase mechanism
of dimension k × `, where ` ≤ k.

7.1 Proof of Theorem 21

We start the proof of Theorem 21 with an important lemma the proof of which is presented
in Section 7.3.

Lemma 23 The set of all k × `, ε-locally differentially private mechanisms Dε,` forms a
closed and bounded polytope in Rk`+ . Moreover, let Q be a corner point of the polytope formed
by Dε,`, then Q has at most k non-zero columns.
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Fix an ` > k. Since U (Q) is convex in Q, it suffices to consider the corner points of
Dε,` when maximizing U (Q) subject to Q ∈ Dε,`. By Lemma 23, any Q(1), a k × ` corner
point of Dε,`, has at most k non-zero columns. Therefore, the privatization mechanism
Q(2), obtained by deleting the all-zero columns of Q(1), has at most k columns. Notice that
Q(2) ∈ ∪ki=1Dε,i. Since U (Q) satisfies Assumption 1, we have that U

(
Q(1)

)
= U

(
Q(2)

)
and

therefore, it suffices to consider Q ∈ ∪ki=1Dε,i when maximizing U (Q) subject to Q ∈ Dε,`.
Thus,

sup
Q∈Dε

U (Q) = sup
`∈N

{
max
Q∈Dε,`

U (Q)

}
= sup

`∈N

{
max

Q∈∪ki=1Dε,i
U (Q)

}
= max

Q∈∪ki=1Dε,i
U (Q) , (27)

which finishes the proof.

7.2 Proof of Lemma 22

Claim 1 Let Q ∈ Dε,`. If Qij = 0 for some j ∈ {1, ..., `} then Qij = 0 for all i ∈ {1, ..., k}.

Proof Assume that Qi1j = 0 and Qi2j 6= 0 for some i1, i2 ∈ {1, ..., k}. It is obvious that
q (yj |xi2) ≤ q (yj |xi1) eε is not satisfied. Therefore, Q is not a locally differentially private
mechanism.

It is easy to check that any k × ` stochastic matrix Q = SΘ, where Θ is a diagonal
matrix with non-negative entries and S is a k× ` matrix with Sij ∈ [1, eε], satisfies the local
differential privacy constraints. Thus, Q ∈ Dε,`. On the other hand, assume that Q ∈ Dε,`.
If Qij = 0 for some j then by Claim 1 we have that Qij = 0 for all i and therefore, we
can set θj = 0 and Sij = 1 for all i. If Qij > 0 then by Claim 1 we have that Qij > 0
for all i. In this case, let θj = miniQij and observe that θj > 0 since Qij > 0 for all i.
Let Sij = Qij/θi, then it is clear (from the definition of θi) that Sij ≥ 1. On the other
hand, from the differential privacy constraints, we have that Qij ≤ Qkjeε for all k and thus,
Qij ≤ minkQkje

ε which proves that Sij = Qij/minkQkj ≤ eε. This establishes that any
Q ∈ Dε,` can be written as Q = SΘ, where Θ is a diagonal matrix with non-negative entries
and S is a k × ` matrix with Sij ∈ [1, eε].

7.3 Proof of Lemma 23

We start by showing thatDε,` forms a closed and bounded polytope in Rk`+ . We are interested
in studying the corner points of the polytope formed by Dε,` because convex utility functions
are maximized at one of these corner points whenever the space of privatization mechanisms
is restricted to Dε,`.

Claim 2 A privatization mechanism Q ∈ Dε,` if and only if for all x, x′ ∈ X and all y ∈ Y
we have that Q (y|x) ≤ Q (y|x′) eε.
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Proof By definition, Q is differentially private if for all x, x′ ∈ X and all B ⊆ Y we have
that Q (B|x) ≤ Q (B|x′) eε. By choosing B = {y} for some y ∈ Y the first direction of the
above lemma is proven. In order to prove the other direction, assume that for all x, x′ ∈ X
and all y ∈ Y we have that Q (y|x) ≤ Q (y|x′) eε. Then for any B ⊆ Y, the following holds∑

y∈B
Q (y|x) ≤

∑
y∈B

Q
(
y|x′

)
eε (28)

⇔ Q (B|x) ≤ Q
(
B|x′

)
eε.

Let Q ∈ Dε,`, then by Claim 2, it is easy to see that Q must satisfy `k(k−1) inequalities
of the form Q (y|x) ≤ Q (y|x′) eε. These inequalities can be compactly represented by

Ãq ≤ 0,

where q = [Q (y1|x1) , ..., Q (y1|xk) , ...., Q (y`|x1) , ..., Q (y`|xk)]T and Ã is a `k(k − 1) × k`
matrix that contains all the local differential privacy linear constraints. Observe that there
is a one-to-one mapping between Q and q. Here is an example for the case when k = ` = 2

1 −eε 0 0
−eε 1 0 0

0 0 1 −eε
0 0 −eε 1


︸ ︷︷ ︸

Ã


Q (y1|x1)
Q (y1|x2)
Q (y2|x1)
Q (y2|x2)

 ≤ 0.

Moreover, since Q is a row stochastic matrix (a conditional distribution) it satisfies Q1 = 1,
where 1 represents the all ones vector of appropriate dimensions. This condition can be
rewritten as

Bq = 1,

where B is a k × k` binary matrix. For the case when k = ` = 2, we have that

[
1 0 1 0
0 1 0 1

]
︸ ︷︷ ︸

B


Q (y1|x1)
Q (y1|x2)
Q (y2|x1)
Q (y2|x2)

 =

[
1
1

]
.

Finally, observe that Q (y|x) ≥ 0 for all x ∈ X and y ∈ Y. These constraints can be

incorporated as follows. Let A =
[
ÃT , −I`k

]T
, where I`k is the `k × `k identity matrix,

then Aq ≤ 0. To summarize, Q ∈ Dε,` if and only if

Aq ≤ 0 (29)

Bq = 1.

Therefore, the set of all k×`, ε-locally differentially private mechanisms Dε,` forms a convex
polytope in Rk`+ .
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We now proceed to proving that if Q is a corner point of the polytope formed by Dε,`,
then Q has at most k non-zero columns. This claim is obvious for all k × ` privatization
mechanisms with ` ≤ k. Therefore, we restrict our attention to the case where ` > k. Let
Aj be the matrix including all the inequality constraints imposed on the jth column of Q.
Observe that the rows of Aj form a subset of the rows of A, defined in (29), and recall that
there are k(k − 1) differential privacy and k non-negativity inequality constraints imposed
on the jth column of Q. Therefore, Aj is a k2×k matrix and we have that AjQj ≤ 0, where
Qj represents the jth column of Q. By Claim 1, we know that Qj is either equal to zero or
contains non-zero entries.

Claim 3 In what follows, the term linearly independent inequality constraints refers to
linear independent rows of Aj.

• If Qj = 0, then k linearly independent inequality constraints are achieved with equality.

• If Qj 6= 0, then at most k−1 linearly independent inequality constraints can be achieved
with equality.

