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Abstract

We propose a Gibbs sampler for structure learning in directed acyclic graph (DAG) mod-
els. The standard Markov chain Monte Carlo algorithms used for learning DAGs are
random-walk Metropolis-Hastings samplers. These samplers are guaranteed to converge
asymptotically but often mix slowly when exploring the large graph spaces that arise in
structure learning. In each step, the sampler we propose draws entire sets of parents for
multiple nodes from the appropriate conditional distribution. This provides an efficient
way to make large moves in graph space, permitting faster mixing whilst retaining asymp-
totic guarantees of convergence. The conditional distribution is related to variable selection
with candidate parents playing the role of covariates or inputs. We empirically examine the
performance of the sampler using several simulated and real data examples. The proposed
method gives robust results in diverse settings, outperforming several existing Bayesian
and frequentist methods. In addition, our empirical results shed some light on the relative
merits of Bayesian and constraint-based methods for structure learning.

Keywords: structure learning, DAGs, Bayesian networks, Gibbs sampling, Markov chain
Monte Carlo, variable selection

1. Introduction

We consider structure learning for graphical models based on directed acyclic graphs (DAGs).
The basic structure learning task can be stated simply: given data X on p variables, as-
sumed to be generated from a graphical model based on an unknown DAG G, the goal
is to make inferences concerning the edge set of G (the vertex set is treated as fixed and
known). Structure learning appears in a variety of applications (for an overview see Korb
and Nicholson, 2011) and is a key subtask in many analyses involving graphical models,
including causal inference.

In a Bayesian framework, structure learning is based on the posterior distribution
P(G | X) (Koller and Friedman, 2009). The domain of the distribution is the space G
of all DAGs with p vertices. The size of the space grows super-exponentially with p, pre-
cluding exhaustive enumeration for all but the smallest problems. Markov chain Monte
Carlo (MCMC) methods are widely used to sample DAGs and thereby approximate the
posterior P(G | X). Available methods include MC? (Madigan and York, 1995) and related
samplers (Giudici and Castelo, 2003; Grzegorczyk and Husmeier, 2008) and algorithms that
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sample from the space of total orders (Friedman and Koller, 2003). Order-space sampling
entails some restrictions on graph priors (Eaton and Murphy, 2007; Ellis and Wong, 2008),
because the number of total orders with which a DAG is consistent is not constant. Order-
space approaches have more recently led to exact methods based on dynamic programming
(Koivisto and Sood, 2004; Parviainen and Koivisto, 2009; Tian and He, 2009; Tamada et al.,
2011; Parviainen and Koivisto, 2013; Nikolova et al., 2013). These are currently feasible
only in small domain settings (typically p < 20 but p < 30 is feasible on large cluster
computers) and usually share the same restrictions on graph priors as order-space sam-
plers. Frequentist constraint-based methods such as the PC-algorithm (Spirtes et al., 2000;
Colombo and Maathuis, 2014) and the approach of Xie and Geng (2008) are an alterna-
tive. These methods make firm decisions about the DAG structure via a series of tests of
conditional independence.

In this paper we propose a Gibbs sampler for structure learning of DAGs that amelio-
rates key deficiencies in existing samplers. Random-walk Metropolis-Hastings algorithms
currently used for structure learning propose ‘small’ changes at each iteration, which can
leave the algorithms unable to escape local modes. The Gibbs sampler proposed here con-
siders the parents of a set of nodes as a single component (a so-called ‘block’), sampling
an entire parent set for each node in the block in one step. These ‘large’ moves are sam-
pled from the appropriate conditional posterior distribution. This enables the sampler to
efficiently locate and explore areas of significant posterior mass. The method is based on
the simple heuristic that the parents of a node are similar to the covariates or inputs in
variable selection, with the node as the output variable, but accounts for acyclicity ex-
actly so that the equilibrium distribution is indeed the correct posterior distribution over
DAGs. The sampler does not impose restrictions on priors or graph space beyond those
(maximum in-degree, modular prior) common to most samplers for structure learning (e.g.
Friedman and Koller, 2003; Ellis and Wong, 2008; Grzegorczyk and Husmeier, 2008). The
maximum in-degree restriction formally precludes large-sample consistency in the general
case, but facilitates effective and robust inference by reducing the size of the model space
(see Discussion).

2. Notation and Model

Let G denote a DAG with vertex set V(G) = {1,...,p}, and directed edge set E(G) C
V(G) x V(G); often we will refer to vertex and edge sets simply as V and E respectively,
leaving G implicit. The binary adjacency matrix corresponding to G is denoted A%, with
entries specified as AS = 1 <= (u,v) € E(G) and diagonal entries equal to zero.
For inference, G is treated as a latent graph in the space G of all possible DAGs with
p vertices. When a DAG is used to define a probabilistic graphical model (a Bayesian
network), each vertex (or node; we use both terms interchangeably) is associated with a
component of a p-dimensional random vector X = (X;...X,)T. Xz denotes the random
variables (RVs) corresponding to variable indices Z C {1,...,p}. We use bold type for the
corresponding data; n samples are collected in the n x p matrix X, with X, denoting the
column corresponding to variable u and Xz the submatrix corresponding to variable index
set Z C {1,...,p} (for notational simplicity we assume columns are ordered by increasing
variable index).
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Figure 1: Illustration of notation. A graph G, with vertex set V = {1,2,3,4}, edge set
E={(1,2),(1,3),(2,3),(4,3)} and adjacency matrix A as shown, can be spec-
ified using parent sets as G = (pa; = 0,pay = {1}, pag = {1,2,4},pa, = ) or
abbreviated to G = (0, {1},{1,2,4},0) (see text for description of notation). For
the vertex subset Z = {2,4}, pa§ = ({1},0) and pa®, = (0,{1,2,4}) and thus
the graph can be specified as G = (pa, = pag,pa_z = pa€Z>. We abbreviate
this as G = (pa%,pa®,).

The proposed Gibbs sampler changes entire parent sets en masse, not just for one node
but for a set of nodes, and so it will often be convenient and natural to specify a DAG G in
terms of the parents of each node. Let pal = {u : (u,v) € E(G)} denote the set of nodes
that are parents of node v in G. A tuple of p parent sets (pa; = pa?, N pa§> fully
specifies the edge set F, since u € pal <= (u,v) € E(G). Thus, structure learning can
be viewed as inference of parent sets pa,. The parent set pa, takes values in the power set
P(V \ {v}) of nodes excluding node v, subject to acyclicity. We will usually suppress the
labels, and simply write (paf, ... ,pa§> when specifying parent sets. Since pa$ is a subset
of the variable indices, we can use Xpaﬁ to denote the corresponding data submatrix.

We denote the tuple of parent sets of a set of nodes Z = {z1,...,2s} C V by pag =
(pag) »cz-. This is a tuple of s components (for notational convenience we take these to be
ordered by increasing vertex index), each of which is the parent set for the corresponding
node in G. We wish to make inferences about pa,, which takes values in P(V'\ {21}) x ... x
P(V \ {zs}), subject to acyclicity. The tuple of parent sets for the complement Z¢ = V'\ Z
is denoted pa®, = (pal),c c. Clearly, a tuple (pagl, o ,pags) of tuples of parent sets
specifies the parents of every node in a graph whenever {Z;,..., Zs} forms a partition of
V'; the entire edge set can thus be specified by such a tuple. In particular, note that any
graph G can be specified as <pag,pagz> for any Z C V. Some of the notation we use is
illustrated in Figure 1.

Our statistical formulation for Bayesian networks is standard. We briefly summarize the
main points and refer the reader to the references below for details. Given a DAG G, the
joint distribution of X is p(X | G,{0,}) = [[,cy P(Xo | Xpag: 0u), i-e. the joint distribution
factors over nodes, and each node is conditioned on its parents in G, parameterized by 6,.
For structural inference, interest focuses on the posterior distribution P(G | X). This is
proportional to the product of the marginal likelihood p(X | G) and a graph prior 7(G). Our
sampler is compatible with essentially any specific model, but inherits computational costs
associated with evaluation of the relevant quantities. In all examples we assume conjugate
priors for 6,, as well as local parameter independence and modularity; this leads to a
closed-form marginal likelihood in both multinomial (Heckerman et al., 1995) and Gaussian
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(Geiger and Heckerman, 1994) cases. Computations are simplified if the graph prior is
modular (Friedman and Koller, 2003), meaning it factorises as 7(G) = [[ ey mo(pa$); we
assume modular priors in all examples. Note that the prior is not specified over the space
of orders and so is not subject to the restrictions this entails (Ellis and Wong, 2008; Eaton
and Murphy, 2007). Under these assumptions, the posterior factorises across nodes as

P(G | X) = P(pa, = pa?,...,pap = pag | X)

X H p(Xy | Xpavc)ﬂ-v(pafz?)v
veV

where p(X, | Xp,¢) is the marginal likelihood for node v given the graph G' = (paf,..., pag>.

The distribution P(G | X) is the target distribution for our sampler.

