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Abstract

Government surveys of business establishments receive a large volume of submissions where

a small subset contain errors. Analysts need a fast-computing algorithm to flag this subset

due to a short time window between collection and reporting. We offer a computationally-

scalable optimization method based on non-parametric mixtures of hierarchical Dirichlet

processes that allows discovery of multiple industry-indexed local partitions linked to a set

of global cluster centers. Outliers are nominated as those clusters containing few observa-

tions. We extend an existing approach with a new “merge” step that reduces sensitivity

to hyperparameter settings. Survey data are typically acquired under an informative sam-

pling design where the probability of inclusion depends on the surveyed response such that

the distribution for the observed sample is different from the population. We extend the

derivation of a penalized objective function to use a pseudo-posterior that incorporates

sampling weights that “undo” the informative design. We provide a simulation study to

demonstrate that our approach produces unbiased estimation for the outlying cluster un-

der informative sampling. The method is applied for outlier nomination for the Current

Employment Statistics survey conducted by the Bureau of Labor Statistics.
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Scalable Inference for Outlier Detection under Informative Sampling

1. Introduction

1.1 Outlier Detection and Informative Sampling

The U.S. Bureau of Labor Statistics (BLS) administers the Current Employment Statistics

(CES) survey to over 350000 non-farm, public and private business establishments across

the U.S. on a monthly basis, receiving approximately 270000 submitted responses in each

month. Estimated total employment is published for local, state and national geographies

in the U.S., as well as for domains defined by establishment size and industry categories

within each geography. The BLS conducts a quality check to discover and correct es-

tablishment submission errors, particularly among those establishments whose entries are

influential in the overall published domain-level estimates. Of the 270000 submissions,

approximately 100000−150000 of those include employment changes from the prior to the

current submission month. The CES maintains a short lag time of approximately 7 days

between receipt of establishment submissions at the end of a month and subsequent publi-

cation of employment estimates for that month, such that investigations of submission data

quality must be done quickly. The relatively large number of submissions with non-zero

changes in employment levels, coupled with the rapid publication schedule, require use of

quick-executing, automated data analysis tools that output a relatively small, outlying set

of the submissions for further investigation and correction by BLS analysts.

The CES survey utilizes a stratified sampling design with strata constructed by combi-

nations of state, broad industry grouping, and employment size (divided into 8 categories).

Business establishments are sampled by their unique unemployment insurance (UI) tax

identification numbers, which may contain a cluster of multiple individual sites. If a busi-

ness establishment is selected for inclusion at the UI level, all of the associated sites in

that cluster are also included. Stratum-indexed inclusion probabilities are set to be pro-

portional to average employment size for member establishments of that stratum, which is
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done because larger establishments compose a higher percentage of the published employ-

ment statistics. The correlation between establishment employment levels and inclusion

probabilities induces informativeness into the sampling design, meaning that the probabil-

ities of inclusion are correlated with the response variable of interest. The distribution for

the resulting observed sample will be different from that for the population (because the

sample emphasizes relatively larger establishments), such that inference made (e.g. about

outliers) with the former distribution will be biased for the latter.

1.2 Methodologies for Outlier Detection

The Dirichlet process (DP) (Blackwell and MacQueen 1973) and more generally, species

sampling formulations (Ishwaran and James 2003), induce a prior over partitions due to

their almost surely discrete construction. Convolving a discrete distribution under a DP

prior with a continuous likelihood in a mixture formulation is increasingly used for outlier

detection (Quintana and Iglesias 2003), where one supposes that each observation is realized

from one of multiple generation processes (Shotwell and Slate 2011). Each cluster collects

an ellipse cloud of observations that are centered on the cluster mean.

In this article, we improve and extend sequential, penalized partition (clustering) algo-

rithms of Kulis and Jordan (2011); Broderick et al. (2012), that each approximately esti-

mate a maximum a posteriori (MAP) partition and associated cluster centers or means, to

account for data acquired under an informative sampling design under which the distribu-

tion for the observed sample is different from that for the population (Bonnry et al. 2012).

We incorporate first order sampling weights into our model for partitions that “undo” the

sampling design so that our application nominates outliers with respect to the population

generating (mixture) distribution. The algorithm of Kulis and Jordan (2011) is of a class of

approaches (see also Wang and Dunson 2011; Shotwell and Slate 2011) that each produce
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an approximation for the MAP from a mixture of DPs posterior distribution (where the

(unknown) mixing measure over the parameters that define the data likelihood is drawn

from a DP).

We follow Kulis and Jordan (2011) and straightforwardly extend our formulation from

a DP prior imposed on the mixing distribution to a hierachical Dirichlet process (HDP)

prior (Teh et al. 2006), which allows our estimation of a distinct “local” partition (set of

clusters) for each subset of establishments in the CES binned to one of J = 24 industry

groupings. The local clusters of the industry-indexed partitions may share cluster centers

(means) from a global clustering partition. The hierarchical construction of local clusters

that draw from or share global cluster means permits the estimation of a dependence

structure among the local partitions and encourages a parsimonious discovery of global

clusters as compared to running separate global clustering models on each industry group.

We refer to this model as hierarchical clustering.

We apply our (sampling-weighted) global and hierarchical clustering models, derived

from the MAP approximations, for the nomination of outliers based on identification of

the subset of clusters that together collect relatively few observations (with “few” defined

heuristically). Quintana and Iglesias (2003) implement a mixture of DPs, for the purpose of

outlier detection, where a partition is sampled at each step of an MCMC under an algorithm

that minimizes a loss function. The loss function penalizes the size of the partition (or total

number of clusters discovered), which will tend to assign most observations into relatively

few clusters, while only a small number of observations will lie outside these clusters, a

useful feature for outlier detection. We extend small variance asymptotic result of Broderick

et al. (2012) for our global and hierarchical clustering formulations to produce objective

functions that penalize the number of estimated clusters. We further devise a new “merge”

step among all pairs of discovered clusters in each iteration of our estimation algorithms.
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Both the penalized likelihood and the merge step encourage parsimony in the number of

clusters discovered.

We next derive our sampling-weighted global and hierarchical clustering algorithms in

Section 2, followed by a simulation study that demonstrates the importance of correcting

estimation for an informative sampling design for outlier detection in Section 3. The

simulation study also demonstrates the efficacy of outlier detection performance for the

sampling-weighted hierarchical formulation estimated on synthetic data generated in a

nested fashion that is similar to the structure of CES survey data. We apply the sampling-

weighted hierarchical algorithm to discover local, by-industry partitions and to nominate

observations for outliers for our CES survey application in Section 4. We conclude the

paper with a discussion in Section 5.

2. Estimation of Partitions from Asymptotic Non-parametric Mixtures

We begin by specifying a Dirichlet process mixtures of Gaussians model to which we apply

small variance asymptotics to derive a penalized K− means optimization expression and

an associated fast-computing estimation algorithm. We include the sampling weights in

our mixture formulation that asymptotically corrects for an informative sampling design

(Savitsky and Toth 2015). We continue and extend this MAP approximation approach

to a hierarchical Dirichlet process mixtures of Gaussians model to a achieve a hard, point

estimate sampling-weighted hierarchical clustering algorithm that permits specification of

a set of local, industry indexed, clusters linked to a common set of global clusters.

