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Abstract

We consider a model of repeated online auctions in which an ad with an uncertain click-
through rate faces a random distribution of competing bids in each auction and there is
discounting of payoffs. We formulate the optimal solution to this explore/exploit problem
as a dynamic programming problem and show that efficiency is maximized by making a bid
for each advertiser equal to the advertiser’s expected value for the advertising opportunity
plus a term proportional to the variance in this value divided by the number of impressions
the advertiser has received thus far. We then use this result to illustrate that the value of
incorporating active exploration in an auction environment is exceedingly small.
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1. Introduction

In standard Internet auctions in which bidders bid by specifying how much they are willing
to pay per click, it is standard to rank the advertisers by a product of their bid and their
click-through rate, or their expected cost-per-1000-impressions (eCPM) bids. While this
is a sensible way to determine the best ad to show for a particular query, it is potentially
a suboptimal approach if one cares about showing the best possible ads in the long run.
In online auctions, new ads are constantly entering the system, and for these ads one will
typically have uncertainty in the true eCPM of the ad due to the fact that one will not know
the click-through rate of a brand new ad with certainty. In this case, it can be desirable to
show an ad where one has a high amount of uncertainty about the true eCPM of the ad so
one can learn more about the ad’s true eCPM by observing whether the ad received a click.
Thus even if one believes that a high uncertainty ad is not the best ad for this particular
query, it may be valuable to show this ad so one can learn more about the eCPM of the ad
and make better decisions about whether to show this ad in the future.

While there is an extensive literature that analyzes strategic experimentation in these
types of multi-armed bandit problems, the online advertising setting differs substantially
from these existing models. In online auctions there is a tremendous amount of random
variation in the quality of competition that an ad with unknown eCPM faces in the auction
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due to the fact that the ad is constantly competing in a wide variety of different auctions.
In these settings, there will always be a certain amount of free exploration that takes place
due to the fact that there will be some auctions in which there are no ads with eCPMs that
are known to be high, and one can use these opportunities to explore ads with uncertain
eCPMs. Almost all existing models of multi-armed bandits that can be applied to online
auctions fail to take this possibility into account.

This paper presents a model of repeated auctions in which an ad with an uncertain
click-through rate faces a random distribution of competing bids in each auction and there
is discounting of payoffs in the sense that an auctioneer values a dollar received in the
distant future less highly than a dollar received today. We formulate this problem as a
dynamic programming problem and show that the optimal solution to this problem takes a
remarkably simple form. In each period, the auctioneer should rank the advertisers on the
basis of the sum of an advertiser’s expected eCPM plus a term that represents the value of
learning about the eCPM of a particular ad. One then runs the auction by ranking the ads
by these social values rather than their expected eCPMs.

While there have been previous papers on multi-armed bandits that have proposed
ranking arms by a term equal to the expected value of showing an ad plus an additional term
representing the value of learning about the true value of that arm,1 the value of learning in
the problem that we consider is dramatically different from the value of learning in standard
multi-armed bandit problems. In standard multi-armed bandit problems (Auer et al., 2002)
where there is no discounting of payoffs and no random variation in the competition that
an arm faces, typical solutions involve ranking the ads according to a sum of the expected
value of the arm plus a term proportional to the standard deviation in the arm’s value. By
contrast, we find that the value of learning in our setting is proportional to the variance
in an ad’s expected eCPM divided by the number of impressions that an ad has received.
Thus the incremental increase in the probability that a particular ad is shown varies with
1
k2

, where k denotes the number of impressions this ad has received so far. This is an order
of magnitude smaller than the corresponding incremental increase in standard machine
learning algorithms. In fact, we show that if we attempted to rank the ads on the basis
of the sum of an advertiser’s expected eCPM plus a term equal to a constant times the
standard deviation in the advertiser’s eCPM, the optimal constant would be zero.

Our baseline model considers a simple situation in which there is a single advertiser
with unknown eCPM that competes in each period against an advertiser with known eCPM
whose eCPM bid is a random draw from some distribution. But our conclusions about the
value of learning are not restricted to this simple model. We show that our conclusions about
the optimal bidding strategies extend to a variety of more complicated models including
models in which there are multiple advertisers with unknown eCPMs as well as models in
which there is correlation between the unknown eCPMs of multiple different advertisers
and information from showing one advertiser can help one refine one’s estimate of the
eCPM for some other advertiser. We also illustrate an asymptotic equivalence between

1. In addition, Iyer et al. (2014) illustrate that bidders may have an incentive to make a bid equal to
their expected value plus a term proportional to their value of learning about their value if bidders have
uncertainty about their own value. This paper differs from ours in that it considers an environment in
which bidders are attempting to learn their own values rather than an auctioneer attempting to learn
the eCPMs.
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the theoretically optimal strategies and the strategies that would be selected by a simple
one-step look ahead policy often referred to as “knowledge gradients” (Frazier et al., 2009;
Ryzhov et al., 2010, 2012).

A consequence of these small incremental changes in the probability that an ad is shown
is that the total value from adding active exploration in the online auction setting is ex-
ceedingly small. Not only does the incremental increase in the probability that a particular
ad is shown vary with 1

k2
, but on top of that, the expected payoff increase that one ob-

tains conditional on showing a different ad than would be shown without active learning
also varies with 1

k2
. This implies that the total value of adding active exploration in the

setting we consider will vary with 1
k4

for large numbers of impressions k, an exceedingly
small amount.

We further obtain finite sample results illustrating that for realistic amounts of uncer-
tainty in the eCPMs of ads, the maximum total efficiency gain that could ever be achieved
by adding active learning in this auction environment is exceedingly small, typically only a
few hundredths of a percentage point. Finally, we empirically verify these findings through
simulations and illustrate that adding active learning in the auction environment we con-
sider only changes overall efficiency by a few hundredths of a percentage point.

Perhaps the most closely related paper to our work is a paper by Li et al. (2010). This
paper is the only other paper we are aware of that considers questions related to the value
of learning about the eCPMs of ads with uncertain eCPMs in a setting where there is
discounting in payoffs as well as random variation in the quality of the competition that
an ad faces from competing ads in the auction. Li et al. (2010) demonstrate that the value
of showing an ad with an uncertain eCPM will generally exceed the immediate value of
showing that ad because one will learn information about the eCPM of the ad that will
enable one to make better ranking decisions in the future. However, Li et al. (2010) do not
attempt to characterize the optimal solution in this setting, as we do in the present paper.

There is also an extensive literature in statistics and machine learning that addresses
questions related to multi-armed bandits (Audibert and Bubeck, 2010; Auer et al., 2002,
2003; Gittins, 1979; Hazan and Kale, 2011; Lai and Robbins, 1985; Mannor and Tsitsiklis,
2004; May et al., 2012; Slivkins, 2014) as well as some papers that focus specifically on the
auction context (Agarwal et al., 2009; Babaioff et al., 2009; Devanur and Kakade, 2009;
Wortman et al., 2007). However, none of these papers considers appropriate methods for
exploring ads in a context where there is random variation in the quality of the competition
that an ad faces in an auction. The optimal methods for exploring ads in such a scenario turn
out to be completely different from the methods considered in any of these previous papers,
and as such, our work is completely different from existing machine learning literature.

Finally, there is an extensive literature in economics related to questions on strategic
experimentation. Within economics, this literature has considered a variety of questions
including consumers trying to learn about the quality of various products (Bergemann and
Välimäki, 1996, 1997, 2000), firms and sellers trying to learn about demand (Aghion et al.,
1993; Fishman and Rob, 1998; Ghate, 2015; Keller and Rady, 1999; Mirman et al., 1993;
Rusitchini and Wolinsky, 1995), learning to play repeated games (Anthonisen, 2002; Gale
and Rosenthal, 1999), learning about untried policies in political economy (Callander, 2011;
Callander and Hummel, 2014; Strulovici, 2010), learning from the actions of others (Banerjee
and Fudenberg, 2004; Gale, 1996; Vives, 1997), as well as general results on experimentation
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(Aghion et al., 1991; Banks and Sundaram, 1992; Bergemann and Välimäki, 2001; Bolton
and Harris, 1999; Brezzi and Lai, 2002; Keller and Rady, 2010; Keller et al., 2005; Moscarini
and Smith, 2001; Rothschild, 1974; Schlag, 1998; Weitzman, 1979). However, the economics
literature has not considered strategic experimentation in auctions, as we do in the present
paper.

2. The Model

There is a new ad with an uncertain eCPM that will bid into a second-price auction for
a single advertising opportunity with competing advertisers.2 Throughout we let x denote
the actual unknown but fixed value (or eCPM) for showing the new ad, z denote the eCPM
bid the auctioneer places on behalf of this advertiser,3 and let k denote the number of
impressions the ad has received so far. We also suppose that the highest eCPM bid that this
advertiser competes against may vary from auction to auction, and that in each auction,
this highest competing eCPM bid is a random draw from some cumulative distribution
function F (·) with corresponding continuous and twice differentiable density f(·).

At any given point in time, the auctioneer does not necessarily know the exact value
of x. Instead the auctioneer only knows that x is drawn from some distribution. We let x̃
denote a generic distribution corresponding to the auctioneer’s estimate of the distribution
of possible values of x. This distribution will evolve over time as an ad has received more
impressions and we have a better sense of the underlying eCPM of the ad.

Throughout we also let x denote an unbiased estimate of the true value of x given the
auctioneer’s estimate of the distribution of possible values of x. We also let σ2

k denote the
variance in our estimate of the eCPM for the new ad when the ad has been shown k times.
In the limit when k is large, σ2

k will be well approximated by s2(x)
k for some constant s2(x)

that depends only on x, and we assume that σ2
k = s2(x)

k + h(x)
k2

+o( 1
k2

) for some continuously
differentiable functions s2(x) and h(x).4

In addition, we let δ ∈ (0, 1) denote the per-period discount rate so the auctioneer only
values advertising opportunities that take place at time T by a factor of δT as much as
opportunities that take place at the present time period. Throughout we assume that the
auctioneer wishes to maximize total efficiency; that is, if vt denotes the total value of the ad
displayed in period t (the true eCPM of this ad), then the auctioneer’s payoff is

∑∞
t=0 δ

tvt.
Since online ad auctions are typically designed to select the efficiency-maximizing allocation,
this is a logical objective to optimize.

2. These second-price auctions for a single advertising slot are ubiquitous throughout the display advertising
industry. In such auctions, advertisers have an incentive to make a bid equal to their true value for a
click.

3. Typically advertisers bid by indicating how much they are willing to pay per click, and the auctioneer
then uses this cost-per-click bid as well as an estimate of the probability the ad will be clicked to calculate
an eCPM bid for the advertiser that the auctioneer then places on behalf of the advertiser in the auction.

4. This assumption will hold for most common priors about the distribution from which the uncertain
eCPM of the ad is drawn, such as a beta prior. It is also worth noting that the weaker assumption that

σ2
k = s2(x)

k
+ O( 1

k2
) for some constant s2(x) is sufficient to prove our main result about the value of

learning being O( 1
k2

). The additional assumption that σ2
k = s2(x)

k
+ h(x)

k2
+ o( 1

k2
) is only used to further

prove that the value of learning is of the form v(x)
k(k+1)

+ o( 1
k2

) for some function v(x).
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3. Preliminaries

Before proceeding to analyze the precise model given above, we first address a closely related
question about the extent to which a particular advertising opportunity increases total
welfare if the eCPM of this advertising opportunity is known. In particular, we consider a
concept that we refer to as the long-term value of a particular advertisement. The long-
term value of a particular advertisement gives the total increase in the auctioneer’s payoff
that arises as a result of this ad being in the system from the various auctions that take
place over time. Understanding the long-term value of a particular advertisement when the
eCPM of that ad is known will serve as a useful benchmark for understanding how one
should behave when there is uncertainty about the eCPM of the ad.

Theorem 1 If the eCPM of an ad is known, then the total long-term value of this ad is a
convex function of the eCPM of the ad and a strictly convex function for regions where the
eCPM of the ad is within the support of the distribution of the highest competing eCPM.

All proofs are in the appendix. The fact that the value for any particular advertisement
is a convex function of the eCPM of the ad if the eCPM of the ad is known indicates that
if there is uncertainty about the eCPM of the ad, then the expected long-term value of this
ad will be greater than the long-term value of the expected eCPM of the ad. From this it
follows that if there is uncertainty about the eCPM of the ad, then it will be optimal to
behave as if this particular ad had a known eCPM that is greater than the expected eCPM
of the ad. The precise additional amount that this advertiser’s bid should be increased
will be pinned down by the solution to the dynamic programming problem governed by the
game described in the model.

4. Dynamic Programming Problem

In this section, we formulate the value of a particular ad as a dynamic programming prob-
lem and use this formulation to derive the optimal bidding strategy. First we derive the
auctioneer’s payoff that arises in a particular period when the auctioneer makes a particular
bid on behalf of the advertiser with uncertain eCPM.

Note that if the auctioneer places a bid of z on behalf of the advertiser with uncertain
eCPM in the auction and the actual value of showing this particular ad is x, then the
auctioneer’s payoff from running the auction once is

u(z, x) =

∫ ∞
z

yf(y) dy +

∫ z

0
xf(y) dy = −y(1− F (y))|∞z +

∫ ∞
z

(1− F (y)) dy + xF (z)

= z(1− F (z)) +

∫ ∞
z

(1− F (y)) dy + xF (z).