3. A Gibbs Sampler for Structure Learning

In this section we provide a high-level description of the Gibbs sampler for structure learn-
ing. We first recall the standard random-walk Metropolis-Hastings sampler (known as MC?)
and then describe a naive Gibbs sampler, which offers no gains over MC3, but prepares the
ground for the introduction of ideas from the Gibbs sampling literature. Specifically we
discuss a strategy known as blocking that can improve mixing in Gibbs samplers and show
how to use blocking for structure learning of DAGs. Several points relating to computa-
tion are central to developing a practical Gibbs sampler in this setting, but for clarity of
exposition we defer discussion of computational aspects to Section 4.

3.1 MC? Sampler

The standard sampler for structure learning of DAGs is MC? (Madigan and York, 1995).
This is a classical Metropolis-Hastings sampler with proposal G’ drawn uniformly at random
from the set neigh(G) of DAGs that differ from the current DAG G by the addition or
removal of a single edge. The acceptance probability is min(1,7(G’, G)), where

TR ALY ey
’ " P(G | X) [neigh(G)|

Variants of MC? include single-edge direction reversal proposals (Giudici and Castelo, 2003).

3.2 A Naive (and Inefficient) Gibbs Sampler

Constructing a Gibbs sampler that is analogous to MC? is straightforward. The posterior
distribution on DAGs is a joint distribution over the off-diagonal entries in the adjacency
matrix A%, i.e. over the p(p — 1) binary RVs AG,, u # v. At each iteration, MC? can be
thought of as proposing to toggle the value AS for some u # v, subject to the restriction
that the resulting graph must be acyclic.

A simple Gibbs sampler works in a similar way. At each step, a move from graph G to
a new graph G’ is chosen by sampling from the conditional distribution of A% (for some
u # v) given the rest of the graph. If (u,v) € E(G), define the graph G(“*) to be identical

to G, and G~(®) to be the graph that differs from G only in lacking an edge from u to
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v; conversely, if (u,v) ¢ E(G), define G~(**) to be identical to G, and G(*?) to be the
graph that differs from G only in including an edge from u to v. If G is cyclic, G~
is sampled as the new graph G’ with probability 1. If G(“?) is acyclic, the conditional
distribution of AS is Bernoulli, i.e.

P(G~(w) | X) 0

o=
PAG — | AG y = ) PG [ X)+ PGED [ X) ’
" - PG | X) I

P(G~(wv) | X) 4+ P(Guv) | X)

The choice of u and v can either be made sequentially (systematically) or randomly (Roberts
and Sahu, 1997); in this paper, random-scan Gibbs samplers are used throughout. We prove
convergence of the Gibbs sampler to the target distribution in Appendix A.

3.3 Inefficiency in Gibbs Sampling

The mixing of Metropolis-Hastings samplers depends upon the proposal distribution, which
for convenience is often chosen as a random-walk. In contrast, Gibbs samplers make moves
according to conditional distributions that reflect local structure of the target distribution.
Nonetheless, Gibbs sampling is not always efficient. In particular, correlation between the
components being sampled can lead to inefficiency. To see this, consider a Gibbs sampler for
a multivariate continuous distribution with highly correlated components. At each step, a
single component is sampled according to its conditional distribution, but since it is strongly
correlated with other component(s), the conditional is concentrated on only a small part of
the support. This means the sampler is likely to make only small moves. Analogous issues
arise with discrete distributions.

For graphical models based on DAGs, there may be strong dependence between the
edge indicators AC . particularly for the collections of RVs corresponding to parent sets.
For example, there may be RVs X, and X, that in combination score highly as parents
of node w, but not individually. Then, A%, and AG, will be correlated. In addition,
the acyclicity restriction may induce strong dependence. For example, suppose two RVs
X, and X, are strongly correlated and both edges (u,v) and its reverse (v, u) have high
posterior probability. If the edge (u,v) is present, the probability of it being removed is
low, but its presence precludes the reversed edge (v,u) from being added. This possibility
motivates the edge reversal move used in variants of MC? (Giudici and Castelo, 2003).
Figure 2 shows a three node scenario. Here, both graphs (a) and (b) have high probability.
Since reversing the edge (w,x) forms a cycle in (a), moves that consider the parents of
only the pair w and z at the same time will not move between graphs (a) and (b) easily.
Samplers that alter only a single edge indicator, such as MC3, will also fail. In contrast,
sampling the parents of all three nodes jointly would make it easy to move between graphs
(a) and (b). Decorrelating transformations could alleviate such problems, but in general
finding a suitable transformation is difficult, and for DAGs must of course encapsulate the
requirement for acyclicity.
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Figure 2: Illustrative scenario in which small local moves limit transitions between two
regions of high probability. If both graphs (a) and (b) have high probability, the
near-cyclic nature of the graphs makes transitions between (a) and (b) difficult.

3.4 A Gibbs Sampler with Blocking

We address the deficiencies of the naive Gibbs sampler by grouping a number of the compo-
nents together and sampling from their joint conditional distribution. In Gibbs sampling,
this is known as blocking. Sampling from such a joint conditional can ameliorate difficulties
caused by correlations between components because the joint conditional naturally accounts
for the correlation structure. In the multivariate normal case, Roberts and Sahu (1997) have
shown that blocking improves convergence for random-scan Gibbs sampling.

In principle, any group of components can be taken as a block, but for the algorithm to
be useful in practice, sampling from a block’s joint conditional distribution must be feasible,
and ideally simple. The blocks that we consider correspond to groups (specifically tuples)
of parent sets, so that the parent sets of several nodes are considered simultaneously. It is
natural that each block is a tuple of parent sets because, as described in Section 2, we can
specify a graph G using a tuple (paf, ey pag ) of parent sets. It is therefore convenient to
describe the sampler using this alternative graph specification, in which G = <paf, ey pag ).

We denote the set of ¢ nodes whose parent sets will be sampled together as a block by
W = {wi,...,ws} C V. Suppose the current graph is G = <pa€v,pa(_;w) (recall that any
graph can be written in this way with respect to any partition of the node set). A move to
a new graph G’ = <pa€vl, pag/w is formed by changing the parents of the nodes in W from
paICfV = (pagl, e pagq) to paICfV/ = (pag;, .. ,pag;) and setting pa(_;/W = pa?W (i.e. leaving
the parents of nodes not in W unchanged). We sample the tuple pa% of parent sets jointly,
conditional on the tuple pagw of parent sets of nodes not in W (that remain unchanged).
In terms of the adjacency matrix A, each block consists of the indicators specifying the
parents of the nodes in W, i.e. AG, for v € V,w € W,v # w.

To construct a Gibbs sampler using these blocks, we need to find the conditional pos-
terior distribution on the tuple pay, of parent sets, given that the remaining tuple pa_y,
of parent sets is set to pagw. The conditional distribution depends on whether the graph
G’ formed using the proposed parent sets is acyclic. We therefore introduce Palcfv to denote
the set of permissible tuples, i.e. tuples paﬁ,/ of parent sets such that G’ = <pa€vl,pa€W>
is acyclic. For tuples pag// ¢ Pagv, the conditional probability is 0. For paICfV/ € Paﬁ,, the
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Algorithm 1 A Gibbs sampler for learning DAGs, with blocks
Initialise starting point Gg = (pafo, e ,pazc,;o)
for tin 1 to N do
Sample ¢ nodes uniformly at random from V', and call this set of nodes W
Sample pa% from P(pay, = pa%‘{,/ ] pa(_;{;,l,X)
Set Gy +— G = <pa€vl, pagﬁ,[‘,l)
end for

conditional probability is

P((pa§:, paCyy) | X)
P(pagw | X)
P(C" | X)

Zpa%”ePa% P(pagy, paZy, | X)

P(pay, = paIC/;V | pa_y, = pagw,X) =

(1)

This is the conditional distribution needed to specify the blocked Gibbs sampler; Algo-
rithm 1 outlines the procedure at a high level, with the set W of nodes chosen uniformly at
random at each step. Asymptotic convergence follows from the argument in Appendix A
(in fact the requirements on the graph prior will be weaker than in the naive case).

3.5 Tuning Parameters

To reduce the computational costs of structure learning it is common to set a maximum
in-degree (e.g. Friedman and Koller, 2003; Grzegorczyk and Husmeier, 2008). We set a
maximum in-degree £ = 3 in all empirical examples, except where stated otherwise (Sec-
tion 5). This facilitates sampling from the conditional distribution in Equation 1 by re-
ducing the computational cost of evaluating the normalising constant. We set the block
size ¢ = |W| = 3. While ¢ can be chosen freely in principle, evaluating the conditional
distribution in Equation 1 becomes unmanageable when ¢ is large. Thus, both s and ¢
act as tuning parameters (and are in addition to any hyper-parameters in the Bayesian
formulation).