We implement both algorithms we present, below, in the growclusters package for

R(R Core Team 2014), which is written in C++ for fast computation and available from

the authors on request.
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2.1 Asymptotic Sampling-weighted Mixtures of Dirichlet Processes

We specify a probability model for a mixture of Kmax allowed components to introduce

Bayesian estimation of partitions of observations into clusters and the associated cluster

centers. The mixtures of DPs will be achieved in the limit of this probability model as

Kmax increases to infinity.

d×1
xi |si,M = (µ1, . . . ,µKmax)

′
, σ2, w̃i

ind∼ Nd

(
µsi , σ

2Id
)w̃i (1a)

si|τ
iid∼ M (1, τ1, . . . , τKmax) (1b)

µp|G0
iid∼ G0 := Nd

(
0, ρ2Id

)
(1c)

τ1, . . . , τKmax ∼ D (α/Kmax, . . . , α/Kmax) , (1d)

for i = 1, . . . , n sample establishments and p = 1, . . . ,Kmax allowable clusters. Each

cluster candidate, p, indexes a unique value for the associated cluster center, µp. The set

of cluster assignments of observations together compose a partition of observations, where

partitions are indexed by s = (s1, . . . , sn), for si ∈ (1, . . . ,K). The prior distributions for

the cluster centers and assignments induce a random distribution prior, G, for drawing a

mean value for each xi for i = 1, . . . , n, by sampling unique values in the support of G from

G0 and assigning the mean value (that we interpret as a cluster) for each observation by

drawing from the set of unique values with probabilities, τ , which are, in turn, randomly

drawn from a Dirichlet distribution. As Kmax ↑ ∞ in Equation 1d, such that number of

possible clusters are countably infinite, this construction converges to a (non-parametric)

mixture of Dirichlet processes (Neal 2000). We also note that α influences the number of

clusters discovered. For any given Kmax, larger values for α will produce draws for τ that

assign larger probabilities to more of the p ∈ (1, . . . ,Kmax) clusters, such that it is highly

influential in the determination of the number of discovered clusters, K < Kmax.
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The likelihood contribution for each observation, i ∈ (1, . . . , n), in Equation 1a is up-

lifted by a sampling weight, w̃i = n×wi/
∑n

i=1wi for wi ∝ 1/πi, constructed to be inversely

proportional to the known inclusion probability in the sample. This formulation for the

sampling weight assigns importance for that observation likelihood based on the amount

of information in the finite population represented by that observation. The weights sum

to the sample size, n, so that an observation with a low inclusion probability in the sample

will have a weight greater than 1, meaning that it “represents” more than a single unit in

a re-balanced sample. The weighting serves to “undo” the sampling design by re-balancing

the information in the observed sample to approximate that in the population. The sum

of the weights directly impacts the estimation of posterior uncertainty such that the sum-

mation to n expresses the asymptotic amount of information in the observed sample. This

construction is known as a “pseudo” likelihood because the distribution for the population

is approximated by weighting each observation back to the population. Savitsky and Toth

(2015) provide three conditions that define a class of sampling designs under which the

pseudo posterior (defined from the pseudo likelihood) is guaranteed to contract in L1 on

the unknown true generating distribution, P0. The first condition states that the inclu-

sion probability, πi, for each unit in the finite population, i ∈ (1, . . . , N), must be strictly

greater than 0. This condition ensures that no portion of the population may be system-

atically excluded from the sample. The second condition on the sampling design requires

the second order inclusion dependence for any two units, i, j ∈ (1, . . . , N), be globally

bounded from above by a constant; for example, a two-stage design in which units within

selected clusters are sampled without replacement is within this class to the extent that

the number of population units within each cluster asymptotically increases. The third

condition requires the sampling fraction, n/N , to converge to a constant as the population

size limits to infinity.
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Samples may be drawn from the joint posterior distribution under Equation 1 using

Markov chain Monte Carlo (MCMC), though the computation will not scale well with in-

creasing sample size as a partition is formed through sequential assignments of observations

to clusters (including to possibly new, unpopulated clusters) on each MCMC iteration. We,

instead, derive an optimization expression that allows for scalable approximation of the sin-

gle MAP partition by taking the limit of the joint posterior distribution as the likelihood

variance, σ2 ↓ 0.

We marginalize out τ from the joint prior, f (s, τ |α) = f (s|τ ) f (τ |α), by using the

Pólya urn scheme of Blackwell and MacQueen (1973), which produces,

f (s1, . . . , sn|α) = αK Γ (α+ 1)

Γ (α+ n)

K∏
p=1

(np − 1)!,

where np =
∑n

i=1 1 (si = p) is the number of observations (e.g. establishments) assigned

to cluster, p and K denotes the number of estimated clusters. We generally follow Brod-

erick et al. (2012) and derive our optimization expression from the joint pseudo posterior

distribution,

f (s,M|X, w̃) ∝ f (X, s,M|w̃) =
K∏
p=1

∏
i:si=p

Nd

(
xi|µp, σ

2Id
)w̃i

αK Γ (α+ 1)

Γ (α+ n)

K∏
p=1

(np − 1)!

K∏
p=1

Nd

(
µp|0, ρ2Id

)
.

(2)

Broderick et al. (2012) point out that if one limits σ2 ↓ 0 in Equation 2, each observation will

be allocated to its own cluster since the prior allows a countably infinite number of clusters.

To avoid this degenerate outcome, define a constant λ and set α = exp
(
−λ/

(
2σ2
))

, which
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produces α ↓ 0 as σ2 ↓ 0. This functional form for α achieves the result and avoids

the degenerate outcome, where the λ hyperparameter controls the size of the partition as

σ2 ↓ 0. Commonly-used approaches that also specify an approximate MAP of a mixture

of DPs also restrict α; Shotwell and Slate (2011) fix the value for α and Wang and Dunson

(2011) restrict the values of α to a discrete grid. Plugging in this expression for α into

Equation 2, and taking −1 times the logarithm of both sides results in,

− log f (X, s,M, w̃) =
K∑
p=1

∑
i:si=p

[
O
(
log σ2

)
+

w̃i

2σ2
‖xi − µp‖2

]
+K

λ

2σ2
+O (1)

+O (1) ,

(3)

where the expression in the first line derives from the log-kernel of a multivariate Gaussian

distribution and f(σ2) = O(h(σ2)) denotes that there exist constants, c1, c2 > 0, such

that |f(σ2)| ≤ c1|h(σ2)|, for σ2 < c2. Multiplying both sides of Equation 3 by 2σ2 and

taking the limit as σ2 ↓ 0 results in the asymptotically equivalent sampling-weighted global

clustering optimization problem,

argmin
K,s,M

K∑
p=1

∑
i:si=p

w̃i‖xi − µp‖2 +Kλ, (4)

whose solution is a MAP approximation for the sample-adjusted mixtures of DPs of Equa-

tion 1. We minimize a sampling-weighted distance in Equation 4, which will approximate

a MAP partition and associated cluster centers with respect to the distribution for the

population, which is our interest, rather than that for the realized sample.

Although we derive the sampling-weighted approximate MAP by letting the variance

around a partition, σ2, limit to 0, this constructive derivation offers no comment on whether
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the distribution over the space of partitions for a particular data set expresses a low or

high variance. Our purpose is to extract a hard, point estimate that computationally

scales to a large number of multivariate observations (that we employ for the purpose of

nominating outliers). To the extent that computational considerations allow, one would

obtain richer inference on both an asymptotically exact MAP of the marginal distribution

over the space of partitions and an associated measure of uncertainty by using the fully

Bayesian nonparametric mixture model.

Shotwell and Slate (2011) note that employing a MAP approximation (which selects

the partition assigned the largest approximated value for the posterior mass) implicitly

uses a 0 − 1 loss function. While other choices for the loss function may produce useful

results, we prefer use of the MAP approximation as we would expect concentration of the

estimated joint posterior distribution from the model of Equation 1 around the MAP due

to the large sample sizes for our CES application.

2.2 Sampling-weighted Global Clustering Algorithm

We specify an estimation algorithm for MAP approximation, below, which is guaranteed

to converge to a local optimum, since each step reduces (or doesn’t increase) the objective

function of Equation 4 and there are only a finite number of possible partitions. The

algorithm operates, sequentially, on the observations and specifies successive assignment

and cluster center estimation steps.

We introduce a new merge step, that tests all unique cluster pairs for merging and

conducts a merge of any pair of clusters if such reduces the objective function, which

reduces the sensitivity of the estimated partition to the specified values of the penalty

parameter.
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The observations are each weighted using the sampling weights in the computations

of distances to cluster centers and the computation of cluster centers. Observations with

higher weights contribute relatively more information to the computation of cluster centers.

We demonstrate in the simulation study to follow that this procedure produces nearly

unbiased population estimates for cluster centers, conditioned on the generation of the finite

population from disjoint clusters. Since lower-weighted observations (less representative

of the population from which they were drawn) contribute relatively less to the objective

function, the weighting will also impact the number of clustered discovered and assignment

of the multivariate observations to those clusters.

The algorithm for estimating a MAP partition and associated cluster centers is specified

with,

1. Input: n×d data matrix, X; n×1 vector of sampling weights, w̃, for observed units
and cluster penalty parameter, λ.

2. Output: K × d matrix of cluster centers, M = (µ1, . . . ,µK)
′
, and n × 1 vector of

cluster assignments, s, where si ∈ (1, . . . ,K) for units, i = 1, . . . , n.