In general placing a bid of z rather than x in a one-shot auction will result in some
inefficiencies in the one-shot auction since it would be optimal for efficiency to place a bid
exactly equal to x on behalf of this advertiser in a one-shot auction. The payoff loss that
arises in a one-shot auction as a result of placing a bid of z instead of x is

L = u(x, x)− u(z, x)
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= x(1− F (x)) +

∫ ∞
x

(1− F (y)) dy + xF (x)− z(1− F (z))−
∫ ∞
z

(1− F (y)) dy − xF (z)

= (x− z)(1− F (z)) +

∫ z

x
(1− F (y)) dy =

∫ z

x
F (z)− F (y) dy.

If we define the per-period reward to be the negative of this per-period loss, then the
auctioneer seeks to maximize the discounted sum of these per period rewards. Let Vk(x)
denote the value of this discounted sum when the auctioneer follows the optimal bidding
strategy. Also note that, from the perspective of the auctioneer, x is a random variable that
can be expressed as x = x+ σkε, where σk denotes the standard deviation in our estimate
of the ad with uncertain eCPM when the ad has been shown k times, and ε is a random
variable with mean zero and variance one. We use this notation to prove the following:

Lemma 2 Vk(x) can be expressed as the value of a dynamic programming problem by

Vk(x) =
1

1− δ

(
max
z
Eε

[
−
∫ z

x+σkε
F (z)− F (y) dy + δF (z)(Ex′ [Vk+1(x′)]− Vk(x))

])
,

where x′ denotes the uncertain realization of x after an ad receives an additional impression.

By using the expression for the value of the dynamic programming problem in the
previous lemma, we can derive the bid that the auctioneer should place on behalf of the
advertiser to maximize the auctioneer’s payoff. This is done in the theorem below:

Theorem 3 The optimal bidding strategy in the dynamic programming problem when an
ad has been shown k times entails setting z = x+ δ(Ex′ [Vk+1(x′)]− Vk(x)).

Thus the optimal bidding strategy in this dynamic programming problem can be written
in a form where the bid the auctioneer makes on behalf of the bidder with uncertain eCPM
is equal to the bidder’s expected eCPM plus a term that represents the value of learning
about the true eCPM of that bidder, δ(Ex′ [Vk+1(x′)] − Vk(x)). In order to calculate this
value of learning, we need to get a sense of the size of the Vk(x) terms.

5. Value of Dynamic Program for Large Numbers of Impressions

In the previous section, we have given exact expressions for the value of the dynamic program
and the optimal bidding strategy that should be followed under this dynamic programming
problem. In this section, we seek to derive accurate estimates of the value of this dynamic
program in the limit when an ad has already been shown a large number of times.

The main purpose of this section is to illustrate that the value of learning term given in
the previous section will vary with 1

k2
for large k. We prove this by first showing that the

expected efficiency loss arising due to the uncertainty in the eCPM of the ad varies with 1
k

for large k, and then use this to show that the value of learning term varies with 1
k −

1
k+1 ,

which varies with 1
k2

for large k.
When an ad has already been shown a large number of times, the value of σk that

is estimated for the ad is likely to be very small. For small values of σk, we can use a
Taylor expansion to approximate the value of the above dynamic programming problem.
In particular, we obtain the following result:
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Lemma 4 Eε[
∫ z
x+σkε

F (z)− F (y) dy] =
∫ z
x F (z)− F (y) dy + 1

2σ
2
kf(x) + a(x)σ4

k + o(σ4
k) for

some constant a(x) for large k.

Using the results from the previous lemma, one can immediately illustrate that Vk must
be on the order of 1

k for large values of k.

Theorem 5 Vk(x) = Θ( 1
k ) for large k.

To understand the intuition behind this result, note that the average error in the estimate
of the eCPM of the ad is proportional to the standard error of this estimate, σk, which
varies with 1√

k
, so the probability that the auctioneer will display the wrong ad as a result

of misestimating the eCPM of the ad varies with 1√
k
. At the same time, conditional on

displaying the wrong ad as a result of misestimating the eCPM of the ad, the average
efficiency loss that one suffers varies with 1√

k
. Thus the expected efficiency loss that the

auctioneer incurs varies with 1
k , which in turn implies the result in Theorem 5.

Theorem 5 suggests that we may be able to write Vk(x) = −v(x)
k + o( 1

k ) for large k,
where v is a function that depends only on x. To prove that Vk(x) can be expressed this
way, it is necessary to show that kVk(x) indeed converges to a function of x in the limit as
k →∞. This is done in the following theorem:

Theorem 6 kVk(x) converges to a function of x in the limit as k → ∞. Furthermore, it
must be the case that kVk(x) = − 1

2(1−δ)s
2(x)f(x) +O( 1

k ) for large k.

From Theorem 6, it follows that we can express Vk(x) by Vk(x) = −v(x)
k + O( 1

k2
) for

large k, where v is a function that satisfies v(x) = 1
2(1−δ)s

2(x)f(x). In order to complete
our approximation of the solution the dynamic programming problem for large k, it is
also necessary to bound the expression Ex′ [Vk+1(x′)] − Vk(x) that appears in the dynamic
programming problem. This is done in the following theorem:

Theorem 7 Ex′ [Vk+1(x′)]− Vk(x) = v(x)
k(k+1) + o

(
1
k2

)
for large k.

The intuition behind this result is that since the efficiency loss that the auctioneer
incurs due to uncertainty in the eCPM of an ad varies with 1

k , the value of learning will
be proportional to the reduction in the future efficiency loss that the auctioneer suffers as
a result of learning more about the eCPM of the ad, meaning the value of learning will
vary with 1

k −
1

k+1 , which varies with 1
k2

. The fact that Ex′ [Vk+1(x′)] − Vk(x) varies with
1
k2

indicates that the incremental increase in an advertiser’s bid also varies with 1
k2

in the
limit when k is large. This in turn implies that the incremental increase in an advertiser’s
probability of winning the auction will also vary with 1

k2
for large k.

The result in Theorem 7 suggests that the optimal method for adding active exploration
will only rarely have an effect on which ad wins the auction, as the probability that this
active exploration changes which ad is shown varies with 1

k2
for large k. This result about

the value of learning varying with 1
k2

for large k stands in marked contrast to algorithms
that have been proposed for active exploration in standard multi-armed bandit problems
with no discounting of payoffs and no random variation in the competition that an arm faces
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in a given period (Auer et al., 2002). In these types of algorithms, the value of learning
tends to vary with 1√

k
, which means the value of learning is an order of magnitude smaller

in our setting than in standard multi-armed bandit problems.
Ultimately we seek to use these insights to derive results about the change in payoff that

would result from incorporating active learning in this setting. Before doing this, we first
illustrate how the conclusions of this section about the value of the dynamic programming
problem and the optimal bidding strategy extend to a variety of more complicated scenarios
including settings where there are multiple different ads with uncertain eCPMs whose true
eCPMs may be correlated and we also illustrate a natural correspondence between the
optimal solution to the full dynamic programming problem and a simple one-step look-
ahead strategy. First we tackle the problem of computing the value of the dynamic program
when an ad with an uncertain eCPM has only received a small number of impressions.

6. Value of Dynamic Program for Small Numbers of Impressions

To calculate the value of Vk(x) for small values of k, we apply backwards induction. At
some large value of k, it will necessarily be the case that the incremental value of additional
exploration is so small that the advertiser simply bids z = x because the smallest possible
increment the advertiser would be allowed to adjust its bid exceeds the tiny incremental
value of additional exploration. Thus if K denotes the earliest stage at which an advertiser
always sets z = x, then for all k ≥ K, it is necessarily the case that the value of learning is

zero, and Vk(x) = 1
1−δ

(
Eε

[
−
∫ x
x+σkε

F (x)− F (y) dy
])
≈ 0.

For values of k < K, we have

(1− δ)Vk(x) = Eε

[
−
∫ zk

x+σkε
F (zk)− F (y) dy

]
+ δF (zk)(Ex′ [Vk+1(x′)]− Vk(x))

or

Vk(x) =
Eε

[
−
∫ zk
x+σkε

F (zk)− F (y) dy
]

+ δF (zk)Ex′ [Vk+1(x′)]

1− δ + δF (zk)
.

Thus by empirically measuring the values of σk and F (·), we can apply backward in-
duction to approximate Vk(x) for small values of k. We now address the question of what
these values of Vk(x) will be approximately equal to for an important class of advertisers.

Many ads that have only received a small number of impressions are ads that typically
fail to win auctions because the machine learning system is pessimistic about the ad’s true
eCPM. The estimated eCPMs for these ads may be several orders of magnitude smaller
than the typical eCPMs of the ads that have been shown many times. In these cases, even
if the percentage uncertainty in the eCPMs of these ads is quite high, the absolute amount
of uncertainty in the eCPMs of these ads will be small compared to the typical eCPMs of
the ads that have been shown many times. Thus in these cases, x will be close to zero, and
F (x) and σ2

k will be close to zero as well. Under these circumstances, we have the following
result:

Theorem 8 If x (and σ2
k) are close to zero for small values of k, then Vk(x) = − 1

2(1−δ)f(x)σ2
k+

o(f(x)σ2
k) for small values of k.
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Theorem 8 indicates that even in small sample environments, it is still frequently rea-
sonable to approximate Vk(x) by writing Vk(x) ≈ − 1

2(1−δ)f(x)σ2
k, where σ2

k denotes the
variance in our estimate of the ad’s eCPM for a particular value of k. This theorem in turn
implies that if a machine learning system is quite pessimistic about the true eCPM of a new
ad, then there will be little value to actively exploring the ad because the value of learning
term, Ex′ [Vk+1(x′)]− Vk(x), will be quite small.

7. Ads with Correlated Values

So far we have restricted attention settings in which we only seek to learn the eCPM of one
advertiser’s ad. However, in many situations we may seek to learn the eCPMs of multiple
advertisers’ ads and the eCPMs of the various advertisers may be correlated. In these
situations, information about one ad’s eCPM may help one learn about the eCPMs of other
related advertisers. On top of this, even if there is only ad for which we are uncertain
about the advertiser’s eCPM, this ad may bid in several different contexts where the ad has
substantially different eCPMs and the ad faces substantially different competing landscapes
of bids.5 In these cases, information about an ad’s eCPM in one context may also help one
learn about the ad’s eCPM in other contexts.

To address how this affects the results, we extend the model to allow for the possibility
that there are multiple different ads that bid in multiple different contexts where we seek
to learn the eCPMs of the ads and these eCPMs may be correlated. In particular, we
suppose that there are m different ad-context pairs where we seek to learn the eCPM of
the ad in that particular context. For the ad-context pair a, we let xa denote the actual,
unknown value of the eCPM of that ad in that context, and we let x = (x1, . . . , xm) denote
the actual unknown eCPMs of the ads in all m contexts. We also let k denote the total
number of impressions that these advertisers have received in the various contexts and let
βa denote the fraction of these impressions that were received in context a. Thus we have∑m

a=1 βa = 1.

We again assume the auctioneer does not know the exact value of x, and instead the
auctioneer only knows that x is drawn from some distribution. We again let x̃ denote a
generic distribution corresponding to the auctioneer’s estimate of the distribution of possible
values of x. This distribution allows for the possibility that the auctioneer may believe there
is correlation in the unknown eCPMs of the advertisers in the different contexts, and the
distribution will again evolve over time as an ad has received more impressions and we have
a better sense of the underlying eCPM of the ad.

Throughout we also let x denote an unbiased estimate of the true value of x given the
auctioneer’s estimate of the distribution of possible values of x and we let xa denote an
unbiased estimate of the true value of xa given this distribution. We also let σ2

a,ka
denote

the variance in our estimate of the eCPM of the ad-context pair a when there have been a
total of ka impressions in this ad-context pair. In the limit when ka is large, σ2

a,ka
will be

well approximated by s2a(xa)
ka

= s2a(xa)
βak

for some constant s2
a(xa) that depends only on xa, and

5. Contextual bandit problems in which an arm’s payoff may vary from context to context have appeared
in the literature before in different settings. See, for example, work by May et al. (2012) and Slivkins
(2014).
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we again let σ2
a,ka

= s2a(xa)
βak

+ ha(xa)
β2
ak

2 + o( 1
k2

) for some continuously differentiable functions

s2
a(xa) and ha(xa). In addition, we let δ ∈ (0, 1) denote the per-period discount rate so that

the mechanism designer only values advertising opportunities that take place at time T by
a factor of δT as much as opportunities that take place at the present time period.

In each period t, there is an auction for a single advertising opportunity. The auction
can involve any one of the m possible ad-context pairs for which we do not know the eCPM
of the ad in that context. We let πa denote the probability that there will be an auction
involving ad-context pair a in any given time period. Thus we have

∑m
a=1 πa = 1. We

further suppose that if there is an auction involving ad-context pair a, then the distribution
of the values of the competing advertisers is such that the highest eCPM for a competing
ad is a random draw from some cumulative distribution function Fa(·) with corresponding
continuous and twice differentiable density fa(·).

