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Abstract

We study minimax rates for denoising simultaneously sparse and low rank matrices in high
dimensions. We show that an iterative thresholding algorithm achieves (near) optimal
rates adaptively under mild conditions for a large class of loss functions. Numerical experi-
ments on synthetic datasets also demonstrate the competitive performance of the proposed
method.
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1. Introduction

In recent years, there has been a surge of interest in estimating and denoising structured
large matrices. Leading examples include denoising low rank matrices (Donoho and Gavish,
2014), recovering low rank matrices from a small number of entries, i.e., matrix completion
(Candes and Recht, 2009; Candes and Plan, 2010; Keshavan et al., 2010; Koltchinskii et al.,
2011; Negahban and Wainwright, 2011), reduced rank regression (Bunea et al., 2011), group
sparse regression (Yuan and Lin, 2006; Lounici et al., 2011), among others.

In the present paper, we study the problem of denoising an m X n data matrix

X =M+Z. 1)

The primary interest lies in the matrix M that is sparse in the sense that nonzero entries are
assumed to be confined on a k£ X [ block, which is not necessarily consecutive. In addition
to being sparse, the rank of M, denoted by r, is assumed to be low. Thus, M can be
regarded as simultaneously structured as opposed to those simply structured cases where
M is assumed to be either only sparse or only of low rank. To be concrete, we assume
that Z consists of i.i.d. additive Gaussian white noise with variance ¢2. In the literature,
the problem has also been referred to as the sparse SVD (singular value decomposition)
problem. See, for instance, Yang et al. (2014) and the references therein.
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The interest in this problem is motivated by a number of related problems:

1. Biclustering. It provides an ideal model for studying biclustering of microarray data.
Let the rows of X correspond to cancer patients and the columns correspond to gene
expression levels measured with microarrays. A subset of k patients can be clustered
together as a subtype of the same cancer, which in turn is determined by a subset of
l genes. Moreover, the gene expression levels on such a bicluster can be captured by
a low rank matrix. See, e.g., Shabalin et al. (2009); Lee et al. (2010); Butucea and
Ingster (2013); Sun and Nobel (2013); Chen et al. (2013); Gao et al. (2015).

2. Recovery of simultaneously structured matrices with compressive measurements. There
has been emerging interest in the signal processing community in recovering such si-
multaneously structured matrices based on compressive measurements, partly moti-
vated by problems such as sparse vector recovery from quadratic measurements and
sparse phase retrieval. See, e.g., Shechtman et al. (2011); Li and Voroninski (2013);
Lee et al. (2013); Oymak et al. (2013); Cai et al. (2015) and the references therein.
The connection between the recovery problem and the denoising problem considered
here is partially explored in Oymak and Hassibi (2013). An interesting phenomenon in
the recovery setting is that convex relaxation approach no longer works well (Oymak
et al., 2015) as it does in the simply structured cases.

3. Sparse reduced rank regression. The denoising problem is also closely connected to pre-
diction in reduced rank regression where the coefficient matrix is also sparse. Indeed,
let n = [, then problem (1) reduces to sparse reduced rank regression with orthogonal
design. See Bunea et al. (2012) and Ma and Sun (2014) for more discussion.

The main contribution of the present paper includes the following: i) We provide
information-theoretic lower bounds for the estimation error of M under squared Schatten-g
norm losses for all ¢ € [1,2]; ii) We propose a computationally efficient estimator that, un-
der mild conditions, attains high probability upper bounds that match the minimax lower
bounds within a multiplicative log factor (and sometimes even within a constant factor)
simultaneously for all ¢ € [1,2]. The theoretical results are further validated and supported
by numerical experiments on synthetic data.

The rest of the paper is organized as follows. In Section 2, we precisely formulate
the denoising problem and propose a denoising algorithm based on the idea of iterative
thresholding. Section 3 establishes minimax risk lower bounds and high probability upper
bounds that match the lower bounds within a multiplicative log factor for all squared
Schatten-¢ norm losses with ¢ € [1,2]. Section 4 presents several numerical experiments
which demonstrate the competitive finite sample performance of the proposed denoising
algorithm. Section 5 discusses several additional issues related to the present paper. The
proofs of the main results are presented in Section 6, with some technical details relegated
to Appendix A.

2. Problem Formulation and Denoising Method

Notation For any a,b € R, let a A b = min(a,b) and a V b = max(a,b). For any two
sequences of positive numbers {a,} and {b,}, we write a,, = O(b,) if a, < Cb,, for some
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absolute positive constant C' and all n. For any matrix A € R™*™ denote its successive
singular values by o1(A) > -+ > opuan(A) > 0. For any ¢ € [1,00), the Schatten-g
norm of A is defined as [|Alls, = (37" 0?(A))Y/4. Thus, ||Alls, is the nuclear norm of
A and ||Alls, = ||A||r is the Frobenius norm. In addition, the Schatten-oco norm of A is
|Alls.. = 01(A) = ||Allop, where || - ||op stands for the operator norm. The rank of A is
denoted by rank(A). For any vector a, we denote its Euclidean norm by |lal|. For any
integer m, [m] stands for the set {1,...,m}. For any subset I C [m] and J C [n], we use
A7y to denote the submatrix of A with rows indexed by I and columns by J. When either
I or J is the whole set, we replace it with . For instance, A = Ajj,. Moreover, we use
supp(A) to denote the set of nonzero rows of A. For any set A, |A| denotes its cardinality
and A€ denotes its complement. A matrix A is called orthonormal, if the column vectors
are of unit length and mutually orthogonal. For any event E, we use 1g to denote the
indicator function on F, and E° denotes its complement.

2.1 Problem Formulation

We now put the denoising problem in a decision-theoretic framework. Recall model (1). We
are interested in estimating M based on the noisy observation X, where M is simultaneously
sparse and low rank. Let the singular value decomposition (SVD) of M = UDV’, where U
is m x r orthonormal, V is n x r orthonormal and D = diag(dy,...,d,) is r x r diagonal
with dy > --- > d, > 0. In addition, since the nonzero entries on M concentrate on a k x [
block, U has at most k£ nonzero rows and V at most [. Therefore, the parameter space of
interest can be written as

F(m,n,k,l,r,d, k) ={M=UDV’' € R™" : rank(M) = r,
[supp(U)| < k, [supp(V)| <, (2)
d<d, <---<d <rd}

We will focus on understanding the dependence of the minimax estimation error on the key
model parameters (m,n, k,l,r,d), while k > 1 is treated as an unknown universal constant.
Without loss of generality, we assume m > n here and after. Note that it is implicitly
assumed in (2) that m >k >randn >1>r.
To measure the estimation accuracy, we use the following squared Schatten-¢g norm loss
functions: . -
L(MM) = [M-M2,  ge[1,2), (3)

The model (1), the parameter space (2) and the loss functions (3) give a precise formulation
of the denoising problem.

2.2 Approach

From a matrix computation viewpoint, if one seeks a rank r approximation to a matrix X,
then one can first find its left and the right r leading singular vectors. If we organize these
vectors as columns of the left and the right singular vector matrices U and V, then the
matrix (UU’)X(VV’) has the minimum Frobenius reconstruction error for X among all
rank r matrices, since U'XV will be a diagonal matrix consisting of the r leading singular
values of X. On the other hand, if one wants to enforce sparsity in the resulting matrix,
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it is natural to utilize the idea of thresholding in the above calculation. Motivated by
the above observation and also by an iterative thresholding idea previously used in solving
sparse PCA problem (Ma, 2013; Yuan and Zhang, 2013), we propose the denoising scheme
in Algorithm 1 via two-way iterative thresholding.