3. Initialize: si = 1, ∀i. d× 1 cluster center, µ1 =
∑n

i=1 (xiw̃i) /
∑n

i=1 w̃i.

4. Repeat the following steps until convergence (when the decrease in energy is below

e←
K∑
p=1

∑
i∈{i:si=p}

wi ‖xi − µp‖2 + λK

a set threshold).

5. Assign units to clusters for each unit, i = 1, . . . , n:

(a) Compute distance, dip = w̃i ‖xi − µp‖2 for p = 1, . . . ,K.

(b) If minp dip > λ, create new cluster to which unit i is assigned; K ← K+1, si ←
K, µK ← xi; else si ← argminp dip.

6. Re-compute centers for clusters, p = 1, . . . ,K: Let Sp = {i : si = p} and
µp =

∑
i∈Sp

(xiwi) /
∑

i∈Sp
w̃i.
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7. Assess merge of unique cluster pairs, (p ∈ (1, . . . ,K) , p
′ ∈ (1, . . . ,K)):

(a) Perform test merge of each pair of clusters:

(b) Set matrix of cluster centers for virtual step, M∗ = M.

(c) Compose index set of observations assigned to clusters p
′

or p; S∗p = {i : si =

p or si = p
′}.

(d) Compute (weighted average) merged cluster centers, µ∗p =
(∑

i∈S∗p xiw̃i

)
/
∑

i∈S∗p w̃i

and set rows p and p
′

of M∗ equal to this value.

(e) Compute energy under the tested move, e∗ ←
∑K

p=1

∑
i∈S∗p w̃i

∥∥xi − µ∗p
∥∥2 +

λ(K − 1). If e∗ < e, execute a merge of p and p
′
:

(f) Re-assign units linked to p
′

to p, si:si=p′ ← p.

(g) Re-set cluster labels, p in s to be contiguous after removing p
′
, such that p ←

p − 1, ∀p > p
′
, leaving si ∈ (1, . . . ,K − 1). Delete row, p

′
, from M∗ and set

M←M∗.

2.3 Asymptotic Sampling-weighted Mixtures of Hierarchical Dirichlet

Processes

The CES survey is administered to establishments across a diverse group of industries

that comprise the U.S. economy. CES survey analysts examine month-over-month report-

ing changes in the average employment and production worker variables within each of

24 NAICS industry categories (outlined in Section 4 that analyzes a data set of CES re-

sponses). The by-industry focus reflects the experience that both reporting patterns and

establishment processes tend to express more similarity within than between industries.

Yet, there are also commonalities in the reporting processes and types of reporting errors

committed among the establishments due to overlapping skill sets of reporting analysts,

similarities in organization structures, as well as the use of a single BLS-suggested reporting

process.

So we want to perform separate estimations of partitions within each industry group,

but allow those partitions to express similarities or dependencies across industries. We next
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use the result of Kulis and Jordan (2011) that generalizes the approximate MAP algorithm

obtained from mixtures of Dirichlet processes to mixtures of hierarchical Dirichlet processes.

The hierarchical Dirichlet process (HDP) of Teh et al. (2006) specifies a DP partition for

each industry that we refer to as a local (to industry) partition or clustering. These local

partitions draw their cluster center values from a set of “global” clusters, such that local

clusters may be connected across industry partitions by their sharing of common global

cluster centers (from a single global partition) in a hierarchical manner.

We next specify a hierarchical mixture model that will converge to a sampling-weighted

mixtures of HDPs in the limit of the allowable maximum number of global and local clusters

as a generalization of our earlier DP specification,

d×1
xj
i |s

j
i ,M = (µ1, . . . ,µKmax)

′
, σ2, w̃i

ind∼ Nd

(
µ
sji
, σ2Id

)w̃i

, i = 1, . . . , nj (5a)

vjc |τ
iid∼ M (1, τ1, . . . , τKmax) , c = 1, . . . , Lmax (5b)

zji |π
j ind∼ M

(
1, πj1, . . . , π

j
Lmax

)
(5c)

sji = vj
zji

(5d)

µp|G0
iid∼ G0 := Nd

(
0, ρ2Id

)
(5e)

τ1, . . . , τKmax ∼ D (α/Kmax, . . . , α/Kmax) (5f)

πj1, . . . , π
j
Lmax

∼ D (γ/Lmax, . . . , γ/Lmax) , (5g)

for each industry partition, j = 1, . . . , (J = 24), where Kmax denotes the allowable number

of global clusters and Lmax denotes the maximum allowable number of local clusters over

all J partitions. An nj × d data matrix, Xj , includes the d× 1 responses, (xj
i ), for estab-

lishments in industry, j. The Lmax × 1, vector, vj , indexes the global cluster assignment

for each local cluster, c ∈ (1, . . . , L) for industry, j. The nj × 1 vector, zj , assigns each

individual establishment, i ∈ (1, . . . , nj), to a local cluster, c ∈ 1, . . . , Lmax. So, zji indexes
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the local cluster assignment for establishment, i, in industry, j and vjc indexes the global

assignment for all of the establishments assigned to local cluster, c, in industry, j. We

may chain together the local cluster assignment for observation, i, and the global cluster

assignment for the local cluster containing i to produce the nj × 1 index, sj , that holds

the global cluster assignment for each establishment in industry, j. The vectors of proba-

bilities for local cluster assignments of establishments,
(
πj
)
j=1,...,J

, and for global cluster

assignments of local clusters, τ , are random probability vectors drawn from Dirichlet dis-

tributions. As before, Equation 5 converges to a sampling-weighted mixture of HDPs in

the limit to infinity of Kmax and Lmax (Teh et al. 2006).

We achieve the following optimization algorithm by following a similar asymptotic

derivation in the limit of σ2 ↓ 0, as earlier,

argmin
K,s,M

K∑
p=1

J∑
j=1

∑
i:sji=p

w̃j
i ‖x

j
i − µp‖2 +KλK + LλL, (6)

where L =
∑J

j=1 Lj denotes the total number of estimated local clusters and Lj denotes

the number local clusters estimated for data set, j = 1, . . . , J . As before, K denotes the

number of estimated global clusters.

2.4 Sampling-weighted Hierarchical Clustering Algorithm

We sketch a summary overview of the MAP approximation algorithm derived from sampling-

weighted mixtures of HDPs. A more detailed, step-by-step, enumeration of the algorithm

is offered in Appendix A. As with the sampling-weighted global clustering estimation, the

algorithm will return a K × d matrix of global cluster centers, M, and a vector for each

industry, sj , j ∈ (1, . . . , J), that holds the global cluster assignments, sji ∈ (1, . . . ,K), for

the set of nj observations in industry, j. Each vector sj conveys additional information
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about the local partitions of the hierarchical clustering. The estimation algorithm allows

a distinct number of local clusters, Lj , to be discovered for each industry. The number of

unique global cluster values, p ∈ (1, . . . ,K), that are assigned across all the establishments

in industry j defines the structure - number of local clusters and establishments assigned

to each cluster - of the local partition for that industry.

The algorithm contains an assignment step to directly assign each establishment, i, in

industry, j, to a global cluster, as with the mixtures of DPs algorithm. For a new global

and local cluster to be created, however, the minimum distance to the global cluster centers

must be greater than the sum of local and global cluster penalty parameters, λL + λK .

An observation is assigned to a global cluster by first assigning it to a local cluster that

is, in turn, next assigned to that global cluster. A new local cluster will be created if an

observation in an industry is assigned to a global cluster, p, that is not currently assigned

to any local cluster for that industry. It is typical for only a subset of the K global clusters

to be used in each local partition across the J industries. To the extent that the industry

partitions share global clusters, then K <
∑J

j=1 Lj , and there will be a dependence among

those partitions.

A second assignment step performs assignments to global clusters for groups of es-

tablishments in industry, j, who are assigned to the same local cluster, c. All of the

establishments in local cluster, c, in industry, j, may have their assignments changed from

global cluster, p, to global cluster, p
′
. This group assignment of establishments to global

clusters contrasts with only changing global cluster assignments for establishments on an

individual basis. This is a feature of the HDP and helps mitigate order dependence in

the estimation of the MAP approximation. We specify a new “shed” step (that is not

included in the algorithm of Kulis and Jordan (2011)) to remove any previously defined
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global clusters that may not be linked to any local clusters across the J industries after

this second assignment step of local-to-global clusters.

