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Abstract

We introduce a framework for designing multi-scale, adaptive, shift-invariant frames
and bi-frames for representing signals. The new framework, called AdaFrame, im-
proves over dictionary learning-based techniques in terms of computational effi-
ciency at inference time. It improves classical multi-scale basis such as wavelet
frames in terms of coding efficiency. It provides an attractive alternative to dictio-
nary learning-based techniques for low level signal processing tasks, such as com-
pression and denoising, as well as high level tasks, such as feature extraction for ob-
ject recognition. Connections with deep convolutional networks are also discussed.
In particular, the proposed framework reveals a drawback in the commonly used
approach for visualizing the activations of the intermediate layers in convolutional
networks, and suggests a natural alternative.

Keywords: AdaFrame, Dictionary Learning, Wavelet Frames/Bi-frames

1. Introduction

It is now well acknowledged that sparse and overcomplete representations of data play
a key role in many signal processing applications. The ability to represent a signal as
a sparse linear combination of a few atoms from a possibly overcomplete dictionary
lies at the heart of many applications including image/audio compression, denoising,
as well as higher level tasks such as object recognition.

One popular technique for representing signals is the use of dictionaries. Since
the seminal work of Olshausen et al. (1996), the field of dictionary learning has seen
many promising advances. The objective is to learn a dictionary such that the input
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data can be written as a sparse linear combination of the dictionary atoms. More
specifically, given the data represented as a matrix X, one finds the dictionary matrix
D and coefficient matrix C' simultaneously by solving:

: . 2
min [ X — DOl + AllC]s- (1)

The solution is usually obtained by solving alternatively the minimization problem for
D and the sparse coding problem for C' with the other variable being kept fixed. After
obtaining D, inference can be made by solving a sparse coding problem. Different
dictionary learning models differ in the way the dictionary D is updated. Examples
include: MOD (Engan et al., 1999a), K-SVD (Aharon et al., 2006) and their variants.

Dictionary learning techniques have been successfully applied to some low level
image and video processing tasks, such as image/video denoising (Elad and Aharon,
2006), compression (Bryt and Elad, 2008a; Engan et al., 1999b), inpainting (Mairal
et al., 2008) and other restoration tasks (Mairal et al., 2007) with state-of-the-art
performances. In addition, dictionary learning and sparse coding techniques have
been very popular in high level object recognition tasks where their function is to
extract features from raw data. These techniques have been used successfully to
extract visual features in Ranzato et al. (2007); Lee et al. (2009); Jarrett et al. (2009).

At the other end are the more traditional methodologies of designing analytic
tight frames, such as Fourier basis, wavelet frames and bi-frames (Daubechies et al.,
2003), curvelets (Candes and Donoho, 2000), contourlets (Do and Vetterli, 2002), etc.
These analytic tight frames are robust, easy to use and computationally efficient.

In some sense the analytic tight frames can also be viewed as a dictionary. The
set of signals is a particular space of functions. A dictionary is found that gives
rise to the optimal representation and approximation of the signals in that function
class. The resulted dictionary is highly structured, and in particular, when used
into applications, the dictionary atoms are never explicitly used. However, the two
approaches do differ fundamentally in several aspects (see Table 1).

e Computational cost. For dictionary learning, the computational cost con-
sists of two parts: the one time cost of learning the dictionary atoms and the
repeated cost of solving the sparse coding problem for the test signal at infer-
ence time. Among the two, it is the latter that prevents it from being used in
real time situations. Despite the efforts devoted to seeking more efficient sparse
coding algorithms (Daubechies et al., 2004; Lee et al., 2006; Beck and Teboulle,
2009), none of the available techniques is efficient enough for large scale visual
feature extraction. In fact, assuming that the signal z is of length N and the
trained dictionary D € R™*¥ is stored and used explicitly, then computing Dx
alone requires O(mNN) operations. In comparison, analytic transforms are far
more efficient: fast Fourier transform takes O(N log N) operations and one level
wavelet transform takes only O(N) operations. This is a huge efficiency gap.
In addition, the computational cost of training cannot be ignored either. The
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learning procedure requires solving a non-convex optimization problem, limiting
dictionary atoms to low dimensions. Partly because of this, in image processing
applications, dictionary atoms are only obtained for small image patches.

e Multi-scale features. Dictionaries as obtained by MOD and K-SVD operate
at a single small scale. Since the dictionary atoms are limited to small sizes,
there is not much room for multi-scale features. Past experience with wavelets
has taught us that often times it is beneficial to process signals at several scales,
and operate at each scale separately.

e Artifacts. In low level tasks such as image compression, the dictionary learning
approach operates in a patch by patch manner, which produces visually unpleas-
ant block effects along the boarders of the patches (Bryt and Elad, 2008a). Post
processing is often needed to remove these artifacts (Bryt and Elad, 2008b).

Dictionary Learning | Wavelet Tight Frames
Adapted to data Yes No
Computational speed Slow Fast
Multi-scale No Yes
Robustness to perturbation Conditionally Yes
Performance on real data Better Worse

Table 1: Comparison between dictionary learning and wavelet tight frames

Given the relative features of dictionary learning and wavelet tight frames, it is
natural to ask whether one can design bases that have the benefits of both and avoid
the problems. In other words, can one design bases that are adapted to the data
but at the same time have the multi-scale structure that is essential for the efficient
algorithms for wavelet tight frames?

We propose a framework of constructing adaptive frames and bi-frames (abbrevi-
ated as AdaFrame). This framework gives multi-scale, sparse representations of the
signal, with an efficiency comparable to that of the wavelets at inference time.

The proposed framework is formally similar to the first few layers of a convolu-
tional network. As a byproduct, we show that the proposed framework gives a better
way of visualizing the activations of the intermediate layers of a neural net in terms
of reconstruction error.

The framework presented here is best suited for datasets such that each data
point has some structure. Obvious examples include time series, images and videos.
However, as in the case of wavelets, it is also possible to extend this kind of ideas to
less structured data such as graphs, etc (Coifman and Maggioni, 2006).

In Cai et al. (2014), a variational model is proposed to learn a tight frame system
that is adapted to the input image. The model in Cai et al. (2014) and our model share
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a similar objective and build upon similar mathematical foundations, but our work
greatly extends the model proposed in Cai et al. (2014) where a sufficient condition
for perfect reconstruction is replaced by a sufficient and necessary condition and the
tight frame is extended to bi-frame, which is much more flexible.

Most examples discussed in this paper are still of the low level image processing
type. In a subsequent paper, we will discuss more thoroughly higher level tasks such
as image classification.

The organization of this paper is as follows. In section 2, we introduce shift-
invariant frames and bi-frames. In section 3, we introduce the adaptive construction
of shift-invariant frames. In section 4, we introduce the adaptive construction of shift-
invariant bi-frames. In section 5, we discuss multi-level constructions. In section 6, we
give some simple illustrative examples of the adaptively constructed frames and bi-
frames. In section 7, we discuss the connection with predefined wavelets and wavelet
frames. In section 8, we discuss applications to image processing and image classifica-
tion. In section 9, we discuss connection with deconvolutional nets and reconstruction
of input data from features in the intermediate layers of the convolutional nets. Some
conclusions are drawn in section 10.