In this setting, the total long-term value of a particular ad-context pair is again a convex
function of the eCPM of the ad for the same reasons as in Theorem 1 and we can again
formulate this problem as a dynamic program. To do this, let ~k ≡ (k1, . . . , km) denote
a vector that gives the number of impressions that have been received by the various ad-
context pairs 1, . . . ,m. Also let V

a,~k
(x) denote the value of the dynamic program when the

next auction involves the advertiser-context pair a, the eCPMs of the ads are x, and there
have been ~k impressions in each of the various ad-context pairs, and let V~k(x) ≡ Ea[Va,~k(x)]
denote the value of the same dynamic program unconditional on which ad-context pair is
involved in the next auction. By using similar reasoning to that in Lemma 2, we know that
V~k(x) equals

1

1− δ
Ea

[
max
za

Eε

[
−
∫ za

xa+σa,kaε
Fa(za)− Fa(y) dy + δFa(za)(Ex′(a)[V~k′(a,~k)

(x′(a))]− V~k(x))

]]
,

where ~k′(a,~k) ≡ (k′1, . . . , k
′
m) is a vector that satisfies k′b = kb for all b 6= a and k′a = ka + 1,

and x′(a) denotes the uncertain realization of x if the advertiser-context pair a receives
an additional impression. Furthermore, the optimal bid za if there is an auction involving
the advertiser-context pair a satisfies za = xa + δFa(za)(Ex′(a)[V~k′(a,~k)

(x′(a))] − V~k(x)) by

similar logic to that given in Theorem 3, and the result in Lemma 4 is just a general
mathematical result that holds regardless of the model we are considering. Thus natural
analogs of Theorems 1 and 3 and Lemmas 2 and 4 continue to hold in this revised model.

By using these insights, one can further show that V~k(x) must be on the order of 1
k for

large k. This is done in the following theorem:

Theorem 9 When there are multiple ads with correlated values, V~k(x) = Θ( 1
k ).

While this result indicates that V~k(x) varies with 1
k for large values of k, this alone does

not guarantee the convergence of this function for large values of k. We verify that this
function does indeed converge for large values of k in the following theorem:

Theorem 10 When there are multiple ads with correlated values, kV~k(x) converges to a
function of x in the limit as k → ∞. Furthermore, it must be the case that kV~k(x) =
− 1

2(1−δ)
∑m

a=1 πa
1
βa
s2
a(xa)fa(xa) +O( 1

k ) for large k.

10
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Theorem 10 indicates that the results about the limiting value of kV~k(x) derived in
Theorem 6 extend naturally to the case where there are multiple ads with possibly correlated
values. When there are multiple ad-context pairs that we must learn about, the value
function corresponding to that in Theorem 6 differs only in that we take a weighted sum over
the various possible advertiser-context pairs, where the weights are a function of the relative
probabilities with which each advertiser-context pair arises. Thus there is a clear analog
between the limiting properties of the value function when there are multiple advertiser-
context pairs and the value function in the main model.

By using the results in the previous theorem, one can further derive properties of the
limiting value of Ex′(a)[V~k′(a,~k)

(x′(a))]−V~k(x) that is proportional to the additional amount

that one should bid in the auction beyond the expected value that one has for the advertising
opportunity. This is stated below in the following theorem:

Theorem 11 When there are multiple ads with correlated values, Ex′(a)[V~k′(a,~k)
(x′(a))] −

V~k(x) = − πa
2(1−δ)β2

ak
2 s

2
a(xa)fa(xa) + o( 1

k2
) for large k.

The proof of this result is substantively identical to the proof of Theorem 7 and is
thus omitted. Theorem 11 illustrates that the substantive conclusions of Theorem 7 extend
to this alternative environment in which there are multiple ads with possibly correlated
values. When there are multiple ads, it remains optimal to increase one’s bid by an amount
proportional to the variances in our estimates of the eCPMs of the ads or 1

k2
for large k.

8. Knowledge Gradients

Throughout the paper so far, we have considered a standard dynamic programming ap-
proach in which the optimal decision at any given point in time is affected in part by how
this decision will affect future decisions when looking at the infinite horizon ahead. While
this is a standard approach to take in these types of problems, recently there has been work
considering an alternative approach often referred to as “knowledge gradients” in which
the decision one takes in a given period is the decision that one would take if one faced
an infinite-horizon game but this period was the last period in which the information one
learned could be used to inform future actions.

The main advantage of these knowledge gradients over the standard dynamic program-
ming approach is that they have the virtue of being much easier to calculate than the
optimal bidding strategy under the standard dynamic programming problem. This simplic-
ity does potentially come at a performance cost. However, various papers have illustrated
that using this simple one-step look-ahead approach can nonetheless achieve a performance
that is competitive with that of other standard methods in contexts unrelated to advertising
(Frazier et al., 2009; Ryzhov et al., 2010, 2012). In this section, we investigate whether this
alternative knowledge gradient approach can indeed achieve a performance comparable to
that of the theoretically optimal dynamic programming approach.

To address this question, for simplicity we consider the baseline model in which there
is one advertisement for which we are seeking to learn the eCPM of the ad, though similar
results can easily be derived under the more general model we have considered with multiple
ads and correlated values. Let Uk(x) denote the value that one would obtain for the rest of
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the game when an ad has received k impressions so far, one’s estimate of the eCPM of the
ad is x, and one will not be able to use information that one learns in the future to inform
future bidding decisions. Note that in this case, the optimal bidding strategy will be to
submit a bid of z = x in every remaining period, and the auctioneer’s expected per-period

payoff will be Eε

[
−
∫ z
x+σkε

F (z)− F (y) dy
]

in every future period, where ε denotes some

random variable with mean zero and variance one, and z ≡ x. The total value the auctioneer

will obtain for the rest of the game is then Uk(x) = 1
1−δEε

[
−
∫ x
x+σkε

F (x)− F (y) dy
]
.

Also let Uk+1(x) denote the value that one would obtain for the rest of the game when
an ad has received k + 1 impressions so far, one’s estimate of the eCPM of the ad is x,
and one will not be able to use information that one learns in the future to inform future
bidding decisions. The total value the auctioneer will obtain for the rest of the game is then

Uk+1(x) = 1
1−δEε

[
−
∫ x
x+σk+1ε

F (x)− F (y) dy
]
.

Now consider the bidding strategy that one would employ if one faced an infinite-horizon
game but this period was the last period in which the information one learned could be used
to inform future actions. The auctioneer’s payoff from bidding z that arises in the current
period equals −

∫ z
x+σkε

F (z)−F (y) dy. And the expected value that the auctioneer obtains

from future periods by bidding z in the current period is F (z)Ex′ [Uk+1(x′)]+(1−F (z))Uk(x)
by the same reasoning used in the proof of Lemma 2. From this it follows that the expected
payoff from placing a bid of z in a given period is

Eε

[
−
∫ z

x+σkε
F (z)− F (y) dy + δ(F (z)Ex′ [Uk+1(x′)] + (1− F (z))Uk(x))

]
.

There is a clear similarity between this expression and the expression for the expected
payoff from placing a bid of z in the standard dynamic programming approach. The main
difference is that the terms Uk+1(x′) and Uk(x) have replaced the terms Vk+1(x′) and Vk(x)
in the standard dynamic programming approach.

It is worth noting, however, that the payoffs that result from the one-step look ahead
strategies in the model in this paper take a different form than those given in other knowl-
edge gradient papers (Frazier et al., 2009; Ryzhov et al., 2010, 2012). The reason for this
difference is that in the model in our paper, there is a competing ad whose eCPM is known
in each period but is also a random draw from some distribution in each period. No such
random changes in the values of the arms from period to period are present in existing
knowledge gradient papers, so the payoffs and strategies in our paper are formulated differ-
ently than those given in existing knowledge gradient papers.

From the equation we’ve derived for the auctioneer’s payoff from bidding z, we can
calculate the optimal bidding strategy under the knowledge gradient formulation. This
bidding strategy is given in the following theorem:

Theorem 12 The optimal bidding strategy in the knowledge gradient framework when an
ad has been shown k times entails setting z = x+ δ(Ex′ [Uk+1(x′)]− Uk(x)).

The proof of this result is substantively identical to that in Theorem 3 and is thus
omitted. This result indicates that in the knowledge gradient framework, the incremental
amount that one increases one’s bid beyond the immediate expected reward is again of the
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form δ(Ex′ [Uk+1(x′)]−Uk(x)), the only difference being that Uk(x) corresponds to the value
of the dynamic program under the knowledge gradient framework.

To better understand the incremental amount that one would increase one’s bid, we
present two results that illustrate how the incremental amount that one would increase
one’s bid under the knowledge gradient framework compares to the incremental amount
that one would increase one’s bid under the full dynamic programming problem. First we
present a finite sample result about how these incremental bid increases compare in the two
frameworks.

In our first result, we consider what we refer to as the expected value of all future
learning. To reflect the fact that Vk(x) gives the auctioneer’s payoff from the full dynamic
programming problem when the auctioneer is able to make use of additional information in
future periods, whereas Uk(x) gives the auctioneer’s payoff from the corresponding game in
which the auctioneer is not able to make use of information that he learns, we define this
expected value of all future learning term to be the difference between Vk(x) and Uk(x).
With this definition in mind, we obtain the following result:

Theorem 13 Suppose the expected value of all future learning is lower after the ad has been
shown k + 1 times than it is after the ad has been shown k times. Then the incremental
amount by which one would increase one’s bid under the knowledge gradient framework is
greater than it is under the full dynamic programming problem.

Theorem 13 indicates that the solution to the one-step look ahead problem will gener-
ally involve increasing one’s bid beyond the immediate expected value of the advertising
opportunity by a greater amount than one would do so under the full dynamic program-
ming problem. This makes sense intuitively. If the current period were the last period in
which one could ever use information that one learns to inform future actions, then one
would place quite a high premium on being able to learn this information while one still
can. By contrast, in the full dynamic programming problem, there will always be plenty of
opportunities to learn this information later, so there is relatively less incentive to substan-
tially increase one’s bid beyond the immediate expected reward. This explains the result in
Theorem 13.

Theorem 13 requires a technical condition that the expected value of all future learning
is lower if an ad has been shown k+ 1 times than if the ad has been shown k times, but this
is just a mild technical constraint that we would expect to hold in virtually any situation.
When an ad has been shown k + 1 times, one has more precise information about the true
eCPM of the ad than when the ad has only been shown k times, so there is less value to
learning more about the true eCPM of the ad.

While Theorem 13 suggests that one might increase one’s bid by too much under the
knowledge gradient framework compared to the strategy that one should follow under the
full dynamic programming problem, these differences in bidding strategies turn out to be
relatively small. We illustrate this by characterizing the value of Ex′ [Uk+1(x′)]− Uk(x):

Theorem 14 In the knowledge gradient framework, Ex′ [Uk+1(x′)]−Uk(x) = v(x)
k(k+1) +o

(
1
k2

)
for large k, where v(x) ≡ 1

2(1−δ)s
2(x)f(x).

This result also immediately implies the following corollary:
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Corollary 15 The ratio of the incremental amount by which one wants to increase one’s
bid in the knowledge gradient framework and the incremental amount by which one wants to
increase one’s bid in the standard dynamic programming approach becomes arbitrarily close
to 1 in the limit as the amount of uncertainty in an ad’s eCPM becomes arbitrarily small.

Thus using the knowledge gradient to formulate one’s bidding strategy will result in pay-
offs that are asymptotically equivalent to those that would result from using the theoretically
optimal bidding strategy. These results suggest that the knowledge gradient framework is
indeed an appealing framework for computing bidding strategies in an environment where
one wishes to learn about the unknown eCPMs of advertisers, as using this approach will
result in little loss from the theoretically optimal approach.

9. Learning About Multiple Advertisers in the Same Auction

In the analysis so far, we have assumed that in any given auction, there is only one advertiser
whose eCPM is unknown. But in many real-life auctions there may be multiple advertisers
with unknown eCPMs. In these cases, an auctioneer must decide both which advertiser with
unknown eCPM will have the highest bid as well as what bid to submit for this advertiser.

In this setting, it is not clear whether the decision maker’s optimal strategy can simply
be represented by submitting a bid for each advertiser that is equal to the sum of the best
estimate of the advertiser’s eCPM as well as a value of learning term. It may be the case
that the optimal bid for advertiser i if advertiser i submits the highest bid of the advertisers
with unknown eCPMs is higher than the optimal bid for some other advertiser j if advertiser
j submits the highest bid of the advertisers with unknown eCPMs, even though the decision
maker would prefer to submit a higher bid for advertiser j than for advertiser i. We address
whether this possibility can arise in this section.

To address this question, suppose that in each auction, there are n ads with unknown
eCPMs. The actual eCPMs of these ads are x1, . . . , xn, and we let z1, . . . , zn denote the
bids placed by these advertisers in the auction. Also let i denote the advertiser who submits
the highest eCPM bid amongst these n bidders and let j denote the advertiser who actually
has the highest eCPM amongst these advertisers. In each auction, these advertisers with
unknown eCPMs compete against other advertisers and the highest such competing eCPM
is drawn from a cumulative distribution function F (·) with corresponding density f(·).

Note that in this case, the utility that the decision maker obtains in a given period from
having advertiser i submit a bid of zi that is the highest eCPM bid amongst these n bidders
is u = zi(1 − F (zi)) +

∫∞
zi

(1 − F (y)) dy + xiF (zi). At the same time, this decision maker

would obtain a utility of u = xj(1−F (xj)) +
∫∞
xj

(1−F (y)) dy+ xjF (xj) in a given period

from making the optimal decision in a given period. Thus the loss that this decision maker
obtains in a given period as a result of having advertiser i submit a bid of zi that is the
highest eCPM bid amongst these n bidders is the difference between these two utilities or
L = xj − zi + (zi − xi)F (zi) +

∫ zi
xj

(1− F (y)) dy =
∫ zi
xi
F (zi) dy −

∫ zi
xj
F (y) dy.