We continue to employ a merge step that tests each unique pair of global clusters for

merging. We find in runs performed on synthetic data that the merge step helps reduce

(but does not eliminate) the sensitivity (in number of clusters formed) to specifications of

(λK , λL). The number of merges increase under lower values for these penalty parameters.

If global cluster, p
′
, is merged into p and deleted, then so are the local clusters, c, assigned

to p
′

across the J industries and establishments that were previously assigned to each c ∈ c

are now re-assigned to existing local clusters linked to global cluster, p.

3. Simulation Study

We conduct a two-part Monte Carlo simulation study that assesses the effectiveness to

detect an outlying cluster with respect to the population from an informative sample,

where an outlying cluster is defined to contain a small percentage of the total number of

establishments. Both parts of the simulation study generate a synthetic finite “population”

from which repeated samples are drawn under a sampling design where the probabilities of

selecting each establishment are a function of their response values, such that we produce

informative samples. The informative samples are presented to the partition estimation

models. The first part of the simulation study compares the accuracy of outlier detection

under inclusion of sampling weights, used to correct for informativeness, versus excluding

the sampling weights (where both employ the global (hard) clustering model using the

estimation algorithm specified in Section 2.2. The sampling weights are set to a vector

of 1’s in the case that excludes sampling weights). The second part of the simulation

study compares the outlier estimation performance between the sampling-weighted global

clustering model, on the one hand, and the sampling-weighted hierarchical clustering model,
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on the other hand, for data generated from local partitions that share global cluster centers.

We first devise an approach to select the penalty parameters for our estimation models,

which determine the number of clusters discovered, that we will need for our two-part

study.

3.1 Selection of Penalty Parameters

It is difficult to find a principled way to specify the penalty parameter, λ, for the global

clustering model or (λL, λK), for the hierarchical clustering model. Their specification

is critical because these penalty parameters determine the number of discovered clusters.

Relatively larger values estimate fewer clusters. Both cross-validation and randomly sep-

arating the data into distinct training and test sets (in the case the analyst possesses a

sufficient number of observations) tends towards assignment of each observation to its own

cluster by selecting nearly 0 values for the penalty parameters as poor fit overwhelms the

penalty.

We demonstrate this tendency with a simulation study using the sampling-weighted

hierarchical clustering model. We generate a population with J = 3 data sets, each of size

Nj = 15000, with the local partition structure in each data set composed of Lj = 5, j =

1, . . . , J clusters randomly selecting from K = 7 global cluster centers. Establishments are

randomly assigned to the Lj = 5 local clusters for each data set under a skewed distribution

of (0.6, 0.25, 0.1, 0.025, 0.025) to roughly mimic the structure we find in the CES data set

analysed in Section 4. Data observations are generated from a multivariate Gaussian,

d×1
xj
i

ind∼ Nd

(
µ
sji
, σ2Id

)
,
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centered on the local cluster mean of each observation and σ is set equal to 1.5 times the

average over the J = 3 data sets, Nj = 15000 establishments and d = 15 dimensions of the

assignment-weighted centers, Msj ,1:d, the mean values of Xj .

We next take a sample of nj = 2250 from each of the J = 3 data sets under a fixed

sample size, proportional-to-size design where inclusion probabilities are set to be propor-

tional to the variances of the (d = 15)×1, {xi}, inducing informativeness. The taking of an

informative sample addresses the class of data in which we are interested and mimics our

motivating CES data application. Observations are next randomly allocated into two sets

of equal size; one used to train the model and the other to evaluate the resultant energy.

The training sample is presented to the sampling-weighted hierarchical clustering model.

Figure 1 displays the sampling-weighted hierarchical objective function (energy) values,

evaluated on the test set, over a grid of global and local cluster penalty parameters. We

observe that the energy doesn’t reach a balanced optimum, but decreases along with values

of the penalty parameters. The rate of decrease declines for these synthetic data, possibly

suggesting the identification of an “elbow” for selecting penalty parameters, though there

is little-to-no sensitivity in the values for the global penalty parameter, λK , which prevents

precise identification of a value. The rate of decrease in energy on the CES data does not

decline, however. We see a similar result under 10− fold cross-validation.

As an alternative, we employ penalty parameter selection statistics that combine mea-

sures of cohesion within clusters and separation between clusters to select the number of

clusters. We devise a sampling-weighted version of the Calinski Harabasz (C) criterion,

which is based on within cluster sum-of-squares (WGSS) and between clusters sum-of-
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Figure 1: Heat map of (energy) values under the sampling-weighted hierarchical clustering
model over grid of global and local cluster penalty parameters. The vertical axis represents
the global cluster penalty, λK , and the horizontal axis, the local cluster penalty, λL. The
energy is measured from assignment to a test set not used for training the model. The
darker colors represent higher energy (optimization function) values.
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squares (BGSS),

WGSS =
K∑
p=1

∑
i:svi =k

w̃i‖xi − µp‖2

BGSS =

K∑
p=1

np‖µp − µG‖2,

where sv =
(
s1, . . . , sJ

)′
stacks the set of J , {sJ} into a vector, which retains information on

the local partitions (based on the co-clustering relationships). The weighted total number

of establishments linked to each cluster, p ∈ (1, . . . ,K) is denoted by np =
∑

i:si=p w̃i

and µG =
∑n

i=1 w̃ixi∑n
i=1 w̃i

. The C criterion is then formed as, C = n−K
K−1

BGSS
WGSS , where K is

determined by the number of unique values in sv, which is equal to the number of rows

in the K × d, M =
(
µ
′
1, . . . ,µ

′
K

)
(and d denotes the dimension of each observation, xi).

Larger values for C are preferred.
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Figure 2: Heat map of Calinski Harabasz (C) index values under the mixtures of HDP
model over grid of global and local cluster penalty parameters. The vertical axis represents
the global cluster penalty, λK , and the horizontal axis, the local cluster penalty, λL. The
darker colors represent higher C values. Global and local cluster penalty parameters with
higher C values are preferred.
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Our proposed procedure estimates a clustering on the sampled data over a grid of (local,

global) penalty parameter values, where we compute the C statistic for each (λL, λK) in the

grid, selecting that clustering which maximizes the C statistic. (Our growclusters package

uses the farthest-first algorithm to convert user-specified minimum and maximum number

of global and local clusters to the associated penalty parameters. The farthest first is a

rough heuristic, so we are conservative in the specified range of 1 ≥ λK ≤ 30, 1 ≥ λL ≤ 20).

We perform estimation using the sampling-weighted hierarchical clustering algorithm over a

5×15 grid of global and local clustering penalty parameters, respectively, on the full sample

of nj = 2250 for the J = 3 data sets. Figure 2 suggests selection of penalty parameters from

the upper left-quadrant of the grid. We chose the values of (λL = 1232, λK = 2254) that

maximized the C index for our sampling-weighted hierarchical clustering model. Figure 3

presents the resulting estimated distribution of the nj (informative sample) observations

within clusters of each local partition (that index the J = 3 datasets), where the sup-

port of each local distribution indicates to which global cluster center each local cluster

is linked. We note that the correct number (K = 7) of global clusters and local clusters

(Lj = 5) is returned and that the skewed distribution of establishments within each local

partition mimics that of the population (which is estimated from our informative sample).

We use the Rand statistic ∈ (0, 1), which measures the concordance of pairwise clustering

assignments, to compare the true partition assigned in the the population versus the esti-

mated partition, where the latter is estimated from the observed informative sample, rather

than the population, itself. The computed Rand value is 1, indicating perfect agreement

between the true and estimated partitions in their pairwise clustering assignments. (See

Shotwell (2013) for a discussion of alternative statistics, including the Rand, for comparing

the similarity of two partitions).
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Figure 3: Estimated distribution of establishments in J = 3 local cluster partitions. The
support of each distribution indicates the global cluster to which each local cluster is linked.

We additionally compute a sampling-weighted version of the silhouette index, hi =

ai−bi
max(ai,bi)

, where ai is the average distance to observations co-clustered with i and bi is the

average distance to other observations in the nearest cluster to that holding i. The total

index, hK =
∑n

i=1 w̃ihi∑n
i=1 w̃i

∈ (0, 1) and, like the C index, prefers partitions where the clusters

are compact and well-separated. These two indices select the same penalty parameter val-

ues from the grid of values evaluated on both the simulation and CES data. We prefer our

sampling-weighted C since the computation is more scalable to a large number of observa-

tions. The C index was used to select the penalty parameters for all implementations of

the mixtures of DPs and HDPs models.