2. Shift-invariant Frames and Bi-frames

An important starting point is the concept of multi-resolution analysis (MRA) intro-
duced in Mallat (1989) and Meyer (1995), of which wavelets are particularly popular
examples. One main advantage of MRA is that it comes naturally with fast decompo-
sition and reconstruction algorithms, and this has been essential for making wavelets
a practical tool in signal processing (Daubechies et al., 2003; Shen, 2010). Although
our work builds upon the theory of wavelet frames in the continuous setting, we decide
to introduce our model in a purely discrete setup. This has the advantage that it is
more direct and more easily linked with existing machine learning models, including
dictionary learning and convolutional networks. However, as noted in Han (2010),
there is a canonical link between affine systems in the continuous setting and fast
algorithms in the discrete framework.

The signals and the filters are all assumed to be discrete sequences in I5(Z?), where
d is the dimension. For audio, image and video signals, d = 1, 2, 3 respectively. First
let us define the up- and down-sampling operators. Let M be an integer. The (one
dimensional) down-sampling and up-sampling operator are defined by:

v lm](n) :=v(Mn), nezZ
it ol(n) ::{ v(k), n=MkkeZ (2)

0, otherwise

respectively, for v € l3(Z). M is the decimation factor. Similarly if d > 1, denote the
decimation factor in each dimension by M;, My, --- , My. For convenience we define a
matrix M = Diag(My,--- , My) € R4 A common choice of M in image processing
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is M = 2. We call M the sampling matriz and use the same notation as in (2)
where Mn is understood as the matrix-vector multiplication. In general M can be
an invertible matrix whose entries are positive integers or rational numbers that are
greater than 1.

Key to the decomposition and reconstruction algorithms are the transition and
subdivision operators. For a data sequence v € l(Z%), a finitely supported filter a €
I5(Z%) and a sampling matrix M € R4 the transition operator T, : lo(Z%) — lo(Z%)
is defined by

(Tar0)(n) :=las [vxa](n) = Y v(k)a(k — Mn), (3)

kezd
the subdivision operator S, : I5(Z%) — I5(Z?) is defined by
(Sarv)(n) := | det(M)[[a * (T v)](n) = |det(M)| Y v(k)a(n — ME).  (4)
kezd

To make the notations more concise, we omit M in the subscript.

Given a set of finitely supported filters A = {ai, -+ ,a,} and the coefficient
sequence v € lo(Z%), which could be the input signal itself or the coefficients computed
at some decomposition level, we compute coefficients of the next level by

vy ="T,v, =1 m. (5)

With this notation, the one-level decomposition operator Wy : lo(Z%) + 1o(Z%) @ - - - @ 1o (Z%)

~~

m times
is defined as:

WAU = {vly"' avl} = {7:11?)77?121}"" 77;1”1)}- (6)
Given a set of finitely supported filters B = {by, - - , b,, }, the one-level reconstruction

operator Ry : Io(Z) @ - -+ @ ,(Z%) > 15(Z7) is defined as

m %IGS
Rp(vr,-+ ,vm) =Y _ Sy (7)
=1

In wavelet frames, the filters A used for decomposition and the filters B used for
reconstruction are connected by : b/(-) = a;(—-),l = 1,--- ,m, where q;(—-) means
flip the entries of a; along each dimension. But this does not have to be the case: A
and B can be different and together they constitute a bi-frame.

The main requirement is that of perfect reconstruction, by which we mean:

RpWav =v Yo € 1,(Z%). (8)

The following result is crucial.
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Theorem 1 (Ron and Shen, 1997) Let M € R4 be a sampling matriz, let A =
{ai, -+ ,;an} and B = {by, -+ by} be two sets of finitely supported sequences in
I5(Z%). Then the perfect reconstruction property

RpWav =v, Yo € lh(Z%) (9)

holds if and only if, for all k,j € 74,

DY aw(Mn+ )bk + Mn+ j) = | det(M)[ "5, (10)

=1 nezd

where 0, =1 if k =0 and 6, = 0 otherwise.

In the case of wavelet tight frames, b;(-) = a;(—),l = 1,--+ ,m, and we have:

Theorem 2 (Ron and Shen, 1997) Let M € R4 be a sampling matriz, let A =
{ai, -+ ,am} be a set of finitely supported sequences in ly(Z%). Then the perfect re-
construction property

RaWav =v, Yo € ly(Z9). (11)
holds if and only if, for all k,j € Z¢,
SN a(Mn+ j)a(k + Mn + j) = | det(M)| 75 (12)
=1 nezd

In particular, if the data are real numbers and no down-sampling is performed, then
the perfect reconstruction condition (12) becomes

i Z ai(k +n)a;(n) = o, Vk € Z°. (13)

i=1 nezd

The proof of Theorem 1 and Theorem 2 can be found in Daubechies et al. (2003).
For completeness, we give a direct proof for the discrete case in the appendix. These
conditions are referred to as the unitary extension principle (UEP) in wavelet frame
theory.

As an example, the linear B-spline wavelet tight frame used in many image restora-
tion tasks is constructed via the UEP. Its associated filters are :

a = 1(1,2, DT ap= é(l,o, -7 ay = 1(—1,2, -1"
4 4 4

This kind of tight frames are shift-invariant systems since the transforms are in
the form of discrete convolution. They are suited for the case when, below certain
scale, the statistical properties of the signals are translation invariant.

6
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3. Adaptive Construction of Frames

Given a set of signals X = {zy,--- ,xzy}, the goal is to construct wavelet frames that
are adapted to this set of signals in the sense that signals in the given set have a
sparse representation.

Define Q to be the set of filters that satisfy the UEP condition:

0= {{ai m S0 ST wMn o+ a(Mat k) = | det(M)| 716y, V. j € Zd}.
I=1 nezd
(14)
Filters in this set generate a wavelet frame that provide a faithful representation for
all signals in I5(Z?). However, we are not interested in all signals in l5(Z%). We are
only interested in X. Among all filters in Q, we want to select the one that is most
adapted to X.

In image restoration tasks, we are mostly interested in wavelet frames that give
rise to a sparse representation of the input signal. Therefore we will use sparsity as
our guiding principle for selecting the filters. Other guiding principles such as the
discriminative criterion can also be used. But in this paper, we will focus on sparsity.

Let ® be a sparsity-inducing function. Examples of ® include the I; norm, [
“norm”, or the Huber loss function defined (component-wise) by:

1.2
_ 533 ) |$| S 4
Ls(w) = { o(|z| — 36), otherwise (15)

Given the data X, the adaptive filters are chosen by solving the following optimization

problem:

N
i D> (vg)

j=1 i=1 (16)
subject to v;; = To,x;, 1=1,---,m

{ai}it, € Q
In the following, without loss of generality, we will assume that there is only one data
point in the signal set, i.e. N = 1, and we will omit the subscript j.

To be specific, we use [; norm as the measurement of sparsity and we will note
the changes required if the [y norm is used. The above problem then becomes

min Tox
e ; 7. (17)

1
7am
{ai}i, € Q

This innocent looking optimization problem is difficult to solve because of the con-
straint. Consider the simplest case when the signals and the filters are all one-
dimensional. Assume each filter has support length r, and we have r of them. For a
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real symmetric matrix G, let us denote by Tr(G, k) the sum of entries along the k-th
sub-diagonal. For example, Tr(G,0) is the usual trace of G. Let A := (a, -, ap).
Then the constraint {a;}, € Q is equivalent to

Tr(AAT k) =04, k=0,--- ,r — 1.

To see a nontrivial example where this constraint is satisfied, take an orthorgonal
matrix U € R™", and let a; = %Umi =1,---,m, where U.; means the i-th column
of U. However, in general, the algebraic constraint above is difficult to deal with.
Note also that this optimization problem is not convex.