Now let ki denote the number of impressions that advertiser i has received so far, let
~k ≡ (k1, . . . , kn) denote a vector that gives the number of times each of these ads has been
shown, let xi denote our best estimate of the expected value of the eCPM of advertiser i,
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and let x ≡ (x1, . . . , xn) denote a vector of these best estimates. Also let V~k(x) denote the
value of the dynamic program as a function of these quantities.

By similar reasoning to that in the proof of Lemma 2, it follows that if i denotes the
advertiser who submits the highest eCPM bid amongst the n bidders with unknown eCPMs,
~k′(i) ≡ (k′1, . . . , k

′
n) is the vector where k′j = kj for all j 6= i and k′i = ki+1, and x′(i) denotes

the uncertain realization of x if advertiser i receives an additional impression, then V~k(x)
equals

1

1− δ

(
max
zi

Exi,xj

[∫ zi

xj

F (y) dy −
∫ zi

xi

F (zi) dy + δF (zi)(Ex′(i)[V~k′(i)(x
′(i))]− V~k(x))

])
,

where the difference in the values of the dynamic programs is due to the fact that the loss in
a given period is now

∫ zi
xi
F (zi) dy −

∫ zi
xj
F (y) dy. Similarly, the optimal bid for advertiser i

if advertiser i submits the highest eCPM bid amongst the n bidders with unknown eCPMs
still satisfies zi = xi + δ(Ex′(i)[V~k′(i)(x

′(i))] − V~k(x)). We use these insights to prove the

following:

Theorem 16 Suppose the optimal bid for advertiser i if advertiser i submits the highest
bid of the advertisers with unknown eCPMs is higher than the optimal bid for all other
advertisers with unknown eCPMs if one of these other advertisers submits the highest bid
of the advertisers with unknown eCPMs. Then it is also optimal for advertiser i to have
the highest bid of all the advertisers with unknown eCPMs.

Theorem 16 guarantees that if there are multiple ads with unknown eCPMs, then one
can simply compute the optimal bids for each of these ads in the case where the ad in
question was guaranteed to have a higher bid than the other ads with unknown eCPMs.
The ad that has the highest such optimal bid will then be guaranteed to be the ad for
which the mechanism designer would want to submit the highest such bid. Thus even when
there are multiple ads in the same auction with unknown eCPMs, one can continue to make
optimal decisions by computing bids for the advertisers equal to their estimated eCPMs
plus a value of learning term for the ad and then rank the advertisers on this basis.

10. Performance Guarantees

We now return to the baseline setting in Section 2. The results in the previous sections
suggest a possible algorithm that will approximate the optimal bidding strategies for an
auctioneer who seeks to maximize long-run efficiency. This algorithm would compute the
expected eCPM for an advertiser with unknown eCPM, x, the density for the distribution
of competing eCPM bids at this value of x, f(x), the variance s2(x) in the eCPM for
an ad with estimated eCPM x that has only received one impression, and the number of
impressions k that the ad has received. One then decides which ad to show by computing
a score equal to x+ δ

2(1−δ)k(k+1)s
2(x)f(x) for each ad, where δ is the auctioneer’s discount

factor, and showing the ad with the highest such score. We refer to this strategy as the
approximately optimal bidding strategy, and in this section we address questions related to
the size of the performance guarantees that can be obtained by using this algorithm and
related algorithms.
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First we address questions related to how the algorithms we have considered in this
paper will compare to other plausible algorithms in the machine learning literature. One
other algorithm that is standard for multi-armed bandit problems involves ranking the arms
by a term equal to the expected value of the arm plus a term proportional to the standard
deviation in the arm (Auer et al., 2002). More generally, one can rank advertisers by a
term equal to the eCPM of the advertiser plus a term proportional to 1

kα for any α ≤ 1
2 ,

where k denotes the number of impressions that the ad has received so far. However, these
algorithms are not well-suited towards the auction environment, as the following theorem
illustrates:

Theorem 17 Suppose the auctioneer uses a bid for the advertiser with unknown eCPM
of the form z = x + c(x)

kα , where α ≤ 1
2 and c(x) is a bounded non-negative constant that

depends only on x and the distribution of competing bids. Then the optimal constant c(x)
for any such algorithm is c(x) = 0 for sufficiently large k.

This result immediately implies that standard existing algorithms for exploration which
involve adding a term proportional to the standard deviation to the eCPM of the ad, such as
the UCB algorithm, are actually dominated by the simple greedy approach of always making
a bid equal to the eCPM of the ad. These existing algorithms do too much exploration,
and as a result, lead to lower payoffs than not doing any active exploration at all.6

Next we turn to the question of what guarantees can be made about the size of the
performance improvement that could be obtained by using the approximately optimal bid-
ding strategy rather than the simple greedy algorithm. Our next result illustrates that one
will indeed obtain a performance improvement by using the approximately optimal bidding
strategy, but the size of the performance improvement is likely to be very small.

Theorem 18 Suppose the auctioneer follows the approximately optimal bidding strategy.
Then the expected payoff that the auctioneer will obtain by using this algorithm will exceed
the expected payoff that the auctioneer would obtain by using the purely greedy approach by
an amount δ2

8(1−δ)3k4 s
4(x)f3(x) + o( 1

k4
).7

Theorem 18 indicates that the performance improvement that can be obtained as a
result of using the approximately optimal bidding strategy is only on the order of 1

k4
, where

k denotes the number of impressions that an ad has received. This follows from the fact
that the incremental increase in the probability that a particular ad is shown varies with 1

k2
,

and on top of that, the expected payoff increase that one obtains conditional on showing
a different ad than would be shown without active learning also varies with 1

k2
. Since

this represents a fourth-order improvement in performance relative to the purely greedy
approach, this result indicates that the performance improvement that can be obtained by
following our algorithm rather than simply ranking the ads by their eCPMs is small.

6. Similarly, an algorithm such as epsilon-greedy, in which the ad with the highest eCPM is chosen with
probability 1 − ε, and an ad is chosen uniformly at random with probability ε, will also lead to lower
payoffs than not doing any active exploration at all for large k. We prove this in Observation 23 in the
appendix.

7. The expected payoff increase that we refer to in this theorem is for the subgame beginning from the
point when the ad with uncertain eCPM has already received k impressions.
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It is worth noting, however, that the result in Theorem 18 is not due to our algorithm
being a suboptimal implementation of incorporating active exploration. Our next result
illustrates that while the size of the performance improvement that can be obtained by
using our algorithm is small, this algorithm will, in fact, obtain nearly the maximum possible
performance improvement over the purely greedy approach of ranking ads by their eCPMs.

Theorem 19 Suppose the auctioneer uses the approximately optimal bidding strategy. Then
the difference between the auctioneer’s payoff under this strategy and the maximum possible
payoff the auctioneer could obtain under the theoretically optimal strategy becomes vanish-
ingly small compared to the difference between the auctioneer’s payoff under this strategy
and the auctioneer’s payoff under the greedy strategy for large k.

The results in the previous theorems suggest that the maximum possible payoff increase
that can be achieved by incorporating active exploration is quite small for auctions involving
ads that have already received a large number of impressions. However, in many auctions,
there are frequently advertisers that have only received a small number of impressions, so
it is desirable to know whether these conclusions for ads that have received large numbers
of impressions will also hold for ads that have only received a small number of impressions.
Under the mild technical condition discussed in Theorem 13, where the expected value of
future learning is lower after the advertiser with unknown eCPM has been shown once
rather than never having been shown at all, we obtain the following result:

Theorem 20 Suppose the bidder with unknown eCPM has a cost-per-click bid of 1 and a
click-through rate drawn from a beta distribution. Also suppose that this bidder’s expected
eCPM is ω and the standard deviation in this bidder’s true eCPM is γω. Then the difference
between the maximum possible payoff the auctioneer could obtain under the theoretically
optimal strategy and the auctioneer’s payoff from the greedy strategy is no greater than

δ2γ8ω6f
3

8(1−δ)3(1−ω)2
, where f denotes the supremum of f(·).

Theorem 20 presents bounds on the maximum performance improvement that can be
achieved over the purely greedy strategy by using active learning, but it is not immediately
clear from this result whether these bounds imply there are significant limitations on the
performance improvement that can be achieved by using active learning. We thus seek to
shed some light on this under empirically realistic values of the parameters.

If the typical eCPM bids for the winning advertisers are roughly ξω, then the auctioneer’s
total payoff for the game will be roughly ξω

1−δ , and the result in Theorem 20 indicates that
the maximum fractional increase in expected payoff that one can achieve from using the

theoretically optimal strategy rather than the greedy strategy is roughly δ2γ8ω5f
3

8ξ(1−δ)2(1−ω)2
.

Furthermore, if the typical eCPM bids for the highest competing advertisers in an
auction are roughly ξω, then f is likely to also be on the order of 1

ξω . This holds, for
example, if the highest competing eCPM bids are drawn from a lognormal distribution, as
the largest value of the density of a lognormal distribution with parameters µ and σ2 is equal

to c(σ2)
ξω , where ξω is the expected value of the lognormal distribution and c(σ2) ≡ eσ

2

√
2πσ2

is

a constant that depends only on σ2. Furthermore c(σ2) is likely to be close to 1 for realistic
values of σ2 since c(σ2) ∈ [0.93, 1.09] for values of σ2 ∈ [0.2, 1]. The lognormal distribution
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is a realistic representation of the distribution of highest competing bids in online auctions
since both Lahaie and McAfee (2011) and Ostrovsky and Schwarz (2009) have noted that
the distribution of highest bids can be well-represented by a lognormal distribution using
data from sponsored search auctions at Yahoo!.

By using the facts that the value of f is likely to be on the order of 1
ξω , and the maximum

fractional increase in expected payoff that one can achieve from using the theoretically

optimal strategy rather than the greedy strategy is roughly δ2γ8ω5f
3

8ξ(1−δ)2(1−ω)2
, it then follows

that the maximum fractional increase in expected payoff that one can achieve from using

the theoretically optimal strategy rather than the greedy strategy is roughly δ2γ8ω2

8ξ4(1−δ)2(1−ω)2
.

There is empirical evidence that indicates that the typical click-through rates for ads
in online auctions tend to be on the order of 1

100 or 1
1000 for search ads and display ads

respectively (Bax et al., 2011), so (1 − ω)2 will be very close to 1 and ω2 is likely to be
less than 10−4 (for search ads) or 10−6 (for display ads). Furthermore, even for a brand
new ad, the typical errors in a machine learning system’s predictions are unlikely to exceed
30% of the true click-through rate of the ad, so γ ≤ 0.3 is likely to hold in most practical
applications. Finally, ξ is a measure of by how much the highest bid in an auction exceeds
the typical eCPM bid of an average ad in the auction. Since there are normally hundreds of
ads competing in online auctions, it seems that one can conservatively estimate that ξ ≥ 3
is likely to hold in most real-world online auctions.

By combining the estimates in the previous paragraph, it follows that γ8ω2

8ξ4(1−ω)2
will

almost certainly be less than 10−11 in search auctions and 10−13 in display auctions. Now if
δ ≤ 0.9999, δ2

(1−δ)2 will be no greater than 108, and if δ ≤ 0.99999, δ2

(1−δ)2 will be no greater

than 1010. Thus even for values of δ that are exceedingly close to 1 (δ = 0.9999 for search

ads and δ = 0.99999 for display ads), γ8ω2

8ξ4(1−ω)2
δ2

(1−δ)2 will be no greater than 0.001. Thus

as long as δ ≤ 0.9999 (or δ ≤ 0.99999 for display auctions), the bound given in Theorem 20
guarantees that under empirically realistic scenarios, the maximum possible performance
improvement that can be achieved by incorporating active learning into a machine learning
system is at most a few hundredths of a percentage point. This is a finite sample result
that does not require a diverging number of impressions in order to hold.

11. Simulations

The results of the previous section suggest that the overall benefit that can be obtained by
incorporating active exploration in an auction environment is exceedingly small. We now
seek to empirically verify that the benefit that can be obtained from active exploration is
indeed quite small by conducting simulations under some empirically realistic scenarios.

To do this, we consider a scenario in which there is a repeated auction in which a cost-
per-click (CPC) bidder competes against CPM bidders in each auction. The CPC bidder
has a CPC bid of 1 and a fixed unknown click-through rate. The CPM bidders’ CPM bids
vary from period to period, and in each period, we assume that the highest CPM bid is a
random draw from a distribution with probability density function f(·). Throughout we
assume that payoffs are discounted at a rate of δ = 0.9995 and that there are T = 10000
time periods.
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While we are not aware of any empirical evidence regarding the form of the uncertainty
of an advertiser’s click-through rate, for simplicity we assume that the CPC bidder’s click-
through rate is initially drawn from a beta distribution with parameters α and β. The
auctioneer may refine this estimate over time. In particular, just before the auction in
period t, the auctioneer believes that the CPC bidder’s true click-through rate is a random
draw from the beta distribution with parameters αt and βt where αt is equal to α plus the
number of clicks the CPC bidder has received so far and βt is equal to β plus the number
of times the CPC bidder’s ad was shown but did not receive a click.

We compare total welfare under two possible scenarios. The first scenario we consider
is a standard ranking algorithm in which the ads are ranked purely on the basis of their
expected eCPM bids. The second scenario we consider is one in which the CPC bidder

makes a bid of the form xt + δ(1−δT−t)
2(1−δ)

αtβt
(αt+βt)2(αt+βt+1)2

f(xt) in each period t, where xt
denotes the CPC bidder’s expected click-through rate just before the auction in period t.
This second scenario corresponds to adding a term equal to the value of learning to the
CPC bidder’s expected eCPM bid in the game with finite time horizons.