Lastly, our procedure for selecting (λL, λK) by evaluating the Calinski Harabasz statistic

over a grid generally selects the same clustering under inclusion or exclusion of the merge

move on synthetic datasets. Figure 4 examines the numbers of merges that take place on
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each run on the grid of penalty parameter values in the case we include the merge step,

and reveals that the number of merges increases at relatively low values of the penalty

parameters. In this case, and in others we tested on synthetic data, the merges took place

outside of the range of nearly optimum penalty parameter values, though one may imagine

the possibility of merges taking place in this range on a real dataset. There would be a

reduction in the sensitivity for the number of clusters estimated to the values of the penalty

parameter, which may have the effect of increasing the sub-space of nearly optimal penalty

parameters (that produce the same clustering results). While we recommend and employ

our selection procedure for penalty parameters in our simulations and application to follow,

further simulations (not shown) demonstrate that inclusion of the merge step produces

estimated clusters that are consistently closer to the truth as compared to excluding the

merge step when the penalty parameters are specified by a heuristic procedure, like the

farthest first algorithm employed in Kulis and Jordan (2011).
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Figure 4: Heat map of the number of merges that took place under the mixtures of HDP
estimation model over grid of global and local cluster penalty parameters. The vertical
axis represents the global cluster penalty, λK , and the horizontal axis, the local cluster
penalty, λL. The darker colors represent higher number of merges.
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Our selection procedure that computes the Calinski Harabasz statistic over a range of

global and local cluster penalty parameters defined on a grid and selects that clustering

which produces the maximum value of this statistic will be used for every estimation run

of the global and hierarchical clustering algorithms in the sequel.

3.2 Outlier Estimation Under Informative Sampling

Our next simulation study compares the outlier detection power when accounting for,

versus ignoring, the informativeness in the observed sample by generating data under a

simple, non-hierarchical global partition. We construct a set of K = 5 global cluster

centers, each of dimensions, d = 15. Each cluster center expresses a distinct pattern over

the d = 15 dimensions,

(d=15)×1
µ1 = (1, 1.5, 2.0, . . . , 7.5, 8)

µ2 = (8, 7.5, . . . , 1)

µ3 = (1, . . . , 7, 8, 7, . . . , 1)

µ4 = Sampling from (1, . . . , 8) under equal probability with replacement, d = 15 times

µ5 = Sampling from (−2, . . . , 6) under equal probability with replacement, d = 15 times,

to generate M = (µ1, . . . ,µ5)
′
. Without loss of generality, the last cluster, µ5, is defined

as the outlier cluster and includes negative values, though there is overlap with the support

of the other four clusters for values > 0. We create the (N = 25000)×1 cluster assignment

vector, s, by randomly assigning establishments in the (finite) population to clusters (with

equal probabilities) such that the first 4 clusters are assigned equal numbers of observations,

while the last (outlying) cluster (with mean µ5 is assigned 150 observations, according with

our earlier definition of an outlying cluster as having relatively few assigned observations).
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We then generate our N×d matrix of population response values, X, from the multivariate

Gaussian distribution,

d×1
xi

ind∼ Nd

(
µsi , σ

2Id
)
,

where the standard deviation, σ, is set equal to 1.5 times the average over the N = 25000

establishments and d = 15 dimensions of the assignment-weighted matrix, Ms,1:d, the mean

values of X. We may think of this process for generating a finite population as taking a

census of all establishments in the population. Establishments who report values in any

of the first 4 clusters are drawn from the true population generating distribution, while

those establishments who report values from cluster 5 commit errors such that the reported

values are from a different (shifted) distribution that generates the population of errors.

Our inferential interest is to uncover outlying values with respect to the population, rather

than the sample, as an observation may not be outlying relative to the sample, but may

relative to the population (or vice versa).

We assign the population establishments, evenly, to one of H = 10 strata, so there are

Nh = 2500 establishments assigned to each stratum. Our sampling design employs sim-

ple random sampling of establishments within each of the H strata. The sample size

taken from each stratum is set proportionally to the average of the by-establishment

variances of the (d = 15) × 1, {xi} for establishments, i = 1, . . . , Nh, assigned to each

stratum, h = 1, . . . ,H. Each generated sample produces the by-stratum sample sizes,

n = (45, 90, 136, 181, 227, 272, 318, 363, 409, 459), ordered according to variance quantile,

from left-to-right, for a total sample size of n =
∑H

h=1 nh = 2500. This sampling design

assigns higher probabilities to larger variance strata (and all establishments in each stra-

tum have an equal probability of selection), which is often done, in practice, because there

is expected to be more information in these strata.
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The population of establishments are assigned to clusters based on the mean values of

xi, not the associated variances (as the variances in each cluster are roughly equal). We

conversely use the variance of each xi, rather than the mean, in order to construct our

sampling design with the goal to produce sampling inclusion probabilities that are nearly

independent from the probabilities of assignment to the population clusters. So our model

formulation doesn’t (inadvertently) parameterize the sampling design, which is the most

general set-up.

We generate a population and subsequently draw B = 100 samples under our infor-

mative single stage, stratified sampling design with inclusion probabilities of each stratum

proportional to the average of the variances of member establishment response values

(across the d = 15 dimensions), as described above. We run our sampling-weighted global

clustering algorithm on each sample under two alternative configurations: 1. excluding the

sampling weights, so that we do not correct for the informative sampling design; 2. includ-

ing the sampling weights, such that we estimate outliers and cluster centers with respect to

the clustering parameters for the population, asymptotically, conditioned on the generation

of the finite population from disjoint clusters. We include two methods as comparators;

firstly, we utilize the model-based clustering (MBC) algorithm of Fraley and Raftery (2002)

that defines a finite mixture of Gaussians model of similar form as our (penalized) mixtures

of DPs construction. Fraley and Raftery (2002) employ the EM algorithm to solve their

mixture model (initialized by a hierarchical agglomeration algorithm) and select the num-

ber of clusters, K, using the Bayesian information criterion (BIC); secondly, we include

the trimmed K-means method of Fritz et al. (2012), which intends to robustify the K-

means algorithm by removing outlying data points that may induce mis-estimation of the

partition. The authors note that these outlying points may be used to nominate outliers.

Both implementations exclude employment of sampling weights to correct for informative
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sampling. We also considered to include the algorithm of Shotwell and Slate (2011), but it

did not computationally scale to the size of data we contemplate for our CES application.

The left-hand set of box plots in Figure 5 displays the distributions (within 95% confi-

dence intervals under repeated sampling) of the true positive rate for identifying outlying

observations, constructed as the number of true outliers discovered divided by the total

number of true outliers, estimated on each Monte Carlo iteration for our three comparator

models. The right-hand set of box plots display the false positive rate, which we define

as the number of false discoveries divided by the total number of observations nominated

as outliers. The inclusion of false positives permits assessment of the efficiency to detect

outliers. Each set of box plots compares estimation under the global clustering algorithm

including sampling weights, on the one hand, to a version of the global clustering algorithm,

the MBC,and trimmed K-means, on the other hand, that all exclude the sampling weights.

Outliers were detected in each simulation iteration, b = 1, . . . , B, based on selecting those

clusters whose total observations (among the selected clusters) cumulatively summed to

less than C = 1.1 times the total number of true outliers in the informative sample, which

is how we would select outlying clusters on a real dataset where we don’t know the truth.

(We experimented with different values of C ∈ [1, 1.5] and realized the same comparative

results, as presented below).

Figure 5 reveals that failure to account for the informative sampling design induces a

deterioration in outlier detection accuracy.
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Figure 5: Accuracy of outlier detection under informative sampling: The left-hand plot
panel presents the distributions of the true positive rates, and the right-hand panel presents
the distribution for the false positive rates, both within 95% confidence intervals estimated
from B = 100 Monte Carlo draws of informative samples. Each sample is of size, n = 2500,
from a population of size, N = 25000, with a population cluster of outliers of size, N5 = 250.
The left-hand box plot within each plot panel is estimated from the sampling-weighted
global clustering algorithm that accounts for the informative sampling design by including
sampling weights, while the middle two box plots represent the model-based clustering
(MBC) and trimmed K-means algorithms, respectively, that ignore the informative sam-
pling design as does the right-hand box plot that represents the global clustering algorithm
without inclusion of sampling weights.
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Figure 6 presents the distribution over the number of discovered clusters for each of

the three comparator models: 1. global clustering model, including sampling weights; 2.