We use the split Bregman algorithm (Goldstein and Osher, 2009) to solve (17).
Introduce the auxiliary variable D = (dy,--- ,d,,) where d; = T,,xz,i = 1,--- ;m.
Define the norm || D]y := > i, ||di]|1. Then (17) is equivalent to:

min | D1,

)

subject to D = Wy (18)
AeQ

Applying the split Bregman method, we obtain the following algorithm:

Algorithm 1 Adaptive construction of frames

1: Input: z.

2: Initialize £k =0,B=0,4= A%, D = W ox.

3: while “not converge” do

4: DFtY < argminp || D11 + 2| D — Warx — B*||%

5: AML « argming ||Wax — D* 4+ B*||Z s.t. A€ Q.
6 B« BF £ Wy — DFFL

7 E<+—k+1

8: return A*

To implement the algorithm, we must be able to solve each of the subproblems
listed in steps 4, 5 and 6.

To solve the subproblem for D, note that the problem decouples for each d;,i =
1,---,m. In fact,

a5 = angmnin ([ + 2| Topw — d + ) (19)
fori=1,---,m. It is easy to see that (19) has a closed form solution given by
1
d**t = shrink(T ez + bF, =) (20)
‘ n
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Figure 1: (a) The input image.(b) The filters learned using Algorithm 1, m = 20,r =
20.(c) The Fourier spectrum of the corresponding filters. Note the first filter is a
low-pass filter, all other filters are high-pass filters as can be seen from the Fourier
spectrum. The second and third filter look like edge detectors along the axis. Other
filters detect oscillations along different directions.

where the function shrink : R — R is defined as

. x| —a)sign(x), if |x| > a
shrmk(.?c,a):{ (()| | Jrionte) otl|1e1|rwise ' (21)

When shrinkage-operator acts on a vector, it acts on each component of the vector
according to (21).

The subproblem for updating A is most problematic due to the constraint. We
use the interior-point method for this part of the algorithm. There is no guarantee
of a global solution to this subproblem.

The update for B is straightforward. This is analogous to the step of “adding the
noise back” in the ROF model for denoising (Osher et al., 2005).

Among the three subproblems, the update of A is the most time consuming. But
as is observed by many authors, it is not necessary to solve A to full convergence, the
intuitive reason being that if the error of the solution to the subproblem is smaller
than ||B* — B*1||, the extra accuracy will be wasted. In fact, for updating A, we
only run a few steps of the interior-point iterations and we still observe numerical
convergence.

If we use the [y “norm” as the measurement of sparsity, the only change needed
in the above algorithm is in the D step, where the soft-shrinkage operator is replaced

by hard-thresholding defined as:

xz, if|x]>a

Hard(z, a) :{ 0, otherwise (22)

To give the readers some intuition about how the filters obtained look like, we
show an example in Figure 1. More examples are given in section 5.
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In some applications such as object recognition, perfect reconstruction is unnec-
essary. Instead, writing the input signal as a sparse linear combination of a few
dictionary atoms is only a means to extract features to be used by other learning
algorithms. Sparse coding has been quite popular in serving this purpose for visual
object recognition tasks. In this case, it is possible to relax the constraint in (17). In-
stead of solving the constrained minimization problem, we can use a penalty method
to solve an unconstrained problem. For example, in 1D, we can solve

: T 1y _ s \2
mjnz |Wax||11 —{—772(T7"(AA k) — k) (23)

=1 k

where 7 is a parameter that depends on our tolerance on the reconstruction error.
This unconstrained problem is relatively easy to solve using first-order optimization
methods.

The optimization problem may appear similar to reconstruction ICA (RICA)proposed
in Le et al. (2011), but they are fundamentally different. There proposed model guar-
antees perfect reconstruction while RICA approximates the input signal. Perfect
reconstruction in RICA can only be achieved in the limit where the weight of the
reconstruction term goes to infinity. In addition, RICA does not have a multi-scale
structure which is essential in wavelet tight frames. The goals of RICA and AdaFrame
are different, in ICA, the goal is to find independent sources where as in AdaFrame,
the goal is to build a wavelet tight frame that sparsely represent the signal.

4. Adaptive Construction of Bi-frames

In this section, we introduce the adaptive construction of wavelet bi-frames. Com-
pared with the wavelet frames, the bi-frames offer two distinct advantages: The first
is that the constraint for the filters becomes bi-linear making it easier to construct
the filters. The second is that the added redundancy introduces more flexibity. These
prove to be very important in practice.

Let Q denote the set of pairs A and B, A = (a1, - ,am), B = (b1, -+ ,by), that
satisfy (10):

Q:= {(A, B): Z Z a(Mn + j)b(k + Mn + j) = |det(M)| "6y, Vk,j € Zd}
=1 nezd
(24)
We want to find filter pairs (A, B) with desired properties while respect the constraint
(A, B) € Q. As before we will only consider sparsity. Given the data x and a sampling
matrix M, we aim to solve :

min ”WA*THLI
AP (25)
subject to (A, B) € Q

10
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The constraint (A, B) € Q in bi-linear in A and B. Let us first count the number
of equations.

We start with the simplest case where the signals and the filters are one dimen-
sional. Let A, B be defined as before and assume that each filter a;,b;,i =1,--- ,m
has support size r. Given the decimation factor M, define

S(r)={(k,y):IneZ1<Mn+k+y<r,1<Mn+~vy<r}, (26)
then each (k,v) € S(r) constitutes an equation. This gives
|S(r)| = (2r — M)M. (27)

This is the total number of equations. The total number of unknowns in A and B is
2rm. Therefore for (10) to have a solution, we expect:

2rm > (2r — M)M. (28)

In the general case where the signals and the filters live in d dimensions, we can

do a similar counting. Assume the support size of the filter a;,0;,7 = 1,--- ;m is

r = (ry, - ,7rq), and assume that the sampling matrix is M = Diag(M,--- , My).
Let

Sr)y={(k,y)€Z IneZ" 1< Mn+k+y<r,1<Mn+~vy<r} (29

where the inequality is understood component-wise. Each (k,~) € S(r) gives rise to
an equation. The total number of equations is

d

1S(r)| = H(27"i — M;)M;. (30)

=1

The number of unknowns in a and b is 2m [[._, 7. Hence to have a solution to (10),
we expect:

d d
i=1 i=1
Two cases are of special interest.

e Redundant case. In this case, the number of filters m is large. The number
of decomposition coefficients is larger than the size of the input signal. Hence
we call this the redundant case. For the optimization problem, we have more
unknowns than equations. In particular, if m > 2M — M?/r in one dimension,
and m Hle ri > H?zl(Qri — M;)M; in d dimensions, for most A, we expect (10)
as a set of linear equations for B, to have a solution. Therefore, we can design
A and B separately: We can design A first in whichever way we want as long
as it is non-degenerate. We then solve (10) to get B.

11
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e Critically down-sampled case. In this case, the number of filters m is small.
The number of decomposition coefficients is the same as that of the input signal
(depending on the boundary conditions). Hence we call this the critically down-
sampled case. For example, in one dimension, m = M. In this down-sampled
case, for a typical A, it is likely that (10), as a linear system for B, does not
have a solution. This means that we must consider A and B simultaneously.

4.1 Redundant Case
4.1.1 DESIGN OF THE DECOMPOSITION FILTERS

As discussed above, we can design A in the first phase, and then choose B that
satisfies the linear constraint (25) in the second phase.