Throughout we focus on scenarios that are motivated by empirical evidence on the
likely expected click-through rates for ads in online auctions. In particular, since empirical
evidence indicates that the typical click-through rates for ads in online auctions tend to be
on the order of 1

100 or 1
1000 (Bax et al., 2011), we focus on situations in which the expected

click-through rate of the CPC bidder is on the order of 1
100 .

Similarly, since it is unlikely that there will be substantial errors in the estimate of a new
ad’s predicted click-through rate, we focus on situations in which there is only moderate
uncertainty in the click-through rate of a new ad. In particular, we consider distributions
of the CPC bidder’s bid such that the standard deviation in the advertiser’s click-through
rate is no greater than 20 or 30% of the expected value. We thus consider values of α and β
satisfying (α, β) = (10, 1000) and (20, 2000) (for 30% and 20% standard errors respectively).

Finally, since there is evidence that the distribution of highest bids is well modeled
by a lognormal distribution (Lahaie and McAfee, 2011; Ostrovsky and Schwarz, 2009),
we assume throughout that the CPM bidder’s bid is drawn from a lognormal distribution
with parameters µ and σ2. We use a value of σ2 = log(2) to match the variance in the
lognormal distribution estimated by Ostrovsky and Schwarz (2009). And Varian (2009) has
noted that the total value enjoyed by advertisers is typically about 2− 2.3 times their total
expenditure. If the auction consisted of only two advertisers, this would suggest that the
appropriate value of µ would be such that the highest competing bidder had a CPM bid
that is roughly double that of the CPC bidder in expectation. However, since there are
more than two bidders in most real auctions, the appropriate value of µ will be larger than
this. We thus consider a range of values of µ from −4.25 (for the case in which the highest
competing CPM bid is roughly double that of the CPC bidder in expectation) to −3.5 (for
the case in which the highest competing CPM bid is roughly four times that of the CPC
bidder in expectation).

Table 1 reports the results our simulations. The conclusions from these simulations are
striking. While we have conducted enough simulations to estimate the efficiency gain that
can be obtained from adding active exploration to within a few hundredths of a percentage
point, none of the resulting estimated efficiency gains in Table 1 are statistically significant.
Indeed one can conclude from these simulations that the maximum possible efficiency gain
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Conditions Percentage increase in efficiency

α = 10, β = 1000, µ = −4.25, σ2 = log(2)
0.021%

(0.017%)

α = 10, β = 1000, µ = −4, σ2 = log(2)
-0.016%
(0.011%)

α = 10, β = 1000, µ = −3.75, σ2 = log(2)
-0.008%
(0.007%)

α = 10, β = 1000, µ = −3.5, σ2 = log(2)
0.003%

(0.004%)

α = 20, β = 2000, µ = −4.25, σ2 = log(2)
0.003%

(0.009%)

α = 20, β = 2000, µ = −4, σ2 = log(2)
0.001%

(0.006%)

α = 20, β = 2000, µ = −3.75, σ2 = log(2)
0.001%

(0.004%)

α = 20, β = 2000, µ = −3.5, σ2 = log(2)
-0.002%
(0.002%)

Table 1: Average percentage increase in efficiency from incorporating active learning (with
standard errors in parentheses) after 2500 simulations. None of these results are
statistically significant at the p < .05 level.

that could be achieved in these settings is at most a few hundredths of a percentage point.
These empirical results provide further support for our theoretical conclusions that the value
of adding active exploration in an auction setting is exceedingly small.

The reason for the results observed in Table 1 is that an optimal exploration algorithm
will only do a tiny additional amount of exploration compared to the greedy strategy of
always submitting a bid for the CPC bidder equal to the CPC bidder’s estimated eCPM.
For instance, for the first simulation considered in Table 1, the incremental increase in an
advertiser’s bid in the first period of the game as a result of active exploration is only 4.2%,
implying only a 1.8% increase in the probability that the CPC bidder will be shown as well
as only a 2.1% increase in expected payoff conditional on the auctioneer showing a different
ad under active exploration than under the purely greedy strategy. Thus the incremental
expected payoff increase that can be achieved by incorporating active exploration in this
auction setting is at most a few hundredths of a percentage point.

The results in Table 1 make use of distributions that we regard as empirically realistic
in the sense that there is a realistic amount of uncertainty in the click-through rate of the
CPC bidder as well as a realistic amount of variation in the distribution of competing CPM
bids. It is worth noting that if one relaxes the requirement that there be a realistic amount
of uncertainty about these variances, then it is possible for the algorithm we have proposed
to substantially outperform the purely greedy strategy of making a bid for the CPC bidder
that always equals the CPC bidder’s expected eCPM. In particular, if we instead assume
that there is substantially more uncertainty about the CPC bidder’s click-through rate than
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we have assumed in the simulations in Table 1 and we also assume that there is substantially
less variance in the distribution of competing CPM bids than we have allowed for in Table 1,
then there will be considerably greater benefits to adding active exploration because there
is both more to learn about the CPC bidder’s true eCPM bid as well as less exploration
that will take place for free solely due to random variation in the competing bids. In this
case, there may well be significant benefits to adding active exploration.

Conditions Percentage increase in efficiency

α = 2, β = 200, µ = −4, σ2 = log(2)/4
0.15%

(0.05%)

α = 2, β = 200, µ = −3.75, σ2 = log(2)/4
0.17%

(0.05%)

Table 2: Average percentage increase in efficiency from incorporating active learning (with
standard errors in parentheses) after 10000 simulations. These results are both
statistically significant at the p < .005 level.

Table 2 reports the results of simulations that were conducted using distributions in
which there is substantially more uncertainty about the CPC bidder’s click-through rate and
substantially less variance in the CPM bidder’s competing CPM bid than in the distributions
considered in Table 1. These simulations indeed reveal statistically significant efficiency
gains as a result of active exploration. Nonetheless it is worth noting that the efficiency
gains reported in Table 2 are still fairly small. Even when we make assumptions that bias
the case in favor of active exploration being important, none of the efficiency gains reported
in Table 2 are greater than a few tenths of a percentage point.

Finally, while the gains achieved through active exploration in Table 2 are small, one
would not achieve greater gains by using a standard algorithm such as UCB. To test this,
we considered the same setting in the first row of this table, but instead of making a bid for

the CPC bidder of the form xt+
δ(1−δT−t)

2(1−δ)
αtβt

(αt+βt)2(αt+βt+1)2
f(xt) in each period t, we made a

bid of the form xt+c(xt)
1√

αt+βt
, where the constant c(xt) was chosen so that this bid would

equal xt + δ(1−δT−t)
2(1−δ)

αtβt
(αt+βt)2(αt+βt+1)2

f(xt) in time period t = 1. Thus our implementation

of UCB performed the same amount of exploration as the main algorithm we considered in
the very first period of the game, while performing more exploration in later periods due to
the fact that the rate of exploration declines with 1

(αt+βt)2
under our proposed algorithm,

while only declining with 1√
αt+βt

under UCB.

In this setting, we found that using the UCB algorithm rather than the purely greedy
strategy resulted in an average efficiency loss of 1.04% (with a standard error of 0.07%).
Thus while we were able to achieve an improvement by using the new algorithm we have
proposed, using the UCB algorithm instead resulted in significant efficiency losses. The fact
that UCB performed worse than the purely greedy strategy is not surprising since we know
from Theorem 17 that UCB performs worse than the purely greedy strategy once an ad has
received enough impressions.
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12. Conclusion

In online auctions, there may be value to exploring ads with uncertain eCPMs to learn
about the true eCPM of the ad and be able to make better ranking decisions in the future.
But the online auction setting is very different from standard multi-armed bandit problems
because there may be considerable variation in the quality of competition that an advertiser
with unknown eCPM faces in an auction, and as a result there will typically be plenty of
free opportunities to explore an ad with uncertain eCPM in auctions where there simply
are no ads with eCPM bids that are known to be high.

We have presented a model of the explore/exploit problem in online auctions that ex-
plicitly considers this random variation in competing bids that is present in real auctions.
We find that the optimal solution for ranking the ads is dramatically different than the
optimal solution in standard multi-armed bandit problems, and in particular, that the op-
timal amount of active exploration is considerably smaller than in standard multi-armed
bandit problems. This in turn implies that the improvement in the auctioneer’s payoff that
can be achieved by adding active learning in online auctions is also exceedingly small. Thus
while it is theoretically possible to improve efficiency by incorporating active learning, in
a practical exchange environment, a purely greedy strategy of simply ranking the ads by
their expected eCPMs is likely to perform nearly as well as any other strategy.

We conclude by discussing one other point. Throughout our analysis we have focused
on the problem of an auctioneer who wants to maximize efficiency. Although this is a sensi-
ble objective, one might also envision scenarios in which the mechanism designer wishes to
maximize a weighted average of efficiency and revenue. While incorporating active explo-
ration in online auctions can only have a small effect on efficiency, this active exploration
may significantly improve revenue. The reason for this is that if we rank the ads by the sum
of their expected eCPMs and a value of learning term, the value of learning term may be
larger for ads that typically lose the auctions, and incorporating this value of learning term
may increase pricing pressure for the winning ads and thereby increase revenue.8 In fact,
in several of the simulations considered in the previous section in which incorporating ac-
tive exploration failed to show significant efficiency gains, the algorithm that we considered
still showed significant revenue gains over the purely greedy strategy of ranking the ads by
their expected eCPMs. But while it is still possible to achieve significant revenue gains by
incorporating active exploration in the type of environment considered in this paper, the
maximum possible efficiency gains are likely to be exceedingly small.
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Appendix A. Proofs of Theorems

Proof of Theorem 1: Suppose it is known that the eCPM of the ad is x. If the highest
eCPM for a competing ad is p, then the presence of this ad with eCPM x increases total
welfare by x − p if x > p and 0 otherwise. Thus the expected increase in total welfare
from this ad with eCPM of x competing in the auction is

∫ x
0 (x − p)f(p) dp. The total

long-term value from having this advertisement is then the discounted sum of this expected
total increase in welfare or 1

1−δ
∫ x

0 (x− p)f(p) dp.

Now if V (x) ≡ 1
1−δ

∫ x
0 (x−p)f(p) dp, then V ′(x) = 1

1−δ
∫ x

0 f(p) dp and V ′′(x) = 1
1−δf(x).

From this it follows that V ′′(x) ≥ 0 for all x and V ′′(x) > 0 if x is contained in the support
of F . Thus the long-term value of the advertisement is a convex function of the eCPM of
the ad and a strictly convex function if the eCPM of the ad is contained within the support
of the distribution of the highest competing eCPM. �

Proof of Lemma 2: Suppose an ad has been shown k times. The value of the dynamic
program that arises from placing the optimal bid z in the current period, Vk(x), equals the
immediate reward from bidding z (or the negative of the loss function) in the current period
plus δ times the expected value of the dynamic program that arises in the next period.

Now if the new advertiser places a bid of z, then the probability the advertiser wins the
auction is F (z), in which case the expected value of the dynamic program that arises next
period is Ex′ [Vk+1(x′)], where the expectation is taken over the randomness in the changes
in the estimates of the eCPM of the ad x′ that arise as a result of showing this ad. The
probability the advertiser does not win the auction is 1− F (z), in which case the value of
the dynamic program remains at Vk(x). Thus the expected value of the dynamic program
that arises in the next period is F (z)Ex′ [Vk+1(x′)] + (1− F (z))Vk(x).

At the same time, we have already seen that the reward from bidding z that arises in
the current period equals −

∫ z
x+σkε

F (z)− F (y) dy. By combining this with the insights in
the previous paragraphs, it follows that

Vk(x) = max
z
Eε

[
−
∫ z

x+σkε
F (z)− F (y) dy + δ(F (z)Ex′ [Vk+1(x′)] + (1− F (z))Vk(x))

]
.

By subtracting δVk(x) from both sides and dividing by 1− δ, it follows that

Vk(x) =
1

1− δ

(
max
z
Eε

[
−
∫ z

x+σkε
F (z)− F (y) dy + δF (z)(Ex′ [Vk+1(x′)]− Vk(x))

])
. �

Proof of Theorem 3: By differentiating the expression in Lemma 2 with respect to z, we
see that the first order condition for z to be an optimal bid is

0 = Eε

[
−
∫ z

x+σkε
f(z) dy + δf(z)(Ex′ [Vk+1(x′)]− Vk(x))

]
= Eε

[
−f(z)(z − x− σkε) + δf(z)(Ex′ [Vk+1(x′)]− Vk(x))

]
= f(z)(x− z + δ(Ex′ [Vk+1(x′)]− Vk(x)))

From this it follows that z = x + δ(Ex′ [Vk+1(x′)] − Vk(x)) satisfies the first order con-
ditions. Moreover, at this value of z, the second order conditions are also satisfied. Thus
optimal bidding entails setting z = x+ δ(Ex′ [Vk+1(x′)]− Vk(x)). �
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Proof of Lemma 4: Let Φ(·|σk) denote the distribution from which ε is drawn for any
given value of σk. For any given σk, we know that Φ(·|σk) has mean zero and variance
one. We also know from the Bayesian central limit theorem that as σk → 0 (and k → ∞)
that Φ(·|σk) converges to the standard normal distribution. For any given σk, we can write
Eε[
∫ z
x+σkε

F (z) − F (y) dy] as J(σk) = Eε[
∫ z
x+σkε

F (z) − F (y) dy|ε ∼ Φ(·|σk)]. We seek to
show that J(σk) is of the form given in the statement of the lemma.