MBC, excluding sampling weights; 3. Trimmed K-means, excluding sampling weights; 4.

global clustering model, excluding sampling weights. The dashed line at K = 5 clusters

is the correct generating value. While the the models excluding the sampling weights

(except for the trimmed K-means) estimate a higher number of clusters, such is not the

primary reason for their reduced outlier detection accuracy, as we observe from Figure 5

that the false positive rates are slightly lower for these two models compared to the model

that includes the sampling weights. The reduced accuracy is primarily driven by biased

estimation of the d × 1 cluster centers, {µp}p=1,...,K , (relative to the population), whose

estimation is performed together with assignment to clusters in a single iteration of the

algorithm. We examine this bias in the next simulation study.

The trimmed K-means does relatively well in capturing the number of true clusters,

absent the outlying cluster. The trimming is not isolating these points as outliers, however,

but collapsing them into a larger cluster; hence, the trimmed k-means does not nominate

any outliers.
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Figure 6: Comparison of distributions for number of estimated clusters, K, between the
global clustering model including the sampling weights in the left-hand box plot, to the
MBC in the middle box plot and the global clustering model in the right-hand box plot,
where both exclude the sampling weights.
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3.3 Comparison of Outlier Estimation between Hierarchical and Global

Clustering under Informative Sampling

We now generate a set of local partitions hierarchically linked to a collection of global cluster

centers. We generate J = 8 local populations,
(
Xj
)
j=1,...,J

, each of size Nj = 25000, and

associated local partitions,
(
sj
)
j=1,...,J

, where each local partition contains, Lj = 2 clusters,

including one that is composed of 150 outliers. The set of J local partitions randomly

select their local cluster centers from the same K = 5 global cluster centers that we

earlier introduced, which induces a dependence structure among the set of local partitions.

We conduct B = 100 Monte Carlo draws, where we take an informative sample within

each of the J = 8 datasets on each draw, using the same stratified sampling informative

design, described above. Estimation is conducted on the set of J informative samples

produced in each draw using both the sampling-weighted global clustering algorithm and

the hierarchical clustering algorithm outlined in Section 2.4. Our goal is to uncover the

global cluster center for the outlier cluster and the set of observations in each local dataset

that are assigned to the outlier cluster. We concatenate the set of informative samples

generated over the J datasets when conducting estimation using the global clustering

algorithm because our primary interest is in outlier detection, rather than inference on

the local partitions. (The performance of the global clustering algorithm relative to the

hierarchical clustering algorithm is worse than shown in the case we separately estimate a

global clustering on each dataset).

Figure 7 is of the same format as Figure 5, with two panels displaying distributions

over true positive and false positive rates, respectively, for our choice of models. The set

of five box plots compare the following models: 1. hierarchical clustering model, including

the sampling weights to both estimate global partitions linked to a global partition and

control for informative sampling; 2. global clustering model, including sampling weights to
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control for informative sampling; 3. model-based clustering, excluding sampling weights;

4. trimmed K-means robust clustering, excluding sampling weights; 5. global clustering

model, excluding sampling weights. Results for the hierarchical clustering model, shown

in the left-hand box plot of each panel, outperforms the global clustering model, where

both include sampling weights, because the hierarchical model additionally estimates the

dependent set of local clusters. The hierarchical clustering algorithm appears to do a better

job of borrowing estimation information among the J = 8 local partitions.

Figure 8 presents distributions for each dimension, d = 1, . . . , 15, of the outlier cluster

center, µ5, under four of the five comparison models (excluding the trimmed K-means)

in the same order as displayed in Figure 7. The sampling-weighted hierarchical clustering

model produces perfectly unbiased estimates for the population values of the global outlier

cluster center, while the other 3 models (excluding the trimmed K-means) induce bias in

proportion to their outlier detection performances. Unbiased estimation of the outlying

cluster center as compared to the other clusters is important to detect an outlying cluster

because the cluster centers encode the degree of separation of the outlying cluster(s) from

the others. We see that the true positive detection rates across the methods shown in

Figure 7 are roughly proportional to the levels of bias estimated in the dimensions of

the outlying cluster center displayed in Figure 8. Since the trimmed K-means does not

nominate any outliers, we cannot compute a outlying cluster center under this method.
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Figure 7: Accuracy of outlier detection under informative sampling for global vs hierarchical
clustering model: The left-hand plot panel presents the distributions of the true positive
rate, and the right-hand panel presents the distributions for the false positive rate, both
within 95% confidence intervals estimated from B = 100 Monte Carlo draws of informative
samples from each of J = 8 local populations. Each sample is of size, nj = 2500, j =
1, . . . , 8, from a population of size, Nj = 25000, with a cluster of outliers of size, Nj,5 =
125. The box plots represent the following models, from left-to-right: 1. hierarchical
clustering model, including the sampling weights to both estimate global partitions linked
to a global partition and control for informative sampling; 2. global clustering model,
including sampling weights to control for informative sampling; 3. model-based clustering
excluding sampling weights; 4. trimmed K-means, excluding sampling weights; 5. global
clustering model excluding sampling weights.
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Figure 8: Comparison of estimation bias for each of d = 15 dimensions of the outlier
global cluster mean, µ5, estimated from J = 8 local partitions under the following models,
from left-to-right: 1. hierarchical clustering model, including the sampling weights to
both estimate global partitions linked to a global partition and control for informative
sampling; 2. global clustering model, including sampling weights to control for informative
sampling; 3. model-based clustering, excluding sampling weights; 4. global clustering
model, excluding sampling weights. The dashed line in each panel is the true value the
center for each dimension, d = 1, . . . , 15
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We also examined the effect of excluding the merge move for the hierarchical clustering

algorithm in this simulation study. While excluding the merge move induced an over-

estimation of the the number of clusters (6 instead of the true 5), the outlier detection

accuracy wasn’t notably impacted, likely because employment of the C algorithm for se-

lection of the number of local and global clustering penalty parameters protected against a

large magnitude misestimation of the number of global and local clusters. We find a larger

discrepancy between employment or not of the merge move for a single run of the cluster-

ing algorithm where the penalty parameters are set in an ad hoc fashion (e.g., through use

of the farthest-first algorithm as in Kulis and Jordan (2011), a procedure that we do not

recommend).

4. Application

We apply our hierarchical clustering algorithm to a data set of one month changes in CES

survey responses for estimation of industry-indexed (local) partitions that may express

a dependence structure across industries by potentially sharing global clusters. Outliers

are nominated by selecting all establishment observations in any local cluster that holds

a small percentage of observations (e.g. < 1%). Our CES survey application focuses

on the set of 108017 establishments whose reported employment statistics differ between

November and December, 2009 as a typical illustration. We are interested to flag those

establishments whose responses express unusually large changes in employment statistics

between November to December, relative to their November employment levels. So we

normalize the observed statistics to,

δijt =
xijt

xij(t−1)
, j = 1, . . . , d (7)
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which has support on the positive real line that we, in turn, cluster. The distribution of δijt

is highly right-skewed for all dimensions, j ∈ (1, . . . , d), so we use a logarithm transform

of the statistic to perform clustering in order to conform to the mixtures of Gaussians

assumptions in Equation 5a. Alternatively, we could replace the squared Euclidean distance

in Equation 6 with the Bregman divergence (which is uniquely specified for exponential

family distributions) and replace the mixtures of Gaussian distributions with Exponential

distributions, as suggested by Jiang et al. (2012) (which produces the same results on these

data).

We focus on four employment variables of particular importance to CES (that also

express high response rates); 1. “ae”, which is the total employment for each reporting

establishment; 2. “pw”, which is production worker employment for each establishment; 3.

“npr”, which is the total payroll dollars expended for employees of each establishment; 4.

“nhr”, which is the average weekly hours worked for each establishment. So the dimension

of our CES survey application is d = 4.