3.6 Structure Learning and Variable Selection

It is interesting to note that when ¢ = 1 (and thus W = w for some w € V) if no choice of
parent set induces a cycle then Pa§j, = P(V \ {w}), the power set of the remaining nodes.
In this case, the conditional distribution in Equation 1 can be viewed as the posterior
distribution of a variable selection problem with response or output variable w, and the
other variables as covariates or inputs. If the addition of particular nodes introduces a
cycle, we have a constrained problem. In particular, suppose adding any of the nodes
Z C V as parents of node w would create a cycle. Then Pa$, = P(V \ ({w} U Z)) and the
conditional distribution in Equation 1 is a constrained variable selection problem in which
the nodes Z are excluded from the set of candidate inputs.



GOUDIE AND MUKHERJEE

4. Computational Aspects

Designing a computationally efficient sampler is not straightforward in this setting. To see
why, note that to sample from the conditional in Equation 1 we need to be able to iden-
tify the set Pa% of tuples of parent sets that is permissible (in the sense of maintaining
acyclicity). The cardinality of this set is typically large, and the interdependence between
the parent sets of each node in W makes decomposing the problem into subproblems non-
trivial. A simple but naive approach would list all possible parent sets for each node in W
and check each such combination for cyclicity, but this approach is slow and cumbersome.

We propose a partitioning scheme that leads to a two-stage sampler. The key idea is
to choose the partition of PaIC,"V so that, conditional on a component of the partition, the
parents of each node are independent. This enables an efficient two-stage sampling method
that we describe in Section 4.3. Acyclicity constraints are met by an efficient dynamic
algorithm.

4.1 A Partition on Permissible Tuples of Parent Sets

We partition the set Pa%*;, of permissible tuples of parent sets as Pa% = {Pa‘(,;V’Hl, - Pafv’H" }.

Each component PaSV’Hh is a set of permissible tuples of parent sets for nodes in W. It is con-
venient to label the partition components using secondary (unrelated to G) DAGs Hj, € H,
where H is the space of DAGs with g = |WW| vertices; 7 is the cardinality of 1. We describe
the relationship between each Pag,’Hh and DAG Hj, using the following elements, illustrated

in Figure 3 and Table 1:

e The reduced graph G = <pa1§, . ,pap§>, which is a function of the graph G, and is
identical to G except that edges directed into nodes in W are removed.

EQ

= 0 we W,
a, pr—
P pal wg W

e The (reflexive) transitive closure, which is the directed graph T on nodes V with
edges ET, where (u,v) € ET if and only if u = v or a (directed) path from u to v
exists in G (i.e. there exists a sequence of nodes z1,...,zs € V(G), with z; = u and
zs = v, such that (21, 22), (22, 23), ..., (2s-1,2s) € E(Q)).

e The descendant nodes deg ={v eV: Tgv = 1} and the non-descendant nodes
ndg ={veV: TY =0} of w € W in the reduced graph G. Note that w € deg and
w ¢ ndS by definition.

e The nodes nd® = Nwew ndg that are not descendants in the reduced graph G of any
node in W.

e The nodes deg’H = Upr

node = € pag , for a given node w € W. Each node x € pag is a parent node of the

node w in the graph H = (pagl, .. ,pagq>.

o dema that are descendants in the reduced graph G of any
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Original graph G Reduced graph G An example H

1—3—5—7 1 3—5 7 3 7

LI\ /] [N _
4—6 8 2 4—06 8 4

Figure 3: An illustrative example of the relevant graphs and sets, with W = {3,4, 7} shown
in red. The edges into W are removed from the original graph G, to form G.
Here H is the set of all DAGs on the nodes {3,4, 7} and thus n = |H| = 25. For

H as shown, nd% = {1,2}.

de® ndg deg’H de?;f GH  Condition (B)
w=3 {3,5,6} {1,2,4,7,8} 0 {3,4,5,6,7,8} {1,2} No restriction
w =4 {4,6} {1,2,3,5,7,8} 0 {3,4,5,6,7,8} {1,2} No restriction

w=7 {7,8} {1,2,3,4,5,6} {4,6} {3,5,6,7,8} {1,2,4} pa?lﬂ{ll};é@

Table 1: The relevant sets and requirements of conditions (A) and (B) for the illustrative
graph G shown in Figure 3, with H as shown. Recall nd“ = {1,2}. Condition (B)
depends on R7G7;1H = {4}, but it imposes no restriction when w € {3,4} because

pa;? = paf = (. We find that Pag}H contains all tuples of parent sets for which
pa§ C {1,2}, pa$’ C {1,2} and pa$" = {4} N Z where Z C {1,2}.

e The nodes de H

T = Uzew\paH deé that are descendants in the reduced graph G of
any node z € W \ paXl, for a given node w € W. Each node x € W \ paXl is not a

parent node of w in the graph H = (p 111{1’ e ,pawq>.

Using this notation, we define Pag’H, for given G € G, W C V, w € W and H =

(pall L ,paﬁq) € H, as the set of parent sets pag/ that satisfy the following conditions.

w

(A) pal’ C QE’H = (ndéudeg’H) \de?’H

(B) pal N RGH w7 0 for all nodes z € pall, with Rgf = de?\de?’H.

w

Note that (B) depends on dexé not de?H . We define Pag,’H as the set of tuples formed
by the Cartesian product of the sets Pag’H of parent sets for w € W, 1n other words

paW (pawl, ...,pal ) € PaW if and only if pag; € PagiH, ce paG/ € Pawq .
Lemma 1 {PaG H ..,Pasv’H”} is a partition of Pa$,.
Proof See Appendix B. [ ]
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Condition (A) ensures all graphs G’ = (paﬁ,,,pagw>, with parents paICfV/ € Pagv’H, are
acyclic. It requires that all parents of w € W are either not descendants in the reduced
graph G of any node in W, or a node whose ancestors in the reduced graph G are all parents
in the graph H of node w. In particular, no descendant of w is added as an ancestor of w.

Condition (B) ensures each DAG G’ is a member of Pag}H for only a single H € H for

any given G € G and thus that {Pag}Hl, . ,Pagv’H”} is a partition of the set of permissible
tuples of parent sets. The condition checks that each edge in the graph H is ‘used’ i.e.
that pa%’{,’ = (pag;, .. ,pag;) S Pag}H would not be allowed under any H' # H, H € H.

Specifically, it ensures that each parent set pag/ contains at least one descendant node v € V'
of each parent pag of node w in the graph H, and that v is not a descendant in G of any
node x € W that is not a parent in H of w € W. To see why this condition is required,
consider a graph G’ in which all nodes in W have no parents. Then pagV = () for all nodes
w € W and so condition (A) holds for all H € H. Thus if condition (B) is disregarded,

paﬁ,/ € Pag,’H for all H € H, implying that {Pa%Hl, . ,Pag}H”} is not a partition of Pa§,.

4.2 Fast Identification of Partition Components

Parent sets in each set Pag’H can be identified easily using simple set operations, and
consequently the partition components Palc/’;,’H can be easily identified via Cartesian products
of these sets. Let Pa?!! = P(V \ {w}) denote the set of all possible parent sets of node w,
subject to maximum in-degree x, and Padl(v) = Pa2ll \ P(V \ {w,v}) denote the subset
of Pa?ll containing only parent sets that contain node v € V. Parent sets in PaSt must
(A) not include any nodes not in QS | and (B) include at least one node in jof for each

T € pag, and thus

)

PaGH PalP) \ PalA if pall £
v Pai}l \ PaSUA) if pag 0

where PalyV) = UvngaH Pa?ll(v) and PP = Necpatt UreRaH Padll(r).
We fix ¢ = |WW| as a small constant for all p and set a maximum in-degree k. This

means permissible tuples of parents sets can be identified in O(p®*!) time by storing the
‘lookup tables’ Pa¥!(v) as bit maps, assuming that O(1) querying of the descendants and
non-descendants is available.

This can be achieved using a dynamic algorithm that provides access to the transitive
closure. Giudici and Castelo (2003) previously used a similar approach. For a graph with
transitive closure T¢ with edges ET, the descendants and non-descendants of node u are
{v: (u,v) € ET} and {v: (u,v) ¢ ET} respectively. Thus, the descendants and non-
descendants of a node can be identified in O(1) time when the transitive closure is known.
The transitive closure for an arbitrary directed graph with p vertices can be determined in
O(p®) time (Munro, 1971), where w is the best known exponent for matrix multiplication
(Coppersmith and Winograd, 1990, show w < 2.376). However, in the present setting only
incremental changes are made to the current state G of the sampler, so it is not necessary
to use an offline algorithm at each iteration. Instead, we can use a fully dynamic transitive
closure algorithm (Demetrescu et al., 2010) that provides procedures both for querying the

10



GIBBS SAMPLER FOR LEARNING DAGS

transitive closure, and for incrementally updating it when an edge is added or removed from
the graph. We choose to implement the algorithm introduced by King and Sagert (2002),
which performs queries in O(1) time, and updates in O(p?) worst-case time (see reference
for details of required assumptions). A trade-off exists between the performance of these two
operations, but this bound for updates is thought to be the best possible whilst retaining
O(1) queries (Demetrescu and Italiano, 2005) and the algorithm is simple to implement.