However, the choice of A has a significant impact on the condition number of
(25). Hence some constraints should be added. While there are a lot of flexibilities,
we propose the following formulation:

IIlAll’l HWA‘rHLl (32)
subject to ATA=1

The additional constraint ATA = I is chosen based on the consideration that the
filters are most incoherent among themselves.

To solve (32) numerically, we apply the split Bregman method. But we need
to handle the extra orthogonality constraint as well. To this end, we introduce the
auxiliary variable P = A as a means to split the orthogonality constraint. This trick
has been used in other problems, see for example Lai and Osher (2014). The problem

then becomes: ‘
min || D||11
A,D,P (33)
subject to D = Wyax, P = A, PTP=1.

The algorithm is then:

Algorithm 2 Adaptive construction of bi-frames: redundant case

1: Input: z.

2: Initialize £ =0,F =0,C =0,A = A°, D = W oz, P = A.
3: while “not converge” do

4: for n=1:N do

5: DFY «— argminp ||Dl11 + 2[|D — Waex — F¥||3,

6: AR« argming n||Wax — DM+ FF||2 + \||A — P* 4+ C*|)%
7 PHl« argminp ||[AM — P+ CF|Z sk, PTP=1
8: FEL o PR 4 Wogenx — DR

9: Ok+1 — Ok +Ak+l _ Pk-l—l
10: kE+—k+1
11: return A*

12
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To implement the algorithm, we must be able to solve each of the subproblems
for D, A and P. Updating D is the same as in Algorithm 1. The subproblem for
A is a quadratic program. It can be decoupled into m smaller problems, each of
which involves one column of A. Writing D = (dy, -+ ,dw), P = (p1," " ,Pm),
C=(c, - ,cm)and F = (f1, -+, fm), we can perform the optimization in a column
by column fashion:

a7t = argmin || Tox — di™ + fEI5+ Mla —pf +¢fll3, i=1,m  (34)

Each of the m smaller problems is an unconstrained quadratic program. Many opti-
mization techniques can be used to to solve this problem. Among the several choices
of iterative algorithms, we use conjugate gradient (CG) method because the objec-
tive function value tends to decrease very quickly in the first few CG iterations, thus
giving a good approximate solution quickly. For the same reason as in Algorithm 1,
iteration to convergence is not necessary.

Next, we consider the subproblem for P. This problem is equivalent to:

max Trace((A* 4+ C*YT'P)  subject to P'P =1. (35)

This is the classical orthogonal procrustes problem (Gower and Dijksterhuis, 2004)
and has a closed form solution which we summarize in the following lemma. The
proof can be found in linear algebra textbooks, e.g. Horn and Johnson, chapter 3.

Lemma 1 Let Y € R™™ n>m and Y = UDVT be the singular value decomposi-
tion of Y, then the constrained optimization problem

P = argpr%in |P—Y|% subject to P'P =1 (36)
c nxm

has a closed form solution given by P* = Ul, v, V7.

Substituting Y with A**! + C*, we get the formula for updating P. Updating the
auxiliary variable F' and C' is straightforward.
An illustration of such filters is shown in Figure 8(b).

4.1.2 DESIGN OF THE RECONSTRUCTION FILTERS

Once A = (ay,--- ,a,) is obtained, we move on to second phase of designing the
reconstruction filters B.

For fixed A and sampling matrix M, the constraint (10) is a linear system in B.
Hence we will write it as H(A)B = f, where H(A) denotes the coefficient matrix
generated using A. To get some concrete ideas, let us look at a simple example.

Example. Consider a one dimensional situation where m = 2,7 = 3. Assume

A= (al,ag),B = (bl,bg) S R3X2,

a11 a1 bii by
A= a2 ax , B= b2 by |,
a13 a3 biz b3

13
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Assume M = 1, that is, no downsampling is performed. Then the linear equation
H(A)B = fis

b11
11 A1z A1z Q21 Q22 G23 by 1
0 an a2 0 ag ags b 0
0 0 an 0 0 an b13 =10
a1z a3 0 agx axg 0 621 0
ais 0 0 ay 0 0 sz 0

This is a system of 5 equationd with 6 unknowns. Therefore, we have one additional
degree of freedom left to design B.

In general, since m is large, H(A)B = f is an under-determined linear system.
Moreover, since A is obtained by solving (32) with respect to the orthogonality con-
straint, the coefficient matrix H(A) tend to have a good condition number. This
well-behaved under-determined linear system gives us the freedom to design the re-
construction filters B with additional properties. The general formulation is:

mEi;n G(B) subject to H(A)B = f and other constraints (37)

where G(B) is the objective function that we use to impose the additional property
that we expect B to have. For example, if we want the reconstruction filters to look
like piecewise smooth function, we can use the following formulation:

rnBin G(B) := Z Vb |1
= (38)
subject to  ||byla =a, I=1,---,m
H(A)B=f

where V is a discrete gradient operator and « is a predefined parameter whose purpose
is to make the size of B compatible with the constraint H(A)B = f.
An illustration of the reconstruction filters is given in Figure 8(b).

4.2 Critically Down-sampled Case

In this case, we have less freedom and must consider the decomposition and recon-
struction filters simultaneously. Since the constraint is bi-linear in A and B, in order
to avoid the trivial situation where the objective function is minimized by scaling
down the decomposition filters A and scaling up the reconstruction filters B, we re-
quire the filters A to have unit norm. Adopting the same notation as before, (25)
becomes

mlél ||WAI| 1,1
subject to H(A)B = f. (39)
Hai|’2:17i:1’...7m
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Again, we apply the split Bregman algorithm to solve this problem. The procedures
are similar to the redundant case. We will formulate the algorithm directly as follows:

Algorithm 3 Adaptive construction of bi-frames: critically down-sampled case

1: Input: z.

2: Initialize k =0,F =0,0 =0,A= A", B= B, D = Wox.

3: while “not converge” do

4: DF! « arg minp ||D||171+g||D—WAkZE—Fk||%

5: AR« argming n||[Wax — DM+ FR|2 + N|H(A)BY — f + C*||% s.t.
||ai|]2 = 1,2 = 1, ,m

6: B*! < argming \|H(A*VB — f + CF||%

7: FFY o P 4 W gkio — DL

]: Ck+1 — C«k + H(AkJrl)BkJrl _ f _ pkH1

9: k+—k+1

10: return A* B*

Updating D is again done by soft thresholding. The update of A is done by
running a few iterations of the interior-point method, and updating B is done by
running a few iterations of conjugate gradient method. The most computationally
intensive step is updating A. But since in our applications, the support size and the
number of filters are small, the total number of variables is normally a few hundred,
hence the computational cost is reasonable.

5. Multi-level Adaptive Frames

Going to multi-level, the basic idea is to recursively use the framework of adaptive
frames on the coefficients obtained by applying the adaptive filters to the signal.
There are two practical issues that we need to consider. The first is whether one
considers all the coefficients or a subset of coefficients when going to coarser level.
In this regard the difference between low-pass and high-pass filters is particularly
relevant. Recall that a low pass filter is defined by the condition that the Fourier
coefficient a(0) # 0. The second issue is whether a new set of adaptive filters is
learned and used at each level. We will discuss three different strategies that are
motivated by three different examples.