Proof In fact, the number of linearly independent inequality constraints (achieved or not)
cannot exceed k because Aj has a rank less than or equal to k. If Qj = 0, then the k
non-negativity inequality constraints are achieved with equality and it is easy to see that
they are all linearly independent (in fact, they form an orthonormal basis to Rk). This
proves the first part of the claim. We now establish the second part of the claim by show-
ing that if Qj 6= 0, we cannot have k linearly independent inequality constraints achieved
with equality. Assume that Qj 6= 0 and let Ãj be the matrix including the largest collec-
tion of linearly independent rows of Aj corresponding to the inequality constraints that are
achieved with equality. In other words, ÃjQj = 0. If Ãj contains k rows, then its rank is
equal to k. However, this implies that Qj = 0, a contradiction. Therefore, at most k − 1
linearly independent inequality constraints can be achieved with equality when Qj 6= 0.

Suppose that Q is a corner point of Dε,` and out of its ` columns, `>0 are non-zero and
`=0 (`=0 = `−`>0) are zero. Moreover, assume that the number of non-zero columns of Q is
larger than k (i.e., `>0 > k). In this case, from Claim 3, we can see that Q achieves at most
`>0(k−1)+(`−`>0)k linearly independent inequality constraints with equality. Furthermore,
at most k additional linearly independent equality constraints (linearly independent rows
of the matrix B defined in (29)) can be met by Q. Therefore, the total number of linearly
independent constraints that Q achieves with equality is at most `>0(k−1)+(`−`>0)k+k =
−`>0 + (` + 1)k < `k, where the last strict inequality follows from the fact that `>0 > k.
This implies that Q cannot be a corner point of Dε,`. Therefore, any corner point of Dε,`
must have at most k non-zero columns.

8. Proofs for Hypothesis Testing

8.1 Proof of Theorem 5

Let T = {x : P0(x) ≥ P1(x)}. In other words, P0(T ) − P1(T ) = maxA⊆X P0(A) − P1(A).
Recall that for a given P0 and P1, the binary mechanism is defined as a staircase mechanism
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with only two outputs y ∈ {0, 1} satisfying

Q(0|x) =

{ eε

1+eε if P0(x) ≥ P1(x) ,
1

1+eε if P0(x) < P1(x) .
Q(1|x) =

{ eε

1+eε if P0(x) < P1(x) ,
1

1+eε if P0(x) ≥ P1(x) .
(30)

Lemma 24 For any pair of distributions P0 and P1, there exists a positive ε∗ that depends
on P0 and P1 such that for all y ∈ Y, all ` ∈ N, and all Q ∈ Dε,` with ε ≤ ε∗, we have that

(eε − 1)P0 (T c) + 1

(eε − 1)P1 (T c) + 1
≤ M0(y)

M1(y)
≤ (eε − 1)P0 (T ) + 1

(eε − 1)P1 (T ) + 1
.

Moreover, the above upper and lower bounds are achieved by the binary mechanism given
in (30).

Observe that because P0 (T ) ≥ P1 (T ) and P0 (T c) ≤ P1 (T c), the direction of the above
inequalities makes sense.

Let M̃ν be the induced marginal for the binary mechanism when Pν is the original
distribution. Following the analysis techniques developed in Kairouz et al. (2013), we define
hypothesis testing region R(M̃0, M̃1) as the convex hull of all achievable probabilities of
missed detection and false alarm, when testing whether ν = 0 or ν = 1 based on Ybin

distributed as M̃ν :

R(M̃0, M̃1) ≡ conv
({

(M̃1(S), M̃0(Sc)) : ∀S ⊆ Y
})

,

where S ∈ Y is the accept region for hypothesis ν = 0. For the binary mechanism, this
ends up being a very simple triangular region. The slopes defining the two sides of the
triangular region are: −maxS M̃0(S)/M̃1(S) = −((eε − 1)P0(T ) + 1)/((eε − 1)P1(T ) + 1)
and −minS M̃0(Sc)/M̃1(Sc) = −((eε − 1)P0(T c) + 1)/((eε − 1)P1(T c) + 1).

For any other mechanism satisfying the ε-local differential privacy for ε ≤ ε∗, the
above lemma implies that for any choice of the rejection region S, the slopes satisfy
−M0(S)/M1(S) ≥ −((eε − 1)P0(T ) + 1)/((eε − 1)P1(T ) + 1) and −M0(Sc)/M1(Sc) ≤
−((eε − 1)P0(T c) + 1)/((eε − 1)P1(T c) + 1). In the hypothesis testing region, this implies
that

R(M0,M1) ⊆ R(M̃0, M̃1) ,

as in the following Figure 10.
From Theorem 2.5 of Kairouz et al. (2013), we know that this implies a certain Markov

property. Precisely, let Ybin denote the output of the binary mechanism, and Ydp denote the
output of any ε-local differentially private mechanism. Then, it follows that there exists a
coupling of Ybin and Ydp such that they form a Markov chain: ν–Ybin–Ydp, where ν is the
hypothesis on Pν whether the data was generated from ν = 0 or ν = 1. Then, it follows
from the data processing inequality of f -divergences that

Df (M̃0, M̃1) ≥ Df (M0,M1) .

It follows that there is no algorithm with larger f -divergence than the binary mechanism.
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M̃0(Sc)

M̃1(S)

R(M̃0, M̃1) R(M0,M1)

Figure 10: Hypothesis testing regions for two mechanisms.

8.2 Proof of Lemma 24

We start by showing that the binary mechanism achieves the upper and lower bounds
presented in the statement of the lemma. Let MB

0 and MB
1 denote the induced marginals

under the binary mechanism given in (30). For ν ∈ {0, 1}, we have that

MB
ν (0) =

∑
x∈X

P0 (x)Q(0|x) =
1

eε + 1
((eε − 1)Pν (T ) + 1)

MB
ν (1) =

∑
x∈X

P0 (x)Q(1|x) =
1

eε + 1
((eε − 1)Pν (T c) + 1) . (31)

ComputingMB
0 (0) /MB

1 (0) andMB
0 (1) /MB

1 (1) we see that the binary mechanism achieves
the upper and lower bounds for all values of ε.