The algorithm maintains a p x p path count matrix C¢ whose elements C& are the
number of distinct paths from node u to node v in the graph G for u # v, and CS =1 for
u = v. The transitive closure can be derived from the path count matrix by noting that
TS =1 if and only if C$, > 0. Thus query operations are performed in O(1) by simply
checking whether the relevant component of C¢ is positive. When an edge is added or
removed C¢ is updated as follows. First consider adding an edge (u,v) to a graph G to
form a new graph G’. The increase in the number of distinct paths between any two nodes
x and y is given by the (x,y) element of C& ® CC, where CS, denotes the u'" column of
CcC, C’ﬁ denotes the v*™ row and ® denotes the outer product. Thus, the path count matrix
is updated simply as C¢ = C¢ +C% @ C%. Similarly, when an edge (u,v) is removed from
the graph the update is C¢ = C¢ — 0% ® CC.

4.3 Two-stage Sampling Method

We draw a new graph G’ = (paﬁ,/, pa(jw) starting from a graph G using a two-stage method:

we sample first a component Pag,’H/ of the partition of permissible tuples of parent sets and
then a tuple pa%/ of parent sets from the selected partition component.

In the first stage, Pagv’Hl is drawn from the conditional distribution, given the tuple of
parent sets of nodes not in W.

G,H'
P(Pay; 7paE’VW | X)
P (Pagw | X)
. Zpa%epa%}ﬂ HwEW p(Xw ‘ Xpagl)ﬂ-w(pa‘g )
D Hren Zpa(‘;},”ePaﬁ;H” [Twew p(Xuw | Xpag”)ﬂw(Pag")

G,H'
P(Pajy " | pa%y, X) =

_ Huew Zpag’epagﬂ’ P(Xu | Xpaﬁ')ﬁw(pag )
2 Hwew Zpaﬁ”epaﬁ’”" P(Xay [ Xpogr)mu(pag”)
The final equality follows by an interchange of sum and product that is proved in Lemma

2. This makes evaluation more efficient by allowing the sums to be evaluated separately for
each node. Friedman and Koller (2003) used a similar interchange.

Lemma 2 The following identity holds for any H € H, W CV and G € G.

Z H p w ’ Xpa T pa H Z p<Xw ’ Xpaw)'”w(paw)

paWGPaG HweW weW pawEPaw

Proof See Appendix C. [ ]

11
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Algorithm 2 A Gibbs sampler for learning DAGs, with general blocks

Initialise starting point Gg = (pafo, e ,pazc,;o)
Compute initial path count matrix C“°
for tin 1 to N do
Sample ¢ nodes uniformly at random from V', and call this set of nodes W
Let G = Gt—l
Form G as defined in Section 4.1
Evaluate C¢ from C¢ as described in Section 4.2
for we W do_ B
Evaluate de¥ = {v: C¢ > 1}
Evaluate nd$ = {v: €% =0}
end for
for H € H do
for w € W do
Evaluate Pag’H as described in Section 4.2
Let K = Zpaglepag,H (X | Xpag/)ww(pag/)
end for
Let KA =[], e Kl
end for ,
Sample Pag}Hl according to P(PaVGV’H/ | pa¥yy, X) = ZKiHKH,,
H''eH
for w e W do
Sample pag/ according to P(pag/ | Pag}H/, pagw, X)
end for
Set Gy + G = (pag’{,’, pa?i,[_,l)
Update CCt
end for

In the second stage, we sample new parents pag// from the selected partition component,
and form the new graph G’ = <pa€vl, pagw). The parents of each node w € W, conditional
on H’, are independent, and so can be sampled separately from the following conditional
distribution:

/ G, H'
P(pag | Pay; ,pa?W,X) =

p(Xw | Xpagl )ﬂ-w (pag/)
Zpag// GPaUGJ’H, p(X'LU ‘ Xpag” )ﬂ—w (pag”) '

This step is straightforward because this distribution is simply the posterior distribution
of a constrained variable selection with response w and Pag’H as the set of possible active
sets (i.e. selected covariates).

Algorithm 2 outlines the complete algorithm. The methods in Sections 4.2 enable fast
identification of each partition component. Run-time is a function of p, maximum in-degree
K, and the number ¢ of nodes in the block. We choose a small, fixed ¢ for all p, so the
run-time is determined by the evaluation of Pag? | which is O(p*th).

12
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5. Results

In this section, we empirically assess the performance of the proposed sampler, comparing
it with existing samplers as well as frequentist methods for structure learning of DAGs.

5.1 Evaluation Setup

We compare the Gibbs sampler with the MC? sampler (Madigan and York, 1995) and the
REV sampler (Grzegorczyk and Husmeier, 2008), a variant of MC? that uses a more exten-
sive edge reversal move. We also compare with two frequentist constraint-based methods:
the PC-algorithm (Spirtes et al., 2000), and the Xie and Geng (2008) method, that is shown
by its authors to outperform the PC-algorithm in some settings.

Tuning parameters for each method were set as follows. For the constraint-based meth-
ods, the significance level was o = 0.05 by default, but we also show some results for
a = 0.00005, 0.0001, 0.0005, 0.001, 0.005,0.01,0.1. The Gibbs sampler we use is a random-
scan sampler, with ¢ = 3 (i.e. the parent sets of three nodes are sampled jointly at each
iteration). To permit a fair comparison, for MC? we use the same fast online transitive
closure algorithm (Section 4.2), and pre-computation and caching of local marginal likeli-
hoods used in the Gibbs sampler (REV uses a similar pre-computation and caching scheme).
We constrain all of the samplers to maximum in-degree x = 3 and set the graph prior as
m(G) < 1. We use conjugate formulations throughout, specifically multinomial-Dirichlet
(Heckerman et al., 1995) for discrete data and Normal with a g-prior (with g = n) (Geiger
and Heckerman, 1994; Zellner, 1986) for continuous data.

We consider six examples: a small domain example, where comparison with the exact
posterior (Tian and He, 2009) is possible; data simulated from the ALARM network and
from randomly-generated networks of varying sparsity; data sets from social science and
biology; and a pathological 4-node example designed to highlight a failure case for our
method.

In practical use samplers can only be run for a finite number of iterations (depending on
available time and computational resources). We set the maximum number of iterations as
follows. In total, we drew 10° iterations of REV (retaining only every 10*" iteration to re-
duce storage requirements). Following Grzegorczyk and Husmeier (2008), 85% of proposals
within REV were MC? proposals (without MC? proposals, the REV sampler is not irre-
ducible). In our implementation, the computational costs of the Gibbs sampler are an order
of magnitude lower than REV’s (accounting for MC? moves), but we nevertheless treated
the computational costs as the same for the purposes of comparison and drew 10° iterations
of the Gibbs sampler (again retaining every 10" iteration). The computational costs of our
implementation of MC3 are roughly 1/10 of a Gibbs iteration, and so we performed 107
iterations of MC? (retaining every 100%").

For each sampler, 10 independent runs starting from different initial graphs were per-
formed. We discarded the first 1/4 of samples, but as an additional filter we considered trace
plots (log marginal likelihood versus iteration) for each run of each sampler and discarded
further samples if they appeared to be from a pre-convergent phase. Specifically, if there
was a clear ‘step change’ in the trace for a certain run we discarded all samples in that run
drawn prior to the highest ‘step’ being reached. We note that this simple filter cannot be
regarded as detecting convergence because the highest ‘step’ may correspond to a region
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near a local rather than a global mode. We therefore also study convergence in detail via
other metrics.

5.2 Evaluation Metrics

Each sampler gives an estimated posterior distribution over DAGs. From this we obtain
a point estimate either as the maximum a posteriori (MAP) graph GMAP or as a
thesholded graph G, formed by including all directed edges whose marginal posterior
edge probabilities are at least 7 (note that G, need not be acyclic). When 7 = 0.5 we
get the median probability model G™*? (for normal linear models Barbieri and Berger,
2004, show that in some settings this is the optimal model for prediction). We also consider
thresholding to match sparsity levels seen in frequentist point estimates, i.e. setting 7 such
that |E(G,)| = |E(G)| for a point estimate G. By GFC and GXi¢ we denote thresholded
graphs whose sparsity is matched to the PC and Xie-Geng estimates respectively.

We use the structural Hamming distance (SHD) to quantify differences between DAGs.
This is the minimum number of edge insertions and deletions needed to transform one graph
into another. Comparisons are made using completed partially directed acyclic graphs
(Chickering, 2002a). To show the behaviour of the samplers at shorter MCMC run lengths
some metrics are shown against iteration t. These are based on the final 3/4 of samples
drawn up to ¢ (except for log marginal likelihoods), and so may incorporate some samples
drawn before convergence.