Algorithm 1: Matrix Denoising via Two-Way Iterative Thresholding

Input:

1. Observed data matrix X.

2. Thresholding function n and thresholds 7,, and ~,.
3. Rank r and noise standard deviation o.

4. Initial orthonormal matrix V(0 e R"*7.

Output: Denoised matrix M.

repeat
1 Right-to-Left Multiplication: U®:mul — Xy (1),
(t),mul
2 | Left Thresholding: U™ = (u{™), with U™ = &W”(HUE?’M”’%)'

Left Orthonormalization with QR Decomposition: U(t)Rq(f ) — y®sthr,
4 | Left-to-Right Multiplication: V(®mul — X/U®),
V(t),mul

5 Right Thresholding: V(®):thr — (vg)’thr), with Vg)’thr = W (HVE?’mUIH,%).

6 Right Orthonormalization with QR Decomposition: V(t)Rq(f) = V(®)thr,
until Convergence;
7 Compute projection matrices f’u = UU’ and IA’U =VV' , Where U and V are U®
and V() at convergence.
Compute denoised matrix M = f’uXIADU

o]

Without the two thresholding steps, the iterative part of the algorithm computes the
leading singular vectors of any rectangular matrix, and can be viewed as a two-way gener-
alization of the power iteration (Golub and Van Loan, 1996).

In the thresholding steps, we apply row-wise thresholding to the matrix Ut),mul (resp. V(t)’n“ﬂ)
obtained after the multiplication step. In the thresholding function 7(z,t), the second ar-
gument ¢ > 0 is called the threshold level. In Algorithm 1, the first argument z is always
non-negative. In order for the later theoretical results to work, we impose the following
minimal assumption on the thresholding function 7:

In(x,t) —z| <t, foranyx>0,t>0,
n(xz,t) =0, foranyt>0,x€l0,t.

(4)
Examples of such thresholding functions include the usual soft and hard thresholding, the
SCAD (Fan and Li, 2001), the MCP (Zhang, 2010), etc. Thus, for instance, when thresh-
olding UMmlif p is the hard thresholding function, then we are going to keep all the rows
whose norms are greater than -, and kill all the rows whose norms are smaller than ~,. For
other thresholding function, we shrink the norms according to 7 while keeping the phases of
the row vectors. Throughout the iterations, the threshold levels ~, and =, are pre-specified
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and remain unchanged. In order for the theorem to work, these levels can be chosen as in
(10) below.

To determine the convergence of the iterative part, we could either run a pre-specified
number of iterations or stop after the difference between successive iterates are sufficiently
small, e.g.,

o U@y — o=@y v VOV Y - vEEDVEEDYR < ¢ ()

where € is a pre-specified tolerance level.

Initialization To initialize Algorithm 1, we need to further specify the rank r, the noise
standard deviation ¢ and a starting point VO for the iteration. For the ease of exposition,
we assume that r is known. Otherwise, it can be estimated by methods such as those
described in Yang et al. (2014). When we have Gaussian noise and kl < %mn, the noise
standard deviation can be estimated by

5 =1.4826- MAD({M; : i € [m],j € [n]}). (6)

Finally, to obtain a reasonable initial orthonormal matrix V() we propose to use Algo-
rithm 2 for the case of Gaussian noise.

Algorithm 2: Initialization for Algorithm 1
Input:
1. Observed data matrix X.
2. Tuning parameter o.
3. Rank r and noise standard deviation o.
Output: Estimators U=UO and V=v0O,

1 Select the subset Iy of rows and the subset Jy of columns as

I° = {i: || Xu]? > 0%(n 4 ay/nlogn)}, (7a)

JO = {5 IXul* = o®(m + a/mlogm)}. (7b)
2 Compute X(© = (xg;))), where 29 = Tijlicroljc o.

ij
3 Compute U = [ugo), cee u7(«0)] and V(©) = [V§O), . ,V7(~0)], where u!) (vl(,o)) is the

v™ leading left (right) singular vector of X (0.

Remark 1 In practice, Algorithms 1 and 2 are not restricted to the denoising of matrices
with Gaussian noise. With proper modification and robustification, they can be used together
to deal with other noise distributions and/or outliers. See, e.g., Yang et al. (2014).

3. Theoretical Results

In this section, we present a minimax theory underlying the denoising/estimation problem
formulated in Section 2.1.
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3.1 Minimax Lower Bounds

Theorem 2 Let F = F(m,n,k,l,r,d,k) with K > 1 and k Nl > 2r. There exists a
positive constant ¢ that depends only on k, such that for any q € [1,2], the minimax risk
for estimating M under the squared Schatten-q error loss (3) satisfies

—~ 2 4 d?
inf supEL,(M, M) > co? {(ri 12> ANWq(m,n, k1 T) (8)
M F o

2 2
where the rate function Wy(m,n, k,1,r) =ra(k+1)+ ra ! (k log & 4 llog eT")
A proof of the theorem is given in Section 6.1.

Remark 3 Regardless of the value of q, the lower bounds reflect two different scenarios.
The first scenario is the “low signal” case where

d? < o*Wy(m,n, k,1,7). (9)

In this case, the first term in the lower bound (8) dominates, and the rate is achieved by
simply estimating M by 0 € R™*",

The second scenario is when (9) does not hold. In this case, the second term in (8)
dominates. We note this term is expressed as the sum of two terms. As to be revealed by
the proof, the first summand is an “oracle” error term which occurs even when the indices
of the monzero rows and columns of M are given by an oracle. In contrast, the second
summand results from the combinatorial uncertainty about the locations of these nonzero
rows and columns.

3.2 Minimax Upper Bounds

To state the upper bounds, we first specify the threshold levels used in Algorithm 1. In
particular, for some sufficiently large constant 8 > 0, set

72 =2 =42 = 1.01(r + 2¢/rBlogm + 231logm). (10)

For Theorem 4 to hold, it suffices to choose any § > 4. In addition, we specify the stopping
(convergence) rule for the loop in Algorithm 1. For X defined in Algorithm 2, let d,(no) be
its r*" largest singular value. Define

~ 1.1 [logm (ci$ﬂ()))2
T=-—"= 1 11
llogQ +log =5 |, (11)
and
1.01 [logm d?
T = 1 r . 12
2 [log2 o8 kvivhﬁ} 12)

We propose to stop the iteration in Algorithm 1 after T steps. Last but not least, we need
the following technical condition.
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Condition 1 There exists a sufficiently small absolute constant c, such that m > n,
logd < em, ¢ < logm/logn < 1/c, logm < c¢[(m — k) A (n—=1)], kVI < c(m A n).
In addition, there exists a sufficiently small constant ¢ that depends only on k, such that
(o/d)?*r (ky/nlogm + ly/mlogm) < .

With the above definition, the following theorem establishes high probability upper
bounds of the proposed estimator.

Theorem 4 Let Condition 1 be satisfied. In Algorithm 1, let VO be obtained by Algo-
rithm 2 with o > 4 in (7). Let v, and vy, be defined as in (10) with B > 4. Moreover, we stop
the iteration after T steps with T defined in (11), and use U=UD and V=vVD in sub-
sequent steps. For sufficiently large values of m and n, uniformly over F(m,n,k,l,r,d, k),
with probability at least 1 — O(m~2), T € [T,3T] and

2
q

M — Mng < Co? |ra(k+1+logm) —i—r%_l(k—i—l) logm

where C' is a positive constant that depends only on k and (.
The proof of the theorem is given in Section 6.2.