As in Lemma 22, for any ` ∈ N, Q ∈ Dε,` can be represented as Q = SΘ, where
S ∈ [1, eε]k×` and Θ = diag (θ1, ..., θ`) with its diagonal entries in R+. We now show that
for any ` ∈ N and any Q ∈ Dε,`, the following upper bound holds

M0(y)

M1(y)
=

∑
i∈[k] P0 (xi)Sij∑
i∈[k] P1 (xi)Sij

≤ (eε − 1)P0 (T ) + 1

(eε − 1)P1 (T ) + 1
,
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for all y ∈ Y and sufficiently small ε. The above expression can be alternatively written as

(eε − 1) (P0 (T )− P1 (T )) + (eε − 1)
∑
i∈[k]

(Sij − 1) (P0 (T )P1 (xi)− P1 (T )P0 (xi))

−
∑
i∈[k]

(Sij − 1) (P0 (xi)− P1 (xi)) ≥ 0, (32)

where Sj ∈ [1, eε]k. Equation (32) is linear in Sj and is therefore minimized (and maximized)
at the corner points of [1, eε]k×`, a cube in Rk×`+ . The corner points of this cube are given
by the staircase patterns: Sj ∈ {1, eε}k. To begin with, let Sj be a staircase pattern with
Tj = {xi : Sij = eε} 6= T . Then Equation (32) is equivalent to

(eε − 1) {(P0 (T )− P1 (T ))− (P0 (Tj)− P1 (Tj))}
+ (eε − 1)2 {P0 (T )P1 (Tj)− P1 (T )P0 (Tj)} ≥ 0. (33)

Using the fact that P0 (T ) − P1 (T ) > P0 (Tj) − P1 (Tj) for all Tj 6= T , the inequality
in (32) holds true for all ε whenever P0 (T )P1 (Tj) ≥ P1 (T )P0 (Tj). If P0 (T )P1 (Tj) <
P1 (T )P0 (Tj), then the inequality in (32) holds true for all ε ≤ ε(j), where

ε(j) = log

(
(P0 (T )− P1 (T ))− (P0 (Tj)− P1 (Tj))

P1 (T )P0 (Tj)− P0 (T )P1 (Tj)
+ 1

)
> 0.

On the other hand, it is easy to verify that when Tj = T , we have that

(eε − 1) {(P0 (T )− P1 (T ))− (P0 (Tj)− P1 (Tj))

+ (eε − 1) (P0 (T )P1 (Tj)− P1 (T )P0 (Tj))} = 0, (34)

for all ε. In this case, set ε(j) = 0 and ε1 = minj∈[2k] ε(j). Therefore, for any ` ∈ N and
any Q ∈ Dε,`, the upper bound in the statement of the lemma holds for all ε ≤ ε1.

We now show that for for any ` ∈ N and any Q ∈ Dε,`, the following lower bound holds

(eε − 1)P0 (T c) + 1

(eε − 1)P1 (T c) + 1
≤ M0(y)

M1(y)
=

∑
i∈[k] P0 (xi)Sij∑
i∈[k] P1 (xi)Sij

,

for all y ∈ Y and sufficiently small ε. The above expression can be alternatively written as

(eε − 1) (P0 (T )− P1 (T )) + (eε − 1)
∑
i∈[k]

(Sij − 1) (P0 (T )P1 (xi)− P1 (T )P0 (xi))

+eε
∑
i∈[k]

(Sij − 1) (P0 (xi)− P1 (xi)) ≥ 0, (35)

where Sj ∈ [1, eε]k. Equation (35) is linear in Sj and is therefore minimized at the corner
points of [1, eε]k, a cube in Rk+. The corner points of this cube are given by staircase
patterns: Sj ∈ {1, eε}k. To begin with, let Sj be a staircase pattern with Tj = {xi : Sij =
eε} 6= T c, then Equation (35) is equivalent to

(eε − 1) {(P0 (T )− P1 (T )) + eε (P0 (Tj)− P1 (Tj))}
+ (eε − 1)2 {P0 (T )P1 (Tj)− P1 (T )P0 (Tj)} ≥ 0.(36)
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Using the fact that P0 (T )− P1 (T ) > P1 (Tj)− P0 (Tj) for all Tj 6= T c, then for sufficiently
small ε, Equation (35) can be written as

ε {(P0 (T )− P1 (T ))− (P1 (Tj)− P0 (Tj))}+O
(
ε2
)
> 0.

This proves that there exists a positive ε(j) such that the left hand side of Equation (36)
is positive for all ε ≤ ε(j). On the other hand, it is easy to verify that when Tj = T c, we
have that

(eε − 1) {(P0 (T )− P1 (T )) + eε (P0 (Tj)− P1 (Tj))

+ (eε − 1) (P0 (T )P1 (Tj)− P1 (T )P0 (Tj))} = 0, (37)

for all ε. In this case, let ε(j) = 0 and let ε2 = minj∈[2k] ε(j). Therefore, for any ` ∈ N
and any Q ∈ Dε,`, the lower bound in the statement of the lemma holds for all ε ≤ ε2. To
conclude, let ε∗ = min(ε1, ε2). Then both, the upper and lower bounds, hold for all ε ≤ ε∗.

8.3 Proof of Theorem 6

The total variation (TV) distance ‖M0−M1‖TV is a special case of f -divergenceDf (M0||M1)
with f(x) = 1

2 |x− 1|. Therefore, by Theorem 4, we have that

max
Q∈Dε

∥∥M0 −M1

∥∥
TV

= maximize
θ

µT θ

subject to S(k)θ = 1

θ ≥ 0,

(38)

where µj = µ
(
S

(k)
j

)
= 1

2

∣∣∑
i∈[k] (P0(xi)− P1(xi))S

(k)
ij

∣∣ for j ∈ {1, . . . , 2k} and S(k) is the

k × 2k staircase pattern matrix given in Definition 3.
The polytope given by S(k)θ = 1 and θ ≥ 0 is a closed and bounded one. Thus, there is

no duality gap and solving the above linear program is equivalent to solving its dual

minimize
α

1Tα

subject to S(k)Tα ≥ µ.
(39)

Note that any satisfiable solution α∗ to (39) provides an upper bound to (38) since maxµT θ =

min 1Tα ≤ 1Tα∗. Let T = {x : P0(x) ≥ P1(x)} and Tj = {xi : S
(k)
ij = eε} for j ∈ [2k]. Con-

sider the following choice of dual variable

α∗i =
1

2

eε − 1

eε + 1

∣∣P0(xi)− P1(xi)
∣∣,

for i ∈ [k]. Observe that

1Tα∗ =
1

2

eε − 1

eε + 1

∑
i∈[k]

∣∣P0(xi)− P1(xi)
∣∣

=
1

2

eε − 1

eε + 1

∥∥P0 − P1

∥∥
1

=
eε − 1

eε + 1

∥∥P0 − P1

∥∥
TV
. (40)
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We claim that α∗ is a feasible dual variable for all values of ε. In order to prove that α∗ is

a feasible dual variable, we show that S(k)T
j α
∗ − µj ≥ 0 for all j ∈ [2k] and all ε. For all

j ∈ [2k], we have that

gj = 2
(
S(k)T

j α
∗ − µj

)
=

eε − 1

eε + 1

∑
i∈[k]

|P0(xi)− P1(xi)|S(k)
ij −

∣∣∣∣∣∣
∑
i∈[k]

(P0(xi)− P1(xi))S
(k)
ij

∣∣∣∣∣∣
=

eε − 1

eε + 1

∑
xi∈T

(P0(xi)− P1(xi))S
(k)
ij +

∑
xi∈T c

(P1(xi)− P0(xi))S
(k)
ij


−

∣∣∣∣∣∣
∑
xi∈T

(P0(xi)− P1(xi))S
(k)
ij −

∑
xi∈T c

(P1(xi)− P0(xi))S
(k)
ij

∣∣∣∣∣∣ . (41)

Notice that we have arranged the equation such that all the summands are non-negative.
Without loss of generality, we will assume that∑

xi∈T
(P0(xi)− P1(xi))S

(k)
ij ≥

∑
xi∈T c

(P1(xi)− P0(xi))S
(k)
ij .