We select penalty parameters from the range, (9 ≤ λL ≤ 829, 17 ≤ λK ≤ 187), on a

15 × 20 grid, using the Calinski Harabasz and silhouette statistics, which both choose

(λL = 19, λK = 145) from this grid. The selected penalty parameters did not change when

including or excluding the merge step. Nevertheless, the number of clusters estimated with-

out inclusion of the merge step was K = 10, while K = 9 was estimated when including the

merge step. The resulting inference on the nomination of outliers, however, was unchanged

so that we prefer the parsimonious model (in terms of number of clusters selected). The

selected penalty parameters and resulting estimated clustering also did not change when

we employed a finer grid. Results from inclusion of the merge step are presented in Table 1,

where we discover K = 9 global clusters shared among the J = 23 local partitions, and

each local partition holds between Lj = 2 − 9 clusters. Each column of Table 1 presents

37



Savitsky

the results for one of the K = 9 global clusters, from left-to-right in descending order

of the number of establishments assigned to each global cluster. The first four rows (la-

beled “ae ratio’,“pw ratio”,“npr ratio”, “nhr ratio”) present the estimated global cluster

centers, µp, for change ratio in ae, pw, npr, and nhr respectively, after reversing the loga-

rithm transform. The fourth through final rows present the by-industry, local partitions,

sj , and their links to the global cluster centers. Scanning each of the columns, we see that

all of the K = 9 global clusters are shared among the local partitions, indicating a high

degree of dependence among them.

The fifth row (labeled “ae avg”) averages the total employment, ae, over all establish-

ments in all industries linked to the associated global cluster as reported for the month of

November. The second column from the right represents a cluster whose centers indicate

unusually large increases in reported employment and payroll from November-to-December.

The establishments linked to this cluster are of generally small-sized, with an average of

20 reported employees in November. Establishments with a relatively small number of

employees will receive high sampling weights due to their low inclusion probabilities, such

that their high magnitude shifts in reported employment levels may be influential in the

estimation of the sampling-weighted total employment estimates for November and De-

cember. It might, however, be expected that the retail (and associated wholesale) hiring

might dramatically increase in anticipation of holiday shopping. So we would nominate

the remaining 470 establishments linked to this global cluster as outliers for further ana-

lyst investigation by the BLS. Previous analysis conducted within the BLS suggests that

smaller establishments generally tend to commit submission errors at a higher rate. The

result excluding the merge step splits this cluster into two in a manner that doesn’t change

inference about outlier nominations.
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The smallest-size (right-most) cluster has a mean of 0.01 in the monthly change ratio

for the variable “npr”, indicating an unusually large magnitude decrease in the number

of employees (and payroll dollars) reported from November-to-December. This cluster

contains 113 relatively large-sized establishments with an average of 278 reported employ-

ers in November. The moderate-to-large size of establishments in this cluster will tend

to receive smaller sampling weights, however, (because they have higher sample inclusion

probabilities), and so are less influential. So BLS would generally place a lower priority for

investigation on this cluster than the previous discussed. The small number of establish-

ments in this cluster, coupled with the large magnitude decreases in reported employment

variables, however, would likely prompt an investigation of the submissions for all estab-

lishments in this cluster. The two Retail industries show 17 establishments in this cluster

of establishments expressing a large decrease in employment. The seasonal hiring in this

industry, mentioned above, may suggest to place an especially high priority on investigation

of these establishments.

5. Discussion

The BLS seeks to maintain a short lead time for the CES survey between receipt of monthly

establishment responses and publication of estimates. Retaining estimation quality re-

quires investigation of establishment responses for errors, which may prove influential in

published estimates (by region and industry, for example). BLS analysts, therefore, require

an automated, fast-computing tool that nominates as outliers for further investigation a

small subset of the over 100000 establishments whose responses reflect month-over-month

changes in employment levels.

We have extended the MAP approximation algorithm of Kulis and Jordan (2011) and

Broderick et al. (2012) for estimation of partitions among a set of observations to appli-
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Table 1: CES Mixtures of HDPs: Global cluster centers and local partitions

Variable Values, by cluster

ae ratio 0.961 0.98 1.157 0.829 0.657 2.008 0.156 19.212 0.093
pw ratio 0.951 0.973 1.199 0.797 0.596 2.586 0.189 11.95 0.146
npr ratio 0.939 0.963 1.283 0.423 0.465 4.106 0.143 16.617 0.010
nhr ratio 0.944 0.979 1.213 0.639 0.547 2.469 0.182 20.37 0.109

Average Employment Count, by cluster

ae avg (November) 168 205 104 154 125 182 258 20 278

Units in Super Sector Clusters

Agriculture 0 81 0 0 16 0 0 0 0
Mining 379 0 118 0 105 0 20 10 3

Utilities 0 405 0 0 0 0 4 2 1
Construction 2977 0 1111 0 1008 174 125 34 9

Manufacturing(31) 1015 0 254 0 0 0 28 6 6
Manufacturing(32) 1229 0 272 0 131 30 19 5 3
Manufacturing(33) 0 2117 494 169 0 46 34 16 3

Wholesale 1828 0 486 0 161 47 26 23 3
Retail(44) 0 14648 4484 915 0 160 168 33 7
Retail(45) 0 9381 5243 996 0 132 58 17 10

Transportation(48) 1266 0 346 155 0 41 26 16 4
Transportation(49) 0 1149 703 101 0 64 39 11 14

Information 1852 0 456 198 0 30 22 30 1
Finance 4947 0 1894 476 0 138 51 111 6

Real Estate 1409 0 981 0 159 0 18 15 0
Professional Services 2999 0 1151 349 0 149 70 47 5

Management of Companies 0 881 185 64 0 0 6 6 1
Waste Mgmt 3674 0 1301 0 602 144 103 40 11

Education 666 0 229 0 0 23 19 6 0
Health Care 0 6437 1068 368 0 126 63 23 14

Arts-Entertainment 953 0 308 0 213 0 42 25 2
Accommodation 11757 0 2541 822 0 181 100 49 7

Other Services 1499 0 433 0 158 51 11 18 3
38450 35099 24058 4613 2553 1536 1052 543 113 108017
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cations where the observations were acquired under an informative sampling design. We

replace the usual likelihood in estimation of the joint posterior over partitions and asso-

ciated cluster centers with a pseudo-likelihood that incorporates the first order sampling

weights that serve to undo the sampling design. The resulting estimated parameters of

the approximate MAP objective function are asymptotically unbiased with respect to the

population, conditioned on the generation of the finite population from disjoint clusters.

Our simulation study demonstrated that failure to correct for informative sampling reduces

the outlier detection accuracy by inducing biased estimation of the cluster centers.

Our use of sampling-weighted partition estimation algorithms focuses on outlier de-

tection, so we incorporated a new merge step, which may increase robustness against

estimation of local optima and encourage discovery of clusters containing large numbers

of observations, which may be a feature for outlier detection where we nominate as out-

liers those observations in clusters containing relatively few observations. We additionally

constructed the sampling-weighted C statistic that our simulation study demonstrated was

very effective for selection of the local and global cluster penalty parameters, (λL, λK),

that together determine the numbers of local and global clusters.

The sampling-weighted hierarchical clustering algorithm permitted our estimation of

industry-indexed local clusters, which fits well into the BLS view that industry groupings

tend to collect establishments with similar employment patterns and reporting processes.

We saw that all of the estimated K = 9 global clusters for percentage change in employment

from November to December, 2009 were shared among the local by-industry clusters, which

served to both sharpen estimation of the local partitions and global cluster centers and to

discover small global clusters of potentially outlying observations.
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Heinrich Fritz, Luis A. Garćıa-Escudero, and Agust́ın Mayo-Iscar. tclust: An R package

for a trimming approach to cluster analysis. Journal of Statistical Software, 47(12):1–26,

2012. URL http://www.jstatsoft.org/v47/i12/.

Hemant Ishwaran and Lancelot F. James. Generalized weighted Chinese restaurant pro-

cesses for species sampling mixture models. Statistica Sinica, 13(4):1211–1235, 2003.

Ke Jiang, Brian Kulis, and Michael I. Jordan. Small-variance asymptotics for exponential

family dirichlet process mixture models. In F. Pereira, C.J.C. Burges, L. Bottou, and

42



Scalable Inference for Outlier Detection under Informative Sampling

K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 25,

pages 3158–3166. Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/

4853-small-variance-asymptotics-for-exponential-family-dirichlet-process-mixture-models.

pdf.

Brian Kulis and Michael I. Jordan. Revisiting k-means: New algorithms via bayesian

nonparametrics. CoRR, abs/1111.0352, 2011. URL http://arxiv.org/abs/1111.0352.

R. M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal

of Computational and Graphical Statistics, 9(2):249–265, 2000.