Remark 5 Under Condition 1, for sufficient large values of m and n, (9) cannot hold, and
so the relevant lower bound is co®Wy(m,n,k,l,r). In comparison, when k ANl > (1 + €)r
for any universal small constant ¢ > 0, the upper bounds in Theorem 4 always matches
the lower bounds for all g € [1,2] up to a multiplicative log factor. If in addition, logm =
Ok Vi) and k = O(m®) and | = O(n®) for some constant a € (0,1), then the rates in
the lower and upper bounds match exactly for all g € [1,2]. We note that Condition 1 can
essentially be interpreted as a minimum signal-to-noise ratio condition where we require
d?/o? > Cr(kyv/nlogm + lv/mlogm). The condition is needed in guaranteeing the success
of the initialization method in Algorithm 2 and the rank selection method to be introduced
below.

Remark 6 The proposed estimator is adaptive since it does not depend on the knowledge
of k,l and q. Its dependence on r can also be removed, as we explain in the next subsection.

3.3 Rank Selection

We now turn to data-based selection of the rank . Recall the sets I° and J” defined in (7).
We propose to use the following data-based choice of r:

7 =max {s: 05(Xp00) > 06500/}, (13)

where for any i € [m] and j € [n], 0;; = Vi +VJj + \/Qilog% +2jlog < + 8logm. Here,
the threshold od|;0), 50 used in rank selection (13) is motivated by the Davidson—Szarek
bound (Davidson and Szarek, 2001) and the union bound. Basically, 0|50/ 0, bounds the
largest singular value of any submatrix of Z of size |I°| by |J°| and any singular value larger
than the threshold has to come from the signal part. We note that it is straightforward
to incorporate this rank selection step into Algorithm 2. Indeed, we can compute 7 right
after step 1 and replace all r in the subsequent steps by 7. The following result justifies our
proposal.
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Proposition 7 Under the condition of Theorem 4, 7 = r holds with probability at least
1—-0(m™2).

A proof of the proposition is given in Section 6.3. According to Proposition 7, we can
use 7 as the input for rank in Algorithm 1 and the conclusion of Theorem 4 continues to
hold.

4. Simulation

In this section, we demonstrate the performance of the proposed denoising method on
synthetic datasets.

In the first numerical experiment, we study the effect of the signal-to-noise ratio. To
this end, we fix m = 2000,n = 1000,k = [ = 50, » = 10, and set the singular values of
M as (dy,...,d1p) = (200,190, ...,120,110). The signal-to-noise ratio is varied by varying
noise standard deviation ¢ on ten equally spaced values between 0.2 and 2. The U matrix
is obtained by orthonormalizing a m x r matrix the i*" row of which is filled i.i.d. N(0,i%)
entries for any ¢ € [k] and zeros otherwise. The V matrix is obtained in the same way with
m and k replaced by n and . Fig. 1 shows the boxplots of Lq(M, ﬁ) for ¢ = 1 and 2 for the
varying values of ¢ out of 100 repetitions for each of the ten values of o. Throughout this
section, we use (6) to estimate o, Algorithm 2 with v = 4 to compute V(©) and (13) to select
the rank. In Algorithm 1, we set § = 3 and we terminate the iteration once (5) holds with
€ = 107! The thresholding function 7 is fixed to be hard thresholding n(z,t) = 2 1j;5;.
In all the repetitions, the proposed 7 in (13) consistently yields the right rank » = 10. From
Fig. 1, we conclude that the denoising error grows quadratically with the value of o, which
agrees well with the theoretical results in Theorem 4.

In the second experiment, we study the effect of the rank r on denoising error. To this
end, we fix m = 2000,n = 1000,k = [ = 50, 0 = 1 and all the nonzero singular values
of M as dy = --- = d, = 200. We vary r between 1 and 10. For each value of r, the U
and V matrices are generated in the same way as in the first experiment. Fig. 2 shows the
boxplots of Ly(M, M) for ¢ = 1 and 2 for the varying values of r out of 100 repetitions for
each of the ten values of r. It is noticeable that for the L; loss, the denoising error grows
quadratically as the rank r grows, while the trend is linear for the Lo loss. Both cases agree
with Theorem 4.

In the third experiment, we study the effect of the parameter ¢ used in the loss function.
To this end, we generated datasets in the same way as in the first experiment while fixing
o = 1. We take eleven different values of ¢ € [1,2] such that their reciprocals are equally
spaced between 0.5 and 1. As Fig. 3 shows, the logarithm of the loss function scales linearly
with 1/g. Again, this is in accordance with the error bound in Theorem 4.

In the fourth experiment, we study the effect of sparsity levels. To this end, we fix m =
2000, n = 1000, 7 = 10 and the singular values of M are (dy, . .., d19) = (200, 190,...,120, 110).
On the other hand, we consider four different combinations of sparsity parameters: (k,[l) =
(50, 50), (50,200), (100,200) and (100,50). For each (k,l) pair, the way we generate U, V
and X is the same as that in the first experiment. Moreover, the tuning parameter values
used in denoising are also the same as before. In all the repetitions, 7 in (13) consistently
select » = 10. In Table 1, we report the average values of Lq(M,ﬁ) for ¢ = 2 and 1 and
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Figure 3: Loss vs. ¢: boxplots of 100 repetitions.

y (k, 1) | (50,50) (50, 200) (100, 200) (100, 50) |
Average(Ly(M, M)) 1133.03  2662.07  3598.69  1673.49
Standard error (5.96) (11.73) (12.84) (9.73)
Average(%> 0.64 0.60 0.68 0.63
Average(L1 (M, M)) | 19056.47 43035.95 65099.19  28347.12
Standard error (88.42)  (172.39)  (231.98)  (146.07)
Average( M) | 1.08 0.98 1.23 1.07

Table 1: Average losses (with its standard error) and average rescaled losses of M out of
100 repetitions for different sparsity levels.

their standard errors over 100 repetitions. Moreover, we report the rescaled average loss

where the rescaling constant is chosen to be 7“%71(7’ +logm)(k+1), the rate derived in The-
orem 4. By the results reported in Table 1, we see that for either loss function, the rescaled
average losses are stable with respect to different sparsity levels specified by different values
of k and . Again, this agrees well with the earlier theoretical results.

In the last experiment, we study the effect of “spikiness”, i.e., how the concentration of
energy of the nonzero entries in M affects denoising. To this end, we fix m = 2000,n =
1000,k =1=50,r =1, d; = 200 and ¢ = 1. In this case, U and V are both vectors. To
vary the “spikiness”, we set all nonzero entries of V to be equal and the nonzero entries of
U as

Uilzcsi_l/s, fOI"iZl,...,k,
for a grid of twenty equally spaced s values in {0.1,0.2,...,2}. Here, for any given s, Cj is
the normalizing constant ensuring ||U|| = 1. The smaller the s value, the faster the nonzero

10
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Figure 4: Loss vs. “spikiness”: boxplots of 100 repetitions. Left panel: Ly loss. Right panel:
Lo loss.

entries in U decay to zero and the more concentrated the energy of the nonzero entries in
U and hence in M. Fig. 4 shows the boxplots of Ly(M, M) for ¢ =1 and 2 for the varying
values of s out of 100 repetitions for each of the twenty values of s. A somewhat surprising
phenomenon is that the error is not monotone in “spikiness”. For both L and Lo losses,
the errors first increase as s increases until they reach the peak when s = 1.1 and then the
errors decay as s further increases. Finally, they stabilize after s becomes 1.6 or larger. We
feel that this intriguing phenomenon might be explained intuitively as the following. For
small to medium values of s, both the bias and the variance in the estimator increases with
s. However, due to the additional [y sparsity of U, the bias starts to decrease after s grows
larger than some critical value (1.1 in this simulation). Furthermore, when s grows larger
than another critical value (1.6 in this simulation), the estimator essentially estimates the
entire nonzero block in M and the bias term vanishes, which explains the stabilization near
the end of the curves in Fig. 4.