From the equality
∑

xi∈T (P0(xi)− P1(xi)) =
∑

xi∈T c (P1(xi)− P0(xi)) and the fact that

S
(k)
ij ∈ {1, eε} for all i and j, it follows that

e−ε
∑
xi∈T

(P0(xi)− P1(xi))S
(k)
ij ≤

∑
xi∈T c

(P1(xi)− P0(xi))S
(k)
ij . (42)

This is true because the right-hand side is minimized when the S
(k)
ij ’s for xi ∈ T c are all

equal to 1 and the left-hand side is maximized when the S
(k)
ij ’s for xi ∈ T are all equal to

eε. Now, (41) can be written as

gj =
1

eε + 1

−2
∑
xi∈T

(P0(xi)− P1(xi))S
(k)
ij + 2eε

∑
xi∈T c

(P1(xi)− P0(xi))S
(k)
ij


≥ 0 ,

where the last inequality follows from (42).
This establishes the satisfiability of α∗ for all ε which, in turn, shows that (40) is indeed

an upper bound to the primal problem. It remains to show that this upper bound can be
achieved via the binary mechanism. To this extent, recall that for a given P0 and P1, the
binary mechanism is defined as a staircase mechanism with only two outputs y ∈ {0, 1}
satisfying

Q(0|x) =

{ eε

1+eε if P0(x) ≥ P1(x) ,
1

1+eε if P0(x) < P1(x) .
Q(1|x) =

{ eε

1+eε if P0(x) < P1(x) ,
1

1+eε if P0(x) ≥ P1(x) .
(43)
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Computing the TV distance between M0 and M1 under (43), we get that

∥∥M0 −M1

∥∥
TV

=
eε − 1

eε + 1

∥∥P0 − P1

∥∥
TV
.

Hence, the binary mechanism in (43) achieves the upper bound in (40). This proves the
optimality of the binary mechanism for all ε.

8.4 Proof of Theorem 8

The Kullback-Leibler (KL) divergence Dkl(M0||M1) is a special f -divergence Df (M0||M1)
with f(x) = x log x. Therefore, by Theorem 4, we have that

max
Q∈Dε

Dkl(M0||M1) = maximize
θ

µT θ

subject to S(k)θ = 1

θ ≥ 0,

(44)

where µj = µ
(
S

(k)
j

)
=
∑

i∈[k] P0(xi)S
(k)
ij log

(∑
i∈[k] P0(xi)S

(k)
ij∑

i∈[k] P1(xi)S
(k)
ij

)
for j ∈ {1, . . . , 2k} and S(k)

is the k × 2k staircase pattern matrix given in Definition 3.

The polytope given by S(k)θ = 1 and θ ≥ 0 is a closed and bounded one. Thus, there is
no duality gap and solving the above linear program is equivalent to solving its dual

minimize
α

1Tα

subject to S(k)Tα ≥ µ.
(45)

Note that any satisfiable solution α∗ to (45) provides an upper bound to (44) since maxµT θ =

min 1Tα ≤ 1Tα∗. Let T = {x : P0(x) ≥ P1(x)} and Tj = {xi : S
(k)
ij = eε} for j ∈ [2k]. Set

ji = {j : Tj = xi} for i ∈ [k], and consider the following choice of dual variable

α∗i =
1

(eε − 1) (eε + k − 1)

(eε + k − 2)µ
(
S

(k)
ji

)
−

∑
l∈[k],l 6=i

µ
(
S

(k)
jl

) ,

for i ∈ [k]. Observe that since Tji = xi we have that Pν (Tji) = Pν (xi) and since

µj =
∑
i∈[k]

P0(xi)S
(k)
ij log

∑i∈[k] P0(xi)S
(k)
ij∑

i∈[k] P1(xi)S
(k)
ij


= (P0 (Tj) (eε − 1) + 1) log

(P0 (Tj) (eε − 1) + 1)

(P1 (Tj) (eε − 1) + 1)
(46)
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we have that

1Tα∗ =
1

(eε − 1) (eε + k − 1)

∑
i∈[k]

(eε + k − 2)µ
(
S

(k)
ji

)
−

∑
l∈[k],l 6=i

µ
(
S

(k)
jl

)
=

1

(eε − 1) (eε + k − 1)

(eε + k − 2)
∑
i∈[k]

µ
(
S

(k)
ji

)
−
∑
i∈[k]

∑
l∈[k],l 6=i

µ
(
S

(k)
jl

)
=

1

(eε − 1) (eε + k − 1)

(eε + k − 2)
∑
i∈[k]

µ
(
S

(k)
ji

)
− (k − 1)

∑
i∈[k]

µ
(
S

(k)
ji

)
=

1

(eε + k − 1)

∑
i∈[k]

µ
(
S

(k)
ji

)
=

1

(eε + k − 1)

∑
i∈[k]

(P0 (xi) (eε − 1) + 1) log
(P0 (xi) (eε − 1) + 1)

(P1 (xi) (eε − 1) + 1)
. (47)

We claim that α∗ is a feasible dual variable for sufficiently large ε. In order to prove that

α∗ is a feasible dual variable, we show that S(k)T
j α
∗ − µj ≥ 0 for all j ∈ [2k] for all ε ≥ ε∗,

where ε∗ is a positive quantity that depends on the priors P0 and P1. Using the facts that

log (a+ eεb) = ε+ log b+O
(
e−ε
)

1

eε + k − 1
= e−ε +O

(
e−2ε

)
, (48)

for large ε, we get that

µj = (P0 (Tj) (eε − 1) + 1) log
(P0 (Tj) (eε − 1) + 1)

(P1 (Tj) (eε − 1) + 1)

=

(
P0 (Tj) log

P0 (Tj)

P1 (Tj)

)
eε + (1− P0 (Tj)) log

P0 (Tj)

P1 (Tj)
+O

(
e−ε
)
. (49)

On the other hand,

S(k)T

j α
∗ =

1

(eε − 1) (eε + k − 1)

∑
i∈[k]

S
(k)
ij (eε + k − 2)

(
P0 (xi) log

P0 (xi)

P1 (xi)
eε +O (1)

)
− 1

(eε − 1) (eε + k − 1)

∑
i∈[k]

∑
l∈[k],l 6=i

S
(k)
ij

(
P0 (xl) log

P0 (xl)

P1 (xl)
eε +O (1)

)
=

1

(eε − 1) (eε + k − 1)

∑
xi∈Tj

P0 (xi) log
P0 (xi)

P1 (xi)

 e3ε +O
(
e2ε
)

=

∑
xi∈Tj

P0 (xi) log
P0 (xi)

P1 (xi)

 eε +O (1) . (50)
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Assume, to begin with, that j 6= {j1, j2, ..., jk}. Then

S(k)T

j α
∗ − µj =

P0 (Tj) log
P0 (Tj)

P1 (Tj)
−
∑
xi∈Tj

P0 (xi) log
P0 (xi)

P1 (xi)

 eε +O (1) .