5.1 The MRA approach

The basic idea of MRA is to apply the same set of filters at each level to the coefficients
from the low-pass filters. When constructing traditional wavelet frames using MRA,
there is only one low-pass filter at each level, the scaling function. All other filters
are high pass filters associated with the wavelets. Our experience suggests that this
is often the case for the adaptively learned filters. To makes sure that this is indeed
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the case, we can also add the additional constraint

to (17). As a linear constraint, this does not cause much trouble in the optimization
algorithm. With this, the adaptive wavelet frames can be used in the same way as
classical wavelet frames. Specifically, given the the input signal x, the multi-level
decomposition proceeds as follows: We first perform a one-level decomposition to
get the coefficients v; = T,,x,9 = 1,--- ,m. vy is associated with the low-pass filter,
which provides the coarse-grained approximation of the signal, and v;,i = 2,--- ,m
are associated with the high-pass filters, which provide the missing details from the
coarse-graining. Next, we treat v; as the input signal and perform another one-level
decomposition using the same set of filters to get the second-level coefficients. This
procedure can then be continued. Schematically, this algorithm can be represented
as a tree with one branching point at each level, as shown in Figure 2(a).

5.2 The scattering transform approach

By applying each fixed filter to the signal, one obtains a set of coefficients, called a
feature map. If the input signal is an image, the feature map is also an image. One
can then treat this new image as the input signal and find the corresponding adaptive
filters. In some applications, this can be preceded by some component-wise nonlinear
transformation. This is schematically shown in Figure 2(b). This structure is used in
the scattering transforms proposed in Bruna and Mallat (2013).

The obvious drawback of this approach is that the degrees of freedom increase
exponentially as the number of levels increases. Nevertheless, in classification tasks,
it is generally believed that lifting the raw data to a high dimensional space using some
nonlinear transforms can help by making the data more linearly separable. This is the
underlying principle that makes kernel methods effective. Therefore this approach is
potentially useful for classification tasks.

In practice, we can also apply some pruning procedure if there are many layers.
For example, we can stop expanding the node if it has very small energy.

5.3 The convolutional net approach

The structure shown in Figure 2(c) resembles the first few layers of a convolutional
net. The root node still represents the input signal, the first layer nodes represent
the one-level decomposition coefficients. The coefficients together are then regarded
as a multi-channel signal. For example, if the input signal is a monochrome two
dimensional image, the first layer coefficients can be regards as a three dimensional
image by stacking the m features maps. Once viewed as a three dimensional image,
we can construct adaptive frames and bi-frames using three dimensional filters, except
that the the filters might not be convolutional in the third dimension since the input
signal is not expected to be translation invariant in that direction.
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(a)

Figure 2: three structures

Figure 3: Illustration of the different multi-level structures. (a) The structure used
in the MRA approach. (b) The structure used in the scattering transform approach.
(c) The structure used in the convolutional net approach.

Obviously we are not limited by these three examples of multi-level structures.
We call this way of representing the signal multi-scale adaptive frames and bi-frames.
For convenience we abbreviate it as: AdaFrame.

6. Examples

6.1 The staircase signal

We consider a simple example where the signals are binary, each consists of long
sequences of +1’s separated by long sequences of —1’s, as shown in Figure 4. Let s
be the minimum length of consecutive +1 and —1 blocks. s is a measure of the lowest
frequency of the signal. We use Algorithm 1 to learn the filters with n = 10%. The
filters learned are shown in Figure 5.

Figure 4: A binary signal

In the case when m = 2, r = 2, we recover the Haar wavelet basis as shown Figure

This example is simple enough to allow for analytic calculations. In fact, one can
show that in the large s regime with the assumption that » = m, the filters learned
should exactly be the ones shown in the figure. This simple example shows that
adaptive filters do capture the special features of the data.
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Figure 5: The filters learned using the parameters m = 4,r = 4, s = 30.

(a) (b)

Figure 6: The filters learned using the parameters m = 2,r = 2, s = 30. In this case,
we recover the Haar wavelets.

6.2 Fingerprint signal

Our next example is the fingerprint dataset (Maltoni et al., 2009). We use a fraction
of the database. The input are 80 images of size 364 x 256. Some sample images and
filters learned are shown in Figure 7. The filters are learned using Algorithm 2 with
parameters 7 = 10%, A = 103. The main feature of the fingerprint images is that they
contain oscillations along different directions. As can be seen from the Figure 7, this
feature is indeed captured by the learned filters.

6.3 Another test image

The next example is a well-known natural image shown in Figure 8. This is an
example of the redundant bi-frame case. We learn the decomposition filters using
Algorithm 2 with n = 102, A\ = 103. Note that some filters look like edge detectors
along different directions (e.g. the second and third filters in the first row act like edge
detectors along the z and y axis). Most filters look like Gabor wavelets. They detect
oscillations along different directions. Because this is an example of the redundant
case, hence the reconstruction filters are not unique.
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Figure 7: (a)(b)(c)(d)Sample images of finger print.(e) Decomposition filters learned
with support size 7 x 7. (f) Decomposition filters learned with support size 13 x 13.

7. Recover Predefined Wavelets

The proposed framework is an adaptive extension of the well-known wavelets and
wavelet frames. It is natural to ask whether the standard wavelet filters can be
recovered using this framework. Naturally we expect that if the signal has a sparse
representation in a predefined wavelet domain, then the adaptive frames and bi-frames
would recover the predefined wavelets.

To see whether this is the case, we generate the signals using linear combinations
of different wavelets with different levels of sparsity. Specifically, the signals are gener-
ated using 4 Daubechies wavelets of different support size, “db2”,“db3”,“db12”,“db24”
in MATLAB syntax. Sparse random vectors with a given sparsity level are generated
(the sparsity level is the ratio of the number of nonzeros coefficients to the length of
the coefficient vector, we also call it the density), and these vectors are used as the
coefficients of the signals under the wavelet transform.

Given a signal, the adaptive filters are learned by solving (17). Since (17) is
nonconvex, to avoid complications coming from local minimum, we used the simulated
annealing algorithm to perform the global optimization. We then compare the filters
obtained with the original wavelets used to construct the signal. We declare success if
the [ norm of the difference between the adaptive filters and the predefined wavelets
is smaller than 10~*. Table 2 shows the success rate. 10 trials were performed for
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Figure 8: (a) Input image of size 512 x 512. (b) 30 decomposition filters with support
size 8 x 8. (c) A specific set of reconstruction filters. (d) Fourier spectrum of the
decomposition filters. (e) Fourier spectrum of the reconstruction filters.

Density | db2 | db3 | db12 | db24
0.1
0.2
0.3
0.4
0.5

O = = = =
O = = = =

1 1
1 1
1 1
0 0
0 0

Table 2: Ratio of successful recovery of predefined wavelets.

each case. The result is indeed consistent with our expectation. It is interesting to
see that the transition is very sharp.

Figure 9 shows the adaptive filters for the case when the signals are generated using
a dense combination of the predefined wavelets. In this case, the predefined wavelets
are not optimal, and the signals have a sparser representation under the adaptive
filters, as can be seen from Figure 9(c). The L; norm of the wavelet coefficients is
used as a robust measure of sparsity.
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Figure 9: (a) The signal is generated using sparse linear combinations of the
Daubechies wavelets. The black line is the objective function value evaluated us-
ing the Daubechies wavelets, which is optimal in this case. The value below the black
line is due to infeasible intermediate solutions. (b) The filters learned also converge
to the Daubechies wavelets, the figure shows the difference of the adaptive filters and
the Daubechies wavelets measured in Frobenius norm. (c) The signal is generated
using a dense linear combinations of the Daubechies wavelets. In this case, the ob-
jective function converges to a value lower than that of the the wavelets, indicated by
the horizontal line. (d) The filters learned also converge, but to something different
from the Daubechies wavelets. (e)(f) Decomposition filters of the Daubechies wavelet
“db5”. The signal is generated using sparse linear combination of this wavelets, the
filters learned are the same as the wavelets. (g)(h) The filters learned for signals
generated using dense combinations of the “db5” wavelet. They are different from
the wavelet filters.