We assess convergence and stability via the following metrics:

e Trace plots of log marginal likelihood against iteration ¢.

e Between-run agreement between posterior edge probabilities. These are visualized
as scatter plots. When edge probabilities agree between a pair of runs, all points in
the plot will lie close to the y = x line. We show two variants: a hexagonally-binned
version, to avoid over-plotting (Carr et al., 1987); and a panelled plot, in which each
panel shows one pair of runs. We also consider the number of edges with estimated
posterior probability greater than 0.9 in one run, and less than 0.1 in another run.
Such ‘major discrepancies’ represent serious Monte Carlo artefacts.

e Potential scale reduction factor (PSRF) is a multiple-chain convergence diagnos-
tic, developed by Gelman and Rubin (1992), that compares within- and between-chain
means and variances of a suitable summary statistic. PSRF < 1.1 is often taken to
indicate that a sampler has run sufficiently long. The natural summary statistics in
this context are the posterior edge probabilities. However, we find that the resulting
PSRF is not a reliable indicator of convergence. In simulations (not shown) using a 20
node network for which we could calculate true posterior edge probabilities (Tian and
He, 2009), we found little association between single-edge PSRF and the (absolute)
error in posterior edge probability. In particular, the diagnostic appeared to be very
conservative for edges with true posterior probability near 0 or 1. We therefore suggest
that a reasonable use of PSRF in this context may be to assess relative convergence
between different samplers, rather than as an absolute indicator of convergence. Be-
low, we compare samplers in terms of the proportion of edges with PSRF < 1.1 (a
larger proportion suggests better mixing). To calculate PSRF we consider the 10 runs

14



GIBBS SAMPLER FOR LEARNING DAGS

of each sampler as a collection of 5 pairs of runs and calculate PSRF separately for
each edge using the final three quarters of the samples drawn up to that point.

e For the real data, we assess stability under resampling (“shaking the data”) by
comparing estimates across bootstrap samples.

For experiments in which the true data-generating graph G* is known we use the fol-
lowing metrics to assess accuracy:

e Structural Hamming distance (SHD) between G* and the estimated graphs.

e Receiver-operating characteristic (ROC) curves. These show agreement be-
tween G* and an estimate GG, by plotting true positive against false positive rates
parameterized by threshold 7. We consider also the area under the ROC curve
(AUROC), focusing in particular on the small false positive rate region of the curve
that is often of interest in applications.

Finally, when the posterior edge probabilities can be computed exactly (Tian and He,
2009) (i.e. in small p settings) we also consider the maximum and average absolute
error in posterior edge probability, calculated across the set of all possible edges.

We note that while SHD and ROC scores are useful in assessing performance, they are
not convergence measures, as they do not assess accuracy of the posterior distribution per
se (to see why, consider a degenerate sampler that samples only G*, giving perfect scores
on SHD and ROC, but an incorrect posterior distribution).

5.3 Small Domain Comparison to Exact Posterior

We applied the methods to the Zoo data set (Newman et al., 1998) that records p = 17
(discrete) characteristics of n = 101 animals. The maximum log marginal likelihood found
by the Gibbs and REV samplers was consistent across runs, but less so for the MC? sampler,
and the Gibbs sampler reached a plateau of high probability after the fewest iterations
(Figure A13a). REV required about ten times as many iterations as Gibbs to achieve the
same proportion of edges with PSRF < 1.1 while MC? needed about 100 times as many
(Figure Al4a). The estimated edge probabilities given by the Gibbs sampler were stable
between runs (Figure A15a). The results from the REV sampler were also stable, but MC3
less so, with major disparities between some runs. Figure 4 shows the error in posterior edge
probabilities as a function of iterations. Convergence was quickest for the Gibbs sampler,
followed by REV and then MC3. All runs of the Gibbs sampler reached a point at which
the maximum absolute error was 0.05 (after 67,000 iterations on average). In contrast,
only 5/10 runs of REV and 6/10 runs of MC? reached the same level of accuracy in their
complete run. Similarly, the Gibbs sampler achieved an average absolute error of less than
0.01 in the fewest iterations.

5.4 The ALARM Network

The ALARM network (Beinlich et al., 1989) consists of 37 discrete nodes and 46 edges
and has been widely used in studying structure learning (e.g. Friedman and Koller, 2003;
Grzegorczyk and Husmeier, 2008). We simulated data sets from ALARM with sample sizes
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Figure 4: For the Zoo data set, maximum and average (across all possible 272 edges) error
in posterior edge probabilities versus iteration number (on a log;g scale). For each
MCMC algorithm, 10 independent runs, initialised at disparate initial values, are
shown.

n = 100, 500, 1000, 2500, 5000. Figure 5 shows trace plots for the n = 1000 case as an
illustrative example. The maximum log marginal likelihood found by the Gibbs sampler
across runs was —10,608.20 + 0.8 (mean + standard deviation), whereas for REV it was
—10,627.2 4+ 40.4 and for MC? —11,176.9 4 273.7. The highest scoring graph discovered
by any of the 10 runs of the MC? sampler had log marginal likelihood —10,856.6, far below
the Gibbs maximum, suggesting non-convergence in all 10 runs. REV appeared to reach
convergence in all but two runs (runs 9 and 10). The Gibbs sampler consistently (and
rapidly) reached a high scoring plateau and appeared to have converged in all 10 runs.
PSRF results were in line with these findings (Figure A14b); more than 10 times as many
iterations of REV were needed to give the same proportion of edges with PSRF < 1.1 as
the Gibbs sampler.

Figure 6 compares pairs of runs for n = 1000; this pair of runs is typical of all 10
runs (except for runs 9 and 10 of REV which disagree considerably; all runs shown in
Figure A15b). There were no major between-run discrepancies (as defined in Section 5.2)
for the Gibbs sampler at any sample size. The mean number of major discrepancies (across
pairs of runs) increased from 0 (n = 100) to 8 and 91 for MC? and REV respectively (when
n = 5000).

Figure 7 shows ROC curves for false positive rates < 0.05. The Gibbs sampler performs
better and with less variability than the other methods. Sample size is influential. For small
n the Bayesian methods outperform the constraint-based methods. However, counter to the
increase in statistical information, REV and MC? perform less well with larger n: e.g. at
n = 100 for a false positive rate (FPR) of 0, the Gibbs sampler found 21.9 + 1.9 (mean +
standard deviation) true edges; REV 20.1 4 1.4; and MC? 21.7 £ 2.1. But at n = 5000, for
the same FPR, Gibbs found 43.0 £ 0.0 true edges; REV 13.2 4 21.3; and MC? did not find
any true edges (the true graph has 46 edges). The constraint-based methods performed well
for large sample sizes, as anticipated by the asymptotic consistency of the PC-algorithm
(Kalisch and Biihlmann, 2007). The Xie-Geng method performed particularly well for
n = 5000. Figure 8 shows AUROC as a function of iterations; the Gibbs sampler performed
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Figure 5: Log marginal likelihood of the graphs visited by the three MCMC samplers in
10 independent runs, initialised at disparate initial conditions, on the ALARM
data, with data sample size n = 1000. Iteration number is displayed on a logjg
scale. The dashed lines indicate where the burn-in phase ended. In all cases the
log marginal likelihood of the graphs reached by the MC3 sampler are below the
displayed range.
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Figure 6: Convergence diagnostic plots for each MCMC sampler for the ALARM data, with
n = 1000. The posterior edge probabilities given by two independent MCMC runs
are plotted against each other, binned into hexagonal areas to avoid over-plotting.
When the edge probabilities of the two runs agree, all of the points in the plot
will lie close to the y = x line; strongly off-diagonal points indicate extreme
discrepancies between the runs.
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Figure 7: ALARM data, receiver operating characteristic (ROC) curves for each of 10 in-
dependent MCMC runs for each MCMC sampler, and point estimates for the
constraint-based methods. Note that the horizontal axis shows only false posi-
tives rates < 0.05, corresponding to the case in which interest focuses on high-
ranked edges (the complete curves are shown in Figures A16). Point estimates
from Xie-Geng’s constraint-based method and the PC-algorithm are also shown
for all 8 significance levels considered.

best after all run lengths and sample sizes considered. These results are supported by SHDs
between point estimates and the true graph (Table A2).

5.5 Networks of Varying Sparseness

Sparsity can be used to statistical and computational advantage but in practice it may be
hard to know what level of sparsity is reasonable for a given application. We therefore
sought to investigate the effect of varying network sparsity, including scenarios where the
data-generating graph can violate the in-degree constraint we impose. We simulated data
following a procedure described in Kalisch and Bithlmann (2007) that we outline below.
We first generated a DAG G via its adjacency matrix A%, by drawing entries as AS ~
Bernoulli(p), where p € (0,1) is a parameter controlling sparsity. Entries were drawn
independently for each u < v, with Agv = (0 otherwise. Larger p gives a denser graph and
the expected number of neighbours (parents or immediate children) of a node is p(p—1). We
set p = 25,n = 1000 and considered 5 values of the sparseness parameter p (corresponding
to expected neighbourhood sizes 2, 3, 4, 5 and 6). For each p we drew 10 DAGs, simulating
a data set from each DAG by ancestral sampling using a Normal linear model (see Kalisch
and Bithlmann, 2007, for full details).
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Figure 8: ALARM data, area under the receiver operating characteristic curve (AUROC)
against iteration number (logjo scale) for each of the 10 independent runs for
each MCMC algorithm. Each panel shows results for a particular sample size
n = 100, ..., 5000.