Notice that for j 6= {j1, j2, ..., jk}, P0 (Tj) log
P0(Tj)
P1(Tj)

>
∑

xi∈Tj P0 (xi) log P0(xi)
P1(xi)

by the log-

sum inequality. Therefore, there exists a ε(j) > 0 such that S(k)T
j α
∗−µj ≥ 0 for all ε ≥ ε(j).

If j ∈ {j1, j2, ..., jk}, it is not hard to check that S(k)T
j α
∗ − µj = 0 for all ε. In this case,

set ε(j) = 0. This establishes the satisfiability of α∗ for all ε ≥ ε∗ = maxj∈[2k] ε(j). The
satisfiability of α∗, in turn, shows that (47) is indeed an upper bound to the primal problem.
It remains to show that this upper bound can be achieved via the randomized response. To
this extent, recall that the randomized response is given by

Q(y|x) =

{
eε

|X |−1+eε if y = x ,
1

|X |−1+eε if y 6= x .
(51)

Computing the KL divergence between M0 and M1 under (51), we get that

Dkl(M0||M1) =
1

(eε + k − 1)

∑
i∈[k]

(P0 (xi) (eε − 1) + 1) log
(P0 (xi) (eε − 1) + 1)

(P1 (xi) (eε − 1) + 1)
.

Hence, the randomized response in (51) achieves the upper bound in (47). This proves the
optimality of the randomized response for all ε ≥ ε∗.

8.5 Proof of Theorem 7

We start the proof with a fundamental bound on the symmetrized KL divergence between
the M0 and M1.

Lemma 25 For any ε ≥ 0, let Q be any conditional distribution that guarantees ε differ-
ential privacy. Then for any pair of distributions P0 and P1, the induced marginals M0 and
M1 must satisfy the bound

Dkl

(
M0||M1

)
+Dkl

(
M1||M0

)
≤ 4 (eε − 1)2

∥∥P0 − P1

∥∥2

TV
.

The above lemma appears as Theorem 1 in Duchi et al. (2013). By Lemma 25, we have
that

OPT = max
Q∈Dε

Dkl

(
M0||M1

)
≤ 4 (eε − 1)2

∥∥P0 − P1

∥∥2

TV
. (52)

Let MB
0 and MB

1 be the marginals obtained by using the binary mechanism given in (14).
By Corollary 11, we have that ‖MB

0 − MB
1 ‖TV = eε−1

eε+1‖P0 − P1

∥∥
TV

. Consequently, by

applying Pinsker’s inequality to the KL divergence between MB
0 and MB

1 we get that

BIN = Dkl

(
MB

0 ||MB
1

)
≥ 2

∥∥MB
0 −MB

1

∥∥2

TV

= 2

(
eε − 1

eε + 1

)2 ∥∥P0 − P1

∥∥2

TV
. (53)

Combining (52) and (53) we get that BIN ≥ 1
2(eε+1)2

OPT which was to be shown.
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9. Proofs for Information Preservation

9.1 Proof of Theorem 12

By Theorem 4, we have that

max
Q∈Dε

I (X;Y ) = maximize
θ

µT θ

subject to S(k)θ = 1

θ ≥ 0,

(54)

where µj = µ
(
S

(k)
j

)
=
∑

i∈[k] P (xi)S
(k)
ij log

(
S
(k)
ij∑

i∈[k] P (xi)S
(k)
ij

)
for j ∈ {1, . . . , 2k} and S(k)

is the k×2k staircase pattern matrix given in Definition 3. The polytope given by S(k)θ = 1

and θ ≥ 0 is a closed and bounded one. Thus, there is no duality gap and solving the above
linear program is equivalent to solving its dual

minimize
α

1Tα

subject to S(k)Tα ≥ µ.
(55)

Note that any satisfiable solution α∗ to (55) provides an upper bound to (54) since maxµT θ =

min 1Tα ≤ 1Tα∗. Let Tj = {xi : S
(k)
ij = eε} and set j1 = {j : Tj = T} and j2 = {j : Tj =

T c}. Consider the following choice of dual variable

α∗i =
1

(eε + 1) (eε − 1)


eεµ
(
S
(k)
j1

)
−µ
(
S
(k)
j2

)
|T | ∀i ∈ T

eεµ
(
S
(k)
j2

)
−µ
(
S
(k)
j1

)
|T c| ∀i ∈ T c

.

Observe that since Tj1 = T , Tj2 = T c, and

µj = P (Tj) e
ε log

eε

P (Tj
c) + eεP (Tj)

+ P (Tj
c) log

1

P (Tj
c) + eεP (Tj)

, (56)

we have that

1Tα∗ =
1

(eε + 1) (eε − 1)

{∑
i∈T

1

|T |

(
eεµ

(
S

(k)
j1

)
− µ

(
S

(k)
j2

))
= +

∑
i∈T c

1

|T c|

(
eεµ

(
S

(k)
j2

)
− µ

(
S

(k)
j1

))}

=
1

(eε + 1)

(
µ
(
S

(k)
j1

)
+ µ

(
S

(k)
j1

))
=

1

eε + 1

{
P (T ) eε log

eε

P (T c) + eεP (T )
+ P (T c) log

1

P (T c) + eεP (T )

}
+

1

eε + 1

{
P (T c) eε log

eε

P (T ) + eεP (T c)
+ P (T ) log

1

P (T ) + eεP (T c)

}
. (57)

40



Extremal Mechanisms for Local Differential Privacy

We claim that α∗ is a feasible dual variable for sufficiently small ε. In order to prove that

α∗ is a feasible dual variable, we show that
(
S(k)Tα∗

)
j
− µj ≥ 0 for all j ∈ {1, . . . , 2k} and

all ε ≤ ε∗, where ε∗ is a positive quantity that depends on P . Using the following facts

eε = 1 + ε+
1

2
ε+O

(
ε3
)

log (a+ eεb) = bε+
b(1− b)

2
ε2 +O

(
ε3
)

1

1 + eε
=

1

2
− 1

4
ε+O

(
ε2
)
, (58)

for small ε, we get that

µj = P (Tj) e
ε log

eε

P (Tj
c) + eεP (Tj)

+ P (Tj
c) log

1

P (Tj
c) + eεP (Tj)

= P (Tj) e
εε− (P (Tj) (eε − 1) + 1) log (P (Tj) (eε − 1) + 1)

=
1

2
P (Tj)P

(
T cj
)
ε2 +O

(
ε3
)
. (59)