First note that

J ′(σk) = −Eε[ε(F (z)−F (x+σkε))|ε ∼ Φ(σk)]+
d

dΦ
Eε

[∫ z

x+σkε
F (z)− F (y) dy|ε ∼ Φ(·|σk)

]
where d

dΦEε[Z(ε, σk)|ε ∼ Φ(·|σk)] denotes the derivative of the expectation of Z(ε, σk) arising
through the changes in Φ(·|σk) induced by changes in σk (that is, if φ(ε;σk) denotes the den-
sity corresponding to Φ(·|σk), then d

dΦEε[Z(ε, σk)|ε ∼ Φ(·|σk)] ≡
∫∞
−∞ Z(ε, σk)

∂φ
∂σk

(ε;σk)dε).

Similarly, letting dm

dΦmEε[Z(ε, σk)|ε ∼ Φ(·|σk)] ≡
∫∞
−∞ Z(ε, σk)

∂mφ
∂σmk

(ε;σk)dε for all m, we have

J ′′(σk) = Eε[ε
2f(x+ σkε)|ε ∼ Φ(·|σk)]− 2

d

dΦ
Eε[ε(F (z)− F (x+ σkε))|ε ∼ Φ(·|σk)]

+
d2

dΦ2
Eε

[∫ z

x+σkε
F (z)− F (y) dy|ε ∼ Φ(·|σk)

]
,

J ′′′(σk) = Eε[ε
3f ′(x+ σkε)|ε ∼ Φ(·|σk)] + 3

d

dΦ
Eε[ε

2f(x+ σkε)|ε ∼ Φ(·|σk)]

−3
d2

dΦ2
Eε[ε(F (z)− F (x+ σkε))|ε ∼ Φ(·|σk)]

+
d3

dΦ3
Eε

[∫ z

x+σkε
F (z)− F (y) dy|ε ∼ Φ(·|σk)

]
,

and

J ′′′′(σk) = Eε[ε
4f ′′(x+ σkε)|ε ∼ Φ(·|σk)] + 4

d

dΦ
Eε[ε

3f ′(x+ σkε)|ε ∼ Φ(·|σk)]

+6
d2

dΦ2
Eε[ε

2f(x+ σkε)|ε ∼ Φ(·|σk)]

−4
d3

dΦ3
Eε[ε(F (z)− F (x+ σkε))|ε ∼ Φ(·|σk)]

+
d4

dΦ4
Eε

[∫ z

x+σkε
F (z)− F (y) dy|ε ∼ Φ(·|σk)

]
,

Note that when σk = 0, we have Eε[
∫ z
x+σkε

F (z) − F (y) dy|ε ∼ Φ(·|σk)] =
∫ z
x F (z) −

F (y) dy for any distribution Φ(·|σk), Eε[ε(F (z) − F (x + σkε))|ε ∼ Φ(·|σk)] = Eε[ε(F (z) −
F (x))|ε ∼ Φ(·|σk)] = 0 for any distribution Φ(·|σk) with mean zero, and Eε[ε

2f(x+σkε)|ε ∼
Φ(·|σk)] = Eε[ε

2f(x)|ε ∼ Φ(·|σk)] = f(x) for any distribution Φ(·|σk) with mean zero and
variance one. Thus dm

dΦmEε[
∫ z
x+σkε

F (z)− F (y) dy|ε ∼ Φ(·|σk)] = 0, dm

dΦmEε[ε(F (z)− F (x+

σkε))|ε ∼ Φ(·|σk)] = 0, and dm

dΦmEε[ε
2f(x + σkε)|ε ∼ Φ(·|σk)] = 0 for all m when evaluated

at σk = 0.
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By using these facts, the fact that Φ(·|0) is standard normal, and the above expressions
for J(σk) and its derivatives, it follows that J(0) =

∫ z
x F (z)− F (y) dy, J ′(0) = 0, J ′′(0) =

f(x), J ′′′(0) = 0, and J ′′′′(0) = Eε[ε
4f ′′(x)|ε ∼ Φ(·|0)] + 4 d

dΦEε[ε
3f ′(x)|ε ∼ Φ(·|σk)]|σk=0.

This in turn implies that the fourth-order Taylor approximation to Eε[
∫ z
x+σkε

F (z)−F (y) dy]
is

Eε

[∫ z

x+σkε
F (z)− F (y) dy

]
=

∫ z

x
F (z)− F (y) dy +

1

2
σ2
kf(x) + a(x)σ4

k + o(σ4
k),

where a(x) ≡ 1
24 [Eε[ε

4f ′′(x)|ε ∼ Φ(·|0)] + 4 d
dΦEε[ε

3f ′(x)|ε ∼ Φ(·|σk)]|σk=0]. �

Proof of Theorems 5 and 6: Since these results are special cases of Theorems 9 and 10
respectively, the proofs of these results are omitted.

Before proving Theorem 7, we first introduce some notation for the finite-horizon version
of this game. If the game has a finite time horizon and will last an additional T periods,
we let Vk,T (x) denote the value of the dynamic program that arises when the auctioneer
follows the optimal strategy. By analogy to Lemma 2, we know that

Vk,T (x) =
1

1− δ

(
max
z
Eε

[
−
∫ z

x+σkε
F (z)− F (y) dy + δF (z)(Ex′ [Vk+1,T−1(x′)]− Vk,T−1(x))

])
when T > 0 and Vk,T (x) = −Eε[

∫ x
x+σkε

F (x) − F (y) dy] when T = 0. Also note that
limT→∞ Vk,T (x) = Vk(x), where Vk(x) is the value of the dynamic program for the original
infinite-horizon game. Finally note that

Lemma 21 Vk,T (x) is twice differentiable in x for all k and T . Furthermore, limk→∞ V
′
k,T (x) =

0 and limk→∞ V
′′
k,T (x) = 0 for all T .

Proof We prove this result by induction on T . The base case, T = 0, holds because
the fact that f(·) is continuously differentiable implies F (·) is twice differentiable and

Vk,T (x) = −Eε[
∫ x
x+σkε

F (x) − F (y) dy] is also twice differentiable in x. Furthermore,

V ′k,T (x) = Eε[F (x)− F (x+ σkε)−
∫ x
x+σkε

f(x) dy] = Eε[F (x)− F (x+ σkε)] and V ′′k,T (x) =
Eε[f(x)− f(x+ σkε)], which both tend to zero as k →∞. Thus the result holds for T = 0.

Now suppose the result is true for T − 1 and use this to prove the result must also hold
for T . Since

Vk,T (x) =
1

1− δ

(
max
z
Eε

[
−
∫ z

x+σkε
F (z)− F (y) dy + δF (z)(Ex′ [Vk+1,T−1(x′))]− Vk,T−1(x))

])
,

we know from analogy to Theorem 3 that the optimal bid z satisfies z = x+δ(Ex′ [Vk+1,T−1(x′))]−
Vk,T−1(x)). From the induction hypothesis, we thus know that the optimal bid zk(x) is twice
differentiable in x and that limk→∞ z

′
k(x) = 1 and limk→∞ z

′′
k(x) = 0.

This in turn implies that Eε[−
∫ zk(x)
x+σkε

F (zk(x))−F (y) dy] is twice differentiable in x and

that d
dxEε[−

∫ zk(x)
x+σkε

F (zk(x))−F (y) dy] = Eε[F (zk(x))−F (x+σkε)−
∫ zk(x)
x+σkε

z′k(x)f(zk(x)) dy],
which tends to zero as k → ∞ since limk→∞ zk(x) = x. This also further implies that
d2

d2x
Eε[−

∫ zk(x)
x+σkε

F (zk(x))−F (y) dy] = Eε[z
′
k(x)f(zk(x))−f(x+σkε)−(z′k(x)−1)z′k(x)f(zk(x))−
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∫ zk(x)
x+σkε

z′′k(x)f(zk(x))+(z′k(x))2f ′(zk(x)) dy], which tends to zero as k →∞ since limk→∞ zk(x) =

x and limk→∞ z
′
k(x) = 1.

From the induction hypothesis, we also know that F (zk(x))(Ex′ [Vk+1,T−1(x′)]−Vk,T−1(x))
is twice differentiable in x and that the first and second derivatives of this expression with
respect to x tend to zero as k →∞. By combining this with the results in the previous two
paragraphs, it follows that Vk,T (x) is twice differentiable in x and limk→∞ V

′
k,T (x) = 0 and

limk→∞ V
′′
k,T (x) = 0 for all T . The result follows by induction.

We use these observations about the finite-horizon game to first prove that E[Vk+1(x′)−
Vk(x)] = O( 1

k2
) in Lemma 22. Then we use this preliminary result to prove Theorem 7.

Lemma 22 E[Vk+1(x′)− Vk(x)] = O( 1
k2

) for large k.

Proof Note that if an ad is displayed, then one of two possible things will happen to the
ad—either the ad will receive a click or the ad will not receive a click. Let p denote the
probability that the ad will receive a click, let xc denote the estimated eCPM of the ad if
the ad receives a click, and let xn denote the estimated eCPM of the ad if the ad does not
receive a click. Note that pxc + (1− p)xn = x.

From Lemma 21 we know that Vk,T (x) is twice differentiable in x for all k and T . Thus
the second-order Taylor approximations for Vk+1,T (xc) and Vk+1,T (xn) are

Vk+1,T (xc) = Vk+1,T (x) + V ′k+1,T (x)(xc − x) +
1

2
V ′′k+1,T (x)(xc − x)2 + o(xc − x)2

and

Vk+1,T (xn) = Vk+1,T (x) + V ′k+1,T (x)(xn − x) +
1

2
V ′′k+1,T (x)(xn − x)2 + o(xn − x)2.

Thus if x′ denotes the actual realization of the estimated eCPM after the ad has been
shown k + 1 times (x′ will equal xc with probability p and xn with probability 1− p), then
by using the fact that pxc + (1 − p)xn = x and by taking a weighted average of the two
previous equations, we find that

E[Vk+1,T (x′)] = pVk+1,T (xc) + (1− p)Vk+1,T (xn)

= Vk+1,T (x) +
1

2
V ′′k+1,T (x)E[(x′ − x)2] + o(E[(x′ − x)2]).

From this it follows that

E[Vk+1,T (x′)−Vk,T (x)] = Vk+1,T (x)−Vk,T (x)+
1

2
V ′′k+1,T (x)E[(x′−x)2]+o(E[(x′−x)2]). (1)

If c denotes the number of clicks that an ad has received so far, then the predicted
click-through rate for an ad that has received a large number of impressions, k, will be
approximately c

k . Thus if b denotes the bid per click that the ad places, then the eCPM

for an ad that has received c clicks and has been shown k times will be x ≈ bc
k . From

this it follows that xc ≈ b(c+1)
k+1 , xn ≈ bc

k+1 , xc − x ≈ b(k−c)
k(k+1) , and xn − x ≈ − bc

k(k+1) . Thus
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x′ − x = O( 1
k ) for all possible realizations of x′, and (x′ − x)2 = O( 1

k2
). Furthermore, from

Lemma 21 we know that limk→∞ V
′′
k+1,T (x) = 0. Thus we can rewrite equation (1) as

E[Vk+1,T (x′)− Vk,T (x)] = Vk+1,T (x)− Vk,T (x) + o

(
1

k2

)
.

By using the fact that limT→∞ Vk,T (x) = Vk(x), where Vk(x) denotes the value of the
dynamic program in the original infinite horizon game, we then know that

E[Vk+1(x′)− Vk(x)] = Vk+1(x)− Vk(x) + o

(
1

k2

)
=

v(x)

k
− v(x)

k + 1
+O

(
1

k2

)
= O

(
1

k2

)
.

Proof of Theorem 7: We have seen in the proof of Lemma 22 that E[Vk+1(x′)−Vk(x)] =

Vk+1(x) − Vk(x) + o
(

1
k2

)
. When combined with the fact that Vk(x) = −v(x)

k + O( 1
k2

), this
immediately implied that E[Vk+1(x′)−Vk(x)] = O

(
1
k2

)
. If we are able to further prove that

we can write Vk(x) = −v(x)
k + w(x)

k2
+ o( 1

k2
) for some function w(x), it will then follow that

Vk+1(x) − Vk(x) = v(x)
k(k+1) + o( 1

k2
). Thus we first seek to show that we can write Vk(x) as

Vk(x) = −v(x)
k + w(x)

k2
+ o( 1

k2
).

Since E[Vk+1(x′)− Vk(x)] = O( 1
k2

) for large k and the optimal bidding strategy entails
setting z = x+ δ(E[Vk+1(x′)− Vk(x)]), it must be the case that z = x+O( 1

k2
) for large k.

From this it follows that
∫ z
x F (z) − F (y) dy = o( 1

k2
) under the optimal bidding strategy z

for large k.