5. Discussion
In this section, we discuss two additional issues related to the present work.

Sparse PCA The present paper is closely related to the sparse PCA problem where the
interest is in estimating the sparse leading eigenvectors of the covariance matrix of the
observed random vectors. Although the proposed algorithm in the present paper is partly
motivated by the sparse PCA estimation schemes in Ma (2013) and Yuan and Zhang (2013),
there are several important differences between the denoising model (1) and the sparse PCA
model. First, we aim to recover the mean matrix in model (1) while sparse PCA is interested

11
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in functionals (leading eigenvectors) of the covariance matrix. In addition, sparse PCA only
deals with one set of sparse eigenvectors while the denoising problem studied here needs
to deal with both left and right sparse singular vectors. In particular, even in the case
of Schatten-2 (Frobenius) norm loss, the theoretical results of the present paper cannot
be obtained directly from those for sparse PCA, such as those in Ma (2013), Cai et al.
(2013a,b), etc.

Loss function In the present paper, we have considered the collection of squared Schatten-
g norm for ¢ € [1,2] as possible loss functions. One of the referees raised the question
whether it is possible to extend the results to the case of ¢ < 1, where the loss function
becomes a squared quasinorm'. This could serve as an interesting topic for future research.
However, when ¢ < 1, the quasinorm is no longer convex and so the technique for estab-
lishing estimation lower bounds which was first laid out in Ma and Wu (2015) no longer
applies directly.

6. Proofs
6.1 Proof of Theorem 2
The proof of Theorem 2 relies on the following theorem, which is quoted without proof.

Theorem 8 (Theorem 2 in Ma and Sun (2014)) Let the observed X € R™PY €
R™ ™ be generated by the model Y = XA +Z with Z having i.i.d. N(0,0?) entries. Suppose
for some absolute constant v > 1, the coefficient matriz A € RP*™ belongs to

O(s,r,d,v) = {A :rank(A) =r,vd > 01(A) > --- > 0,(A) > d > 0,|supp(A)| < s}.

Moreover, suppose the (2s)-sparse Riesz constants of the design matriz X satisfy K~ <
k—(2s) < k4(2s) < K for some absolute constant K > 1. Then there exists a positive
constant ¢ depending only on 7y and k4 (2s) such that for all q € [1,2],

g

~ d?
infsupEL,(A,A) > co? { <7«2/q—12> A [7”2/‘1(3 +m) + r?/17 s log @] } ]
A © s

Proof [Proof of Theorem 2] To establish the lower bound, first consider the subset F; C
F(m,n,k,l,r,d, k) where we further require supp(V) = [r]. Thus, except for the first r
columns, all columns of M are zeros. So, by a simple sufficiency argument, we may assume
that n = { = r. In this case, the problem of estimating (the first r columns of) M under
model (1) can be viewed as a special case of sparse reduced rank regression where the design
matrix is the identity matrix I,,,. Note that the sparse Riesz constants for I,,, are all equal
to one. Therefore, Theorem 8 implies that

. = . X 2_q 2 2 2_q em
inf sup EL,(M, M) > inf sup EL,(M,M) > ¢ [rq ds A (qu +ra klog —)} :
M F M A

By symmetry, we also have

igfsupELq(M,ﬁ) >c [T’%_ld2 A (r%l + r%_lllog ?)] .
M F

1. A function satisfying all norm axioms except for the triangle inequality.

12
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We complete the proof by noting that for any a, b, ¢ > 0, (aAb)V(aAc) = aA(bVe) < aA(b+c).
|

6.2 Proof of Theorem 4

To prove Theorem 4, we follow the oracle sequence approach developed in Ma (2013).
Throughout the proof, we assume that ¢ = 1 is known. The case of general ¢ > 0 comes
from obvious scaling arguments. In what follows, we first define the oracle sequence and
introduce some preliminaries. Then we give an overview of the proof, which is divided into
three steps. After the overview, the three steps are carried out in order, which then leads
to the final proof of the theorem. Due to the space limit, proofs of intermediate results are
omitted.

Preliminaries We first introduce some notation. For any matrix A, span(A) stands for
the subspace spanned by the column vectors of A. If we were given the oracle knowledge
of I = supp(U) and J = supp(V), then we can define an oracle version of the observed
matrix as B

X = (-’Eij]-iellje]) S RMX"M, (14)

With appropriate rearrangement of rows and columns, the I x J submatrix concentrates on
the top-left corner. From now on, we assume that this is the case. We denote the singular
value decomposition of X by

< [~ ~1/D o0 \%
X=[0 U] [0 ﬁJ [(\1)/]’ (15)

where ﬁ,f),{/' consist of the first r singular triples of i, and U J_,]S J_,{} | contain the
remaining n — r triples (recall that we have assumed m > n). In particular, the successive
singular values of X are denoted by d; > ds > --- > d,, > 0.

With the oracle knowledge of I and J, we can define oracle versions of Algorithm 2
and Algorithm 1. In the oracle version of Algorithm 2, we replace the subsets I 0 and
{0 by I9=1907T and J° = JN J, and the output matrices are denoted by U®© and
Y(O). In the oracle version of Algorithm 1, X is replaced by X and V(© is replaced by
V(). The intermediate matrices obtained after each step within the loop are denoted by
[NJ(t)’m“l, [NJ(t)’thr, U® and V(t)’m‘ﬂ, V(t)’thr, V(t), respectively. We note that for any ¢, it is
guaranteed that

supp(U ™) = supp(UW) C 1,
supp(v(t)’thr) = supp(VW) c J.

To investigate the properties of the oracle sequence, we will trace the evolution of the
columns subspaces of U®mul M) v(©).mul 51 V() To this end, denote the r canonical

angles (Golub and Van Loan, 1996) between span(U®m) and span(U) by 7/2 > ¢’E,Lt,)1 >
R czbg)r > 0, and define

sin @) = diag(sin d)&)l, ...,sin qbq(f,)?“) (16)

13
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Moreover, denote the canonical angles between span(U®)) and span(U) by 7/2 > 01(5)1 >
R 91(3 > 0, and let

t
u,

sin O = diag(sin )1, ...,sin 01(]572,) (17)

The quantities <Z>£)tz, sin @5,“, 91(2 and sin @5}5) are defined analogously. For any pair of m xr or-
thonormal matrices W and W, let the canonical angles between span(W1) and span(Wy)
be 7/2 > 6y > --- > 6, > 0 and sin® = diag(sinfy,...,sin#,), then (Stewart and Sun,
1990)

1 ! !
ﬂHW1W1 Wy Wyr, as)
| sin ©lop = Wi W] — W2W/2H0p'

” sin @”F =

Overview Given the oracle sequence defined as above, we divide the proof into three
steps. First, we show that the output of the oracle version of Algorithm 2 gives a good
initial value for the oracle version of Algorithm 1. Next, we prove two recursive inequalities
that characterize the evolution of the column subspaces of U® and V® and show that
after T iterates, the output of the oracle version of Algorithm 1 estimates M well. Last
but not least, we show that with high probability the oracle estimating sequence and the
actual estimating sequence are identical up to 37T iterates and that Te [T,3T]. Therefore,
the actual estimating sequence inherits all the nice properties that can be claimed for the
oracle sequence.
In what follows, we carry out the three steps in order.

Initialization We first investigate the properties of )~(, I 0, JO and V).
Note that for any orthonormal matrix W, WW’ gives the projection matrix onto

span(W). The following lemma quantifies the difference between the leading singular struc-
tures of X and M.