On the other hand,(
S(k)Tα∗

)
j

= S
(k)
j

T
α∗

=
1

(eε + 1) (eε − 1)

{∑
i∈T

S
(k)
ij

|T |

(
eεµ

(
S

(k)
j1

)
− µ

(
S

(k)
j2

))

+
∑
i∈T c

S
(k)
ij

|T c|

(
eεµ

(
S

(k)
j2

)
− µ

(
S

(k)
j1

))}

=
1

(eε + 1) (eε − 1)

(
eεµ

(
S

(k)
j1

)
− µ

(
S

(k)
j2

))( |Tj ∩ T |
|T |

eε +
|T cj ∩ T |
|T |

)
+

1

(eε + 1) (eε − 1)

(
eεµ

(
S

(k)
j2

)
− µ

(
S

(k)
j1

))( |Tj ∩ T c|
|T c|

eε +
|T cj ∩ T c|
|T c|

)
=

1

(eε + 1)

(
1

2
P (T )P (T c) ε2 +O

(
ε3
)){ |Tj ∩ T c|

|T c|
+
|T cj ∩ T c|
|T c|

+
|Tj ∩ T |
|T |

+
|T cj ∩ T |
|T |

+O (ε)

}
=

1

2
P (T )P (T c) ε2 +O

(
ε3
)
, (60)

where we have used the facts that Tj1 = T , Tj2 = T c, and

µ
(
S

(k)
j1

)
=

1

2
P (T )P (T c) ε2 +O

(
ε3
)

µ
(
S

(k)
j2

)
=

1

2
P (T )P (T c) ε2 +O

(
ε3
)
. (61)

Let f(z) = |z − 1
2 |, g(z) = −z log z − (1− z) log(1− z), and h(z) = z(1− z) for 0 ≤ z ≤ 1.

On the one hand, g and h are monotonically increasing over 0 ≤ z ≤ 1
2 and monotonically
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decreasing over 1
2 ≤ z ≤ 1 but on the other hand, f is monotonically decreasing over

0 ≤ z ≤ 1
2 and monotonically increasing over 1

2 ≤ z ≤ 1. Therefore,

T ∈ arg min
A⊆X

∣∣∣P (A)− 1

2

∣∣∣ ⇔ T ∈ arg max
A⊆X

− P (A) logP (A)− P (Ac) logP (Ac)

⇔ T ∈ arg max
A⊆X

P (A)P (Ac). (62)

Since the set T was chosen so that it maximizes P (T )P (T c), we have that P (T )P (T c) ≥
P (Tj)P

(
T cj

)
for all j ∈ {1, . . . , 2k}. Assume, to begin with, that j 6= {j1, j2}. Then by the

uniqueness of the maximizer assumption stated in the theorem, we have that P (T )P (T c) >

P (Tj)P
(
T cj

)
.

(
STα∗

)
j
− µj =

1

2

(
P (T )P (T c)− P (Tj)P

(
T cj
))
ε2 +O

(
ε3
)
,

and thus, there exists an ε∗ that depends on P such that
(
S(k)Tα∗

)
j
−µj ≥ 0 for all ε ≤ ε∗.

If j = {j1, j2}, it is not hard to check that
(
S(k)Tα∗

)
j
− µj = 0 for all ε. This establishes

the satisfiability of α∗ for all ε ≤ ε∗ which proves an upper bound on the primal problem
(given in (57)). It remains to show that the upper bound can be indeed achieved via the
binary mechanism. To this extent, recall that the binary mechanism is given by

Q(0|x) =

{ eε

1+eε if x ∈ T ,
1

1+eε if x /∈ T .
Q(1|x) =

{ eε

1+eε if x /∈ T ,
1

1+eε if x ∈ T .
(63)

Computing the I (X;Y ) under (63), we get that

I (X;Y ) =
1

eε + 1

{
P (T ) eε log

eε

P (T c) + eεP (T )
+ P (T c) log

1

P (T c) + eεP (T )

}
+

1

eε + 1

{
P (T c) eε log

eε

P (T ) + eεP (T c)
+ P (T ) log

1

P (T ) + eεP (T c)

}
.(64)

Hence, the binary mechanism in (63) achieves the upper bound in (57). This proves the
optimality of the binary mechanism for all ε ≤ ε∗.

9.2 Proof of Theorem 13

We start by proving an upper bound on maxQ∈Dε I (X;Y ) which is tight for ε ≤ 1. Recall
that by Theorem 4, we have that

OPT = max
Q∈Dε

I (X;Y ) = maximize
θ

2k∑
j=1

µjθj

subject to S(k)θ = 1

θ ≥ 0,
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where

µj = µ
(
S

(k)
j

)
=

∑
i∈[k]

P (xi)S
(k)
ij log

 S
(k)
ij∑

i∈[k] P (xi)S
(k)
ij


= P (Tj) e

εε− (P (Tj) (eε − 1) + 1) log (P (Tj) (eε − 1) + 1) , (65)

Tj = {i : S
(k)
ij = eε}, and S(k) is the k × 2k staircase pattern matrix given in Definition 3.

Lemma 26 For all distributions P and all ε, the following bound holds

OPT = max
Q∈Dε

I (X;Y ) ≤
(

max
j
µj

)
k

eε + k − 1
.

The proof of this lemma is given in Section 9.3. In what follows, we will make the dependency
of µj on P (Tj) and ε explicit by writing µj (P (Tj) , ε) for µj . From the proof of Theorem
12, we have that the partition set T defined in (19) is given by T ∈ arg maxA⊆X P (A)P (Ac).
It is easy to check that the binary mechanism given in (20) achieves the following utility

BIN =
µ (P (T ) , ε) + µ (P (T c) , ε)

eε + 1
.

Lemma 27 For all distributions P and all ε ≤ 1, the following bound holds

maxj µj
µ (P (T ) , ε) + µ (P (T c) , ε)

≤ 1.

The proof of the above lemma is given in Section 9.4. Combining the results of lemmas 26
and 27 we get that

OPT

BIN
≤ maxj µj

µ (P (T ) , ε) + µ (P (T c) , ε)

k

eε + k − 1
(eε + 1)

≤ k

eε + k − 1
(eε + 1)

≤ eε + 1, (66)

for all ε ≤ 1. This concludes the proof.

9.3 Proof of Lemma 26

To begin with, since S
(k)
1 = 1 = 1

eεS
(k)

2k
and µ is homogenous, we have that θ1µ1 + θ2kµ2k =(

1
eε θ1 + θ2k

)
µ2k . Therefore, the following two maximization problems are equivalent

maximize
θ

2k∑
j=1

µjθj

subject to S(k)θ = 1

θ ≥ 0

=

maximize
θ

2k−1∑
j=1

µ̃jθj

subject to S̃(k)θ = 1

θ ≥ 0,
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where µ̃j = µj+1 and S̃(k) is obtained by deleting the first column of S(k). Moreover, using
the fact that maxj∈[2k−1] µ̃j ≤ maxj∈[2k] µj and weak duality, we get that

maximize
θ

µ̃T θ

subject to S̃(k)θ = 1

θ ≥ 0

≤
(

max
j∈[2k−1]

µ̃j

)
maximize

θ
1T θ

subject to S̃(k)θ = 1

θ ≥ 0

≤
(

max
j∈[2k]

µj

)
minimize

α
1Tα

subject to S̃(k)Tα ≥ 1.
(67)

Consider the following choice of dual variable α∗i = 1
eε+k−1 . We claim that α∗ is satisfiable.