Figure 9 shows boxplots over SHDs. We see that accuracy decreases with increasing
density, echoing results in Kalisch and Bithlmann (2007) for the PC algorithm. As through-
out, all the samplers had an in-degree constraint (maximum in-degree x = 3), while the
frequentist methods did not. Nevertheless, the performance of the Bayesian methods did
not appear to deteriorate any more rapidly than the frequentist methods. At all p’s, the
median probability graph G™? outperformed the frequentist methods which in turn out-
performed the MAP graph. In this context, we draw attention to a difference between
the median probability and MAP graphs: the former, although obtained by averaging over
DAGs satisfying the in-degree constraint, may itself have in-degree greater than x, while
the latter is necessarily subject to the constraint.

5.6 Survey Data

The publicly available Behavioral Risk Factor Surveillance System Survey (BRFSS) (Cen-
ters for Disease Control and Prevention, 2008) is a household-level random-digit telephone
survey, collected by the U.S. National Center for Chronic Disease Prevention and Health,
that has been conducted throughout the United States since 1984. We considered (discrete)
responses to p = 24 questions (see Appendix D), spanning most of the topics covered in
the survey. We considered the responses from New York in the 2008 survey, removing sam-
ples for respondents who refused or were unsure of their response, or whose response was
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Figure 9: Synthetic data, accuracy of estimation for networks with different levels of spar-
sity. The panels correspond to simulations in which the expected number of
neighbours for each node in the data-generating graph is respectively 2, 3, 4, 5,
and 6. Accuracy is quantified by structural Hamming distance (SHD) between
estimates and data generating graphs (smaller SHDs correspond to more accurate
estimates). Box plots are over the 10 independent networks/data sets simulated
for each sparsity level. For MCMC methods, results from the MAP graph GMAP
and median probability model G™¢d are shown.

missing, to any of the 24 questions. The resulting sample size was n = 4,197. The median
probability graph G™¢d estimated by the Gibbs sampler is shown in Figure A17a.

Figure 10 shows between-run agreement. The Gibbs runs showed better agreement than
the REV runs and the MC? runs disagreed considerably (these pairs of runs were typical;
all runs shown in Figure A18a). Indeed there were no major between-run discrepancies
(in the sense of Section 5.2) for the Gibbs sampler, whereas there were on average 2.4
major discrepancies for REV and 10.9 for MC3. The Gibbs sampler also had the highest
proportion of edges with PSRF < 1.1 (Figure Al4c).

The maximum log marginal likelihoods found by each of the three samplers differed
considerably as did the number of iterations needed to reach a plateau (Figure A13b). The
Gibbs sampler typically reached a plateau after around 500 samples (although in one run 103
samples were needed). REV took longer to reach a (usually lower) plateau. MC? appeared
to become stuck in a region with even lower log marginal likelihood.

To investigate stability under resampling of the data we applied the methods to 10
bootstrap resamples of the data set. The Gibbs and REV samplers were more stable than
the frequentist methods as well as than MC3. For example, using ch as a point estimate
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Figure 10: Convergence diagnostic plots for each MCMC sampler for the survey data. The
posterior edge probabilities given by two independent MCMC runs are plotted
against each other, binned into hexagonal areas to avoid over-plotting. When
the two runs give the same estimates of the posterior edge probabilities all of the
points appear on the line y = x; strongly off-diagonal points indicate extreme
discrepancies between the runs. This pair of runs was typical of all pairs.

for the Bayesian methods (i.e. thresholding to give the same number of edges as PC), the
mean SHD between results from pairs of bootstrap data sets was 21.7 (Gibbs), 22.3 (REV),
33.4 (MC?) and 30.8 (PC-algorithm). Results for GMAP and GXi€ are shown in Figure A19a.

5.7 Large-sample, Single-cell Molecular Data

We used single-cell molecular data from Bendall et al. (2011) with p = 34 continuous
variables (see Appendix D) and n = 21,691. The median probability graph G™¢! estimated
by the Gibbs sampler is shown in Figure A17b.

Figure 11 shows between-run agreement for the samplers for a typical pair of runs; the
Gibbs sampler shows better agreement than REV or MC3. All but one of the 10 runs of the
Gibbs sampler were consistent with each other (Figure A18b) and the one inconsistent run
nonetheless showed better agreement with the other Gibbs runs than any pair of runs of the
other samplers. The Gibbs sampler had no major discrepancies (as defined in Section 5.2)
between any pairs of runs, while there were on average 26 and 87 major discrepancies for
REV and MC? respectively. Smaller discrepancies followed a similar pattern: the average
number of edges differing by 0.1 or more in posterior probability between runs were 6.4
(Gibbs sampler), 56.6 (REV), and 151.8 (MC3). The Gibbs sampler also had the highest
proportion of edges with PSRF < 1.1 after any run length (Figure Al4d). Trace plots are
shown in Figure A13c. The Gibbs sampler found a region of higher log marginal likelihood
than the other samplers and did so consistently. Indeed, the maximum log marginal likeli-
hood achieved across all REV runs was exceeded in every Gibbs run and after only around
5000 iterations. Finally, we considered stability under resampling of the data (Figure A19b),
including also the frequentist point estimators for comparison. The mean SHD between PC
estimates from pairs of bootstrap samples was 214.6; the corresponding mean SHDs for the
samplers (using GTC point estimates) were 128.8 (Gibbs), 140.1 (REV) and 225.2 (MC?).
We note that the SHDs are particularly high here because the PC-algorithm estimates a
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Figure 11: Convergence diagnostic plots for each MCMC sampler for the single-cell molec-
ular data. The posterior edge probabilities given by two independent MCMC
runs are plotted against each other, binned into hexagonal areas to avoid over-
plotting. When the two runs give the same estimates of the posterior edge
probabilities all of the points appear on the line y = z; strongly off-diagonal
points indicate extreme discrepancies between the runs. This pair of runs was
typical of all pairs of runs.

network with a high density (recall that under GE© all methods choose the same number
of edges as PC).

5.8 A Pathological 4-node Example

Our final example demonstrates the potential sensitivity of the Gibbs sampler to choice of
g = |W| (the number of nodes whose parent sets are sampled together in a single iteration).
The example was constructed to highlight a situation in which the sampler can become stuck
in a local mode unless ¢ is large enough, potentially leading to extremely slow convergence.

We used as data 10° simulated samples from a 4-node network in which the parents of
node 2 were nodes 1 and 4; the parents of node 3 were nodes 1 and 2; and nodes 1 and 4
had no parents. Each node was Bernoulli distributed. The probability of success was 0.6
for nodes 1 and 4, while nodes 2 and 3 were noisy XORs with probability of success 0.9
when either parent (but not both) was ‘true’ and 0.1 otherwise.

For the purposes of demonstration, we set ¢ = 2. As shown in Figure 12, after 106
iterations the maximum error in edge probability for the Gibbs sampler was 0.016 £ 0.015
(mean + standard deviation across 10 runs). Given that there are only 543 DAGs with
p = 4 nodes, this magnitude of error is unexpectedly large. The slow convergence is due
to the concentration of posterior mass on two graphs that the sampler cannot easily move
between. The MAP graph (posterior probability 0.61) is the graph in which the parents
of node 2 are nodes 1 and 3; the parents of node 4 are nodes 1 and 2; and nodes 1 and
3 have no parents. The data-generating graph has posterior probability 0.38. The graphs
differ in the parents of 3 nodes, and so with ¢ = 2 the sampler cannot move between them
in a single step. At the same time, the large sample size leads to all other graphs having
low posterior probability (< 0.002), making multi-step transitions between the two graphs
unlikely. Thus, the sampler becomes stuck on one of the two graphs. In this example,
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Figure 12: For the pathological 4-node example, maximum and average (across all possible
12 edges) error in posterior edge probabilities by iteration number (on a logig
scale). For each MCMC algorithm, 10 independent runs, initialised at disparate
initial values, are shown.

setting ¢ = 3 improved convergence (maximum error 0.0011 + 0.0009 after 106 iterations),
but in real-world examples it is difficult to rule out the possibility that analogous issues
may arise.

6. Discussion

We introduced a Gibbs sampler for structure learning of DAGs that can converge more easily
than existing samplers due to its ability to efficiently make large moves in DAG space. We
showed that it provides often substantial gains in accuracy and stability in comparison with
existing (Bayesian and frequentist) methods in a range of settings.