Lemma 9 With probability at least 1 —m™2,

_ . 3
|UU — UU|g, [[VV - VV]r < ‘(/;T (\/%Jr xﬁ+2\/@>, (19)

and for any i € [n],

\di — di| < Vk+ VI+2y/logm = o(d,), (20)

where the last equality holds under Condition 1.

Proof By symmetry, we only need to spell out the arguments for U in (19). By definition,

Z1; 0]. Thus,

X = UDV'+Z where (after reordering of the rows and the columns) 7 = [ o o

we have

Var
d,

|00 =TT p < V2r|[UV’ — U0 lop < |12

14
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Here, the first inequality holds since rank(UU’ — uv’ ) < 2r and the last inequality is due
to Wedin’s sinf theorem (Wedin, 1972). By the Davidson-Szarek bound (Davidson and
Szarek, 2001), with probability at least 1 —m ™2, || Z]lop = |Z1]lop < VE + VI + 2¢/Tog m.
This completes the proof of (19). B

On the other hand, Corollary 8.6.2 of Golub and Van Loan (1996) implies that |d; —d;| <
|Z1jllop- Together with the above discussion, we obtain the first inequality in (20). The
second inequality is a direct consequence of Condition 1. This completes the proof. |

Next, we investigate the properties of the sets selected in Algorithm 2. For some uni-
versal constants 0 < a— < 1 < a4, define the following two deterministic sets

= {z € [m] : |[Mul* > ajFom/nlogm}, J) = {j € [n] : M, |* > ajFom/mlogm}.
(21)

Lemma 10 Let Condition 1 be satisfied, and let o > 4, a_ < 2i0 and ay > 2 be fizved

constants. For sufficiently large values of m and n, with probability at least 1 — O(m™2), we
have I_ C 10 C I and J_ C JO C Ji, and so 19 =19 gnd JO = JO.

Proof By symmetry, we only show the proof for 10 here. The arguments for JO are similar.
On the one hand, we have

PI0 ¢ <SP (||Xi*||2 <n+ a\/nlogm)
iel®
<mP (X%(a+a\/nlogm) <n+ om/nlogm)

(ay —1)%2a’nlogm
4n + 8atay/nlogm

-2

< m exp (—
< m exp(—3logm) =m

Here, the last inequality holds for fixed a4 > 2, a > 4 and all sufficiently large (m,n) such
that 2a;av/nlogm < n/3, which is guaranteed by Condition 1.

On the other hand, for x = (2_§;;(2;);;‘j?/:1gogm), we have

PI¢1))< Y P <||XZ-*||2 >n+ a\/nlogm)

ie(19)e
<mP (Xi(a,a\/nlogm) >n+ aanogm)
<mP <X721(aa\/nlogm) >n+ 2.1\/(11 + 2a_+/nlogm) m)

<mP (Xi(a_a\/nlogm) >n+ 2\/(71 +2a_+/nlogm)x + 2:5)

< m exp (—x)

< mexp(—3logm) =m™ 2

15
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Here, the fourth inequality holds for fixed a > 4, a_ < %, and all sufficiently large (m,n)
such that n + 2a_v/nlogm > 53;(1 — a—)*ay/nlogm. The last inequality holds when,
in addition, 0.95% - 16 -n > 3 - (2.1)? - (n + 2a_+v/nlogm), which is again guaranteed by
Condition 1.

Finally, when I_ C 10 C I, we have I° = 10 since I, CI |

The next lemma estimates the accuracy of the starting point VO for the oracle version
of Algorithm 1.

Lemma 11 Let Condition 1 be satisfied, and let o > 4 and a1 > 2 be fixed constants. For
sufficiently large values of m and n, uniformly over F(m,n,k,l,r, d, k), with probability at
least 1 — O(m™2), for a positive constant C that depends only on k,a. and «,

~ 1
|sin @V ||p < % [(r2k2nlog m) ot (r*1*mlogm) 1/4} < rt
Proof Let~X(0) be the matrix defined in Step 2 of Algorithm 2, but with I and J° replaced
by I° and J°. Then we have

Jsin B = —=[VOTO — V¥ < Y2 [FOT0 9], < VIR - KO,
v V2 7

r

Here, the first equality is from (18). The second inequality holds since rank(\~7(0)\~/'(0) -
VV’) < 2r, and the last inequality is due to Wedin’s sinf theorem (Wedin, 1972).

To further bound the rightmost side, we note that X and X are supported on 10 % Jo
and I x J respectively, with I x J° C I x J. In addition, (I x J)\(I° x J°) is the union of
two disjoint subsets (I\I°) x J and I° x (J\J?). Thus, the triangle inequality leads to

1X =X Ollop < Xy 70 sllop + K70,y 70 lop

< ||U1\f07*D(VJ*),||op + ”UTO*D(VJ\jo*)IHOp + ||Z1\1~07J||0p + HZTO,J\jt)Hop'
(22)

We now bound each of the four terms in (22) separately. For the first term, on the event
such that the conclusion of Lemma 10 holds, we have

dq
U170 . DV7llop < IDlloplVrsllopUp 70 llop < dillUp 70 llF < d*(awé)l/z(k%logm)w-

Here, the last inequality is due to I C 10, the definition of I° in (21), and the facts that
M| > d,||Uss]| for all i € [m] and that [I\I°| < |I| < k. By similar argument, on the
event such that the conclusion of Lemma 10 holds, we can bound the second term in (22)
as

N

||UTO*D(VJ\j0*)/||0p = HUTO*HOPHDHOPHVJ\jo*HOP < leUHOPHV
d
d—l(a+a)1/2(12mlog m)/4.

J\jO*HF

IN
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To bound the last two terms, we first note that on the event such that the conclusion of
Lemma 10 holds, both terms are upper bounded by ||Z1||op. Together with the Davidson—
Szarek bound (Davidson and Szarek, 2001), this implies that with probability at least
1—m™2,

HZI\’I“OJ”OP + “Zf07j\j0|’0p < 2HZIJHop <2 (\/E‘i‘ \ﬁ‘i‘ 2y logm> .

Assembling the last five displays and observe that c’lvr > 0.9d, for sufficiently large values of
(m,n) on the event such that the conclusion of Lemma 9, we obtain the first inequality in
the conclusion. The second inequality is a direct consequence of Condition 1. This com-
pletes the proof. |

Evolution We now study how the column subspaces of U® and V® evolve over itera-
tions. To this end, let _ B
p = dry1/dr, (23)

where JZ denotes the " singular value of X.

Proposition 12 For any t > 1, let 2! = || sin @Ef)HF, yt = | sin @S*)HF. Moreover, define

wy = (2d,) kA2, wy = (2d,)"1/102, W= wy V wy. (24)

Let Condition 1 be satisfied. Then for sufficiently large values of (m,n), on the event such
that the conclusions of Lemmas 9-11 hold,

1) Foranyt>1, ify'~! < 1, then
PVI— 2 <y o, Y= (292 < paf (25)

2) For any a € (0,1/2], if

1.01w
t—1 9
R (e (s (26)
then so is z'. Otherwise,
2 <y 1 —a(1 - p)). (27)

The same conclusions hold with the ordered pair (y*=1,zt) replaced by (xt,yt) in (26)-
(27).

Proof 1) In what follows, we focus on showing the first inequality in (25). The second
inequality follows from essentially the same argument.
Let u! = || sin @gt)HF. We first show that
t—1

G — (28)

1—(y=1)?