This can be easily verified by noting that(
S̃(k)Tα∗

)
j

= S̃
(k)T

j α∗ =
|Tj |eε + (k − |Tj |)

eε + k − 1
=
|Tj |(eε − 1) + k

eε + k − 1
≥ 1

where the last inequality holds since |Tj | ≥ 1 (this is true because we have deleted the first
column of S(k)). Therefore, OPT ≤ (maxj µj) 1Tα∗ = (maxj µj)

k
eε+k−1 which was to be

shown.

9.4 Proof of Lemma 27

Let µ (z, ε) be the function obtained by replacing P (Tj) by the continuous variable z ∈ [0, 1]
in µj (P (Tj) , ε). Taking the derivative of µ (z, ε) with respect to z we get

µ′ (z, ε) = eεε− (eε − 1)− (eε − 1) log (z(eε − 1) + 1) .

Observe that µ′ (z, ε) > 0 for all

z < z∗(ε) =
1

eε − 1

(
e

{
eεε
eε−1

−1
}
− 1

)
,

µ′ (z, ε) < 0 for all z > z∗(ε), and µ′ (z, ε) = 0 for z = z∗(ε). Combining this with the fact
that µ (0, ε) = µ (1, ε) = 0 we get that µ (z, ε) ≥ 0 for all z ∈ [0, 1] and for any fixed ε,
µ (z, ε) is maximized at z∗(ε).

Set x∗ ∈ arg maxx∈X P (x) and fix an ε ≤ 1. We will treat the following three cases
separately.

Case 1: P (x∗) ∈ [1− z∗(ε), 1].

Claim 4 Let T = {x∗}. Then {T, T c} = arg maxA⊆X P (A)P (Ac) and maxA⊆X µ(P (A), ε) =
max (µ(P (T ), ε), µ(P (T c), ε)).

Proof Observe that z∗(ε) ≤ 1
2 for all ε and T c = X \ {x∗}. The function f(z) = z(1− z)

decreases over the range [1
2 , 1] ⊇ [1 − z∗(ε), 1]. Thus, for all A ⊃ T , P (T )P (T c) >
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P (A)P (Ac) because P (T ) ≥ 1 − z∗(ε). This proves that T ∈ arg maxA⊆X P (A)P (Ac) and
for all A ⊃ T , A /∈ arg maxA⊆X P (A)P (Ac). Using a similar approach, we can show that
T c ∈ arg maxA⊆X P (A)P (Ac) and for all A ⊂ T c, A /∈ arg maxA⊆X P (A)P (Ac). There-
fore, {T, T c} = arg maxA⊆X P (A)P (Ac). This proves the first part of the claim. The
function µ (z, ε) increases over the range [0, z∗(ε)]. Thus, for all A ⊆ T c, µ(P (A), ε) ≤
µ(P (T c), ε) because P (T c) ≤ z∗(ε). On the other hand, note that µ (z, ε) decreases
over the range [z∗(ε), 1] which includes the range [1 − z∗(ε), 1]. Thus, for all A such
that A ⊇ T , µ(P (A), ε) ≤ µ(P (T ), ε) because P (T ) ≥ 1 − z∗(ε). This proves that
max (µ(P (T ), ε), µ(P (T c), ε)) = maxA⊆X µ(P (A), ε).

Using the above claim, we can conclude that the partition set T defined in (19) is equal to
{x∗} and

maxj µj
µ (P (T ) , ε) + µ (P (T c) , ε)

=
maxA⊆X µ(P (A), ε)

µ (P (T ) , ε) + µ (P (T c) , ε)

≤ maxA⊆X µ(P (A), ε)

max (µ(P (T ), ε), µ(P (T c), ε))

= 1. (68)

Case 2: P (x∗) ∈ [1
2 , 1 − z

∗(ε)]. Using the first part of the proof of Claim 4, we can show
that if T = {x∗}, then {T, T c} = arg maxA⊆X P (A)P (Ac). Therefore, the partition set T
defined in (19) is equal to {x∗} and

maxj µj
µ (P (T ) , ε) + µ (P (T c) , ε)

=
maxA⊆X µ(P (A), ε)

µ (P (T ) , ε) + µ (P (T c) , ε)

≤ µ(z∗(ε), ε)

µ (P (x∗) , ε) + µ (1− P (x∗) , ε)

≤ 1. (69)

Case 3: P (x∗) ∈ [0, 1
2 ].

Claim 5 There exists a set A ⊂ X such that 1
2 − P (x∗) ≤ P (A) ≤ 1

2 .

Proof Without loss of generality, assume that the sequence P (xi), i ∈ [k], is sorted
in increasing order. Let l∗ = min{l :

∑l
i=1 P (xi) ≥ 1

2}. From the definition of l∗,
P ({x1, . . . , xl∗−1}) < 1

2 and P ({x1, . . . , xl∗}) ≥ 1
2 . Further,

P ({x1, . . . , xl∗−1}) = P ({x1, . . . , xl∗})− P (xl∗)

and since x∗ ∈ arg maxx∈X P (x), P (xl∗) ≤ P (x∗). Therefore, if A = {x1, . . . , xl∗−1}, then
1
2 − P (x∗) ≤ P (A) ≤ 1

2 .

Let P (T ) = min{P (B) : B ∈ arg maxA⊆X P (A)P (Ac)}. We claim that 1
4 ≤ P (T ) ≤ 1

2 .
The upper bound on P (T ) follows immediately from its definition. To prove the lower
bound on P (T ), consider the set A given in Claim 5 and observe that

P (T ) ≥ max(P (x∗), P (A))

≥ max(P (x∗),
1

2
− P (x∗))

≥ 1

4
. (70)
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All the inequalities follow from Claim 5 and the fact that P (x∗) ∈ [0, 1
2 ].