The formulation of the sampler develops and exploits the connection between variable
selection and structure learning. This connection has been widely studied for undirected
graphs (e.g. Meinshausen and Biithlmann, 2006), but for DAGs is complicated by the acyclic-
ity requirement. Our approach accounts for acyclicity but further work in this area may
ease the adaptation of results and methods from Bayesian variable selection to the case
of DAGs. In the proposed sampler, existing variable selection methods could be of direct
utility in sampling from the conditional distribution P(pay, | pa?W,X). When this sam-
pling step is difficult, a Metropolis-within-Gibbs approach (i.e. substituting a Metropolis
step in place of the Gibbs step) could be considered. With ¢ = |WW| = 1, the conditional
P(pay, | pagw, X)) is identical to the posterior of the corresponding variable selection prob-
lem. Then, a Metropolis-within-Gibbs move could directly exploit existing variable selection
methods.

In common with most of the structure learning literature, we used an in-degree con-
straint. This gives a smaller DAG space and in addition controls the number of parameters
needed to specify conditional distributions. However, it is a strong constraint and a natural
concern is whether it excludes higher in-degree models that could be appropriate for the
data. This possibility cannot be ruled out, but the use of model averaging and marginal
posterior summaries may ameliorate the concern to some extent, because even when the
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true number of parents of a node exceeds the restriction, important candidate parents may
still have high edge scores (and appear in a summary graph). For example, suppose the
true in-degree of a node is 4, but at most 3 incoming edges are permitted. In this case,
although no model including all 4 parents can be considered, provided the signal can be
detected considering only 3 nodes at a time, the posterior probability of all 4 edges may
nonetheless be high.

In our empirical examples the REV sampler of Grzegorczyk and Husmeier (2008) showed
impressive gains over MC2. The Gibbs sampler generally seemed to outperform both. The
use of conditional distributions in REV is a point of similarity with the Gibbs sampler
proposed here. The performance gains of Gibbs could be explained by two key differences
from REV. First, REV does not use the natural conditional distribution and requires an
accept-reject step. Second, REV must include at least some MC? proposals (otherwise the
sampler is not irreducible), and these steps are not tailored to the shape of the posterior
distribution (Grzegorczyk and Husmeier, 2008, make REV proposals with probability 1/15
and so most steps are based on MC? proposals).

If there is strong correlation between the parent sets of more than ¢ = |W| nodes,
the Gibbs sampler may not mix well. In this situation, constraint-based methods may be
useful. Alternatively, ¢ could be chosen at each step according to some distribution, so that
a mixture of different block sizes is used. This would in particular allow larger blocks to be
used without increasing the computational demands of the algorithm excessively. In this
paper we fixed ¢ = 3, and found this simple choice gave a well-behaved and effective sampler.
But there is a trade-off: increasing g increases the time taken to evaluate P(payy | pagw, X),
but also increases move size, with the potential to improve convergence.

Practical use of the Gibbs sampler in the form described here requires exact sampling
from the conditional P(pay, | pa%;;,, X) and there are situations related to this requirement
in which other methods may be more suitable. First, when an appropriate maximum in-
degree cannot be set, MC? or a variant could be more appropriate (although convergence
could be very slow). Alternatively, search procedures such as GES (Chickering, 2002b) or
HCMC (Castelo and Kocka, 2003) could be used. Second, exact sampling from the condi-
tional distribution is challenging in settings with thousands of nodes. In this case, efficient
constraint-based methods (such as the PC-algorithm) may be a better choice, particularly in
the large sample setting. As noted by a referee, an interesting area for future research would
be combining the Gibbs sampler with some aspects of other methods—such as PC—that
are relatively well suited to the truly high-dimensional setting.
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Appendix A. Convergence Conditions for Gibbs Samplers

Convergence of a Gibbs sampler for DAGs does not follow from the usual justification
of Gibbs sampling that relies on the Hammersley-Clifford theorem (Besag, 1974). The
theorem gives a positivity condition that is sufficient to prove that the univariate conditional
distributions used by the Gibbs sampler uniquely define the joint distribution. The required
condition is that the support of the joint distribution is given by the Cartesian product of
the supports of the marginal distributions. An example of when this condition does not
hold is the joint density p(x,y) for a pair of random variables X and Y with support only
on [0,1] x [0,1] and [2, 3] x [2,3]. Clearly p(z) and p(y) are both positive on [0, 1] and [2, 3]
but neither [0, 1] x [2,3] or [2,3] x [0, 1] are in the support of the joint distribution (Hobert
et al., 1997).

In the DAG setting, the acyclicity requirement means that this positivity condition is
not satisfied. Consider a DAG consisting of two correlated random variables X; and Xo.
The correlation means that both the graph with a single edge (1,2) and the graph with
a single edge (2,1) have positive posterior probability. Thus P(Af, = 1 | X) > 0 and
P(AS, = 1] X) > 0 in the posterior marginal distributions. However, in the joint posterior
distribution P(A%, = 1, A, = 1 | X) = 0 because the corresponding graph (the complete
graph) is cyclic. The complete graph is thus not in the support of the joint distribution but
is in the Cartesian product of the supports of the marginal distributions.

An alternative sufficient condition for uniqueness of the joint distribution and conver-
gence of the Gibbs sampler when positivity is not satisfied is given by Besag (1994), which
was extended for continuous settings by Hobert et al. (1997). In the present context, the
condition requires that for every pair G', G” € G of DAGs with p nodes there exists a finite
sequence G1,...,Gy, with G; = G', Gy = G” and N € N, and such that G; and G;_;
differ in only a single component (in this context, a single edge), and that the joint poste-
rior distribution P(Gy | X) > 0 for all t = 0,... N. When the graph prior 7(G) > 0 for all
G € G, this condition is clearly satisfied: as an example, one such finite sequence removes
every edge of G', one at a time, and then adds every edge of G”, one at a time. Each graph
in the sequence is clearly acyclic, since the sequence is composed of subgraphs of the acyclic
G’ and G”, and so has positive probability in the joint distribution when the graph prior
is positive everywhere in G. A similar proof follows if the graph prior has support on all
subgraphs of graphs with support in the graph prior, as is true for most widely used priors.

Appendix B. Proof of Lemma 1

Lemma 1 {Pag,’Hl, . Pag,’H"} is a partition of Pa$,.
Proof. We show: (i) Uy, Pay'™ C Pa; (i) Upoy ., Pay™ 2 Pafy; and (i)

Pagv’th N Palc,;V’Hh2 = () for Hy, # Hp,, Hp,, Hp, € H.
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We prove the relationship by showing that Pagv’Hh C Paﬁ, for eachl h=1,...,n. By
the definition of Palcfv in Section 3.4 we need to show that G/ = (paﬁ,, pa€W> is acyclic

for all tuples pal(/;vl € Pag,’Hh of parent sets, forall h =1,...,7n.

We proceed by contradiction. Suppose some graph G’ = <pa€vl, pa€W> with pagvl €
Pag}H’L is cyclic. First note that G is acyclic because G is a subgraph of the acyclic
G. Since the graph G’ differs from the acyclic graph G only in the parents of nodes
in W, each cycle in G’ must include at least one node in W. Denote by x1 ~» o
the existence of a path (that obeys the edge directions) in the graph G’ from node
x1 € W to node zo € W that does not include any nodes in W (except 1 and x2).

Let wy,...,w, € W be the (minimal) complete set of nodes in W included in some
cycle in G’. Without loss of generality suppose that w; ~ wg ~ ... ~ w, in G’. Note
that since wy, ..., w, is the complete set of nodes in W in the cycle, no node between

w; and w;4 in the path can be in W, i€ {1,...,r — 1}.

We now show that for z1,z9 € W, 1 ~» x5 only if an edge (z1,x2) links node z; to
22 in the graph Hj. Since z1 ~~ xo, there must exist a node v € V that is a parent
of 9 in G’ such that v is a descendant in G’ of x;. Note that if the edge (x1,x2)
is in the graph G’ then v = z1. Since v is a parent of node x5 in the graph G’ and

x9 € W, then v € (ndaudeth) \de?;gh by condition (A). Also since x1 ~~ z2 does
not include any nodes in W, v is also a descendant in G of x1 because G’ and G differ
only in which nodes are parents of nodes in W. We proceed by contradiction. Suppose
no edge (x1,x2) exists in Hp. Then v is a descenckmt of x1 in the graph G, but z;
is not a parent of x5 in the graph Hy. So v € de(_;;gh, which by condition (A) is a

contradiction. Thus z1 ~» x9 only if (z1,z9) is present in Hy, for x1,29 € W.

Now, recall that w; ~» wg ~» ... ~» w,. Since a cycle is formed we must in addition
have a path in G’ from node w, to node w;. Since wi,...,w, is the complete set of
nodes in W involved in the cycle, no node on the path from w, to w; can be in W.
Thus w, ~» wy. However, this implies that the edges (w1, ws), (we, ws), ..., (wy—1,w;),
(wy,wy) are all in Hp, which implies Hy, is cyclic. But Hj, is acyclic by assumption,
and so we have a contradiction.

Suppose we start from a graph G = (paﬁ,,psz). We want to show that for each
DAG G' = (pa%’, pa€W> there is some H' € H such that paG, e Pag/’H . We will show
that pa%,/ € Pag,’H,, where H' = (pa{ll, e ,pagll> € Hisa DAg on nodes in W and
pagl = {x € W : there exists some v € pag/ such that v € deg}. As usual, pag/ is

the parent set in the graph G’ of the node w; and def is the descendants in G of the
node z. Note that H' is a subgraph (on the nodes in W) of the transitive closure T¢
By definition, G’ is a DAG, so T is also a DAG, and thus H' is a DAG.