17
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Recall the SVD of X in (15). In addition, let the QR factorization of Ut)mul — Q@R ®)mul,
By definition, U®mul = XV (=1 Premultiplying both sides by [U U L] , we obtain

D 0 N\~/"\~7(j‘1) _ ?’Q(j) R(Omul
0 D, (VL)/V(t_l) (UL)/Q(t)

In addition, let

UQt) | o
(U,)QW - [w(t)] :

By the last two displays, we have

-1

WO =D (V,yVEDROm -1 _ [ [({/L)/\N](t—l)} [\7/\7@_1)} D! [ﬁ/@(t)} '

Thus,
W Olle < DL opll (VL) VD[V VEDT op D™ [lop [ TllopIQ™ [lop-

By Corollary 5.5.4 of Stewart and Sun (1990), [[W®||p = ut, |[(VL)VED | = 4L More-
over, by Section 12.4.3 of Golub and Van Loan (1996), ||[\~7’\~7(t_1)]_1||0p = 1/cos 97(,%;1) =

1/\/1 — (sin 91()16;1))2 < 1/4/1— (yt=1)2. Here we have used the assumption that y'~! < 1.

Together with the facts that |[D L |lep = dry1, D lop = &%, [[Ullop = |QPlop = 1, this
leads to (28).
Next, we show that

N R (—

BV

To this end, let wt = || QW (Q®) —U® (UMY ||g. Then, by (18) and the triangle inequality,
we obtain

(29)

1
xt < ut + ',

V2

To bound w?, note that Wedin’s sinf theorem (Wedin, 1972) implies

||U(t),mu1 7 u® ”F
UT(U(t) mul)

In the oracle version, UM has at most k nonzero rows, and so [|[U®ml _U®O||p < /kr2.
For any unit vector y € span(V(t_l)) decompose y = yo + y1 where yo € span(V) and
yv1 € span(V ). Then by definition, ||yo| > cos H(t V> /1 — (yt=1)2. Thus, for any

unit vector x, [[U@milx|? = XVE-x|? = HXyII2 = HXyoll2 + 1 Xy1[? = [ Xyol* =
IXVV'yol? = (d;)llyoll* = (d)*[1 = (y*~")?]. Hence,

o (UMY > ipf UGy > d,./1 — (yi-1)

lIx([=1

18
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Assembling the last three display, we obtain (29). Finally, the first inequality in (25) comes
from (28), (29) and the triangle inequality.
2) Given (25), we have
b Py T tw
1— (1%
and that 3° < % < %(1 — p)? for sufficiently large values of (m,n) due to Condition 1 and
Lemma 9. The proof of part (2) then follows from the same argument as in the proof of
Proposition 6.1 in Ma (2013). [ |

Convergence We say that the oracle sequence has converged if
1.01w

(1=m (1 =p)

11'0_1;" is the smallest possible value for x!

ztvyt < (30)

This choice is motivated by the observation that
and ' that Proposition 12 can lead to.

Proposition 13 Let Condition 1 be satisfied and T be defined in (12). For sufficiently
large values of (m,n), on the event such that the conclusions of Lemmas 9-11 hold, it takes
at most T' steps for the oracle sequence to converge in the sense of (30). For any t, let

pl) = OO (U®Y and P = v® (VDY . Then there exists a constant C' that depends only
on K, such that for allt > T,

IPPXP{ —UDV|i < C (ki +17;) -

Proof To prove the first claim, we rely on claim (2) of Proposition 12. Without loss of
generality, assume that m = 2" for some integer v > 1. So v = logm/log2. Let t; be the
number of iterations needed to ensure that 2! v y* < —5%% _ Note that when (26) does

(1-3)(1-p)
not hold, (27) ensures that
v <yl —al = p))? 2t <@L —a(l-p))* (31)

= (1-3)(1-p)
3)(1 = p)/(1.0lw). Since |log(1 — z)| > z for all z € (0,1), it suffices to set

T I 2T A I8
1—p 1.0lw 2 k2 Vv iv2

Next, let to—t1 be the number of additional iterations needed to achieve z*Vy' < 1.01w/[(1—

1)(1—p)]?. Before this is achieved, (31) is satisfied with @ = %. So it suffices to have [1—%(1—

p)2t2=t) < (1 - 1)/(1 — 1), which is guaranteed if to — t; > %[Iog(l —1) —log(1—3)

Recursively, we define t; for i = 3,...,v, such that 2 y% < 1.01w/[(1 — 27%)(1 — p)

Repeating the above argument shows that it suffices to have t; —t;,_1 = 211__; [log(1 —27%) —
log(1 —2-G=D)] for i = 3,...,v. Therefore, if we let

Thus, it suffices to have [1— (1 — p)}zt1 > _LOw e 2t|log(l—3(1—p))| > log(l—
1

1

I
.

v+1/2  (1+o0(1)logm _ = 271 » e
— > Sl _ _ _
21— p) gz 21, [log(1 —27%) ~ log(1 — 2]

ty—t =
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then 2! v y' < 1.01w/[(1 — m™1)(1 — p)] for all t > t,. We complete the proof of the first
claim by noting that T' > ¢, for sufficiently large m, n under Condition 1.
To prove the second claim, let P, = UU’ and P, = VV’. Then we have

IPOXP() — UDV||r = [PHXP! —15 Xf%HF (32)
< |(PY) — P )XPP||p + [P X(P — P,)|r
<[P - ur\FHXHopr\P Nop + 1P = P [lp X loplPuullop
= di (IIPY = Byllp + [PV — Py |r) (33)
c( k2 + wg). (34)

Here, the equality (32) is due to the definitions of 1~Du, f’v and the fact that I~J, D and
V consist of the first r singular values and vectors of X. The equality (33) holds since
1Xlop = di and [|Pylop = Hlsq()t)Hop = 1 as both are projection matrices. Finally, the in-
equality (34) holds since |[PY) — P,[lr = v22' and [PV — P,|r = v2y" due to (18), the
definitions in (24) and (30), and the fact that on the event such that (20) holds, d;/d, < 2k
when m and n are sufficiently large. This completes the proof. |

Remark 14 [t is worth noting that the conclusions of Proposition 12 and Proposition 13
hold for any v, > 0 and v, > 0, though they will be used later with the specific choice of vy
and 7, i (10).

Proof of Upper Bounds We are now in the position to prove Theorem 4. To this end,
we need to establish the equivalence between the oracle and the actual estimating sequences.
The following lemma shows that with high probability, the oracle sequence and the actual
sequence are identical up to 37 iterates.

Lemma 15 Let 7, and 7, be defined as in (10) with some fized constant § > 4 and let
Condition 1 be satisfied. For sufficiently large m and n, with probability at least 1—O(m™2),

forall 1 <t < 3T, U(Itc)* =0, VL(]tc)* =0, and so UM = U® gnd v = v,

Proof First of all, by Lemma 10, Wlth probability at least 1 —0(m™2%), J = JO Jy C J,
and so V(0 = v(© ) Define event E© = {V(© = v,
‘We now focus on the first iteration. Define event

EW = {HZZ-*\N/'(O)H <, Vi € IC} .

On EOnEY, for any i € 1¢, U™ = X, VO = 2, VO, Thus, [[UY™|| < ~, and so
U(l)’thr = 0 for all 4 € I¢. This further implies Ugc)* — 0 and UD = UM, Further define

7%
event

BY = {2y TW| < 7, vj € I}
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Then by similar argument, on the event £ E&l) ﬂEf,(Jl), we have VSLC)* =0and V) = v,

We now bound the probability of (E EY )) Without loss of generality, let J C [I]. Note
that for any j € J, i € I¢, V(© depends on Z;; only through ||Ze;||? in the selection of J°
o Let k' = |I°¢|
and Y7,...Y] be i.i.d. xp random variables independent of Z. For any i € I¢ and j € [I], let

in the oracle version of Algorithm 2. Therefore, VO ig independent of ||ZZ

. Zi;
Zij=Y;—"
Yzl

and Z, i = (Zi1, ..., Zy) € R Since supp(V(®) € J C [I] on the event E©) we obtain
that for any i € I¢, Zi*{/v(o) = Zi[l]{/(o) = Zz[l]{/(o) + (Zi[l] — Zl[l]){/(o) Thus,

~ ~ ~ 0 <7 O
1Ze VO < | Zig VU + 1 (Zay — Zag) VL < 1Zag VL + 11 Zagy — Z-mmv@]iuop.