Fernando A. Quintana and Pilar L. Iglesias. Bayesian clustering and product partition

models. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 65

(2):557–574, 2003.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing, Vienna, Austria, 2014. URL http://www.R-project.org/.

Terrance Savitsky and Daniell Toth. Convergence of pseudo posterior distributions under

informative sampling. 2015. URL http://arxiv.org/abs/1507.07050.

Matthew S. Shotwell. Profdpm: An R package for MAP estimation in a class of conjugate

product partition models. Journal of Statistical Software, 53(8):1–18, 2013.

Matthew S. Shotwell and Elizabeth H. Slate. Bayesian outlier detection with Dirichlet

process mixtures. Bayesian Analysis, 6(4):665–690, 2011.

Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, and David M. Blei. Hierarchical

Dirichlet processes. Journal of the American Statistical Association, 101(476):1566–1581,

2006.

43



Savitsky

Lianming Wang and D. B. Dunson. Fast bayesian inference in dirichlet process mixture

models. Journal of Computational and Graphical Statistics, 20:196–216, 2011.

44



Scalable Inference for Outlier Detection under Informative Sampling

Appendix A. Hierarchical Clustering Algorithm

Loop over algorithm blocks, A.2 and A.3 until convergence.

Algorithm A.1: Initialize local and global cluster objects

Input: Set of nj × d data matrices, {Xj}j=1,...,J , where each holds 1× d observations for nj
units in local dataset, j. Set of nj × 1 vectors, {w̃j} of sampling weights for nj units
in local dataset, j. λL, local cluster penalty parameter. λK , global cluster penalty
parameter.

Output: K × d, M = (µ1, . . . ,µK)
′
, a matrix of 1× d global cluster centers for

p = 1, . . . ,K global clusters. A set of nj × 1 vectors, {sj}j=1,...,J , where

sji ∈ (1, 2, . . . ,K), linking units in each dataset, Xj , to a global cluster,
p ∈ (1, . . . ,K). The number of unique values in sj , denoted by Lj , specifies the
local partition structure for dataset, Xj .

1 Initialize: Initialize number of global clusters, K = 1.
2 for j ← 1 to J do
3 Lj × 1, vj records link of each local cluster, c ∈ (1, . . . , Lj), to global cluster,

p ∈ (1, . . . ,K). Initialize Lj = 1 and vjLj
= 1.

4 nj × 1, zj , records link of each unit, i in dataset, j, to a local cluster, c ∈ (1, . . . , Lj).

Initialize zji = 1, ∀i.
5 nj × 1, sj records link of each unit, i, in dataset, j to a global cluster, p ∈ (1, . . . ,K).

Initialize sji ← vj
zj
i

, ∀i.

6 Set d× 1 cluster center, µ1 ←
(∑J

j=1

∑nj

i=1 w̃
j
ix

j
i

)
/
(∑J

j=1

∑nj

i=1 w̃
j
i

)
.

7 Compute energy,

e←
∑K

p=1

∑J
j=1

∑
i∈{i:sji=p} w̃

j
i

∥∥∥Xj
i − µp

∥∥∥2 + λKK + λLL, where L =
∑J

j=1 Lj .
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Algorithm A.2: Build Local and Global Clusters

1 Assignment of units to global clusters.

2 for j ← 1 to J and i← 1 to nj do

3 Compute distance metric, dijp = w̃j
i

∥∥∥Xj
i,1:d − µp

∥∥∥2 for p = 1, . . . ,K.

4 For those global clusters, p, not linked to any local cluster in j,
{p : vjc 6= p,∀c ∈ (1, . . . , Lj)},

5 dijp ← dijp + λL (since must add local cluster if assign i to p).
6 if minp dijp > λL + λK then
7 Create new local cluster linked to new global cluster.

8 Lj ← Lj + 1, zji = Lj

9 K ← K + 1, µK ← Xj
i , v

j
Lj
← K

10 else
11 Let p̂← argminp dijp.

12 if vjc = p̂ for some c ∈ (1, . . . , Lj) then

13 Assign unit i in j to local cluster c, zji ← c and vjc = p̂.
14 else
15 Create new local cluster for unit i and link to global cluster, p̂.

16 Lj ← Lj + 1 and zji = Lj and vjLj
= p̂.

17 Re-assignment of (all units in) local clusters to global clusters.

18 for local partitions, j ← 1 to J and local cluster, c← 1 to Lj do

19 Let zjc = {i : zj = c} and 1× d, µjc =
(∑

i∈zj
c
w̃j

ix
j
i

)
/
(∑

i∈zj
c
w̃j

i

)
.

20 Compute sum of local-to-global cluster distances:

21 djcp =
∑

i∈zj
c
w̃j

i

∥∥∥Xj
i − µp

∥∥∥2, for p = 1, . . . ,K.

22 if minp djcp > λK +
∑

i∈zj
c
w̃j

i

∥∥∥Xj
i − µjc

∥∥∥2 then

23 Set K ← K + 1, vjc = K, and µK = µjc

24 else vjc ← argminp djcp

25 Shed global clusters no longer assigned to any local clusters.

26 for p← 1 to K global clusters do
27 if vj 6= p, ∀j ∈ (1, . . . , J) then

28 Recode global cluster labels in vj such that p
′ ← p

′ − 1, ∀p′ > p
29 Set K ← K − 1
30 Delete cluster center for p, M←M−p,1:d.
31 for local partitions, j ← 1 to J and units, i← 1 to nj do

32 sji ← vj
zj
i

.

33 Re-compute global cluster centers

34 for p← 1 to K global clusters do
35 for j ← 1 to J datasets do

36 Compute units in j assigned to global cluster p, Sjp = {i : sji = p} ;

37 Compute µp =
(∑J

j=1

∑
i∈Sjp

xj
i w̃

j
i

)
/
∑J

j=1

∑
i∈Sjp

w̃j
i .
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Algorithm A.3: Merge global clusters

1 Compute energy of current state, e←
∑K

p=1

∑J
j=1

∑
i∈{i:sji=p} w̃

j
i

∥∥∥xj
i − µp

∥∥∥2 + λKK + λLL

2 for p← 2 to K and p
′ ← 1 to (p− 1) do

3 Perform test merge for each pair of global clusters.

4 Set matrix of cluster centers for virtual step, M∗ ←M.
5 for local partitions, j ← 1 to J do

6 Let S∗
jp′

= {i : sji = p
′}

7 if |S∗
jp′
| > 0 then

8 There are some units in sj assigned to global cluster, p
′
, Re-assign units linked

to p
′

to p. S∗jp = {i : sji = p or sji = p
′}

9 Compute merged cluster centers, µ∗p =
(∑J

j=1

∑
i∈S∗jp

xj
i w̃

j
i

)
/
∑J

j=1

∑
i∈S∗jp

w̃j
i

10 Set M∗
p′ ,1:d

←M∗p,1:d

11 Compute number of local clusters shed if merge global cluster, (p
′
, p).

12 for local partitions, j ← 1 to J do

13 Local clusters linked to p
′
, p: cjp′ = {c : vj = p

′} and cjp = {c : vj = p},
Ljp′ = |cjp′ | and Ljp = |cjp|

14 Reduced number of local clusters, L∗ = L−
∑J

j=1 Ljp, and global clusters, K∗ ← K − 1 .

15 Compute energy under the test merge,

e∗ ←
∑K

p=1

∑J
j=1

∑
i∈S∗jp

w̃j
i

∥∥∥xj
i − µ∗p

∥∥∥2 + λKK
∗ + λLL

∗

16 if e∗ < e then

17 Execute merge of global clusters, p and p
′

18 for local partitions, j ← 1 to J do
19 if Ljp′ > 0 then

20 Cluster p
′

is linked to local partition, j.
21 if Ljp = 0 then vj

c
jp
′ ← p

22 else

23 Reassign local clusters linked to p
′

to p.
zjc

jp
′ = {i : zj ∈ cjp′} and zjc

jp
′ ← cjp1.

24 Remove now empty local clusters linked to p
′
, vj ← vj

−c
jp
′ .

25 Recode zj local cluster assignments so labels are contiguous by setting
c← c− 1, ∀c > cjp′ .

26 Recode global cluster labels in vj such that p← p− 1, ∀p > p
′

27 Remove global cluster center for p
′
.

28 M∗ ←M∗−p′ ,1:d
29 for units, i← 1 to nj do

30 sji ← vj
zj
i

.

31 M←M∗
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