We show that paﬁ,/ € Palc,';,’H/ by showing that for each node w € W, both conditions
(A) and (B) that specify membership of Pa$H are satisfied.
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w

For (A) we need pal’ C (ndaudeé’H/> \deG’H/. Let v € pal' meaning that v is a

parent of the node w in the graph G’. First we show that v ¢ de®?’and then show

that v € nd® UdeGH",

—w

To show that v ¢ de@H' note that if v € de’ then v must be a descendant in G

—w —w

of some node y e W that is not in paH . However, every such y is in palf/ by the
definition of pal!’, thus v ¢ de:

i
To show that v € ndGUdeg’H , We suppose v ¢ nd® and show this implies that
v € deG’H/. This follows because if v ¢ nd“ then it must be the descendant in G

of some node y € W. Then y € pall " by definition of H’. Therefore v € deGH as
required.

For (B), we need paG N (de?\de?f) + () for all z € pal’. Consider z € pall’. By

the definition of pa{g', this means that there exists some node v € pag/ such that

v € deg Additionally, any y € W for which v € deyé is such that y € pagl, by

definition of pall’. / T hus v is not a descendant in G of any node in W that is not in
all’. Then v € paG N (deG\de w ), and thus the condition is satisfied.

(iii) Since Hy, # Hp,, at least one node has different parents in Hp, and Hp,. Suppose
that the node w € W is such a node, and that x € W is a parent of w in Hj, but not

: : G,H, G, H,
in Hp,. Consider a parent set pall € Pay, " We will prove that pall ¢ Pa, "2

and the result follows.

7Hh1
'LU

such that v € paGt. We

Hp,y

By condition (B), there must exist some v € deG\de

will show that v ¢ paLG2 for every parent set paG2 € Pa 7" This follows because

v E de and so is a descendant in G of z, which is not a parent of w in Hp,. Thus
G,H G,H

vedew,andsovgé(ndGUd h2>\d "2

w in Go. [ |

. Therefore v cannot be a parent of

Appendix C. Proof of Lemma 2
Lemma 2 The following identity holds for any H € H, W CV and G € G.

Z H p w ’ Xpa T pa H Z p(Xw ’ Xpaw)ﬂw<paw)

paWEPaG HweWw weWw pawePaw
Proof. Define )\() (X | Xpa(i))ﬁw(pag)), i € {1,...P}, where P is the cardinality of
Pag/’H, and where pag,) is the parent set of node w for the i*" member of Pa‘c,f,’H i.e. we
have that Pag;H = {(pa&), e ,pagq)), e (pag,’?, e ,pagjq))}. Similarly, define PaGH —
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{pag ), ey pagva)}, and thus P,, is the number of tuples of parent sets in Pag’H. Recall

that Pagv’H is the Cartesian product of the sets Pag’H of parent sets for w € W, thus

I > W=1II ()\S)+...+)\Eva)>

weW pag)ePag’H weW

= > AGD L AGe)
11€{1,...,P1}, ..., 1q€{1,....Pq}
- 3 AD D

(pal) ,....pali)) € Pal!

- Y

(paly) ... pali)) € Pagy wEW

Appendix D. Details of Data Analysed

We included in our analysis the following variables from the survey data (Centers for Dis-
ease Control and Prevention, 2008): SEX, AGE_G, RACEGR2, MARITAL, CHLDCNT, _INCOMG,
USEEQUIP, _HCVU65, MEDCOST, _SMOKER3, _ASTHMST, RFDRHV3, RFBING4, QLREST2, RFSEAT3,
_TOTINDA, BMI4CAT,DIABETE2, EMTSUPRT, LSATISFY, EXTETH2, AIDTST2, DENVST1, IMONTH.
In our analysis of the single-cell molecular data (Bendall et al., 2011) we included the fol-
lowing quantities, including the binding of antibodies, viability and DNA content: 191-DNA,
193-DNA, 103-Viability, 115-CD45, 139-CD45RA, 141-pPLCgamma2, 142-CD19, 144-CD11b,
145-CD4, 146-CD8, 148-CD34, 150-pSTAT5, 147-CD20, 152-Ki67, 154-pSHP2, 151-pERK1/2,
153-pMAPKAPK2, 156-pMAPKAPK2AP70/Syk, 1568-CD33, 160-CD123, 159-pSTAT3, 164-pSLP-76,
165-pNFkB, 166-IkBalpha, 167-CD38, 168-pH3, 170-CD90, 169-pP38, 171-pBtk/Itk, 172-pS6,
174-pSrcFK, 176-pCREB, 175-pCrkL, 110_114-CD3.
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GIBBS SAMPLER FOR LEARNING DAGS

Method n = 100 250 500 1000 2500 5000
Gibbs 69.2+6.5 32.0£3.7 258+28 2214+32 145+3.3 8.7+£24
23.8+04 83£05 89+03 151406 6.0+00 101+0.3
MC3 674+49 358+£66 44.7+78 47.8+£133 63.7£11.2 7T85£16.5
23.9+09 1254+3.1 273+88 43.8+£142 654+11.6 823+£17.0
REV 68.2+55 34.7+£58 274+46 281+40 244495 204+6.7
259+21 83+11 40£00 11.5+20 11.6£99 13.5+8.0
PC 48.0 39.0 38.0 28.0 22.0 14.0
Xie-Geng 54.0 40.0 34.0 43.0 32.0 17.0

Table A2: ALARM data, structural Hamming distances (SHD) between estimated graphs
and the true data-generating graph. For Bayesian methods we compare to both
the mazimum a posteriori (top line) and the median probability graph (bottom
line), and report mean SHD over 10 independent Monte Carlo runs, along with
the corresponding standard deviation. For constraint-based methods, we report
results for a = 0.05.
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Appendix F. Additional Figures
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Log marginal likelihood of the graphs visited by the three MCMC samplers
in 10 independent runs, initialised at disparate initial conditions. In (A) Zoo
data; (B) survey data; (C) single-cell molecular data. Iteration number is
displayed on a logjg scale. The dashed lines indicate where the burn-in phase

ended.
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MCMC sampler = Gibbs == \C® == REV
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Figure A14: Proportion of edges with PSRF < 1.1 against iteration number. (A) Zoo data;
(B) ALARM data, n = 1000; (C) survey data; (D) single-cell molecular data.
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Final edge probabilities from 10 runs
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Figure A15: Convergence diagnostic plots for all pairs of 10 independent MCMC runs for
each sampler for (A) Zoo data and (B) ALARM data, n = 1000. In each cell,
the posterior edge probabilities given by two independent runs are plotted
against each other. Each point represents a single edge. The lower half of
both panels compares runs of the Gibbs sampler; the upper half compares
runs of the MC? and the REV sampler respectively. When the two runs give
the same estimates of the posterior edge probabilities, all of the points appear
on the line y = x. The blue to orange colour scale represents the distance from
this line, with orange points the furthest away.
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Figure A16: ALARM data, receiver operating characteristic (ROC) curves for each of 10
independent MCMC runs for each MCMC sampler, and point estimates for the
constraint-based methods. Point estimates from Xie-Geng’s constraint-based
method and the PC-algorithm are also shown for all 8 significance levels.
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Figure A17: The median probability model G™*d estimated by the Gibbs sampler, for (A)

survey data and (B) single-cell molecular data. Darker shading indicates higher
posterior edge probability. Note that no hard constraints were specified to
ensure, for example, an in-degree of 0 for ‘Age Group’ in (A); such constraints
were omitted to keep the implementations of the various methods simple.
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Figure A18: Convergence diagnostic plots for all pairs of 10 independent MCMC runs for
each sampler for (A) survey data and (B) single-cell molecular data. In each
cell, the posterior edge probabilities given by two independent runs are plotted
against each other. Each point represents a single edge. The lower half of both
panels compares runs of the Gibbs sampler; the upper half compares runs of
the MC? and the REV sampler respectively. When the two runs give the same
estimates of the posterior edge probabilities, all of the points appear on the
line y = x. The blue to orange colour scale represents the distance from this
line, with orange points the furthest away.
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Figure A19: Stability of estimators under bootstrapping, as quantified by structural Ham-
ming distance (SHD) between estimates obtained from pairs of bootstrap it-
erations for (A) survey data and (B) single-cell molecular data. In each case
10 bootstrap data sets were drawn and each estimator was run on each boot-
strap data set. Smaller SHDs indicate stable estimation in the sense of graph
estimates that are robust to resampling. Boxplots are shown over all pairs
of bootstrap iterations. The edge probabilities were thresholded so that the
resulting graphs had the same number of edges as the graph indicated in the
panel title: GFC (the graph estimated by the PC-algorithm), GX¢ (Xie-Geng
method), or GMAP (MAP graph).
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