For the first term on the rightmost side, since Zl[l] is independent of V(© ||Zl[l ||2 ~ X2,
and so by Lemma 17, with probability at least 1 — O(m™5),

|Z; l]V ||2 < r+2y/frlogm+ 23 logm.

For the second term, we first note that HV[(Z(]) llop = 1 since it has orthonormal columns.

- . Yi Y1 5
Moreover, Z;; — Ziy) = Z;p) diag (m —1,..., W — ) Thus,

YA
Zig — Zig || < || Ziy J 1'.
|Ziy — Z || < 112y H Ichgll

By Lemma 17, with probability at least 1 — O(m™?),
||Zi[l}H2 <1+ 2+/Bllogm + 2B logm.

By Lemma 18, for any j € [I], with probability at least 1 — O(m~(F+1),
2

i (B+1)logm
1Z <12

1/ <4-1.01- o

o
1Zre -
Here, the last inequality holds for sufficient large values of m and n, since Condition 1

implies that (logm)/k’ = o(1). By the union bound, with probability at least 1 — O(m %),
for sufficient large values of m and n,

|1Zy — Zay|) < 0.01/logm,

since Condition 1 ensures that [/k’ = o(1). Assembling the last six displays, we obtain that
for any 8 > 1, with probability at least 1 — O(m™"),

HZi*\N/(O)H < \/7’ + 2+/Brlogm + 28 logm + 0.014/logm < ,.
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Applying the union bound again, we obtain that when 5 > 4 in (10),
P{(EM)} < 0m™). (35)

Similarly, for any j € J¢, U depends on Z;; only through ||Z; - ||. Therefore, by analogous
arguments, we also obtain (35) for (E!)¢ with any fixed 8 > 4.
Turn to subsequent iterations, we further define events

B = {12V <y, vie 19, EO = {[[(Zo) TO| <y, Vj € I}, t=2,...,3T.

Iterating the above arguments, we obtain that on the event E(©) N (ﬂf’ZlEqSt)) N (ﬂfLEq()t)),
Ugtc)* =0, VE;C)* =0, and so U® = U® and VO = v, Moreover, by similar argument to
that for (35), we can bound each IP’{(ES))C} and ]P’{(El(,t))c} by O(m™3) for all t = 2,...,3T
with any fixed § > 4 in (10). Finally, under Condition 1, T'= O(m), and so

P{EO 0 (I ED) N (MLEM)} =1 - 0(m™).

This completes the proof. |

Lemma 16 Let T be defined in (11). With probability at least 1 — O(m~2), T < T < 3T.

Proof By definition (10) and (12), we have

1.01 [logm d?
T< — log — | .
-2 (10g2+0g72>

On the other hand, note that 1/log2 > 1.44 and that log(k V1) < log m under the assump-
tion that m > n, and hence

T

1.01 /1 d? 1.01 d?
> — Ogm—logm—i—log—r > —— | 0.44logm + log — | .
2 log 2 2 2 2

On the other hand, on the event such that the conclusions of Lemmas 9-11 hold, we have

A0 — d,| < |40 = | +1d, — d|
= |d\” — dy| + |dr — dy|
< XO = X]|op + o(dy)
= o(dy).

Hence for sufficiently large values of m and n, logy? > 1 and with probability at least

1— O(m=2), | log(dﬁo))2/ log d? — 1] < 0.01. When the above inequalities all hold, we obtain
T e [T, 37). n

We are now in the position to prove Theorem 4.
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Proof [Proof of Theorem 4] Note that on the events such that the conclusions of Lemmas
9-16 hold, we have

IM —M||p
= IPOXPT) — UDV||y
< [PDOXPD — UDV|| + |[UDV’ — UDV/||g
= [POXPD) — BXP, || + [P.XP, — P,MP, |
< |POXPT) — P,XP,|r + [P.XP, — P,MP, ||

+ |P.MP, — P,MP,||.

Here, the first and the second inequalities are both due to the triangle inequality. The
second equality is due to Lemma 16 and the facts that supp(U( ) cl, supp(V(t)) C J and
that U and V collect the first r left and right singular vectors of X.

We now bound each of the three terms on the rightmost side of the last display. First,
on the event such that the conclusions of Proposition 13 and Lemma 16 hold, we have

IPOXPD) — P,XP,|r < CV/k2 + 172,

Next, by similar argument to that leading to the conclusion of Lemma 11, with probability
at least 1 — O(m™2)

|P.XP, — P,MP,||r < |X - M| = |Z1/]r
<V Z1glop
<Vr(VE+ Vi+2y/logm).

Last but not least,

|P,MP, — P,MP, |y
< [(Py — Pu)MP,|p + [P, M(P, — P,)|r
< di(|Py = Pullr + [Py — Polr)
< kr(VE + VI+2y/logm).

Assembling the last four displays, we complete the proof for the case of Frobenius norm,
e., ¢ = 2. To obtain the result for all ¢ € [1,2), simply note that for any matrix A,

A]ls, < (rank(A))éf%HAHF and that rank(M — M) < 2r. This completes the proof. W
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6.3 Proof of Proposition 7

Proof [Proof of Proposition 7] Without loss of generality, assume that o = 1. We first
show that 7 < r with probability at least 1 — O(m~2). To this end, note that

P{7> 1} =P {041(Xy050) > 600}

<P max or+1(XaB) > da B}
{AIIIO|,B||JO |AllB]

< Z Z P{|A|£}?§|:j or+1(Xan) > %} :

i=r+1j=r+1

By the interlacing property of singular values, we know that for Z, a m x n standard
Gaussian random matrix,

st st
max  o,41(XaB) < max  01(Zap) < max o01(Zap),
|A|=i,| B|=j |Al=i—r,|B|=j—r |A|=i,| B|=j

¢
where < means stochastically smaller. Together with the union bound, this implies

m

,><?>P{aﬂzAB>>5U}

]P){ max UT+1(XAB) > 513} < <Z

|A|=i,| Bl=j

em\i [en\’ . em . em
< (—) — ) exp| —ilog— — jlog— —4logm
? J ? J

=m 4

Here, the second inequality is due to (§) < (ep/k)* for any k € [p] and the Davidson-Szarek
bound (Davidson and Szarek, 2001). As n < m under Condition 1, we obtain

m n
P{r>r}< Z Z m~ <m™2
i=r+1j=r+1

To show that 7 > r with probability at least 1 —O(m™2), we note that on the event such

that the conclusions of Lemmas 9-11 hold, o, (X 00) = 0,(X?) = 4. So by the triangle
inequality, the conclusion of Lemma 9 and the proof of Lemma 11, we obtain that

UT(XIOJO) = Jgo) > dr — HX - XHOp - HX - iOHOp > dv‘/4 > 5kla

where the second last and the last inequalities hold under Condition 1 for sufficiently large
values of m and n. Note that on the event such that the conclusion of Lemma 10 holds, we
have |I°| < k and |J°| <1 and so d)70/170) < dgr- This completes the proof. [ ]
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Appendix A. Appendix

Lemma 17 (Lemma 8.1 in Birgé (2001)) Let X follow the non-central chi square dis-
tribution x2(8) with degrees of freedom v and non-centrality parameter 6 > 0. Then for any
x>0,

P{qu+5+2w@+a®x+m}geﬂ,
P{X§u+5—%mu+%m}§gﬁ

Lemma 18 Let X and Y be two independent x2 random variables. Then for any x > 0,

P{ X 1‘ _4e/v(1+ \/a:/l/)} -

Y 1—-2/z/v

Proof By the triangle inequality,

X 1
S < (X - Y —v)).