8. Sample Applications

In this section, we discuss some examples of applications of the multi-scale adaptive
frames, the AdaFrames. A thorough comparison of the proposed model and other
existing models will be postponed to future publications.

8.1 Image Compression

AdaFrames are designed with the objective of making the decomposition coefficients
sparse. Therefore they should be naturally suited for image compression tasks.
As an intial step, we will compare the performance of AdaFrames with predefined
Daubechies wavelets and Haar wavelets. We use the following simple compression
scheme: Given an image = and the filters, we perform a decomposition to the coars-
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est level to get the coefficients, but we keep only the coefficients with relatively large
absolute values and set all the other coefficients to 0. The ratio of the total number
of coeflicients to the number of coefficients kept is called the “compression ratio” (the
entropy coding stage is not considered here). We then perform a reconstruction step
to get the reconstructed image . The quality of the compression is measured by the
peak signal-to-noise ratio (PSNR). For monochrome 8 bit image, PSNR is defined as

2552
e SV S (@G, 5) — 23, 5)2)

The filters are learned using image 8(a). 4 filters of support size 6 x 6 are learned
using Algorithm 1 with 7 = 102. The coefficients are critically down-sampled with
sampling matrix M = Diag(2,2). Initialization is done using the Daubechies filters
db3. In general, we have found that using predefined wavelet frames as initialization
works quite well. 7 levels of decompositions are performed using the architecture
shown in Figure 2 and the same set of filters. The PSNR values are plotted against
the “compression ratio” in Figure 10.
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Compression ratio
Figure 10: Image compression example. With the same image quality (measured
in PSNR), AdaFrames achieves significantly higher compression ratio than the Haar
wavelets and the Daubechies wavelets.

8.2 Image Denoising

As one of the simplest inverse problem, image denoising provides a convenient plat-
form over which image processing ideas and techniques can be tested. Indeed, during
the past few decades, many ideas from a diverse range of viewpoints have been pro-
posed to address this problem, including wavelet domain thresholding, nonlocal means
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(Buades et al., 2005), BM3D (Dabov et al., 2007), and the more recent ones based
on dictionary learning (Elad and Aharon, 2006).

Among the various models, we select the K-SVD model (Elad and Aharon, 2006)
as a benchmark for comparison since it is closely related to AdaFrames and since it
has been shown to achieve the state of the art results.

Assume the image is corrupted by some additive noise:

g=rf+n

where f is the clean image, g is our observation, and n is the noise with unknown
distribution. First let us recall the procedure for wavelet domain denoising. Let W4
and R4 be the decomposition and reconstruction operators associated with the filters
A respectively. Given an observed image x, the denoised image is then given by:

T = Ra(shrink(Wyz)) (42)

The procedure for AdaFrame denoising is exactly the same as that of wavelet domain
denoising. Given the input image, we first learn the filters from the data using
Algorithm 1 (or Algorithm 2 if we want to use bi-frames). We then use (42) to
denoise.

In the first example, the input is a single image normalized to [0, 1] and is corrupted
with an additive Gaussian white noise with ¢ = 0.1. We train the filters both from
the noisy image and the clean image with m = 36,r = 6,7 = 102, A = 10%. A
two-level decomposition is performed. The soft thresholding parameter is set to be
0.14. Initialization is done by setting the filters to be random orthogonal vectors.
The result is shown in Figure 11. The performance of the K-SVD algorithm depends
on the number of the atoms in the dictionary. Generally, the performance is better
as we increase the number of atoms. In this example, 256 atoms with size 6 x 6 are
used.

It is not surprising that the filters learned from a clean image produces better
quality images: One can see from Figure 12 that the fine textures of the image are
recovered. At a first sight, one might feel that this is impractical since we normally
do not have access to the clean images. Nevertheless, there do exist realistic settings
where learning from clean images makes sense. One such a situation is that filters
learned from one set of clean images can then be used on another set of noisy images.
We tested this idea on the extended Yale human face dataset B (Lee et al., 2005).
It contains 16128 images of 28 human subjects. We used a subset of the images by
picking the first 20 images of each of the subjects. We then added Gaussian white
noise with ¢ = 0.1 to get the simulated noisy images. A glimpse of the dataset is in
Figure 13.

To learn the filters, we pick the 100 clean images at random and use Algorithm 2
with m = 36,7 = 6,7 = 102, \ = 103. Two-levels of decompositions are performed.
The soft-thresholding parameter is set to be 0.14. The results for the noisy images
are reported in Table 3.
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(a) (b) () (d)

Figure 11: (a) Noisy input image, ¢ = 0.1. (b) K-SVD denoising re-
sult, PSNR=28.65dB. (¢) AdaFrame denoising, filters learned from noisy image,
PSNR=28.8dB. (d) AdaFrame denoising, filters learned from the clean image,
PSNR=29.3dB.

(a)

Figure 12: (a) Zoom in Figure 11(b). (b) Zoom in of Figure 11(c). (d) Zoom in of
Figure 11(d).

K-SVD, noisy K-SVD, clean AdaFrame, noisy AdaFrame, clean
PSNR 31.4dB 32.01dB 31.35dB 32.07dB

Table 3: Average PSNR on the simulated noisy images on the extended Yale human
face dataset B.

In another experiment, we test the performance of AdaFrame and K-SVD with
different support sizes. We use some well-known benchmark images as test images.
The images are normalized to [0, 1] and the noise is Gaussian with o = 0.02,0.05 and
0.1 respectively. For K-SVD, 256 filters of support size 8 x 8 and 12 x 12 are used.
For AdaFrame, 64 filters of support size 8 x 8 and 144 filters of support size 12 x 12
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Figure 13: Simulated noisy images from extended Yale face dataset B

Test Image K-SVD 8 x 8 | K-SVD 12 x 12 | AdaFrame 8 x 8 | AdaFrame 12 x 12
Barbara o = 0.02 38.02 38.00 37.34 38.21
Barbara ¢ = 0.05 33.28 33.01 31.87 33.22
Barbara o = 0.1 29.47 29.24 29.18 29.70

Boat ¢ = 0.02 37.02 36.71 36.75 36.86
Boat 0 = 0.05 32.53 32.11 32.50 32.59
Boat 0 = 0.1 29.19 28.70 29.18 29.21
House o = 0.02 39.45 39.25 39.18 39.17
House o = 0.05 35.12 34.74 34.50 34.66
House 0 = 0.1 32.15 32.05 31.19 31.45
Lena o = 0.02 38.45 38.21 37.98 38.45
Lena o = 0.05 34.46 34.18 33.21 34.34
Lena 0 = 0.1 31.38 30.84 31.12 31.39
Peppers o = 0.02 37.68 37.47 37.30 37.46
Peppers o = 0.05 33.94 33.52 33.32 33.79
Peppers 0 = 0.1 31.26 30.78 30.33 30.91

Table 4: Comparison of AdaFrame and K-SVD, performance measured in PSNR, the
unit is dB.

are learned. A is chosen based on the noise level and is set to be A = 0.005,0.01,0.025
respectively. The result is shown in Table 5.