Since 1
4 ≤ P (T ) ≤ 1

2 , we have that 1
2 ≤ P (T c) ≤ 3

4 . Moreover, the function µ (z, ε)
decreases over the range [z∗(ε), 1] ⊃ [1

2 ,
3
4 ] and increases over the range [1

4 , z
∗(ε)]. Therefore,

µ (P (T c), ε) ≥ µ
(

3
4 , ε
)

and µ (P (T ), ε) ≥ min
(
µ
(

1
2 , ε
)
, µ
(

1
4 , ε
))

. Putting it all together,
we have that

maxj µj
µ (P (T ) , ε) + µ (P (T c) , ε)

=
maxA⊆X µ(P (A), ε)

µ (P (T ) , ε) + µ (P (T c) , ε)

≤ µ(z∗(ε), ε)

min
(
µ
(

1
2 , ε
)
, µ
(

1
4 , ε
))

+ µ
(

3
4 , ε
)

≤ 1. (71)

9.5 Proof of Theorem 14

By Theorem 4, we have that

max
Q∈Dε

I (X;Y ) = maximize
θ

µT θ

subject to S(k)θ = 1

θ ≥ 0,

(72)

where µj = µ
(
S

(k)
j

)
=
∑

i∈[k] P (xi)S
(k)
ij log

(
S
(k)
ij∑

i∈[k] P (xi)S
(k)
ij

)
for j ∈ {1, . . . , 2k} and S(k)

is the k×2k staircase pattern matrix given in Definition 3. The polytope given by S(k)θ = 1

and θ ≥ 0 is a closed and bounded one. Thus, there is no duality gap and solving the above
linear program is equivalent to solving its dual

minimize
α

1Tα

subject to S(k)Tα ≥ µ.
(73)

Note that any satisfiable solution α∗ to (73) provides an upper bound to (72) since maxµT θ =

min 1Tα ≤ 1Tα∗. Let Tj = {xi : S
(k)
ij = eε} and set ji = {j : Tj = i} for i ∈ {1, . . . , k}.

Consider the following choice of dual variable

α∗i =
1

(eε − 1) (eε + k − 1)

(eε + k − 2)µ
(
S

(k)
ji

)
−

∑
l∈[k],l 6=i

µ
(
S

(k)
jl

) ,

for i ∈ {1, . . . , k}. Observe that since Tji = i we have that P (Tji) = P (xi) and since

µj = P (Tj) e
ε log

eε

P (Tj
c) + eεP (Tj)

+ P (Tj
c) log

1

P (Tj
c) + eεP (Tj)

, (74)
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we have that

1Tα∗ =
1

(eε − 1) (eε + k − 1)

∑
i∈[k]

(eε + k − 2)µ
(
S

(k)
ji

)
−

∑
l∈[k],l 6=i

µ
(
S

(k)
jl

)
=

1

(eε − 1) (eε + k − 1)

(eε + k − 2)
∑
i∈[k]

µ
(
S

(k)
ji

)
−
∑
i∈[k]

∑
l∈[k],l 6=i

µ
(
S

(k)
jl

)
=

1

(eε − 1) (eε + k − 1)

(eε + k − 2)
∑
i∈[k]

µ
(
S

(k)
ji

)
− (k − 1)

∑
i∈[k]

µ
(
S

(k)
ji

)
=

1

(eε + k − 1)

∑
i∈[k]

µ
(
S

(k)
ji

)
=

1

(eε + k − 1)

∑
i∈[k]

{
P (xi) e

ε log
eε

P (xi) (eε − 1) + 1

+ (1− P (xi)) log
1

P (xi) (eε − 1) + 1

}
. (75)

We claim that α∗ is a feasible dual variable for sufficiently large ε. In order to prove that

α∗ is a feasible dual variable, we show that
(
S(k)Tα∗

)
j
− µj ≥ 0 for all j ∈ {1, . . . , 2k} and

all ε ≥ ε∗, where ε∗ is a positive quantity that depends on P . Using the fact that

log (a+ eεb) = ε+ log b+O
(
e−ε
)
,

for large ε, we get that

µj = P (Tj) e
ε log

eε

P (Tj
c) + eεP (Tj)

+ P (Tj
c) log

1

P (Tj
c) + eεP (Tj)

= P (Tj) e
εε− (P (Tj) (eε − 1) + 1) log (P (Tj) (eε − 1) + 1)

= P (Tj) e
εε− (P (Tj) (eε − 1) + 1)

(
ε+ logP (Tj) +O

(
e−ε
))

= − (P (Tj) logP (Tj)) e
ε +O (ε) . (76)
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On the other hand,(
S(k)Tα∗

)
j

= S
(k)
j

T
α∗

= eε
∑
i∈Tj

α∗i +
∑
i∈T cj

α∗i

= − 1

(eε − 1) (eε + k − 1)

∑
i∈[k]

S
(k)
ij (eε + k − 2) (P (xi) logP (xi) e

ε

+O (ε))

}

+
1

(eε − 1) (eε + k − 1)

∑
i∈[k]

∑
l∈[k],l 6=i

S
(k)
ij ((P (xl) logP (xl)) e

ε +O (ε))


= − 1

(eε − 1) (eε + k − 1)

∑
i∈Tj

P (xi) logP (xi)

 e3ε +O
(
e2εε

)
= −

∑
i∈Tj

P (xi) logP (xi)

 eε +O (ε) . (77)

Assume, to begin with, that j 6= {j1, j2, ..., jk}. Then

(
S(k)Tα∗

)
j
− µj =

P (Tj) logP (Tj)−
∑
i∈Tj

P (xi) logP (xi)

 eε +O (ε) .

Notice that for j 6= {j1, j2, ..., jk}, P (Tj) logP (Tj) >
∑

i∈Tj P (xi) logP (xi). Therefore,

there exists an ε∗ > 0 such that
(
S(k)Tα∗

)
j
− µj ≥ 0 for all ε ≥ ε∗. If j ∈ {j1, j2, ..., jk}, it

is not hard to check that
(
S(k)Tα∗

)
j
− µj = 0 for all ε. This establishes the satisfiability

of α∗ for all ε ≥ ε∗. It remains to show that the upper bound can be indeed achieved via
the randomized response mechanism. To this extent, recall that the randomized response
is given by

Q(y|x) =


eε

|X | − 1 + eε
if y = x ,

1

|X | − 1 + eε
if y 6= x .

(78)

Computing the I (X;Y ) under (78), we get that

I (X;Y ) =
1

eε + k − 1

∑
i∈[k]

{
P (xi) e

ε log
eε

P (xi) (eε − 1) + 1

+ (1− P (xi)) log
1

P (xi) (eε − 1) + 1

}
. (79)
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Hence, the randomized response mechanism achieves the upper bound (75). This proves
the optimality of the randomized response for all ε ≥ ε∗.

10. Proof of Proposition 17

Let U (Q) be a utility mechanism of the form U (Q) =
∑
Y µ(Qy), where µ is a sublinear

function. Consider a stochastic mapping W of dimensions ` × m and let QW be the
stochastic mapping obtained by first applying Q to X ∈ X to obtain Y ∈ Y and then
applying W to Y to obtain Z ∈ Z.

U (QW ) =
∑
Z
µ ((QW )z)

=
∑
Z
µ

(∑
Y
QyWy,z

)
≤

∑
Y,Z

Wy,zµ (Qy)

=
∑
Y
µ(Qy)

= U (Q) , (80)

where the inequality follows from sublinearity and the second to last equality follows from
the row stochastic property of W . Therefore, U (Q) obeys the data processing inequality.
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