By Lemma 17, for any > 0, each of the following holds with probability at least 1 — 2e™":

| X —v| < 2v/ve + 2z,
Y —v| <2yvx+2z, and |Y|>v—2\vz.

Assembling the last two displays, we complete the proof. |

References

L. Birgé. An alternative point of view on Lepski’s method, volume 36 of Lecture Notes-
Monograph Series, pages 113-133. Institute of Mathematical Statistics, 2001.

F. Bunea, Y. She, and M.H. Wegkamp. Optimal selection of reduced rank estimators of
high-dimensional matrices. The Annals of Statistics, 39(2):1282-1309, 2011.

F. Bunea, Y. She, and M.H. Wegkamp. Joint variable and rank selection for parsimonious
estimation of high dimensional matrices. The Annals of Statistics, 40:2359-2388, 2012.

C. Butucea and Yu.l. Ingster. Detection of a sparse submatrix of a high-dimensional noisy
matrix. Bernoulli, 19(5B):2652-2688, 2013.

T.T. Cai, Z. Ma, and Y. Wu. Sparse PCA: Optimal rates and adaptive estimation. The
Annals of Statistics, 41(6):3074-3110, 2013a.

T.T. Cai, Z. Ma, and Y. Wu. Optimal estimation and rank detection for sparse spiked
covariance matrices. Probability Theory and Related Fields, 161(3-4):781-815, 2013b.

25



YANG, MA, AND Buja

T.T. Cai, X. Li, and Z. Ma. Optimal rates of convergence for noisy sparse phase retrieval
via thresholded Wirtinger flow. arXiv preprint arXiv:1506.03382, 2015.

E.J. Candes and Y. Plan. Matrix completion with noise. Proceedings of the IEEE, 98(6):
925-936, 2010.

E.J. Candes and B. Recht. Exact matrix completion via convex optimization. Foundations
of Computational mathematics, 9(6):717-772, 2009.

G. Chen, P.F. Sullivan, and M.R. Kosorok. Biclustering with heterogeneous variance. Pro-
ceedings of the National Academy of Sciences, 110(30):12253-12258, 2013.

K.R. Davidson and S. Szarek. Handbook on the Geometry of Banach Spaces, volume 1, chap-
ter Local operator theory, random matrices and Banach spaces, pages 317-366. Elsevier
Science, 2001.

D.L. Donoho and M. Gavish. Minimax risk of matrix denoising by singular value thresh-
olding. The Annals of Statistics, 42(6):2413-2440, 2014.

J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American Statistical Association, 96:1348-1360, 2001.

C. Gao, Y. Lu, Z. Ma, and H. H. Zhou. Optimal estimation and completion of matrices
with biclustering structures. arXiv preprint arXiv:1512.00150, 2015.

G. H. Golub and C. F. Van Loan. Matriz computations. Johns Hopkins University Press,
3rd edition, 1996.

R.H. Keshavan, A. Montanari, and S. Oh. Matrix completion from noisy entries. The
Journal of Machine Learning Research, 11:2057-2078, 2010.

V. Koltchinskii, K. Lounici, and A.B. Tsybakov. Nuclear-norm penalization and optimal
rates for noisy low-rank matrix completion. The Annals of Statistics, 39(5):2302-2329,
2011.

K. Lee, Y. Wu, and Y. Bresler. Near optimal compressed sensing of sparse rank-one matrices
via sparse power factorization. arXiv preprint arXiv:1312.0525, 2013.

M. Lee, H. Shen, J.Z. Huang, and J.S. Marron. Biclustering via sparse singular value
decomposition. Biometrics, 66:1087-1095, 2010.

X. Li and V. Voroninski. Sparse signal recovery from quadratic measurements via convex
programming. SIAM Journal on Mathematical Analysis, 45(5):3019-3033, 2013.

K. Lounici, M. Pontil, S. Van De Geer, and A. B. Tsybakov. Oracle inequalities and optimal
inference under group sparsity. The Annals of Statistics, 39(4):2164-2204, 2011.

Z. Ma. Sparse principal component analysis and iterative thresholding. The Annals of
Statistics, 41(2):772-801, 2013.

26



DENOISING OF SPARSE AND LOw RANK MATRICES

Z. Ma and T. Sun. Adaptive sparse reduced-rank regression. arXiv preprint
arXiw:1403.1922, 2014.

Z. Ma and Y. Wu. Volume ratio, sparsity, and minimaxity under unitarily invariant norms.
IEEFE Transactions on Information Theory, To appear, 2015.

S. Negahban and M.J. Wainwright. Estimation of (near) low-rank matrices with noise and
high-dimensional scaling. The Annals of Statistics, 39(2):1069-1097, 2011.

S. Oymak and B. Hassibi. Asymptotically exact denoising in relation to compressed sensing.
arXiv preprint arXiw:1305.2714, 2013.

S. Oymak, A. Jalali, M. Fazel, and B. Hassibi. Noisy estimation of simultaneously structured
models: Limitations of convex relaxation. In Decision and Control (CDC), 2013 IEEE
52nd Annual Conference on, pages 6019-6024. IEEE, 2013.

S. Oymak, A. Jalali, M. Fazel, Y.C. Eldar, and B. Hassibi. Simultaneously structured models
with application to sparse and low-rank matrices. IEFE Transactions on Information
Theory, 61(5):2886-2908, 2015.

A.A. Shabalin, V.J. Weigman, C.M. Perou, and A.B. Nobel. Finding large average subma-
trices in high dimensional data. The Annals of Applied Statistics, 3:985-1012, 2009.

Y. Shechtman, Y.C. Eldar, A. Szameit, and M. Segev. Sparsity based sub-wavelength
imaging with partially incoherent light via quadratic compressed sensing. Optics Fxpress,
19(16):14807-14822, 2011.

G.W. Stewart and J.-G. Sun. Matriz Perturbation Theory. Computer science and scientific
computing. Academic Press, 1990.

X. Sun and A.B. Nobel. On the maximal size of large-average and anova-fit submatrices in
a gaussian random matrix. Bernoulli, 19(1):275-294, 2013.

P.-A. Wedin. Perturbation bounds in connection with singular value decomposition. BIT,
12:99-111, 1972.

D. Yang, Z. Ma, and A. Buja. A sparse singular value decomposition method for high-
dimensional data. Journal of Computational and Graphical Statistics, 23(4):923-942,
2014.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B, 68(1):49-67, 2006.

X.-T. Yuan and T. Zhang. Truncated power method for sparse eigenvalue problems. Journal
of Machine Learning Research, 14:899-925, 2013.

C.H. Zhang. Nearly unbiased variable selection under minimax concave penalty. The Annals
of Statistics, 38(2):894-942, 2010.

27



	1 Introduction
	2 Problem Formulation and Denoising Method
	2.1 Problem Formulation
	2.2 Approach

	3 Theoretical Results
	3.1 Minimax Lower Bounds
	3.2 Minimax Upper Bounds
	3.3 Rank Selection

	4 Simulation
	5 Discussion
	6 Proofs
	6.1 Proof of Theorem 2
	6.2 Proof of Theorem 4
	6.3 Proof of Proposition 7

	A Appendix