As a last denoising example, we apply AdaFrames to some examples of natural
photos with unknown noise. The setting is the same as the previous example. We
learn filters directly from the noisy images. Since the image has RGB channels, we
learn the filters (of support size 9 x 9) for each channel seperately with the same
value of A, which is chosen to yield a good visual impression. The results are shown
in Figure 14.

As we emphasized earlier, the AdaFrame is faster than sparse coding technique at
inference time. We record the computation time for the K-SVD denoising algorithm
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Figure 14: (a)(c) Two images from the Internet. (b)(d) Denoised images using
AdaFrame.

and the AdaFrame denoising algorithm. In our laptop with the same setup, the K-
SVD algorithm takes 25s to train a dictionary with 256 atoms of support size 8 x 8
and 6.5s to denoise the image. The software we use is downloaded from http://
WWW.CS.technion.ac.il/~ronrubin/software. The AdaFrame takes 3.7s to train
64 filters with support size 8 x 8 and takes 0.6s to denoise. The time for denoising
scales linearly with the number of filters.

8.3 Image Classification

Although AdaFrames are aimed to produce sparse representations, they can also be
used to for other tasks such as extracting features for object recognition. In fact, it
can provide a faster alternative to sparse coding.

To demonstrate this idea, in the following example, we apply AdaFrames to extract
features in order to classify the handwritten digits. The dataset we used is MNIST
(LeCun et al., 1998). It contains 70000 28 x 28 images of digits from 0 to 9, 60000
for training and 10000 for testing. A nonlinear transformation, the rectified linear
function defined by relu(x) = max(z,0) is applied to the coefficients obtained using
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AdaFrames. The results are sent to a linear support vector machine (SVM) to perform
the classification task. We discuss three different set of experiments.

In the first setup, we use Algorithm 2 to learn the filters with m = 6,7 = 6,7 =
102, A = 103. Initialization is done with random orthogonal filters. For each image,
we perform a one-level decomposition to get the coefficients.

The second setup is identical to the first one, except m = 12 instead of m = 6.
It is generally believed that lifting the raw pixels to some higher-dimensional feature
space will be helpful for classification. Since we use more filters in this setup, the
features we get have higher dimensions. Indeed the results are better than the results
of the previous setup.

In the third setup, we use a two-level decomposition. We use Algorithm 2 to learn
the filters with m = 6,7 = 6,7 = 102, A\ = 103. Same nonlinear transformation as
in the previous setups are used. In this way, we obtain 6 feature maps, each of size
28 x 28. Then the collection of the feature maps are treated as 6 sets of new input
images. For each set, we use Algorithm 2 with m = 4,r = 6,7 = 10>, A\ = 103 to
learn the filters. Hence we have 24 filters in total. For each feature map, we perform
a one-level decomposition using the corresponding 4 filters to get 4 feature maps.
Again, we keep the positive coefficients and set the negative coefficients to 0. These
positive coefficients in the first and second layers are the extracted features.

MNIST  Raw pixel I 11 111
Precision  88.0 % 97.0 % 97.4% 99.0%

Table 5: Results of the MNIST classification. “Raw pixel” means that the features
are the raw pixels.

These features are sent to a linear SVM. The results are reported in Table 5. Note
that there is a significant reduction in the error rates compared to raw pixel features.
As a point of comparison, the state-of-the-art result with preprocessing, is 0.23%,
which is obtained using deep convolutional neural networks (Ciresan et al., 2012).

9. Connection with De-convolutional net

Convolutional nets have had remarkable successes in a variety of challenging appli-
cations (LeCun et al., 1998; Lee et al., 2009; Krizhevsky et al., 2012). A typical
supervised convolutional net consists of several convolutional layers and fully con-
nected layers. A convolutional layer has the structure shown in Figure 15. It maps
the feature maps produced by the previous layer to another set of feature maps. The
input feature maps are first convolved with some filters, which are also obtained from
training. A point-wise nonlinear function, called the “activation function”, such as
a rectified linear function is then applied, followed by a pooling procedure in order
to down-sample the set of feature maps. Pooling is usually a local operation. Max
pooling, namely picking the feature map with the maximum amplitude in a small
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neighborhood of each node, is the most popular. It is similar to simple down-sampling
but is nonlinear.

Although convolutional nets are designed for feature extraction and object recog-
nition, it is an interesting question to ask how much of the input data can be re-
constructed from the information in the intermediate layers of the network. For one
thing, this can help us to gain some intuition about how convolutional nets work.

| podledfeoremps  coeficentfromabovelayer |

pooling unpooling
point-wise reverse
nonlinearity point-wise nonlinearity
convolution with convolution with
filters A filters AT

| coefficents from previouslayer _ Reconstructed featuremap |

Figure 15: The left figure shows the typical structure of a convolutional layer from
a convolutional net, the right figure shows the structure of a de-convolutional layer
from a de-convolutional net.

In this regard the most popular approach in the literature is the “deconvolutional
net” (Zeiler et al., 2010). A deconvolutional net can be thought of as a convolutional
net that uses the same components (filtering, nonlinear activation, pooling) but in
reverse order. Specifically a deconvolutional net consists of the following steps: First,
the pooling procedure is reversed. If averaging or other linear operator is used for
pooling, then to reverse it, one simply applies its transpose operator. The max-pooling
procedure is a non-linear operation. For an image I, the max-pooling operation
has two outputs, the maximum value and the position where the maximum value is
obtained, defined as

(v, p)(z) = (sign(l(2)) - max |I(z)], arg max | (z)])
where A is the neighborhood of x. To reverse max-pooling, we set

v iz=preN
](x)_{O cx#preN

The second component is to reverse the activation function. For invertible func-
tions such as the sigmoid or the tanh function (LeCun et al., 1998), we simply take
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their inverse. The situation where the activation function is non-invertible as is the
case of the absolute value function is more complicated and is discussed in Wald-
spurger et al. (2012).

The third component is to reverse the convolution operator, hence the name “de-
convolution net”. Since convolution is a linear operator, to reverse it, one applies its
transpose (Zeiler and Fergus, 2013).

The above procedure is summarized in a diagram in Figure 15. Notice the sim-
ilarity with applying wavelet frame transforms. A single level decomposition and
reconstruction step of the wavelet frame transform can be described as in Figure 16.
We see that if we ignore the point-wise nonlinearity, a convolutional or a deconvo-
lutional layer is very similar to a decomposition and reconstruction step in wavelet
bi-frame transform respectively.

\ Down-sampl[ec-i coefficients ‘ l coefficient from above layer ‘
Down-sampling Up-sampling
\ Wavelet coefficients ‘ ’ Up-sampled coefficients 1
convolution with convolution with
filters A filters B
\ Coefficients from previous layer ‘ ’ Reconstructed coefficients ‘

Figure 16: One level decomposition and reconstruction of AdaFrame

There is a subtle but important difference. In deconvolutional net, deconvolution is
done by applying the transpose of the convolution operator. In the one level wavelet
bi-frame reconstruction, this is done using the reconstruction filters, obtained by
solving (10), as required by UEP. Since there is no guarantee that the UEP condition
is satisfied by the filters obtained in the convolutional nets, one expects that there
will be errors in the reconstruction process, i.e. the deconvolutional nets. This is
indeed the case, as we show below.