Now we have seen in Lemma 4 that Eε[
∫ z
x+σkε

F (z) − F (y) dy] =
∫ z
x F (z) − F (y) dy +

1
2σ

2
kf(x)+a(x)σ4

k+o(σ4
k) for some constant a(x) for large k. Since

∫ z
x F (z)−F (y) dy = o( 1

k2
)

under the optimal bidding strategy z and σ2
k = s2(x)

k + h(x)
k2

+o( 1
k2

) for large k, it then follows

that Eε[
∫ z
x+σkε

F (z)−F (y) dy] = 1
2ks

2(x)f(x) + 1
k2

[h(x)f(x)
2 + a(x)s4(x)] + o( 1

k2
) for large k,

which we can rewrite as Eε[
∫ z
x+σkε

F (z)− F (y) dy] = 1
2ks

2(x)f(x) + 1
k2
u(x) + o( 1

k2
), where

u(x) ≡ h(x)f(x)
2 + a(x)s4(x).

But −Eε[
∫ z
x+σkε

F (z)−F (y) dy] represents the auctioneer’s per-period payoff in the next

auction. Thus if x′ denotes the estimated eCPM of the ad after an additional j periods have
passed and k′ denotes the number of impressions the ad has received after an additional j
periods have passed, then the auctioneer’s per-period payoff in the period after an additional
j periods have passed is − 1

2k′ s
2(x′)f(x′) − 1

2k′2
u(x′) + o( 1

k′2
). The difference between this

and − 1
2ks

2(x)f(x) is

− 1

2k′
s2(x′)f(x′)− 1

2k′2
u(x′) +

1

2k
s2(x)f(x) + o

(
1

k2

)
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=
k′s2(x)f(x)− ks2(x′)f(x′)

2kk′
− 1

2k2
u(x) +

[
1

2k2
u(x)− 1

2k′2
u(x′)

]
+ o

(
1

k2

)
=

k′s2(x)f(x)− ks2(x′)f(x′)

2kk′
− 1

2k2
u(x) +

k′2u(x)− k2u(x′)

2k2k′2
+ o

(
1

k2

)
=

k′s2(x)f(x)− k[s2(x)f(x) + (x′ − x)d(x) + o(x′ − x)]

2kk′
− 1

2k2
u(x)

+
k′2u(x)− k2[u(x) +O(x′ − x)]

2k2k′2
+ o

(
1

k2

)
, (2)

where d(x) denotes the derivative of the function s2(x)f(x) with respect to x. By the
same reasoning as in the proof of Lemma 22, we know that x′ − x = O( 1

k ) for all possible
realizations of x′. Thus we can rewrite the expression in equation (2) as

(k′ − k)s2(x)f(x)− k(x′ − x)d(x)

2kk′
− 1

2k2
u(x) +

(k′2 − k2)u(x)

2k2k′2
+ o

(
1

k2

)
=

(k′ − k)s2(x)f(x)− k(x′ − x)d(x)

2kk′
− 1

2k2
u(x) + o

(
1

k2

)
. (3)

Now note that E[x′] = x, where the expectation is taken over the uncertain realization
of x′ in another j periods. Thus the expectation of the expression in equation (3) is

E

[
(k′ − k)s2(x)f(x)

2kk′

]
− 1

2k2
u(x) + o

(
1

k2

)
, (4)

where the expectation is taken over the uncertain realization of k′. This expression can in
turn be written as

mj(x)s2(x)f(x)− u(x)

2k2
+ o

(
1

k2

)
, (5)

where mj(x) denotes the expected number of additional impressions that the ad with un-
certain eCPM receives after an additional j periods have passed (which will equal 0 when
j = 0 and vary approximately linearly with j for large k).

The expression in equation (5) gives the difference between the auctioneer’s actual ex-
pected payoff in the period after an additional j periods have passed and − 1

2ks
2(x)f(x).

From this it follows that the difference between the auctioneer’s actual payoff Vk(x) and the
payoff the auctioneer would receive if the auctioneer obtained a payoff of − 1

2ks
2(x)f(x) in

every future period is
∑∞

j=0 δ
j mj(x)s2(x)f(x)−u(x)

2k2
+o
(

1
k2

)
, which can be written as w(x)

k2
+o( 1

k2
)

for some function w(x). Thus we can write Vk(x) as Vk(x) = −v(x)
k + w(x)

k2
+ o( 1

k2
) for some

function w(x).
But we have seen in the proof of Lemma 22 that E[Vk+1(x′) − Vk(x)] = Vk+1(x) −

Vk(x) + o
(

1
k2

)
. Since Vk(x) = −v(x)

k + w(x)
k2

+ o( 1
k2

), it then follows that Vk+1(x)− Vk(x) =
v(x)
k(k+1) + o( 1

k2
). �

Proof of Theorem 8: Recall that

Vk(x) =
1

1− δ

(
max
z
Eε

[
−
∫ z

x+σkε
F (z)− F (y) dy + δF (z)(Ex′ [Vk+1(x′)]− Vk(x))

])
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and a second-order Taylor approximation for Eε[
∫ z
x+σkε

F (z)− F (y) dy] is

Eε

[∫ z

x+σkε
F (z)− F (y) dy

]
=

∫ z

x
F (z)− F (y) dy +

1

2
σ2
kf(x) + o(σ2

k)

Now z = x+ δ(Ex′ [Vk+1(x′)]− Vk(x)), so z − x ≤ −δVk(x), a term which is O(f(x)σ2
k).

From this it follows that
∫ z
x F (z) − F (y) dy = O(F (x)f(x)σ2

k) = o(f(x)σ2
k). And we also

know that δF (z)(Ex′ [Vk+1(x′)]− Vk(x)) ≤ −δF (z)Vk(x) = O(F (x)f(x)σ2
k) = o(f(x)σ2

k).
Combining these results gives Eε[

∫ z
x+σkε

F (z) − F (y) dy] = 1
2σ

2
kf(x) + o(f(x)σ2

k) and

F (z)(Ex′ [Vk+1(x′)] − Vk(x)) = o(f(x)σ2
k). Substituting this in to our expression for Vk(x)

then gives Vk(x) = − 1
2(1−δ)f(x)σ2

k + o(f(x)σ2
k). �

Proof of Theorem 9: First note that it must be the case that V~k(x) = Ω( 1
k ) for large k.

We know that σ2
a,ka

= Θ( 1
ka

) = Θ( 1
βak

) = Θ( 1
k ) for large k, so the immediate reward in any

given period is at least on the same order as 1
k regardless of which ad-context pair a arises

in the auction. Thus we know that V~k(x) = Ω( 1
k ) for large k.

We also know that V~k(x) = O( 1
k ) for large k. To see this, note that the auctioneer can

ensure that his loss in an auction involving the ad-context pair a in any given period is
O( 1

ka
) = O( 1

k ) by bidding za = xa, so the auctioneer can thus ensure that his expected

loss in any given period is O( 1
k ) unconditional on the precise ad-context pair that arises.

And if the auctioneer’s loss in any given period is O( 1
k ), then the player’s total loss from

the game will also be no greater than O( 1
k ) because the present value of the sum of losses

that are Θ( 1
k ),
∑∞

j=k δ
j−k 1

j , is also Θ( 1
k ) since 1 <

∑∞
j=k δ

j−k k
j <

∑∞
j=k δ

j−k = 1
1−δ implies

1
k <

∑∞
j=k δ

j−k 1
j <

1
(1−δ)k . Thus V~k(x) = Θ( 1

k ) for large k. �

Proof of Theorem 10: Since V~k(x) = Θ( 1
k ) for large k, we have Ex′(a)[V~k′(a,~k)

(x′(a))] −
V~k(x) = O( 1

k ) for large k. Thus since the optimal bidding strategy entails setting za =
xa + δ(Ex′(a)[V~k′(a,~k)

(x′(a))]− V~k(x)), it must be the case that za = xa + O( 1
k ) for large k.

From this it follows that
∫ za
xa
Fa(za)−Fa(y) dy = O( 1

k2
) under the optimal bidding strategy

za for large k.
Now we have seen in Lemma 4 that Eε[

∫ za
xa+σa,kaε

Fa(za) − Fa(y) dy] =
∫ za
xa
Fa(za) −

Fa(y) dy + 1
2σ

2
a,ka

fa(xa) +O(σ4
a,ka

) for large k. Since
∫ za
xa
Fa(za)− Fa(y) dy = O( 1

k2
) under

the optimal bidding strategy za and σ2
a,ka

= s2a(xa)
ka

+O( 1
k2

) for large k, it then follows that

Eε[
∫ za
xa+σa,kaε

Fa(za)− Fa(y) dy] = 1
2ka

s2
a(xa)fa(xa) +O( 1

k2
) for large k.

But −Eε[
∫ za
xa+σa,kaε

Fa(za)−Fa(y) dy] represents the auctioneer’s per-period payoff if the

next auction is an auction for the advertiser-context pair a. Thus the auctioneer’s expected
per-period payoff unconditional on what ad-context pair appears in the next auction is∑m

a=1 πa
1

2ka
s2
a(xa)fa(xa) + O( 1

k2
) =

∑m
a=1 πa

1
2βak

s2
a(xa)fa(xa) + O( 1

k2
) for large k. From

this it follows that if g(x) ≡
∑m

a=1 πa
1

2βa
s2
a(xa)fa(xa), then the expected per-period utility

that one obtains at each point in the game unconditional on what ad-context pair appears
in the next auction is 1

kg(x) +O( 1
k2

).
Since V~k(x) can alternatively be expressed as the discounted sum of the per-period

utility that one can obtain at each point in the game, it then follows that |kV~k(x)| ≤∑∞
j=k δ

j−k[g(x)]+O( 1
k ), meaning |kV~k(x)| ≤ 1

1−δg(x)+O( 1
k ) and |kV~k(x)| ≥

∑∞
j=k δ

j−k[kj g(x)]+
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O( 1
k ) = 1

1−δg(x) + O( 1
k ) in the limit as k → ∞. From this it follows that |kV~k(x)| =

1
1−δg(x) +O( 1

k ) and kV~k(x) = − 1
1−δg(x) +O( 1

k ) = − 1
2(1−δ)

∑m
a=1 πa

1
βa
s2
a(xa)fa(xa) +O( 1

k ).
�

Proof of Theorem 13: Under the knowledge gradient framework, the incremental amount
that one increases one’s bid by beyond the expected value of the advertising opportunity is
δ(Ex′ [Uk+1(x′)]−Uk(x)). And under the full dynamic programming problem, the incremen-
tal amount that one increases one’s bid is δ(Ex′ [Vk+1(x′)]− Vk(x)). Thus if ∆Vk+1 denotes
the difference between the values of Ex′ [Vk+1(x′)] and Ex′ [Uk+1(x′)] and ∆Vk denotes the
difference between the values of Vk(x) and Uk(x), then the difference between the incremen-
tal amount that one increases one’s bid under the full dynamic programming problem and
under the knowledge gradient framework is δ(∆Vk+1 −∆Vk).

But a condition of the theorem is that ∆Vk+1 < ∆Vk. Thus δ(∆Vk+1 − ∆Vk) < 0,
and the difference between the incremental amount that one increases one’s bid under the
full dynamic programming problem and the incremental amount that one increases one’s
bid under the knowledge gradient framework is negative. From this it follows that the
incremental amount by which one would increase one’s bid under the knowledge gradient
framework is indeed greater than it is under the full dynamic programming problem. �

Proof of Theorem 14: In the knowledge gradient framework, Uk(x) is just the discounted
sum of the value of simply bidding z = x in each period when an ad has received k im-
pressions so far and one’s best estimate for the eCPM of the ad is x. Now we know from
applying Lemma 4 to the special case in which z = x that the per-period payoff from bidding
z = x in each period when an ad has received k impressions so far and one’s best estimate
for the eCPM of the ad is x is −1

2σ
2
kf(x)− a(x)σ4

k + o(σ4
k) = − 1

2ks
2(x)f(x) +O( 1

k2
). Thus

Uk(x) = − 1
2(1−δ)ks

2(x)f(x) +O( 1
k2

).

But we have seen in Theorem 7 that when Vk(x) = − 1
2(1−δ)ks

2(x)f(x) + O( 1
k2

) and

the per-period payoff from making the optimal bid is −1
2σ

2
kf(x) − a(x)σ4

k + o(σ4
k), then it

must be the case that Ex′ [Vk+1(x′))] − Vk(x) = v(x)
k(k+1) + o

(
1
k2

)
for large k, where v(x) ≡

1
2(1−δ)s

2(x)f(x). An identical argument illustrates that when Uk(x) = − 1
2(1−δ)ks

2(x)f(x) +

O( 1
k2

) and the per-period payoff from making the optimal bid is −1
2σ

2
kf(x)−a(x)σ4

k+o(σ4
k),

then it must be the case that Ex′ [Uk+1(x′))] − Uk(x) = v(x)
k(k+1) + o

(
1
k2

)
for large k, where

v(x) ≡ 1
2(1−δ)s

2(x)f(x). The result then follows. �

Proof of Theorem 16: Since the optimal bid for advertiser i if advertiser i submits
the highest eCPM bid amongst the bidders with unknown eCPMs satisfies zi = xi +
δ(Ex′(i)[V~k′(i)(x

′(i))]−V~k(x)), it follows that Exi [−
∫ zi
xi
F (zi) dy+δF (zi)(Ex′(i)[V~k′(i)(x

′(i))]−
V~k(x))] = 0 when advertiser i submits the optimal bid zi. By substituting this into the equa-
tion for the value of the dynamic programming problem V~k(x), it follows that the value of
this dynamic programming problem is always equal to 1

1−δ
∫ zi
xj
F (y) dy, which is an increas-

ing function of zi. From this it follows that if the optimal bid for advertiser i if advertiser
i submits the highest bid of the advertisers with unknown eCPMs is higher than the op-
timal bid for all other advertisers with unknown eCPMs if one of these other advertisers
submits the highest bid of the advertisers with unknown eCPMs, then the decision maker’s
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payoff from the game is maximized by having advertiser i submit the highest bid of all the
advertisers with unknown eCPMs. �

Proof of Theorem 17: Recall from Lemma 4 that the auctioneer’s per-period payoff
if the auctioneer uses a bid for the advertiser with unknown eCPM that is equal to z is
−Eε[

∫ z
x+σkε

F (z) − F (y) dy] = −
∫ z
x F (z) − F (y) dy − 1

2σ
2
kf(x) + o(σ2

k) for large k. Now

if z = x + c(x)
kα for some constant c(x) 6= 0, then

∫ z
x F (z) − F (y) dy =

∫ x+
c(x)
kα

x f(x)(x +
c(x)
kα − y) dy + o( 1

k2α
) = f(x) c

2(x)
2k2α

+ o( 1
k2α

). Thus the auctioneer’s per-period payoff if

the auctioneer uses a bid for the ad with unknown eCPM of the form z = x + c(x)
kα is

− c2(x)
2k2α

f(x)− 1
2σ

2
kf(x) + o( 1

k2α
) if c(x) 6= 0 and −1

2σ
2
kf(x) + o(σ2

k) if c(x) = 0.