The similarity between the convolutional layer and one level wavelet frame trans-
form suggests a natural fix for this problem. Instead of using the flipped convolutional
filters as the deconvolutional filters, we view the convolutional filters as the decompo-
sition filters and solve (10) to obtain the reconstruction filters. These reconstruction
filters are then used as the deconvolutional filters. Everything else is the same as in
the original deconvolutional net. The existence of a solution to (10) is guaranteed by
the fact that in a typical convolutional net, the number of filters is large, and hence
we are in the the redundant case for the wavelet bi-frames. This small change to the
deconvolutional net yields much better reconstruction as we now demonstrate.
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We implemented a two-layer convolutional network. In the first layer, we have
12 filters of support size 6 x 6, the pooling procedure is chosen to be the usual
down-sampling with decimation factor (2,2). To construct the second layer, we stack
together the feature maps from the first layer and form a three-dimensional signal.
We then learn 12 filters of support size 4 x 4 x 2, the pooling procedure is also down-
sampling with decimation factor (2,1,2). The activation function is the sigmoid
function. The results of reconstructing the input image using the original deconvo-
lutional net and the modified procedure described above are shown in Figure 17. As
one can see, using the deconvolutional net approach, we gradually lose information
as we ascend in the layers, while using the AdaFrame, we do not lose information.

Figure 17: (a) The input image. (b) Reconstruction from the first layer activations
using “deconvolutional net” approach. (c¢) Reconstruction from the second layer ac-
tivations using the “deconvolutional net” approach. (d) Reconstruction from the
first layer activations using the AdaFrame. (e) Reconstruction from the second layer
activations using the AdaFrame.

In addition to near perfect reconstruction, AdaFrame has the potential to be used
as an initialization method for the convolutional parts of a typical convolutional net.
This is a direction for future research.

10. Conclusion

Predefined wavelets and dictionary learning have both been very successful in their
own ways. In this paper, we have proposed a framework, the AdaFrame, that natu-
rally combines the advantages of both. It is multi-scale and computationally efficient
as pre-defined wavelets and wavelet frames, while being adaptive as in dictionary
learning. Unlike dictionary learning, the proposed framework guarantees perfect re-
construction, which is an appealing property in many signal processing tasks.
Between adaptive frames and adaptive bi-frames, our experience suggests that
adaptive bi-frames are much easier to use because of the additional flexibility. The
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learning procedure is also easier, especially when the system is very redundant in
which case the learning procedure can be carried out in two phases by learning the
decomposition and reconstruction filters separately.

In addition to the examples given in this paper, we believe that the proposed
framework can be useful in many other applications. It is not restricted to image
processing, it can be used on time series, videos and even graphs. We will explore
these applications in subsequent papers.

Another direction for future investigation is to use the proposed framework as
feature extraction tools for machine learning tasks. Sparse coding has been popular
for this purpose. But the proposed framework should be a promising alternative
since it is more efficient and it has a multi-scale structure. It should be particularly
appealing when the computation cost is the main bottleneck, as is the case in some
real-time object recognition systems.
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Appendix
Proof of Theorem 1
For convenience, we need the following lemma.

Lemma 2 Let M be d x d sampling matriz and a,b € 1o(Z%) be finitely supported
sequences. Then

50(€) = | det(M)[6(M"€)b(€) (43)
" TMTE) = | det (M) 3 5(6 + 2mw)ale T 270 (14)
where o
a(6) =Y alk)e ™t
and =

Q= [(MTY1Z9 N[0, 1)¢

Proof For a sequence v € ly(Z%),

Sv() = > (Syv)(k)e *<

kezd
= | det(M |ZZ b(k — Mj)e *¢

kezd jezd (45)
= |det(M)| > b(k — Mj) —“CMNZ Je Mt

kezd

= [ det(M)[b(&)o(MT€).

Let @(§) = Y jepav(k)a(k —n), then a(§) = 0(§)a(§). By definition of 7,, we have
(7a)(n) = u(Mn). So

Mn
To(MTE) = 3 (Too)(m)e ™M = 37 u(Mn)e ¢ (46)
nezd neZzd
On the other hand,

Z (€ +27w) = Z Z e~ k- (EF2mw)

weps kezd weldy

— Z u(k)e—ik{ Z 6—ik~27rw‘

kezd weQ
If kK € MZ4, then Y e e~k — | det(M)|; if k € ZY/MZ, S emik2mo — ()

LUGQM
so we have

D i€+ 2mw) = |det(M)] Y u(k)e ™ = [det(M)] > u(Mn)e M (48)

we s kEMZ4 nezd

(47)
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Combining this with (46), we get the desired result. |

Lemma 3 Let M be d x d sampling matriz and a;,b;,l = 1,--- ,m be m finitely
supported sequences. Then

i Sy, Tav =v, Yo € (29 (49)
I=1
if and only if, for any w € Q= [(MT)7*Z N[0, 1)4
D bi(€)d(§ + 2mw) = d(w). (50)
=1

Proof By definition of the decomposition and reconstruction operators W, and Ry,
we have

RWov =Y 8, Tav. (51)
1=1
which is equivalent to
> S Tav(€) = 6(8), Vv (52)
=1

By the above lemma, we have

—

@(5) = (Sblﬁlv)(g)

NE

=1

| det(M)|To,v(€)(MTE)b,(€) (53)

NE

=1

NE

D o€+ 2mw)by(§)a(€ + 2mw)
we N

=1

If (52) holds true, then

DD o€+ 2mw)bi()an(E + 2mw) = Y B(E + 2mw)d(w) = D). (54)

=1 we UJGQM

holds for all v € I5(Z4).

Conversely, if (51) is true, we can choose v that is close to a d-function. Let B.(&p)
be the open ball centered at & with radius e. Fix wy € Q and & € R?, we can
choose v € I5(Z%) such that
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1. (€ + 2mwp) = 1, for all £ € B(&).
2. (£ + 27w) =0, for all £ € B(&),w € Q/{wo}-
3. supp(v) C 2mwy + Bac(&o)

This is possible because the set (1 is discrete. [ |
Hence, for & € B(&),

= Z S 06 + 2mw)B(€)anE + 2mw)
o (55)

£)ay (€ + 2mwy)

||M3 T

Hence,
> bi(©)a(§ + 2mwp) = (w)
=1

for all £ € B.(&), since & and wy are arbitrary, we obtain the desired result.
Proof of Theorem 1.
Proof We only need to establish that (10) is equivalent to (52).

_ Zm: Z bl(k? ik-€ Z al 7171 (£+27w)

l;l keZd it (56)
a Z Z bl(k)az(n)ei(k—n)e—mzm
=1 knezd

Denote by I'y; := (M0, 1)4)NZ%, then we have Z? = T'y;+ MZ4, replace n by Mn+-,
we can rewrite the above equation as

IDID T

=1 v€l'n knezd
m (57)

— Z Z bl(k + Mn + ")/)al(Mn + ,.)/)eik-gefk»ygﬂw

=1 v€l'r knezd

Mn+'y) i(k—Mn— 'y)& —i(Mn+~)-27w

Note that (e=7?™),cq,, ~er,, is the Fourier matrix, and its inverse matrix is
~1(piv2
| det(M)|~1(€"7*™) weqyy~ery, - Therefore,

m

(Z Z bi(k+ Mn + ~)a;(Mn + fY)eik{)'YeFM
=1 knezd o (58)
= | det(M) |7 (el’}" WW)Q)GQ]\/[,’)/GFA{ (5(w>)w€§2

= |det<M)‘71(17 17 Ty 1)T
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Hence
>0 b+ Mu+a(Mn+y)e =[N ¥y (59)
=1 knezd
taking inverse Fourier transform, we get the desired result. [ |
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