Thus if c(x) = 0, the auctioneer’s per-period payoff is − 1
2ks

2(x)f(x) + o( 1
k ). We then

know from similar reasoning to that in the proof of Theorem 10 that if this is the auctioneer’s
per-period payoff, then the auctioneer’s total payoff from the game is − 1

2(1−δ)ks
2(x)f(x) +

o( 1
k ) regardless of the learning rate. Similarly, if c(x) 6= 0 and α = 1

2 , then the auctioneer’s
per-period payoff is − 1

2kf(x)(s2(x) + c2(x)) + o( 1
k ), and we know from identical reasoning

that the auctioneer’s total payoff is − 1
2(1−δ)kf(x)(s2(x)+c2(x))+o( 1

k ), which is strictly less

than the auctioneer’s total payoff from the game when c(x) = 0 for sufficiently large k.

Finally, if c(x) 6= 0 and α < 1
2 , the auctioneer’s per-period payoff is − c2(x)

2k2α
f(x) +o( 1

k2α
).

Since the auctioneer’s total payoff is the discounted sum of the auctioneer’s per-period
payoffs, it follows that if Vk(x) denotes the auctioneer’s total payoff from using this strategy,
then k2αVk(x) ≤

∑∞
j=k δ

j−k[−1
2(kj )2αc2(x)f(x)]+o(1) = − 1

2(1−δ)c
2(x)f(x)+o(1) in the limit

as k → ∞. Thus if c(x) 6= 0 and α < 1
2 , the auctioneer’s total payoff is no greater than

− 1
2(1−δ)k2α c

2(x)f(x)+o( 1
k2α

), which is less than − 1
2ks

2(x)f(x)+o( 1
k ), the auctioneer’s payoff

from using the constant c(x) = 0 for sufficiently large k. From this and the result in the
previous paragraph it follows that if the auctioneer uses the strategy in the statement of
this theorem, the auctioneer’s payoff will be maximized when c(x) = 0 for sufficiently large
k. �

Observation 23 Suppose the auctioneer displays the ad with the highest eCPM bid with
probability 1 − ε and displays an ad uniformly at random with probability ε > 0. Then the
optimal constant ε for such an algorithm is ε = 0 for sufficiently large k.

Proof Recall from Lemma 4 that the auctioneer’s per-period payoff if the auctioneer uses a
bid for the advertiser with unknown eCPM that is equal to z is −Eε[

∫ z
x+σkε

F (z)−F (y) dy] =

−
∫ z
x F (z)−F (y) dy− 1

2σ
2
kf(x) + o(σ2

k) for large k. Note that displaying an ad uniformly at
random is equivalent to making a bid of 0 for the ad with unknown eCPM with probability
1
2 and making a bid of ∞ for the ad with unknown eCPM with probability 1

2 . Since∫ z
x F (z)− F (y) dy > 0 for either z = 0 or z =∞, it follows that the auctioneer’s expected

per-period payoff if the auctioneer follows the strategy in the statement of the observation
is no greater than −cε for some constant c > 0 for large k.

However, if the auctioneer always uses a bid of z = x (as would be the case when
ε = 0), then we know from the proof of Theorem 17 that the auctioneer’s per-period payoff
is − 1

2ks
2(x)f(x) + o( 1

k ) for large k. Thus for sufficiently large k, the auctioneer always
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achieves a larger per-period payoff by setting ε = 0 than by using any positive value of ε,
so the optimal constant for this algorithm is ε = 0.

Proof of Theorem 18: We know from Theorem 7 that Ex′ [Vk+1(x′)]− Vk(x) = v(x)
k(k+1) +

o
(

1
k2

)
for large k, where v(x) = 1

2(1−δ)s
2(x)f(x), and we also know from the proof of

Theorem 3 that the derivative of the seller’s expected payoff from making a bid of z with
respect to z is f(z)(x− z + δ(Ex′ [Vk+1(x′)]− Vk(x)). Thus if ∆V ≡ Ex′ [Vk+1(x′)]− Vk(x),
then the difference between the auctioneer’s expected payoff from making a bid of x and a
bid of x+ δ

2(1−δ)k(k+1)s
2(x)f(x) is

1

1− δ

∫ x+δ∆V+o(∆V )

x
f(z)(x− z + δ(∆V ) + o(∆V )) dz =

f(x)δ2(∆V )2

2(1− δ)
+ o((∆V )2).

And since ∆V = Ex′ [Vk+1(x′)] − Vk(x) = v(x)
k(k+1) + o

(
1
k2

)
= s2(x)f(x)

2(1−δ)k(k+1) + o
(

1
k2

)
, it

follows that the difference between the auctioneer’s payoff from making a bid of x and a
bid of x+ δ

2(1−δ)k(k+1)s
2(x)f(x) is δ2

8(1−δ)3k4 s
4(x)f3(x) + o( 1

k4
). �

Proof of Theorem 19: The theoretically optimal strategy for the auctioneer would entail
submitting a bid of z = x + δ(Ex′ [Vk+1(x′)] − Vk(x)) in each time period. By the same
reasoning as in the proof of Theorem 18, we know the difference between the auctioneer’s
expected payoff from making a bid of x and making a bid of z = x + δ(Eθ̃k+1

[Vk+1(x)] −

Vk(x)) is f(x)δ2(∆V )2

2(1−δ) +o((∆V )2). Since the auctioneer’s payoff from using the approximately

optimal bidding strategy is also f(x)δ2(∆V )2

2(1−δ) +o((∆V )2), it follows that the difference between
the auctioneer’s payoff under the approximately optimal bidding strategy and the maximum
possible payoff the auctioneer could obtain theoretically is o((∆V )2) = o( 1

k4
).

But we know from Theorem 18 that the difference between the auctioneer’s payoff under
the approximately optimal bidding strategy and the greedy strategy is δ2

8(1−δ)3k4 s
4(x)f2(x)+

o( 1
k4

). Thus the difference between the auctioneer’s payoff under this strategy and the max-
imum possible payoff the auctioneer could obtain under the theoretically optimal strategy
becomes vanishingly small compared to the difference between the auctioneer’s payoff under
this strategy and the auctioneer’s payoff under the greedy strategy for large k. �

Proof of Theorem 20: A consequence of Theorem 13 is that the difference between the
auctioneer’s payoff under the theoretically optimal strategy and the auctioneer’s payoff from
the greedy strategy is no greater than the difference between the auctioneer’s payoff from the
theoretically optimal strategy and the auctioneer’s payoff under the greedy strategy when
no learning is possible in future periods. Thus we seek to bound the difference between
the auctioneer’s payoff from the theoretically optimal strategy and the auctioneer’s payoff
under the greedy strategy when no learning is possible in future periods.

Let α and β denote the parameters of the beta distribution. If no learning ever took
place and the auctioneer followed the greedy strategy, then in all periods the auctioneer
would show the highest competing bidder if this bidder had an eCPM bid p satisfying
p > α

α+β and show the bidder with unknown eCPM otherwise. If the auctioneer showed
the ad with unknown eCPM in the first period, this ad received a click, and no learning
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took place in future periods, then in future periods the auctioneer would show the highest
competing bidder if and only if this bidder had an eCPM bid p satisfying p > α+1

α+β+1 . And
if the auctioneer showed the ad with unknown eCPM, this ad did not receive a click, and no
learning took place in future periods, then in future periods the auctioneer would show the
highest competing bidder if and only if this bidder had an eCPM bid p satisfying p > α

α+β+1 .

From this it follows that if no learning takes place in future periods, then the auctioneer’s
payoff in any given period in the future is guaranteed to be the same regardless of whether
the ad with unknown eCPM was shown in the first period if either p > α+1

α+β+1 or p < α
α+β+1

in that particular period. The only circumstances under which the auctioneer’s expected
payoff in a future period t will differ as a result of showing the ad with unknown eCPM
in the first period is if this ad receives a click in the first period and p ∈ ( α

α+β ,
α+1

α+β+1) in
period t or if the ad does not receive a click in the first period and p ∈ ( α

α+β+1 ,
α

α+β ) in
period t. In the first case, the auctioneer’s payoff in period t as a result of showing the
ad with unknown eCPM in the first period exceeds the auctioneer’s payoff under normal
circumstances by α+1

α+β+1 − p, and in the second case the auctioneer’s payoff in period t as
a result of showing the ad with unknown eCPM in the first period exceeds the auctioneer’s
payoff under normal circumstances by an amount p− α

α+β+1 .

Now the probability the ad with unknown eCPM receives a click in the first period
if this ad is shown is α

α+β and the probability this ad does not receive a click in the

first period if this ad is shown is β
α+β . By combining this with the result in the previ-

ous paragraph, it follows that the maximum possible expected payoff difference that the
auctioneer can obtain from future periods as a result of showing the ad with unknown

eCPM in the first period is δ
1−δ [ α

α+β

∫ α+1
α+β+1
α

α+β
( α+1
α+β+1 − p)f dp+ β

α+β

∫ α
α+β
α

α+β+1
(p− α

α+β+1)f dp],

where f ≡ supp f(p). This payoff difference equals δf
2(1−δ) [ α

α+β ( α+1
α+β+1 −

α
α+β )2 + β

α+β ( α
α+β −

α
α+β+1)2] = δf

2(1−δ) [ α
α+β ( β

(α+β)(α+β+1))2 + β
α+β ( α

(α+β)(α+β+1))2] = δf
2(1−δ)

αβ(α+β)
(α+β)3(α+β+1)2

=

δf
2(1−δ)

(α+β)2α2β2

αβ(α+β)4(α+β+1)2
.

Now the expected value for a beta distribution is α
α+β and the variance in a beta dis-

tribution is αβ
(α+β)2(α+β+1)

. Thus since the bidder’s expected eCPM is ω and the standard

deviation in the bidder’s expected eCPM is γω, it follows that α+β
α = 1

ω , α+β
β = 1

1−ω , and
α2β2

(α+β)4(α+β+1)2
= γ4ω4. From this it follows that δf

2(1−δ)
(α+β)2α2β2

αβ(α+β)4(α+β+1)2
= δf

2(1−δ)
γ4ω3

1−ω . Thus

the maximum additional payoff increase that one can obtain from future periods as a result

of showing the ad with uncertain eCPM in the first period is no greater than δf
2(1−δ)

γ4ω3

1−ω .

Now if ∆V denotes the change in payoff that one obtains from future periods as a result
of showing the ad with uncertain eCPM in the first period, then the value of showing the ad
with uncertain eCPM in the first period is ω+∆V . Thus the theoretically optimal strategy
will specify a bid of ω+∆V for the bidder with uncertain eCPM, whereas the greedy strategy
will specify a bid of ω, so the theoretically optimal strategy will only show a different ad
when the highest competing eCPM bid, p, satisfies p ∈ [ω, ω + ∆V ]. Furthermore, in the
cases where the theoretically optimal strategy specifies a different bid, the theoretically
optimal strategy achieves a payoff that exceeds that of the greedy strategy by an amount
ω+∆V −p, where p denotes the highest competing eCPM bid. From this it follows that the
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difference in expected payoff that one obtains as a result of using the theoretically optimal
strategy rather than the greedy strategy is no greater than 1

1−δ
∫ ω+∆V
ω (ω+∆V −p)f(p) dp.

Thus if f ≡ supp f(p), this payoff difference is no greater than f
1−δ

∫ ω+∆V
ω (ω + ∆V −

p) dp = f
1−δ

(∆V )2

2 . Thus the difference between the auctioneer’s payoff under the theoret-
ically optimal strategy and the auctioneer’s payoff from the greedy strategy is no greater

than f
1−δ

(∆V )2

2 .

But we have seen earlier that the maximum additional payoff increase that one can
obtain from future periods as a result of showing the ad with uncertain eCPM in the

first period is no greater than δf
2(1−δ)

γ4ω3

1−ω . Thus we know that ∆V ≤ δf
2(1−δ)

γ4ω3

1−ω . By
combining this with the result in the previous paragraph, we see that the difference between
the maximum possible payoff the auctioneer could obtain under the theoretically optimal

strategy and the auctioneer’s payoff from the greedy strategy is no greater than δ2γ8ω6f
3

8(1−δ)3(1−ω)2
.

�
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